1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/filelock.h> 19 #include <linux/gfs2_ondisk.h> 20 #include <linux/falloc.h> 21 #include <linux/swap.h> 22 #include <linux/crc32.h> 23 #include <linux/writeback.h> 24 #include <linux/uaccess.h> 25 #include <linux/dlm.h> 26 #include <linux/dlm_plock.h> 27 #include <linux/delay.h> 28 #include <linux/backing-dev.h> 29 #include <linux/fileattr.h> 30 31 #include "gfs2.h" 32 #include "incore.h" 33 #include "bmap.h" 34 #include "aops.h" 35 #include "dir.h" 36 #include "glock.h" 37 #include "glops.h" 38 #include "inode.h" 39 #include "log.h" 40 #include "meta_io.h" 41 #include "quota.h" 42 #include "rgrp.h" 43 #include "trans.h" 44 #include "util.h" 45 46 /** 47 * gfs2_llseek - seek to a location in a file 48 * @file: the file 49 * @offset: the offset 50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 51 * 52 * SEEK_END requires the glock for the file because it references the 53 * file's size. 54 * 55 * Returns: The new offset, or errno 56 */ 57 58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 59 { 60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 61 struct gfs2_holder i_gh; 62 loff_t error; 63 64 switch (whence) { 65 case SEEK_END: 66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 67 &i_gh); 68 if (!error) { 69 error = generic_file_llseek(file, offset, whence); 70 gfs2_glock_dq_uninit(&i_gh); 71 } 72 break; 73 74 case SEEK_DATA: 75 error = gfs2_seek_data(file, offset); 76 break; 77 78 case SEEK_HOLE: 79 error = gfs2_seek_hole(file, offset); 80 break; 81 82 case SEEK_CUR: 83 case SEEK_SET: 84 /* 85 * These don't reference inode->i_size and don't depend on the 86 * block mapping, so we don't need the glock. 87 */ 88 error = generic_file_llseek(file, offset, whence); 89 break; 90 default: 91 error = -EINVAL; 92 } 93 94 return error; 95 } 96 97 /** 98 * gfs2_readdir - Iterator for a directory 99 * @file: The directory to read from 100 * @ctx: What to feed directory entries to 101 * 102 * Returns: errno 103 */ 104 105 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 106 { 107 struct inode *dir = file->f_mapping->host; 108 struct gfs2_inode *dip = GFS2_I(dir); 109 struct gfs2_holder d_gh; 110 int error; 111 112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 113 if (error) 114 return error; 115 116 error = gfs2_dir_read(dir, ctx, &file->f_ra); 117 118 gfs2_glock_dq_uninit(&d_gh); 119 120 return error; 121 } 122 123 /* 124 * struct fsflag_gfs2flag 125 * 126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 127 * and to GFS2_DIF_JDATA for non-directories. 128 */ 129 static struct { 130 u32 fsflag; 131 u32 gfsflag; 132 } fsflag_gfs2flag[] = { 133 {FS_SYNC_FL, GFS2_DIF_SYNC}, 134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 136 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 137 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 140 }; 141 142 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 143 { 144 int i; 145 u32 fsflags = 0; 146 147 if (S_ISDIR(inode->i_mode)) 148 gfsflags &= ~GFS2_DIF_JDATA; 149 else 150 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 151 152 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 153 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 154 fsflags |= fsflag_gfs2flag[i].fsflag; 155 return fsflags; 156 } 157 158 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) 159 { 160 struct inode *inode = d_inode(dentry); 161 struct gfs2_inode *ip = GFS2_I(inode); 162 struct gfs2_holder gh; 163 int error; 164 u32 fsflags; 165 166 if (d_is_special(dentry)) 167 return -ENOTTY; 168 169 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 170 error = gfs2_glock_nq(&gh); 171 if (error) 172 goto out_uninit; 173 174 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 175 176 fileattr_fill_flags(fa, fsflags); 177 178 gfs2_glock_dq(&gh); 179 out_uninit: 180 gfs2_holder_uninit(&gh); 181 return error; 182 } 183 184 void gfs2_set_inode_flags(struct inode *inode) 185 { 186 struct gfs2_inode *ip = GFS2_I(inode); 187 unsigned int flags = inode->i_flags; 188 189 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 190 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 191 flags |= S_NOSEC; 192 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 193 flags |= S_IMMUTABLE; 194 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 195 flags |= S_APPEND; 196 if (ip->i_diskflags & GFS2_DIF_NOATIME) 197 flags |= S_NOATIME; 198 if (ip->i_diskflags & GFS2_DIF_SYNC) 199 flags |= S_SYNC; 200 inode->i_flags = flags; 201 } 202 203 /* Flags that can be set by user space */ 204 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 205 GFS2_DIF_IMMUTABLE| \ 206 GFS2_DIF_APPENDONLY| \ 207 GFS2_DIF_NOATIME| \ 208 GFS2_DIF_SYNC| \ 209 GFS2_DIF_TOPDIR| \ 210 GFS2_DIF_INHERIT_JDATA) 211 212 /** 213 * do_gfs2_set_flags - set flags on an inode 214 * @inode: The inode 215 * @reqflags: The flags to set 216 * @mask: Indicates which flags are valid 217 * 218 */ 219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask) 220 { 221 struct gfs2_inode *ip = GFS2_I(inode); 222 struct gfs2_sbd *sdp = GFS2_SB(inode); 223 struct buffer_head *bh; 224 struct gfs2_holder gh; 225 int error; 226 u32 new_flags, flags; 227 228 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 229 if (error) 230 return error; 231 232 error = 0; 233 flags = ip->i_diskflags; 234 new_flags = (flags & ~mask) | (reqflags & mask); 235 if ((new_flags ^ flags) == 0) 236 goto out; 237 238 if (!IS_IMMUTABLE(inode)) { 239 error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE); 240 if (error) 241 goto out; 242 } 243 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 244 if (new_flags & GFS2_DIF_JDATA) 245 gfs2_log_flush(sdp, ip->i_gl, 246 GFS2_LOG_HEAD_FLUSH_NORMAL | 247 GFS2_LFC_SET_FLAGS); 248 error = filemap_fdatawrite(inode->i_mapping); 249 if (error) 250 goto out; 251 error = filemap_fdatawait(inode->i_mapping); 252 if (error) 253 goto out; 254 if (new_flags & GFS2_DIF_JDATA) 255 gfs2_ordered_del_inode(ip); 256 } 257 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 258 if (error) 259 goto out; 260 error = gfs2_meta_inode_buffer(ip, &bh); 261 if (error) 262 goto out_trans_end; 263 inode_set_ctime_current(inode); 264 gfs2_trans_add_meta(ip->i_gl, bh); 265 ip->i_diskflags = new_flags; 266 gfs2_dinode_out(ip, bh->b_data); 267 brelse(bh); 268 gfs2_set_inode_flags(inode); 269 gfs2_set_aops(inode); 270 out_trans_end: 271 gfs2_trans_end(sdp); 272 out: 273 gfs2_glock_dq_uninit(&gh); 274 return error; 275 } 276 277 int gfs2_fileattr_set(struct mnt_idmap *idmap, 278 struct dentry *dentry, struct fileattr *fa) 279 { 280 struct inode *inode = d_inode(dentry); 281 u32 fsflags = fa->flags, gfsflags = 0; 282 u32 mask; 283 int i; 284 285 if (d_is_special(dentry)) 286 return -ENOTTY; 287 288 if (fileattr_has_fsx(fa)) 289 return -EOPNOTSUPP; 290 291 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 292 if (fsflags & fsflag_gfs2flag[i].fsflag) { 293 fsflags &= ~fsflag_gfs2flag[i].fsflag; 294 gfsflags |= fsflag_gfs2flag[i].gfsflag; 295 } 296 } 297 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 298 return -EINVAL; 299 300 mask = GFS2_FLAGS_USER_SET; 301 if (S_ISDIR(inode->i_mode)) { 302 mask &= ~GFS2_DIF_JDATA; 303 } else { 304 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 305 if (gfsflags & GFS2_DIF_TOPDIR) 306 return -EINVAL; 307 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 308 } 309 310 return do_gfs2_set_flags(inode, gfsflags, mask); 311 } 312 313 static int gfs2_getlabel(struct file *filp, char __user *label) 314 { 315 struct inode *inode = file_inode(filp); 316 struct gfs2_sbd *sdp = GFS2_SB(inode); 317 318 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 319 return -EFAULT; 320 321 return 0; 322 } 323 324 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 325 { 326 switch(cmd) { 327 case FITRIM: 328 return gfs2_fitrim(filp, (void __user *)arg); 329 case FS_IOC_GETFSLABEL: 330 return gfs2_getlabel(filp, (char __user *)arg); 331 } 332 333 return -ENOTTY; 334 } 335 336 #ifdef CONFIG_COMPAT 337 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 338 { 339 switch(cmd) { 340 /* Keep this list in sync with gfs2_ioctl */ 341 case FITRIM: 342 case FS_IOC_GETFSLABEL: 343 break; 344 default: 345 return -ENOIOCTLCMD; 346 } 347 348 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 349 } 350 #else 351 #define gfs2_compat_ioctl NULL 352 #endif 353 354 /** 355 * gfs2_size_hint - Give a hint to the size of a write request 356 * @filep: The struct file 357 * @offset: The file offset of the write 358 * @size: The length of the write 359 * 360 * When we are about to do a write, this function records the total 361 * write size in order to provide a suitable hint to the lower layers 362 * about how many blocks will be required. 363 * 364 */ 365 366 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 367 { 368 struct inode *inode = file_inode(filep); 369 struct gfs2_sbd *sdp = GFS2_SB(inode); 370 struct gfs2_inode *ip = GFS2_I(inode); 371 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 372 int hint = min_t(size_t, INT_MAX, blks); 373 374 if (hint > atomic_read(&ip->i_sizehint)) 375 atomic_set(&ip->i_sizehint, hint); 376 } 377 378 /** 379 * gfs2_allocate_folio_backing - Allocate blocks for a write fault 380 * @folio: The (locked) folio to allocate backing for 381 * @length: Size of the allocation 382 * 383 * We try to allocate all the blocks required for the folio in one go. This 384 * might fail for various reasons, so we keep trying until all the blocks to 385 * back this folio are allocated. If some of the blocks are already allocated, 386 * that is ok too. 387 */ 388 static int gfs2_allocate_folio_backing(struct folio *folio, size_t length) 389 { 390 u64 pos = folio_pos(folio); 391 392 do { 393 struct iomap iomap = { }; 394 395 if (gfs2_iomap_alloc(folio->mapping->host, pos, length, &iomap)) 396 return -EIO; 397 398 if (length < iomap.length) 399 iomap.length = length; 400 length -= iomap.length; 401 pos += iomap.length; 402 } while (length > 0); 403 404 return 0; 405 } 406 407 /** 408 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 409 * @vmf: The virtual memory fault containing the page to become writable 410 * 411 * When the page becomes writable, we need to ensure that we have 412 * blocks allocated on disk to back that page. 413 */ 414 415 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 416 { 417 struct folio *folio = page_folio(vmf->page); 418 struct inode *inode = file_inode(vmf->vma->vm_file); 419 struct gfs2_inode *ip = GFS2_I(inode); 420 struct gfs2_sbd *sdp = GFS2_SB(inode); 421 struct gfs2_alloc_parms ap = {}; 422 u64 pos = folio_pos(folio); 423 unsigned int data_blocks, ind_blocks, rblocks; 424 vm_fault_t ret = VM_FAULT_LOCKED; 425 struct gfs2_holder gh; 426 size_t length; 427 loff_t size; 428 int err; 429 430 sb_start_pagefault(inode->i_sb); 431 432 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 433 err = gfs2_glock_nq(&gh); 434 if (err) { 435 ret = vmf_fs_error(err); 436 goto out_uninit; 437 } 438 439 /* Check folio index against inode size */ 440 size = i_size_read(inode); 441 if (pos >= size) { 442 ret = VM_FAULT_SIGBUS; 443 goto out_unlock; 444 } 445 446 /* Update file times before taking folio lock */ 447 file_update_time(vmf->vma->vm_file); 448 449 /* folio is wholly or partially inside EOF */ 450 if (size - pos < folio_size(folio)) 451 length = size - pos; 452 else 453 length = folio_size(folio); 454 455 gfs2_size_hint(vmf->vma->vm_file, pos, length); 456 457 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 458 set_bit(GIF_SW_PAGED, &ip->i_flags); 459 460 /* 461 * iomap_writepage / iomap_writepages currently don't support inline 462 * files, so always unstuff here. 463 */ 464 465 if (!gfs2_is_stuffed(ip) && 466 !gfs2_write_alloc_required(ip, pos, length)) { 467 folio_lock(folio); 468 if (!folio_test_uptodate(folio) || 469 folio->mapping != inode->i_mapping) { 470 ret = VM_FAULT_NOPAGE; 471 folio_unlock(folio); 472 } 473 goto out_unlock; 474 } 475 476 err = gfs2_rindex_update(sdp); 477 if (err) { 478 ret = vmf_fs_error(err); 479 goto out_unlock; 480 } 481 482 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); 483 ap.target = data_blocks + ind_blocks; 484 err = gfs2_quota_lock_check(ip, &ap); 485 if (err) { 486 ret = vmf_fs_error(err); 487 goto out_unlock; 488 } 489 err = gfs2_inplace_reserve(ip, &ap); 490 if (err) { 491 ret = vmf_fs_error(err); 492 goto out_quota_unlock; 493 } 494 495 rblocks = RES_DINODE + ind_blocks; 496 if (gfs2_is_jdata(ip)) 497 rblocks += data_blocks ? data_blocks : 1; 498 if (ind_blocks || data_blocks) { 499 rblocks += RES_STATFS + RES_QUOTA; 500 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 501 } 502 err = gfs2_trans_begin(sdp, rblocks, 0); 503 if (err) { 504 ret = vmf_fs_error(err); 505 goto out_trans_fail; 506 } 507 508 /* Unstuff, if required, and allocate backing blocks for folio */ 509 if (gfs2_is_stuffed(ip)) { 510 err = gfs2_unstuff_dinode(ip); 511 if (err) { 512 ret = vmf_fs_error(err); 513 goto out_trans_end; 514 } 515 } 516 517 folio_lock(folio); 518 /* If truncated, we must retry the operation, we may have raced 519 * with the glock demotion code. 520 */ 521 if (!folio_test_uptodate(folio) || folio->mapping != inode->i_mapping) { 522 ret = VM_FAULT_NOPAGE; 523 goto out_page_locked; 524 } 525 526 err = gfs2_allocate_folio_backing(folio, length); 527 if (err) 528 ret = vmf_fs_error(err); 529 530 out_page_locked: 531 if (ret != VM_FAULT_LOCKED) 532 folio_unlock(folio); 533 out_trans_end: 534 gfs2_trans_end(sdp); 535 out_trans_fail: 536 gfs2_inplace_release(ip); 537 out_quota_unlock: 538 gfs2_quota_unlock(ip); 539 out_unlock: 540 gfs2_glock_dq(&gh); 541 out_uninit: 542 gfs2_holder_uninit(&gh); 543 if (ret == VM_FAULT_LOCKED) { 544 folio_mark_dirty(folio); 545 folio_wait_stable(folio); 546 } 547 sb_end_pagefault(inode->i_sb); 548 return ret; 549 } 550 551 static vm_fault_t gfs2_fault(struct vm_fault *vmf) 552 { 553 struct inode *inode = file_inode(vmf->vma->vm_file); 554 struct gfs2_inode *ip = GFS2_I(inode); 555 struct gfs2_holder gh; 556 vm_fault_t ret; 557 int err; 558 559 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 560 err = gfs2_glock_nq(&gh); 561 if (err) { 562 ret = vmf_fs_error(err); 563 goto out_uninit; 564 } 565 ret = filemap_fault(vmf); 566 gfs2_glock_dq(&gh); 567 out_uninit: 568 gfs2_holder_uninit(&gh); 569 return ret; 570 } 571 572 static const struct vm_operations_struct gfs2_vm_ops = { 573 .fault = gfs2_fault, 574 .map_pages = filemap_map_pages, 575 .page_mkwrite = gfs2_page_mkwrite, 576 }; 577 578 /** 579 * gfs2_mmap 580 * @file: The file to map 581 * @vma: The VMA which described the mapping 582 * 583 * There is no need to get a lock here unless we should be updating 584 * atime. We ignore any locking errors since the only consequence is 585 * a missed atime update (which will just be deferred until later). 586 * 587 * Returns: 0 588 */ 589 590 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 591 { 592 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 593 594 if (!(file->f_flags & O_NOATIME) && 595 !IS_NOATIME(&ip->i_inode)) { 596 struct gfs2_holder i_gh; 597 int error; 598 599 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 600 &i_gh); 601 if (error) 602 return error; 603 /* grab lock to update inode */ 604 gfs2_glock_dq_uninit(&i_gh); 605 file_accessed(file); 606 } 607 vma->vm_ops = &gfs2_vm_ops; 608 609 return 0; 610 } 611 612 /** 613 * gfs2_open_common - This is common to open and atomic_open 614 * @inode: The inode being opened 615 * @file: The file being opened 616 * 617 * This maybe called under a glock or not depending upon how it has 618 * been called. We must always be called under a glock for regular 619 * files, however. For other file types, it does not matter whether 620 * we hold the glock or not. 621 * 622 * Returns: Error code or 0 for success 623 */ 624 625 int gfs2_open_common(struct inode *inode, struct file *file) 626 { 627 struct gfs2_file *fp; 628 int ret; 629 630 if (S_ISREG(inode->i_mode)) { 631 ret = generic_file_open(inode, file); 632 if (ret) 633 return ret; 634 635 if (!gfs2_is_jdata(GFS2_I(inode))) 636 file->f_mode |= FMODE_CAN_ODIRECT; 637 } 638 639 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 640 if (!fp) 641 return -ENOMEM; 642 643 mutex_init(&fp->f_fl_mutex); 644 645 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 646 file->private_data = fp; 647 if (file->f_mode & FMODE_WRITE) { 648 ret = gfs2_qa_get(GFS2_I(inode)); 649 if (ret) 650 goto fail; 651 } 652 return 0; 653 654 fail: 655 kfree(file->private_data); 656 file->private_data = NULL; 657 return ret; 658 } 659 660 /** 661 * gfs2_open - open a file 662 * @inode: the inode to open 663 * @file: the struct file for this opening 664 * 665 * After atomic_open, this function is only used for opening files 666 * which are already cached. We must still get the glock for regular 667 * files to ensure that we have the file size uptodate for the large 668 * file check which is in the common code. That is only an issue for 669 * regular files though. 670 * 671 * Returns: errno 672 */ 673 674 static int gfs2_open(struct inode *inode, struct file *file) 675 { 676 struct gfs2_inode *ip = GFS2_I(inode); 677 struct gfs2_holder i_gh; 678 int error; 679 bool need_unlock = false; 680 681 if (S_ISREG(ip->i_inode.i_mode)) { 682 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 683 &i_gh); 684 if (error) 685 return error; 686 need_unlock = true; 687 } 688 689 error = gfs2_open_common(inode, file); 690 691 if (need_unlock) 692 gfs2_glock_dq_uninit(&i_gh); 693 694 return error; 695 } 696 697 /** 698 * gfs2_release - called to close a struct file 699 * @inode: the inode the struct file belongs to 700 * @file: the struct file being closed 701 * 702 * Returns: errno 703 */ 704 705 static int gfs2_release(struct inode *inode, struct file *file) 706 { 707 struct gfs2_inode *ip = GFS2_I(inode); 708 709 kfree(file->private_data); 710 file->private_data = NULL; 711 712 if (file->f_mode & FMODE_WRITE) { 713 if (gfs2_rs_active(&ip->i_res)) 714 gfs2_rs_delete(ip); 715 gfs2_qa_put(ip); 716 } 717 return 0; 718 } 719 720 /** 721 * gfs2_fsync - sync the dirty data for a file (across the cluster) 722 * @file: the file that points to the dentry 723 * @start: the start position in the file to sync 724 * @end: the end position in the file to sync 725 * @datasync: set if we can ignore timestamp changes 726 * 727 * We split the data flushing here so that we don't wait for the data 728 * until after we've also sent the metadata to disk. Note that for 729 * data=ordered, we will write & wait for the data at the log flush 730 * stage anyway, so this is unlikely to make much of a difference 731 * except in the data=writeback case. 732 * 733 * If the fdatawrite fails due to any reason except -EIO, we will 734 * continue the remainder of the fsync, although we'll still report 735 * the error at the end. This is to match filemap_write_and_wait_range() 736 * behaviour. 737 * 738 * Returns: errno 739 */ 740 741 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 742 int datasync) 743 { 744 struct address_space *mapping = file->f_mapping; 745 struct inode *inode = mapping->host; 746 int sync_state = inode->i_state & I_DIRTY; 747 struct gfs2_inode *ip = GFS2_I(inode); 748 int ret = 0, ret1 = 0; 749 750 if (mapping->nrpages) { 751 ret1 = filemap_fdatawrite_range(mapping, start, end); 752 if (ret1 == -EIO) 753 return ret1; 754 } 755 756 if (!gfs2_is_jdata(ip)) 757 sync_state &= ~I_DIRTY_PAGES; 758 if (datasync) 759 sync_state &= ~I_DIRTY_SYNC; 760 761 if (sync_state) { 762 ret = sync_inode_metadata(inode, 1); 763 if (ret) 764 return ret; 765 if (gfs2_is_jdata(ip)) 766 ret = file_write_and_wait(file); 767 if (ret) 768 return ret; 769 gfs2_ail_flush(ip->i_gl, 1); 770 } 771 772 if (mapping->nrpages) 773 ret = file_fdatawait_range(file, start, end); 774 775 return ret ? ret : ret1; 776 } 777 778 static inline bool should_fault_in_pages(struct iov_iter *i, 779 struct kiocb *iocb, 780 size_t *prev_count, 781 size_t *window_size) 782 { 783 size_t count = iov_iter_count(i); 784 size_t size, offs; 785 786 if (!count) 787 return false; 788 if (!user_backed_iter(i)) 789 return false; 790 791 /* 792 * Try to fault in multiple pages initially. When that doesn't result 793 * in any progress, fall back to a single page. 794 */ 795 size = PAGE_SIZE; 796 offs = offset_in_page(iocb->ki_pos); 797 if (*prev_count != count) { 798 size_t nr_dirtied; 799 800 nr_dirtied = max(current->nr_dirtied_pause - 801 current->nr_dirtied, 8); 802 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT); 803 } 804 805 *prev_count = count; 806 *window_size = size - offs; 807 return true; 808 } 809 810 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, 811 struct gfs2_holder *gh) 812 { 813 struct file *file = iocb->ki_filp; 814 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 815 size_t prev_count = 0, window_size = 0; 816 size_t read = 0; 817 ssize_t ret; 818 819 /* 820 * In this function, we disable page faults when we're holding the 821 * inode glock while doing I/O. If a page fault occurs, we indicate 822 * that the inode glock may be dropped, fault in the pages manually, 823 * and retry. 824 * 825 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger 826 * physical as well as manual page faults, and we need to disable both 827 * kinds. 828 * 829 * For direct I/O, gfs2 takes the inode glock in deferred mode. This 830 * locking mode is compatible with other deferred holders, so multiple 831 * processes and nodes can do direct I/O to a file at the same time. 832 * There's no guarantee that reads or writes will be atomic. Any 833 * coordination among readers and writers needs to happen externally. 834 */ 835 836 if (!iov_iter_count(to)) 837 return 0; /* skip atime */ 838 839 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 840 retry: 841 ret = gfs2_glock_nq(gh); 842 if (ret) 843 goto out_uninit; 844 pagefault_disable(); 845 to->nofault = true; 846 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 847 IOMAP_DIO_PARTIAL, NULL, read); 848 to->nofault = false; 849 pagefault_enable(); 850 if (ret <= 0 && ret != -EFAULT) 851 goto out_unlock; 852 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */ 853 if (ret > 0) 854 read = ret; 855 856 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) { 857 gfs2_glock_dq(gh); 858 window_size -= fault_in_iov_iter_writeable(to, window_size); 859 if (window_size) 860 goto retry; 861 } 862 out_unlock: 863 if (gfs2_holder_queued(gh)) 864 gfs2_glock_dq(gh); 865 out_uninit: 866 gfs2_holder_uninit(gh); 867 /* User space doesn't expect partial success. */ 868 if (ret < 0) 869 return ret; 870 return read; 871 } 872 873 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, 874 struct gfs2_holder *gh) 875 { 876 struct file *file = iocb->ki_filp; 877 struct inode *inode = file->f_mapping->host; 878 struct gfs2_inode *ip = GFS2_I(inode); 879 size_t prev_count = 0, window_size = 0; 880 size_t written = 0; 881 bool enough_retries; 882 ssize_t ret; 883 884 /* 885 * In this function, we disable page faults when we're holding the 886 * inode glock while doing I/O. If a page fault occurs, we indicate 887 * that the inode glock may be dropped, fault in the pages manually, 888 * and retry. 889 * 890 * For writes, iomap_dio_rw only triggers manual page faults, so we 891 * don't need to disable physical ones. 892 */ 893 894 /* 895 * Deferred lock, even if its a write, since we do no allocation on 896 * this path. All we need to change is the atime, and this lock mode 897 * ensures that other nodes have flushed their buffered read caches 898 * (i.e. their page cache entries for this inode). We do not, 899 * unfortunately, have the option of only flushing a range like the 900 * VFS does. 901 */ 902 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 903 retry: 904 ret = gfs2_glock_nq(gh); 905 if (ret) 906 goto out_uninit; 907 /* Silently fall back to buffered I/O when writing beyond EOF */ 908 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode)) 909 goto out_unlock; 910 911 from->nofault = true; 912 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 913 IOMAP_DIO_PARTIAL, NULL, written); 914 from->nofault = false; 915 if (ret <= 0) { 916 if (ret == -ENOTBLK) 917 ret = 0; 918 if (ret != -EFAULT) 919 goto out_unlock; 920 } 921 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */ 922 if (ret > 0) 923 written = ret; 924 925 enough_retries = prev_count == iov_iter_count(from) && 926 window_size <= PAGE_SIZE; 927 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { 928 gfs2_glock_dq(gh); 929 window_size -= fault_in_iov_iter_readable(from, window_size); 930 if (window_size) { 931 if (!enough_retries) 932 goto retry; 933 /* fall back to buffered I/O */ 934 ret = 0; 935 } 936 } 937 out_unlock: 938 if (gfs2_holder_queued(gh)) 939 gfs2_glock_dq(gh); 940 out_uninit: 941 gfs2_holder_uninit(gh); 942 /* User space doesn't expect partial success. */ 943 if (ret < 0) 944 return ret; 945 return written; 946 } 947 948 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 949 { 950 struct gfs2_inode *ip; 951 struct gfs2_holder gh; 952 size_t prev_count = 0, window_size = 0; 953 size_t read = 0; 954 ssize_t ret; 955 956 /* 957 * In this function, we disable page faults when we're holding the 958 * inode glock while doing I/O. If a page fault occurs, we indicate 959 * that the inode glock may be dropped, fault in the pages manually, 960 * and retry. 961 */ 962 963 if (iocb->ki_flags & IOCB_DIRECT) 964 return gfs2_file_direct_read(iocb, to, &gh); 965 966 pagefault_disable(); 967 iocb->ki_flags |= IOCB_NOIO; 968 ret = generic_file_read_iter(iocb, to); 969 iocb->ki_flags &= ~IOCB_NOIO; 970 pagefault_enable(); 971 if (ret >= 0) { 972 if (!iov_iter_count(to)) 973 return ret; 974 read = ret; 975 } else if (ret != -EFAULT) { 976 if (ret != -EAGAIN) 977 return ret; 978 if (iocb->ki_flags & IOCB_NOWAIT) 979 return ret; 980 } 981 ip = GFS2_I(iocb->ki_filp->f_mapping->host); 982 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 983 retry: 984 ret = gfs2_glock_nq(&gh); 985 if (ret) 986 goto out_uninit; 987 pagefault_disable(); 988 ret = generic_file_read_iter(iocb, to); 989 pagefault_enable(); 990 if (ret <= 0 && ret != -EFAULT) 991 goto out_unlock; 992 if (ret > 0) 993 read += ret; 994 995 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) { 996 gfs2_glock_dq(&gh); 997 window_size -= fault_in_iov_iter_writeable(to, window_size); 998 if (window_size) 999 goto retry; 1000 } 1001 out_unlock: 1002 if (gfs2_holder_queued(&gh)) 1003 gfs2_glock_dq(&gh); 1004 out_uninit: 1005 gfs2_holder_uninit(&gh); 1006 return read ? read : ret; 1007 } 1008 1009 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb, 1010 struct iov_iter *from, 1011 struct gfs2_holder *gh) 1012 { 1013 struct file *file = iocb->ki_filp; 1014 struct inode *inode = file_inode(file); 1015 struct gfs2_inode *ip = GFS2_I(inode); 1016 struct gfs2_sbd *sdp = GFS2_SB(inode); 1017 struct gfs2_holder *statfs_gh = NULL; 1018 size_t prev_count = 0, window_size = 0; 1019 size_t orig_count = iov_iter_count(from); 1020 size_t written = 0; 1021 ssize_t ret; 1022 1023 /* 1024 * In this function, we disable page faults when we're holding the 1025 * inode glock while doing I/O. If a page fault occurs, we indicate 1026 * that the inode glock may be dropped, fault in the pages manually, 1027 * and retry. 1028 */ 1029 1030 if (inode == sdp->sd_rindex) { 1031 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS); 1032 if (!statfs_gh) 1033 return -ENOMEM; 1034 } 1035 1036 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh); 1037 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { 1038 retry: 1039 window_size -= fault_in_iov_iter_readable(from, window_size); 1040 if (!window_size) { 1041 ret = -EFAULT; 1042 goto out_uninit; 1043 } 1044 from->count = min(from->count, window_size); 1045 } 1046 ret = gfs2_glock_nq(gh); 1047 if (ret) 1048 goto out_uninit; 1049 1050 if (inode == sdp->sd_rindex) { 1051 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1052 1053 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1054 GL_NOCACHE, statfs_gh); 1055 if (ret) 1056 goto out_unlock; 1057 } 1058 1059 pagefault_disable(); 1060 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 1061 pagefault_enable(); 1062 if (ret > 0) 1063 written += ret; 1064 1065 if (inode == sdp->sd_rindex) 1066 gfs2_glock_dq_uninit(statfs_gh); 1067 1068 if (ret <= 0 && ret != -EFAULT) 1069 goto out_unlock; 1070 1071 from->count = orig_count - written; 1072 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { 1073 gfs2_glock_dq(gh); 1074 goto retry; 1075 } 1076 out_unlock: 1077 if (gfs2_holder_queued(gh)) 1078 gfs2_glock_dq(gh); 1079 out_uninit: 1080 gfs2_holder_uninit(gh); 1081 kfree(statfs_gh); 1082 from->count = orig_count - written; 1083 return written ? written : ret; 1084 } 1085 1086 /** 1087 * gfs2_file_write_iter - Perform a write to a file 1088 * @iocb: The io context 1089 * @from: The data to write 1090 * 1091 * We have to do a lock/unlock here to refresh the inode size for 1092 * O_APPEND writes, otherwise we can land up writing at the wrong 1093 * offset. There is still a race, but provided the app is using its 1094 * own file locking, this will make O_APPEND work as expected. 1095 * 1096 */ 1097 1098 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1099 { 1100 struct file *file = iocb->ki_filp; 1101 struct inode *inode = file_inode(file); 1102 struct gfs2_inode *ip = GFS2_I(inode); 1103 struct gfs2_holder gh; 1104 ssize_t ret; 1105 1106 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 1107 1108 if (iocb->ki_flags & IOCB_APPEND) { 1109 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 1110 if (ret) 1111 return ret; 1112 gfs2_glock_dq_uninit(&gh); 1113 } 1114 1115 inode_lock(inode); 1116 ret = generic_write_checks(iocb, from); 1117 if (ret <= 0) 1118 goto out_unlock; 1119 1120 ret = file_remove_privs(file); 1121 if (ret) 1122 goto out_unlock; 1123 1124 if (iocb->ki_flags & IOCB_DIRECT) { 1125 struct address_space *mapping = file->f_mapping; 1126 ssize_t buffered, ret2; 1127 1128 /* 1129 * Note that under direct I/O, we don't allow and inode 1130 * timestamp updates, so we're not calling file_update_time() 1131 * here. 1132 */ 1133 1134 ret = gfs2_file_direct_write(iocb, from, &gh); 1135 if (ret < 0 || !iov_iter_count(from)) 1136 goto out_unlock; 1137 1138 iocb->ki_flags |= IOCB_DSYNC; 1139 buffered = gfs2_file_buffered_write(iocb, from, &gh); 1140 if (unlikely(buffered <= 0)) { 1141 if (!ret) 1142 ret = buffered; 1143 goto out_unlock; 1144 } 1145 1146 /* 1147 * We need to ensure that the page cache pages are written to 1148 * disk and invalidated to preserve the expected O_DIRECT 1149 * semantics. If the writeback or invalidate fails, only report 1150 * the direct I/O range as we don't know if the buffered pages 1151 * made it to disk. 1152 */ 1153 ret2 = generic_write_sync(iocb, buffered); 1154 invalidate_mapping_pages(mapping, 1155 (iocb->ki_pos - buffered) >> PAGE_SHIFT, 1156 (iocb->ki_pos - 1) >> PAGE_SHIFT); 1157 if (!ret || ret2 > 0) 1158 ret += ret2; 1159 } else { 1160 ret = file_update_time(file); 1161 if (ret) 1162 goto out_unlock; 1163 1164 ret = gfs2_file_buffered_write(iocb, from, &gh); 1165 if (likely(ret > 0)) 1166 ret = generic_write_sync(iocb, ret); 1167 } 1168 1169 out_unlock: 1170 inode_unlock(inode); 1171 return ret; 1172 } 1173 1174 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 1175 int mode) 1176 { 1177 struct super_block *sb = inode->i_sb; 1178 struct gfs2_inode *ip = GFS2_I(inode); 1179 loff_t end = offset + len; 1180 struct buffer_head *dibh; 1181 int error; 1182 1183 error = gfs2_meta_inode_buffer(ip, &dibh); 1184 if (unlikely(error)) 1185 return error; 1186 1187 gfs2_trans_add_meta(ip->i_gl, dibh); 1188 1189 if (gfs2_is_stuffed(ip)) { 1190 error = gfs2_unstuff_dinode(ip); 1191 if (unlikely(error)) 1192 goto out; 1193 } 1194 1195 while (offset < end) { 1196 struct iomap iomap = { }; 1197 1198 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap); 1199 if (error) 1200 goto out; 1201 offset = iomap.offset + iomap.length; 1202 if (!(iomap.flags & IOMAP_F_NEW)) 1203 continue; 1204 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 1205 iomap.length >> inode->i_blkbits, 1206 GFP_NOFS); 1207 if (error) { 1208 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 1209 goto out; 1210 } 1211 } 1212 out: 1213 brelse(dibh); 1214 return error; 1215 } 1216 1217 /** 1218 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 1219 * blocks, determine how many bytes can be written. 1220 * @ip: The inode in question. 1221 * @len: Max cap of bytes. What we return in *len must be <= this. 1222 * @data_blocks: Compute and return the number of data blocks needed 1223 * @ind_blocks: Compute and return the number of indirect blocks needed 1224 * @max_blocks: The total blocks available to work with. 1225 * 1226 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 1227 */ 1228 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 1229 unsigned int *data_blocks, unsigned int *ind_blocks, 1230 unsigned int max_blocks) 1231 { 1232 loff_t max = *len; 1233 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1234 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 1235 1236 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 1237 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 1238 max_data -= tmp; 1239 } 1240 1241 *data_blocks = max_data; 1242 *ind_blocks = max_blocks - max_data; 1243 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 1244 if (*len > max) { 1245 *len = max; 1246 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 1247 } 1248 } 1249 1250 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1251 { 1252 struct inode *inode = file_inode(file); 1253 struct gfs2_sbd *sdp = GFS2_SB(inode); 1254 struct gfs2_inode *ip = GFS2_I(inode); 1255 struct gfs2_alloc_parms ap = {}; 1256 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1257 loff_t bytes, max_bytes, max_blks; 1258 int error; 1259 const loff_t pos = offset; 1260 const loff_t count = len; 1261 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1262 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1263 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1264 1265 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1266 1267 offset &= bsize_mask; 1268 1269 len = next - offset; 1270 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1271 if (!bytes) 1272 bytes = UINT_MAX; 1273 bytes &= bsize_mask; 1274 if (bytes == 0) 1275 bytes = sdp->sd_sb.sb_bsize; 1276 1277 gfs2_size_hint(file, offset, len); 1278 1279 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1280 ap.min_target = data_blocks + ind_blocks; 1281 1282 while (len > 0) { 1283 if (len < bytes) 1284 bytes = len; 1285 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1286 len -= bytes; 1287 offset += bytes; 1288 continue; 1289 } 1290 1291 /* We need to determine how many bytes we can actually 1292 * fallocate without exceeding quota or going over the 1293 * end of the fs. We start off optimistically by assuming 1294 * we can write max_bytes */ 1295 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1296 1297 /* Since max_bytes is most likely a theoretical max, we 1298 * calculate a more realistic 'bytes' to serve as a good 1299 * starting point for the number of bytes we may be able 1300 * to write */ 1301 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1302 ap.target = data_blocks + ind_blocks; 1303 1304 error = gfs2_quota_lock_check(ip, &ap); 1305 if (error) 1306 return error; 1307 /* ap.allowed tells us how many blocks quota will allow 1308 * us to write. Check if this reduces max_blks */ 1309 max_blks = UINT_MAX; 1310 if (ap.allowed) 1311 max_blks = ap.allowed; 1312 1313 error = gfs2_inplace_reserve(ip, &ap); 1314 if (error) 1315 goto out_qunlock; 1316 1317 /* check if the selected rgrp limits our max_blks further */ 1318 if (ip->i_res.rs_reserved < max_blks) 1319 max_blks = ip->i_res.rs_reserved; 1320 1321 /* Almost done. Calculate bytes that can be written using 1322 * max_blks. We also recompute max_bytes, data_blocks and 1323 * ind_blocks */ 1324 calc_max_reserv(ip, &max_bytes, &data_blocks, 1325 &ind_blocks, max_blks); 1326 1327 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1328 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1329 if (gfs2_is_jdata(ip)) 1330 rblocks += data_blocks ? data_blocks : 1; 1331 1332 error = gfs2_trans_begin(sdp, rblocks, 1333 PAGE_SIZE >> inode->i_blkbits); 1334 if (error) 1335 goto out_trans_fail; 1336 1337 error = fallocate_chunk(inode, offset, max_bytes, mode); 1338 gfs2_trans_end(sdp); 1339 1340 if (error) 1341 goto out_trans_fail; 1342 1343 len -= max_bytes; 1344 offset += max_bytes; 1345 gfs2_inplace_release(ip); 1346 gfs2_quota_unlock(ip); 1347 } 1348 1349 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1350 i_size_write(inode, pos + count); 1351 file_update_time(file); 1352 mark_inode_dirty(inode); 1353 1354 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1355 return vfs_fsync_range(file, pos, pos + count - 1, 1356 (file->f_flags & __O_SYNC) ? 0 : 1); 1357 return 0; 1358 1359 out_trans_fail: 1360 gfs2_inplace_release(ip); 1361 out_qunlock: 1362 gfs2_quota_unlock(ip); 1363 return error; 1364 } 1365 1366 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1367 { 1368 struct inode *inode = file_inode(file); 1369 struct gfs2_sbd *sdp = GFS2_SB(inode); 1370 struct gfs2_inode *ip = GFS2_I(inode); 1371 struct gfs2_holder gh; 1372 int ret; 1373 1374 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1375 return -EOPNOTSUPP; 1376 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1377 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1378 return -EOPNOTSUPP; 1379 1380 inode_lock(inode); 1381 1382 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1383 ret = gfs2_glock_nq(&gh); 1384 if (ret) 1385 goto out_uninit; 1386 1387 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1388 (offset + len) > inode->i_size) { 1389 ret = inode_newsize_ok(inode, offset + len); 1390 if (ret) 1391 goto out_unlock; 1392 } 1393 1394 ret = get_write_access(inode); 1395 if (ret) 1396 goto out_unlock; 1397 1398 if (mode & FALLOC_FL_PUNCH_HOLE) { 1399 ret = __gfs2_punch_hole(file, offset, len); 1400 } else { 1401 ret = __gfs2_fallocate(file, mode, offset, len); 1402 if (ret) 1403 gfs2_rs_deltree(&ip->i_res); 1404 } 1405 1406 put_write_access(inode); 1407 out_unlock: 1408 gfs2_glock_dq(&gh); 1409 out_uninit: 1410 gfs2_holder_uninit(&gh); 1411 inode_unlock(inode); 1412 return ret; 1413 } 1414 1415 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1416 struct file *out, loff_t *ppos, 1417 size_t len, unsigned int flags) 1418 { 1419 ssize_t ret; 1420 1421 gfs2_size_hint(out, *ppos, len); 1422 1423 ret = iter_file_splice_write(pipe, out, ppos, len, flags); 1424 return ret; 1425 } 1426 1427 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1428 1429 /** 1430 * gfs2_lock - acquire/release a posix lock on a file 1431 * @file: the file pointer 1432 * @cmd: either modify or retrieve lock state, possibly wait 1433 * @fl: type and range of lock 1434 * 1435 * Returns: errno 1436 */ 1437 1438 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1439 { 1440 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1441 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1442 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1443 1444 if (!(fl->c.flc_flags & FL_POSIX)) 1445 return -ENOLCK; 1446 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1447 if (lock_is_unlock(fl)) 1448 locks_lock_file_wait(file, fl); 1449 return -EIO; 1450 } 1451 if (cmd == F_CANCELLK) 1452 return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl); 1453 else if (IS_GETLK(cmd)) 1454 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1455 else if (lock_is_unlock(fl)) 1456 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1457 else 1458 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1459 } 1460 1461 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh) 1462 { 1463 struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl); 1464 1465 /* 1466 * Make sure gfs2_glock_put() won't sleep under the file->f_lock 1467 * spinlock. 1468 */ 1469 1470 spin_lock(&file->f_lock); 1471 gfs2_holder_uninit(fl_gh); 1472 spin_unlock(&file->f_lock); 1473 gfs2_glock_put(gl); 1474 } 1475 1476 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1477 { 1478 struct gfs2_file *fp = file->private_data; 1479 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1480 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1481 struct gfs2_glock *gl; 1482 unsigned int state; 1483 u16 flags; 1484 int error = 0; 1485 int sleeptime; 1486 1487 state = lock_is_write(fl) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1488 flags = GL_EXACT | GL_NOPID; 1489 if (!IS_SETLKW(cmd)) 1490 flags |= LM_FLAG_TRY_1CB; 1491 1492 mutex_lock(&fp->f_fl_mutex); 1493 1494 if (gfs2_holder_initialized(fl_gh)) { 1495 struct file_lock request; 1496 if (fl_gh->gh_state == state) 1497 goto out; 1498 locks_init_lock(&request); 1499 request.c.flc_type = F_UNLCK; 1500 request.c.flc_flags = FL_FLOCK; 1501 locks_lock_file_wait(file, &request); 1502 gfs2_glock_dq(fl_gh); 1503 gfs2_holder_reinit(state, flags, fl_gh); 1504 } else { 1505 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1506 &gfs2_flock_glops, CREATE, &gl); 1507 if (error) 1508 goto out; 1509 spin_lock(&file->f_lock); 1510 gfs2_holder_init(gl, state, flags, fl_gh); 1511 spin_unlock(&file->f_lock); 1512 gfs2_glock_put(gl); 1513 } 1514 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1515 error = gfs2_glock_nq(fl_gh); 1516 if (error != GLR_TRYFAILED) 1517 break; 1518 fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB; 1519 fl_gh->gh_flags |= LM_FLAG_TRY; 1520 msleep(sleeptime); 1521 } 1522 if (error) { 1523 __flock_holder_uninit(file, fl_gh); 1524 if (error == GLR_TRYFAILED) 1525 error = -EAGAIN; 1526 } else { 1527 error = locks_lock_file_wait(file, fl); 1528 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1529 } 1530 1531 out: 1532 mutex_unlock(&fp->f_fl_mutex); 1533 return error; 1534 } 1535 1536 static void do_unflock(struct file *file, struct file_lock *fl) 1537 { 1538 struct gfs2_file *fp = file->private_data; 1539 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1540 1541 mutex_lock(&fp->f_fl_mutex); 1542 locks_lock_file_wait(file, fl); 1543 if (gfs2_holder_initialized(fl_gh)) { 1544 gfs2_glock_dq(fl_gh); 1545 __flock_holder_uninit(file, fl_gh); 1546 } 1547 mutex_unlock(&fp->f_fl_mutex); 1548 } 1549 1550 /** 1551 * gfs2_flock - acquire/release a flock lock on a file 1552 * @file: the file pointer 1553 * @cmd: either modify or retrieve lock state, possibly wait 1554 * @fl: type and range of lock 1555 * 1556 * Returns: errno 1557 */ 1558 1559 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1560 { 1561 if (!(fl->c.flc_flags & FL_FLOCK)) 1562 return -ENOLCK; 1563 1564 if (lock_is_unlock(fl)) { 1565 do_unflock(file, fl); 1566 return 0; 1567 } else { 1568 return do_flock(file, cmd, fl); 1569 } 1570 } 1571 1572 const struct file_operations gfs2_file_fops = { 1573 .llseek = gfs2_llseek, 1574 .read_iter = gfs2_file_read_iter, 1575 .write_iter = gfs2_file_write_iter, 1576 .iopoll = iocb_bio_iopoll, 1577 .unlocked_ioctl = gfs2_ioctl, 1578 .compat_ioctl = gfs2_compat_ioctl, 1579 .mmap = gfs2_mmap, 1580 .open = gfs2_open, 1581 .release = gfs2_release, 1582 .fsync = gfs2_fsync, 1583 .lock = gfs2_lock, 1584 .flock = gfs2_flock, 1585 .splice_read = copy_splice_read, 1586 .splice_write = gfs2_file_splice_write, 1587 .setlease = simple_nosetlease, 1588 .fallocate = gfs2_fallocate, 1589 }; 1590 1591 const struct file_operations gfs2_dir_fops = { 1592 .iterate_shared = gfs2_readdir, 1593 .unlocked_ioctl = gfs2_ioctl, 1594 .compat_ioctl = gfs2_compat_ioctl, 1595 .open = gfs2_open, 1596 .release = gfs2_release, 1597 .fsync = gfs2_fsync, 1598 .lock = gfs2_lock, 1599 .flock = gfs2_flock, 1600 .llseek = default_llseek, 1601 }; 1602 1603 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1604 1605 const struct file_operations gfs2_file_fops_nolock = { 1606 .llseek = gfs2_llseek, 1607 .read_iter = gfs2_file_read_iter, 1608 .write_iter = gfs2_file_write_iter, 1609 .iopoll = iocb_bio_iopoll, 1610 .unlocked_ioctl = gfs2_ioctl, 1611 .compat_ioctl = gfs2_compat_ioctl, 1612 .mmap = gfs2_mmap, 1613 .open = gfs2_open, 1614 .release = gfs2_release, 1615 .fsync = gfs2_fsync, 1616 .splice_read = copy_splice_read, 1617 .splice_write = gfs2_file_splice_write, 1618 .setlease = generic_setlease, 1619 .fallocate = gfs2_fallocate, 1620 }; 1621 1622 const struct file_operations gfs2_dir_fops_nolock = { 1623 .iterate_shared = gfs2_readdir, 1624 .unlocked_ioctl = gfs2_ioctl, 1625 .compat_ioctl = gfs2_compat_ioctl, 1626 .open = gfs2_open, 1627 .release = gfs2_release, 1628 .fsync = gfs2_fsync, 1629 .llseek = default_llseek, 1630 }; 1631 1632