1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/falloc.h> 20 #include <linux/swap.h> 21 #include <linux/crc32.h> 22 #include <linux/writeback.h> 23 #include <linux/uaccess.h> 24 #include <linux/dlm.h> 25 #include <linux/dlm_plock.h> 26 #include <linux/delay.h> 27 #include <linux/backing-dev.h> 28 29 #include "gfs2.h" 30 #include "incore.h" 31 #include "bmap.h" 32 #include "aops.h" 33 #include "dir.h" 34 #include "glock.h" 35 #include "glops.h" 36 #include "inode.h" 37 #include "log.h" 38 #include "meta_io.h" 39 #include "quota.h" 40 #include "rgrp.h" 41 #include "trans.h" 42 #include "util.h" 43 44 /** 45 * gfs2_llseek - seek to a location in a file 46 * @file: the file 47 * @offset: the offset 48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 49 * 50 * SEEK_END requires the glock for the file because it references the 51 * file's size. 52 * 53 * Returns: The new offset, or errno 54 */ 55 56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 57 { 58 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 59 struct gfs2_holder i_gh; 60 loff_t error; 61 62 switch (whence) { 63 case SEEK_END: 64 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 65 &i_gh); 66 if (!error) { 67 error = generic_file_llseek(file, offset, whence); 68 gfs2_glock_dq_uninit(&i_gh); 69 } 70 break; 71 72 case SEEK_DATA: 73 error = gfs2_seek_data(file, offset); 74 break; 75 76 case SEEK_HOLE: 77 error = gfs2_seek_hole(file, offset); 78 break; 79 80 case SEEK_CUR: 81 case SEEK_SET: 82 /* 83 * These don't reference inode->i_size and don't depend on the 84 * block mapping, so we don't need the glock. 85 */ 86 error = generic_file_llseek(file, offset, whence); 87 break; 88 default: 89 error = -EINVAL; 90 } 91 92 return error; 93 } 94 95 /** 96 * gfs2_readdir - Iterator for a directory 97 * @file: The directory to read from 98 * @ctx: What to feed directory entries to 99 * 100 * Returns: errno 101 */ 102 103 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 104 { 105 struct inode *dir = file->f_mapping->host; 106 struct gfs2_inode *dip = GFS2_I(dir); 107 struct gfs2_holder d_gh; 108 int error; 109 110 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 111 if (error) 112 return error; 113 114 error = gfs2_dir_read(dir, ctx, &file->f_ra); 115 116 gfs2_glock_dq_uninit(&d_gh); 117 118 return error; 119 } 120 121 /** 122 * fsflag_gfs2flag 123 * 124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 125 * and to GFS2_DIF_JDATA for non-directories. 126 */ 127 static struct { 128 u32 fsflag; 129 u32 gfsflag; 130 } fsflag_gfs2flag[] = { 131 {FS_SYNC_FL, GFS2_DIF_SYNC}, 132 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 133 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 134 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 135 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 136 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 137 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 138 }; 139 140 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 141 { 142 int i; 143 u32 fsflags = 0; 144 145 if (S_ISDIR(inode->i_mode)) 146 gfsflags &= ~GFS2_DIF_JDATA; 147 else 148 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 149 150 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 151 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 152 fsflags |= fsflag_gfs2flag[i].fsflag; 153 return fsflags; 154 } 155 156 static int gfs2_get_flags(struct file *filp, u32 __user *ptr) 157 { 158 struct inode *inode = file_inode(filp); 159 struct gfs2_inode *ip = GFS2_I(inode); 160 struct gfs2_holder gh; 161 int error; 162 u32 fsflags; 163 164 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 165 error = gfs2_glock_nq(&gh); 166 if (error) 167 goto out_uninit; 168 169 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 170 171 if (put_user(fsflags, ptr)) 172 error = -EFAULT; 173 174 gfs2_glock_dq(&gh); 175 out_uninit: 176 gfs2_holder_uninit(&gh); 177 return error; 178 } 179 180 void gfs2_set_inode_flags(struct inode *inode) 181 { 182 struct gfs2_inode *ip = GFS2_I(inode); 183 unsigned int flags = inode->i_flags; 184 185 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 186 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 187 flags |= S_NOSEC; 188 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 189 flags |= S_IMMUTABLE; 190 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 191 flags |= S_APPEND; 192 if (ip->i_diskflags & GFS2_DIF_NOATIME) 193 flags |= S_NOATIME; 194 if (ip->i_diskflags & GFS2_DIF_SYNC) 195 flags |= S_SYNC; 196 inode->i_flags = flags; 197 } 198 199 /* Flags that can be set by user space */ 200 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 201 GFS2_DIF_IMMUTABLE| \ 202 GFS2_DIF_APPENDONLY| \ 203 GFS2_DIF_NOATIME| \ 204 GFS2_DIF_SYNC| \ 205 GFS2_DIF_TOPDIR| \ 206 GFS2_DIF_INHERIT_JDATA) 207 208 /** 209 * do_gfs2_set_flags - set flags on an inode 210 * @filp: file pointer 211 * @reqflags: The flags to set 212 * @mask: Indicates which flags are valid 213 * @fsflags: The FS_* inode flags passed in 214 * 215 */ 216 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask, 217 const u32 fsflags) 218 { 219 struct inode *inode = file_inode(filp); 220 struct gfs2_inode *ip = GFS2_I(inode); 221 struct gfs2_sbd *sdp = GFS2_SB(inode); 222 struct buffer_head *bh; 223 struct gfs2_holder gh; 224 int error; 225 u32 new_flags, flags, oldflags; 226 227 error = mnt_want_write_file(filp); 228 if (error) 229 return error; 230 231 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 232 if (error) 233 goto out_drop_write; 234 235 oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 236 error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags); 237 if (error) 238 goto out; 239 240 error = -EACCES; 241 if (!inode_owner_or_capable(&init_user_ns, inode)) 242 goto out; 243 244 error = 0; 245 flags = ip->i_diskflags; 246 new_flags = (flags & ~mask) | (reqflags & mask); 247 if ((new_flags ^ flags) == 0) 248 goto out; 249 250 error = -EPERM; 251 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 252 goto out; 253 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 254 goto out; 255 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) && 256 !capable(CAP_LINUX_IMMUTABLE)) 257 goto out; 258 if (!IS_IMMUTABLE(inode)) { 259 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE); 260 if (error) 261 goto out; 262 } 263 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 264 if (new_flags & GFS2_DIF_JDATA) 265 gfs2_log_flush(sdp, ip->i_gl, 266 GFS2_LOG_HEAD_FLUSH_NORMAL | 267 GFS2_LFC_SET_FLAGS); 268 error = filemap_fdatawrite(inode->i_mapping); 269 if (error) 270 goto out; 271 error = filemap_fdatawait(inode->i_mapping); 272 if (error) 273 goto out; 274 if (new_flags & GFS2_DIF_JDATA) 275 gfs2_ordered_del_inode(ip); 276 } 277 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 278 if (error) 279 goto out; 280 error = gfs2_meta_inode_buffer(ip, &bh); 281 if (error) 282 goto out_trans_end; 283 inode->i_ctime = current_time(inode); 284 gfs2_trans_add_meta(ip->i_gl, bh); 285 ip->i_diskflags = new_flags; 286 gfs2_dinode_out(ip, bh->b_data); 287 brelse(bh); 288 gfs2_set_inode_flags(inode); 289 gfs2_set_aops(inode); 290 out_trans_end: 291 gfs2_trans_end(sdp); 292 out: 293 gfs2_glock_dq_uninit(&gh); 294 out_drop_write: 295 mnt_drop_write_file(filp); 296 return error; 297 } 298 299 static int gfs2_set_flags(struct file *filp, u32 __user *ptr) 300 { 301 struct inode *inode = file_inode(filp); 302 u32 fsflags, gfsflags = 0; 303 u32 mask; 304 int i; 305 306 if (get_user(fsflags, ptr)) 307 return -EFAULT; 308 309 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 310 if (fsflags & fsflag_gfs2flag[i].fsflag) { 311 fsflags &= ~fsflag_gfs2flag[i].fsflag; 312 gfsflags |= fsflag_gfs2flag[i].gfsflag; 313 } 314 } 315 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 316 return -EINVAL; 317 318 mask = GFS2_FLAGS_USER_SET; 319 if (S_ISDIR(inode->i_mode)) { 320 mask &= ~GFS2_DIF_JDATA; 321 } else { 322 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 323 if (gfsflags & GFS2_DIF_TOPDIR) 324 return -EINVAL; 325 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 326 } 327 328 return do_gfs2_set_flags(filp, gfsflags, mask, fsflags); 329 } 330 331 static int gfs2_getlabel(struct file *filp, char __user *label) 332 { 333 struct inode *inode = file_inode(filp); 334 struct gfs2_sbd *sdp = GFS2_SB(inode); 335 336 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 337 return -EFAULT; 338 339 return 0; 340 } 341 342 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 343 { 344 switch(cmd) { 345 case FS_IOC_GETFLAGS: 346 return gfs2_get_flags(filp, (u32 __user *)arg); 347 case FS_IOC_SETFLAGS: 348 return gfs2_set_flags(filp, (u32 __user *)arg); 349 case FITRIM: 350 return gfs2_fitrim(filp, (void __user *)arg); 351 case FS_IOC_GETFSLABEL: 352 return gfs2_getlabel(filp, (char __user *)arg); 353 } 354 355 return -ENOTTY; 356 } 357 358 #ifdef CONFIG_COMPAT 359 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 360 { 361 switch(cmd) { 362 /* These are just misnamed, they actually get/put from/to user an int */ 363 case FS_IOC32_GETFLAGS: 364 cmd = FS_IOC_GETFLAGS; 365 break; 366 case FS_IOC32_SETFLAGS: 367 cmd = FS_IOC_SETFLAGS; 368 break; 369 /* Keep this list in sync with gfs2_ioctl */ 370 case FITRIM: 371 case FS_IOC_GETFSLABEL: 372 break; 373 default: 374 return -ENOIOCTLCMD; 375 } 376 377 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 378 } 379 #else 380 #define gfs2_compat_ioctl NULL 381 #endif 382 383 /** 384 * gfs2_size_hint - Give a hint to the size of a write request 385 * @filep: The struct file 386 * @offset: The file offset of the write 387 * @size: The length of the write 388 * 389 * When we are about to do a write, this function records the total 390 * write size in order to provide a suitable hint to the lower layers 391 * about how many blocks will be required. 392 * 393 */ 394 395 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 396 { 397 struct inode *inode = file_inode(filep); 398 struct gfs2_sbd *sdp = GFS2_SB(inode); 399 struct gfs2_inode *ip = GFS2_I(inode); 400 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 401 int hint = min_t(size_t, INT_MAX, blks); 402 403 if (hint > atomic_read(&ip->i_sizehint)) 404 atomic_set(&ip->i_sizehint, hint); 405 } 406 407 /** 408 * gfs2_allocate_page_backing - Allocate blocks for a write fault 409 * @page: The (locked) page to allocate backing for 410 * @length: Size of the allocation 411 * 412 * We try to allocate all the blocks required for the page in one go. This 413 * might fail for various reasons, so we keep trying until all the blocks to 414 * back this page are allocated. If some of the blocks are already allocated, 415 * that is ok too. 416 */ 417 static int gfs2_allocate_page_backing(struct page *page, unsigned int length) 418 { 419 u64 pos = page_offset(page); 420 421 do { 422 struct iomap iomap = { }; 423 424 if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap)) 425 return -EIO; 426 427 if (length < iomap.length) 428 iomap.length = length; 429 length -= iomap.length; 430 pos += iomap.length; 431 } while (length > 0); 432 433 return 0; 434 } 435 436 /** 437 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 438 * @vma: The virtual memory area 439 * @vmf: The virtual memory fault containing the page to become writable 440 * 441 * When the page becomes writable, we need to ensure that we have 442 * blocks allocated on disk to back that page. 443 */ 444 445 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 446 { 447 struct page *page = vmf->page; 448 struct inode *inode = file_inode(vmf->vma->vm_file); 449 struct gfs2_inode *ip = GFS2_I(inode); 450 struct gfs2_sbd *sdp = GFS2_SB(inode); 451 struct gfs2_alloc_parms ap = { .aflags = 0, }; 452 u64 offset = page_offset(page); 453 unsigned int data_blocks, ind_blocks, rblocks; 454 struct gfs2_holder gh; 455 unsigned int length; 456 loff_t size; 457 int ret; 458 459 sb_start_pagefault(inode->i_sb); 460 461 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 462 ret = gfs2_glock_nq(&gh); 463 if (ret) 464 goto out_uninit; 465 466 /* Check page index against inode size */ 467 size = i_size_read(inode); 468 if (offset >= size) { 469 ret = -EINVAL; 470 goto out_unlock; 471 } 472 473 /* Update file times before taking page lock */ 474 file_update_time(vmf->vma->vm_file); 475 476 /* page is wholly or partially inside EOF */ 477 if (offset > size - PAGE_SIZE) 478 length = offset_in_page(size); 479 else 480 length = PAGE_SIZE; 481 482 gfs2_size_hint(vmf->vma->vm_file, offset, length); 483 484 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 485 set_bit(GIF_SW_PAGED, &ip->i_flags); 486 487 /* 488 * iomap_writepage / iomap_writepages currently don't support inline 489 * files, so always unstuff here. 490 */ 491 492 if (!gfs2_is_stuffed(ip) && 493 !gfs2_write_alloc_required(ip, offset, length)) { 494 lock_page(page); 495 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 496 ret = -EAGAIN; 497 unlock_page(page); 498 } 499 goto out_unlock; 500 } 501 502 ret = gfs2_rindex_update(sdp); 503 if (ret) 504 goto out_unlock; 505 506 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); 507 ap.target = data_blocks + ind_blocks; 508 ret = gfs2_quota_lock_check(ip, &ap); 509 if (ret) 510 goto out_unlock; 511 ret = gfs2_inplace_reserve(ip, &ap); 512 if (ret) 513 goto out_quota_unlock; 514 515 rblocks = RES_DINODE + ind_blocks; 516 if (gfs2_is_jdata(ip)) 517 rblocks += data_blocks ? data_blocks : 1; 518 if (ind_blocks || data_blocks) { 519 rblocks += RES_STATFS + RES_QUOTA; 520 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 521 } 522 ret = gfs2_trans_begin(sdp, rblocks, 0); 523 if (ret) 524 goto out_trans_fail; 525 526 lock_page(page); 527 ret = -EAGAIN; 528 /* If truncated, we must retry the operation, we may have raced 529 * with the glock demotion code. 530 */ 531 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 532 goto out_trans_end; 533 534 /* Unstuff, if required, and allocate backing blocks for page */ 535 ret = 0; 536 if (gfs2_is_stuffed(ip)) 537 ret = gfs2_unstuff_dinode(ip, page); 538 if (ret == 0) 539 ret = gfs2_allocate_page_backing(page, length); 540 541 out_trans_end: 542 if (ret) 543 unlock_page(page); 544 gfs2_trans_end(sdp); 545 out_trans_fail: 546 gfs2_inplace_release(ip); 547 out_quota_unlock: 548 gfs2_quota_unlock(ip); 549 out_unlock: 550 gfs2_glock_dq(&gh); 551 out_uninit: 552 gfs2_holder_uninit(&gh); 553 if (ret == 0) { 554 set_page_dirty(page); 555 wait_for_stable_page(page); 556 } 557 sb_end_pagefault(inode->i_sb); 558 return block_page_mkwrite_return(ret); 559 } 560 561 static vm_fault_t gfs2_fault(struct vm_fault *vmf) 562 { 563 struct inode *inode = file_inode(vmf->vma->vm_file); 564 struct gfs2_inode *ip = GFS2_I(inode); 565 struct gfs2_holder gh; 566 vm_fault_t ret; 567 int err; 568 569 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 570 err = gfs2_glock_nq(&gh); 571 if (err) { 572 ret = block_page_mkwrite_return(err); 573 goto out_uninit; 574 } 575 ret = filemap_fault(vmf); 576 gfs2_glock_dq(&gh); 577 out_uninit: 578 gfs2_holder_uninit(&gh); 579 return ret; 580 } 581 582 static const struct vm_operations_struct gfs2_vm_ops = { 583 .fault = gfs2_fault, 584 .map_pages = filemap_map_pages, 585 .page_mkwrite = gfs2_page_mkwrite, 586 }; 587 588 /** 589 * gfs2_mmap - 590 * @file: The file to map 591 * @vma: The VMA which described the mapping 592 * 593 * There is no need to get a lock here unless we should be updating 594 * atime. We ignore any locking errors since the only consequence is 595 * a missed atime update (which will just be deferred until later). 596 * 597 * Returns: 0 598 */ 599 600 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 601 { 602 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 603 604 if (!(file->f_flags & O_NOATIME) && 605 !IS_NOATIME(&ip->i_inode)) { 606 struct gfs2_holder i_gh; 607 int error; 608 609 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 610 &i_gh); 611 if (error) 612 return error; 613 /* grab lock to update inode */ 614 gfs2_glock_dq_uninit(&i_gh); 615 file_accessed(file); 616 } 617 vma->vm_ops = &gfs2_vm_ops; 618 619 return 0; 620 } 621 622 /** 623 * gfs2_open_common - This is common to open and atomic_open 624 * @inode: The inode being opened 625 * @file: The file being opened 626 * 627 * This maybe called under a glock or not depending upon how it has 628 * been called. We must always be called under a glock for regular 629 * files, however. For other file types, it does not matter whether 630 * we hold the glock or not. 631 * 632 * Returns: Error code or 0 for success 633 */ 634 635 int gfs2_open_common(struct inode *inode, struct file *file) 636 { 637 struct gfs2_file *fp; 638 int ret; 639 640 if (S_ISREG(inode->i_mode)) { 641 ret = generic_file_open(inode, file); 642 if (ret) 643 return ret; 644 } 645 646 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 647 if (!fp) 648 return -ENOMEM; 649 650 mutex_init(&fp->f_fl_mutex); 651 652 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 653 file->private_data = fp; 654 if (file->f_mode & FMODE_WRITE) { 655 ret = gfs2_qa_get(GFS2_I(inode)); 656 if (ret) 657 goto fail; 658 } 659 return 0; 660 661 fail: 662 kfree(file->private_data); 663 file->private_data = NULL; 664 return ret; 665 } 666 667 /** 668 * gfs2_open - open a file 669 * @inode: the inode to open 670 * @file: the struct file for this opening 671 * 672 * After atomic_open, this function is only used for opening files 673 * which are already cached. We must still get the glock for regular 674 * files to ensure that we have the file size uptodate for the large 675 * file check which is in the common code. That is only an issue for 676 * regular files though. 677 * 678 * Returns: errno 679 */ 680 681 static int gfs2_open(struct inode *inode, struct file *file) 682 { 683 struct gfs2_inode *ip = GFS2_I(inode); 684 struct gfs2_holder i_gh; 685 int error; 686 bool need_unlock = false; 687 688 if (S_ISREG(ip->i_inode.i_mode)) { 689 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 690 &i_gh); 691 if (error) 692 return error; 693 need_unlock = true; 694 } 695 696 error = gfs2_open_common(inode, file); 697 698 if (need_unlock) 699 gfs2_glock_dq_uninit(&i_gh); 700 701 return error; 702 } 703 704 /** 705 * gfs2_release - called to close a struct file 706 * @inode: the inode the struct file belongs to 707 * @file: the struct file being closed 708 * 709 * Returns: errno 710 */ 711 712 static int gfs2_release(struct inode *inode, struct file *file) 713 { 714 struct gfs2_inode *ip = GFS2_I(inode); 715 716 kfree(file->private_data); 717 file->private_data = NULL; 718 719 if (gfs2_rs_active(&ip->i_res)) 720 gfs2_rs_delete(ip, &inode->i_writecount); 721 if (file->f_mode & FMODE_WRITE) 722 gfs2_qa_put(ip); 723 return 0; 724 } 725 726 /** 727 * gfs2_fsync - sync the dirty data for a file (across the cluster) 728 * @file: the file that points to the dentry 729 * @start: the start position in the file to sync 730 * @end: the end position in the file to sync 731 * @datasync: set if we can ignore timestamp changes 732 * 733 * We split the data flushing here so that we don't wait for the data 734 * until after we've also sent the metadata to disk. Note that for 735 * data=ordered, we will write & wait for the data at the log flush 736 * stage anyway, so this is unlikely to make much of a difference 737 * except in the data=writeback case. 738 * 739 * If the fdatawrite fails due to any reason except -EIO, we will 740 * continue the remainder of the fsync, although we'll still report 741 * the error at the end. This is to match filemap_write_and_wait_range() 742 * behaviour. 743 * 744 * Returns: errno 745 */ 746 747 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 748 int datasync) 749 { 750 struct address_space *mapping = file->f_mapping; 751 struct inode *inode = mapping->host; 752 int sync_state = inode->i_state & I_DIRTY; 753 struct gfs2_inode *ip = GFS2_I(inode); 754 int ret = 0, ret1 = 0; 755 756 if (mapping->nrpages) { 757 ret1 = filemap_fdatawrite_range(mapping, start, end); 758 if (ret1 == -EIO) 759 return ret1; 760 } 761 762 if (!gfs2_is_jdata(ip)) 763 sync_state &= ~I_DIRTY_PAGES; 764 if (datasync) 765 sync_state &= ~I_DIRTY_SYNC; 766 767 if (sync_state) { 768 ret = sync_inode_metadata(inode, 1); 769 if (ret) 770 return ret; 771 if (gfs2_is_jdata(ip)) 772 ret = file_write_and_wait(file); 773 if (ret) 774 return ret; 775 gfs2_ail_flush(ip->i_gl, 1); 776 } 777 778 if (mapping->nrpages) 779 ret = file_fdatawait_range(file, start, end); 780 781 return ret ? ret : ret1; 782 } 783 784 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, 785 struct gfs2_holder *gh) 786 { 787 struct file *file = iocb->ki_filp; 788 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 789 size_t count = iov_iter_count(to); 790 ssize_t ret; 791 792 if (!count) 793 return 0; /* skip atime */ 794 795 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 796 ret = gfs2_glock_nq(gh); 797 if (ret) 798 goto out_uninit; 799 800 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 0); 801 gfs2_glock_dq(gh); 802 out_uninit: 803 gfs2_holder_uninit(gh); 804 return ret; 805 } 806 807 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, 808 struct gfs2_holder *gh) 809 { 810 struct file *file = iocb->ki_filp; 811 struct inode *inode = file->f_mapping->host; 812 struct gfs2_inode *ip = GFS2_I(inode); 813 size_t len = iov_iter_count(from); 814 loff_t offset = iocb->ki_pos; 815 ssize_t ret; 816 817 /* 818 * Deferred lock, even if its a write, since we do no allocation on 819 * this path. All we need to change is the atime, and this lock mode 820 * ensures that other nodes have flushed their buffered read caches 821 * (i.e. their page cache entries for this inode). We do not, 822 * unfortunately, have the option of only flushing a range like the 823 * VFS does. 824 */ 825 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 826 ret = gfs2_glock_nq(gh); 827 if (ret) 828 goto out_uninit; 829 830 /* Silently fall back to buffered I/O when writing beyond EOF */ 831 if (offset + len > i_size_read(&ip->i_inode)) 832 goto out; 833 834 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 0); 835 if (ret == -ENOTBLK) 836 ret = 0; 837 out: 838 gfs2_glock_dq(gh); 839 out_uninit: 840 gfs2_holder_uninit(gh); 841 return ret; 842 } 843 844 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 845 { 846 struct gfs2_inode *ip; 847 struct gfs2_holder gh; 848 size_t written = 0; 849 ssize_t ret; 850 851 if (iocb->ki_flags & IOCB_DIRECT) { 852 ret = gfs2_file_direct_read(iocb, to, &gh); 853 if (likely(ret != -ENOTBLK)) 854 return ret; 855 iocb->ki_flags &= ~IOCB_DIRECT; 856 } 857 iocb->ki_flags |= IOCB_NOIO; 858 ret = generic_file_read_iter(iocb, to); 859 iocb->ki_flags &= ~IOCB_NOIO; 860 if (ret >= 0) { 861 if (!iov_iter_count(to)) 862 return ret; 863 written = ret; 864 } else { 865 if (ret != -EAGAIN) 866 return ret; 867 if (iocb->ki_flags & IOCB_NOWAIT) 868 return ret; 869 } 870 ip = GFS2_I(iocb->ki_filp->f_mapping->host); 871 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 872 ret = gfs2_glock_nq(&gh); 873 if (ret) 874 goto out_uninit; 875 ret = generic_file_read_iter(iocb, to); 876 if (ret > 0) 877 written += ret; 878 gfs2_glock_dq(&gh); 879 out_uninit: 880 gfs2_holder_uninit(&gh); 881 return written ? written : ret; 882 } 883 884 /** 885 * gfs2_file_write_iter - Perform a write to a file 886 * @iocb: The io context 887 * @from: The data to write 888 * 889 * We have to do a lock/unlock here to refresh the inode size for 890 * O_APPEND writes, otherwise we can land up writing at the wrong 891 * offset. There is still a race, but provided the app is using its 892 * own file locking, this will make O_APPEND work as expected. 893 * 894 */ 895 896 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 897 { 898 struct file *file = iocb->ki_filp; 899 struct inode *inode = file_inode(file); 900 struct gfs2_inode *ip = GFS2_I(inode); 901 struct gfs2_holder gh; 902 ssize_t ret; 903 904 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 905 906 if (iocb->ki_flags & IOCB_APPEND) { 907 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 908 if (ret) 909 return ret; 910 gfs2_glock_dq_uninit(&gh); 911 } 912 913 inode_lock(inode); 914 ret = generic_write_checks(iocb, from); 915 if (ret <= 0) 916 goto out_unlock; 917 918 ret = file_remove_privs(file); 919 if (ret) 920 goto out_unlock; 921 922 ret = file_update_time(file); 923 if (ret) 924 goto out_unlock; 925 926 if (iocb->ki_flags & IOCB_DIRECT) { 927 struct address_space *mapping = file->f_mapping; 928 ssize_t buffered, ret2; 929 930 ret = gfs2_file_direct_write(iocb, from, &gh); 931 if (ret < 0 || !iov_iter_count(from)) 932 goto out_unlock; 933 934 iocb->ki_flags |= IOCB_DSYNC; 935 current->backing_dev_info = inode_to_bdi(inode); 936 buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 937 current->backing_dev_info = NULL; 938 if (unlikely(buffered <= 0)) 939 goto out_unlock; 940 941 /* 942 * We need to ensure that the page cache pages are written to 943 * disk and invalidated to preserve the expected O_DIRECT 944 * semantics. If the writeback or invalidate fails, only report 945 * the direct I/O range as we don't know if the buffered pages 946 * made it to disk. 947 */ 948 iocb->ki_pos += buffered; 949 ret2 = generic_write_sync(iocb, buffered); 950 invalidate_mapping_pages(mapping, 951 (iocb->ki_pos - buffered) >> PAGE_SHIFT, 952 (iocb->ki_pos - 1) >> PAGE_SHIFT); 953 if (!ret || ret2 > 0) 954 ret += ret2; 955 } else { 956 current->backing_dev_info = inode_to_bdi(inode); 957 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 958 current->backing_dev_info = NULL; 959 if (likely(ret > 0)) { 960 iocb->ki_pos += ret; 961 ret = generic_write_sync(iocb, ret); 962 } 963 } 964 965 out_unlock: 966 inode_unlock(inode); 967 return ret; 968 } 969 970 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 971 int mode) 972 { 973 struct super_block *sb = inode->i_sb; 974 struct gfs2_inode *ip = GFS2_I(inode); 975 loff_t end = offset + len; 976 struct buffer_head *dibh; 977 int error; 978 979 error = gfs2_meta_inode_buffer(ip, &dibh); 980 if (unlikely(error)) 981 return error; 982 983 gfs2_trans_add_meta(ip->i_gl, dibh); 984 985 if (gfs2_is_stuffed(ip)) { 986 error = gfs2_unstuff_dinode(ip, NULL); 987 if (unlikely(error)) 988 goto out; 989 } 990 991 while (offset < end) { 992 struct iomap iomap = { }; 993 994 error = gfs2_iomap_get_alloc(inode, offset, end - offset, 995 &iomap); 996 if (error) 997 goto out; 998 offset = iomap.offset + iomap.length; 999 if (!(iomap.flags & IOMAP_F_NEW)) 1000 continue; 1001 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 1002 iomap.length >> inode->i_blkbits, 1003 GFP_NOFS); 1004 if (error) { 1005 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 1006 goto out; 1007 } 1008 } 1009 out: 1010 brelse(dibh); 1011 return error; 1012 } 1013 1014 /** 1015 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 1016 * blocks, determine how many bytes can be written. 1017 * @ip: The inode in question. 1018 * @len: Max cap of bytes. What we return in *len must be <= this. 1019 * @data_blocks: Compute and return the number of data blocks needed 1020 * @ind_blocks: Compute and return the number of indirect blocks needed 1021 * @max_blocks: The total blocks available to work with. 1022 * 1023 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 1024 */ 1025 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 1026 unsigned int *data_blocks, unsigned int *ind_blocks, 1027 unsigned int max_blocks) 1028 { 1029 loff_t max = *len; 1030 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1031 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 1032 1033 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 1034 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 1035 max_data -= tmp; 1036 } 1037 1038 *data_blocks = max_data; 1039 *ind_blocks = max_blocks - max_data; 1040 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 1041 if (*len > max) { 1042 *len = max; 1043 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 1044 } 1045 } 1046 1047 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1048 { 1049 struct inode *inode = file_inode(file); 1050 struct gfs2_sbd *sdp = GFS2_SB(inode); 1051 struct gfs2_inode *ip = GFS2_I(inode); 1052 struct gfs2_alloc_parms ap = { .aflags = 0, }; 1053 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1054 loff_t bytes, max_bytes, max_blks; 1055 int error; 1056 const loff_t pos = offset; 1057 const loff_t count = len; 1058 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1059 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1060 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1061 1062 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1063 1064 offset &= bsize_mask; 1065 1066 len = next - offset; 1067 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1068 if (!bytes) 1069 bytes = UINT_MAX; 1070 bytes &= bsize_mask; 1071 if (bytes == 0) 1072 bytes = sdp->sd_sb.sb_bsize; 1073 1074 gfs2_size_hint(file, offset, len); 1075 1076 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1077 ap.min_target = data_blocks + ind_blocks; 1078 1079 while (len > 0) { 1080 if (len < bytes) 1081 bytes = len; 1082 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1083 len -= bytes; 1084 offset += bytes; 1085 continue; 1086 } 1087 1088 /* We need to determine how many bytes we can actually 1089 * fallocate without exceeding quota or going over the 1090 * end of the fs. We start off optimistically by assuming 1091 * we can write max_bytes */ 1092 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1093 1094 /* Since max_bytes is most likely a theoretical max, we 1095 * calculate a more realistic 'bytes' to serve as a good 1096 * starting point for the number of bytes we may be able 1097 * to write */ 1098 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1099 ap.target = data_blocks + ind_blocks; 1100 1101 error = gfs2_quota_lock_check(ip, &ap); 1102 if (error) 1103 return error; 1104 /* ap.allowed tells us how many blocks quota will allow 1105 * us to write. Check if this reduces max_blks */ 1106 max_blks = UINT_MAX; 1107 if (ap.allowed) 1108 max_blks = ap.allowed; 1109 1110 error = gfs2_inplace_reserve(ip, &ap); 1111 if (error) 1112 goto out_qunlock; 1113 1114 /* check if the selected rgrp limits our max_blks further */ 1115 if (ip->i_res.rs_reserved < max_blks) 1116 max_blks = ip->i_res.rs_reserved; 1117 1118 /* Almost done. Calculate bytes that can be written using 1119 * max_blks. We also recompute max_bytes, data_blocks and 1120 * ind_blocks */ 1121 calc_max_reserv(ip, &max_bytes, &data_blocks, 1122 &ind_blocks, max_blks); 1123 1124 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1125 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1126 if (gfs2_is_jdata(ip)) 1127 rblocks += data_blocks ? data_blocks : 1; 1128 1129 error = gfs2_trans_begin(sdp, rblocks, 1130 PAGE_SIZE >> inode->i_blkbits); 1131 if (error) 1132 goto out_trans_fail; 1133 1134 error = fallocate_chunk(inode, offset, max_bytes, mode); 1135 gfs2_trans_end(sdp); 1136 1137 if (error) 1138 goto out_trans_fail; 1139 1140 len -= max_bytes; 1141 offset += max_bytes; 1142 gfs2_inplace_release(ip); 1143 gfs2_quota_unlock(ip); 1144 } 1145 1146 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1147 i_size_write(inode, pos + count); 1148 file_update_time(file); 1149 mark_inode_dirty(inode); 1150 1151 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1152 return vfs_fsync_range(file, pos, pos + count - 1, 1153 (file->f_flags & __O_SYNC) ? 0 : 1); 1154 return 0; 1155 1156 out_trans_fail: 1157 gfs2_inplace_release(ip); 1158 out_qunlock: 1159 gfs2_quota_unlock(ip); 1160 return error; 1161 } 1162 1163 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1164 { 1165 struct inode *inode = file_inode(file); 1166 struct gfs2_sbd *sdp = GFS2_SB(inode); 1167 struct gfs2_inode *ip = GFS2_I(inode); 1168 struct gfs2_holder gh; 1169 int ret; 1170 1171 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1172 return -EOPNOTSUPP; 1173 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1174 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1175 return -EOPNOTSUPP; 1176 1177 inode_lock(inode); 1178 1179 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1180 ret = gfs2_glock_nq(&gh); 1181 if (ret) 1182 goto out_uninit; 1183 1184 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1185 (offset + len) > inode->i_size) { 1186 ret = inode_newsize_ok(inode, offset + len); 1187 if (ret) 1188 goto out_unlock; 1189 } 1190 1191 ret = get_write_access(inode); 1192 if (ret) 1193 goto out_unlock; 1194 1195 if (mode & FALLOC_FL_PUNCH_HOLE) { 1196 ret = __gfs2_punch_hole(file, offset, len); 1197 } else { 1198 ret = __gfs2_fallocate(file, mode, offset, len); 1199 if (ret) 1200 gfs2_rs_deltree(&ip->i_res); 1201 } 1202 1203 put_write_access(inode); 1204 out_unlock: 1205 gfs2_glock_dq(&gh); 1206 out_uninit: 1207 gfs2_holder_uninit(&gh); 1208 inode_unlock(inode); 1209 return ret; 1210 } 1211 1212 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1213 struct file *out, loff_t *ppos, 1214 size_t len, unsigned int flags) 1215 { 1216 ssize_t ret; 1217 1218 gfs2_size_hint(out, *ppos, len); 1219 1220 ret = iter_file_splice_write(pipe, out, ppos, len, flags); 1221 return ret; 1222 } 1223 1224 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1225 1226 /** 1227 * gfs2_lock - acquire/release a posix lock on a file 1228 * @file: the file pointer 1229 * @cmd: either modify or retrieve lock state, possibly wait 1230 * @fl: type and range of lock 1231 * 1232 * Returns: errno 1233 */ 1234 1235 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1236 { 1237 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1238 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1239 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1240 1241 if (!(fl->fl_flags & FL_POSIX)) 1242 return -ENOLCK; 1243 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1244 return -ENOLCK; 1245 1246 if (cmd == F_CANCELLK) { 1247 /* Hack: */ 1248 cmd = F_SETLK; 1249 fl->fl_type = F_UNLCK; 1250 } 1251 if (unlikely(gfs2_withdrawn(sdp))) { 1252 if (fl->fl_type == F_UNLCK) 1253 locks_lock_file_wait(file, fl); 1254 return -EIO; 1255 } 1256 if (IS_GETLK(cmd)) 1257 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1258 else if (fl->fl_type == F_UNLCK) 1259 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1260 else 1261 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1262 } 1263 1264 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1265 { 1266 struct gfs2_file *fp = file->private_data; 1267 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1268 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1269 struct gfs2_glock *gl; 1270 unsigned int state; 1271 u16 flags; 1272 int error = 0; 1273 int sleeptime; 1274 1275 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1276 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1277 1278 mutex_lock(&fp->f_fl_mutex); 1279 1280 if (gfs2_holder_initialized(fl_gh)) { 1281 struct file_lock request; 1282 if (fl_gh->gh_state == state) 1283 goto out; 1284 locks_init_lock(&request); 1285 request.fl_type = F_UNLCK; 1286 request.fl_flags = FL_FLOCK; 1287 locks_lock_file_wait(file, &request); 1288 gfs2_glock_dq(fl_gh); 1289 gfs2_holder_reinit(state, flags, fl_gh); 1290 } else { 1291 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1292 &gfs2_flock_glops, CREATE, &gl); 1293 if (error) 1294 goto out; 1295 gfs2_holder_init(gl, state, flags, fl_gh); 1296 gfs2_glock_put(gl); 1297 } 1298 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1299 error = gfs2_glock_nq(fl_gh); 1300 if (error != GLR_TRYFAILED) 1301 break; 1302 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1303 fl_gh->gh_error = 0; 1304 msleep(sleeptime); 1305 } 1306 if (error) { 1307 gfs2_holder_uninit(fl_gh); 1308 if (error == GLR_TRYFAILED) 1309 error = -EAGAIN; 1310 } else { 1311 error = locks_lock_file_wait(file, fl); 1312 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1313 } 1314 1315 out: 1316 mutex_unlock(&fp->f_fl_mutex); 1317 return error; 1318 } 1319 1320 static void do_unflock(struct file *file, struct file_lock *fl) 1321 { 1322 struct gfs2_file *fp = file->private_data; 1323 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1324 1325 mutex_lock(&fp->f_fl_mutex); 1326 locks_lock_file_wait(file, fl); 1327 if (gfs2_holder_initialized(fl_gh)) { 1328 gfs2_glock_dq(fl_gh); 1329 gfs2_holder_uninit(fl_gh); 1330 } 1331 mutex_unlock(&fp->f_fl_mutex); 1332 } 1333 1334 /** 1335 * gfs2_flock - acquire/release a flock lock on a file 1336 * @file: the file pointer 1337 * @cmd: either modify or retrieve lock state, possibly wait 1338 * @fl: type and range of lock 1339 * 1340 * Returns: errno 1341 */ 1342 1343 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1344 { 1345 if (!(fl->fl_flags & FL_FLOCK)) 1346 return -ENOLCK; 1347 if (fl->fl_type & LOCK_MAND) 1348 return -EOPNOTSUPP; 1349 1350 if (fl->fl_type == F_UNLCK) { 1351 do_unflock(file, fl); 1352 return 0; 1353 } else { 1354 return do_flock(file, cmd, fl); 1355 } 1356 } 1357 1358 const struct file_operations gfs2_file_fops = { 1359 .llseek = gfs2_llseek, 1360 .read_iter = gfs2_file_read_iter, 1361 .write_iter = gfs2_file_write_iter, 1362 .iopoll = iomap_dio_iopoll, 1363 .unlocked_ioctl = gfs2_ioctl, 1364 .compat_ioctl = gfs2_compat_ioctl, 1365 .mmap = gfs2_mmap, 1366 .open = gfs2_open, 1367 .release = gfs2_release, 1368 .fsync = gfs2_fsync, 1369 .lock = gfs2_lock, 1370 .flock = gfs2_flock, 1371 .splice_read = generic_file_splice_read, 1372 .splice_write = gfs2_file_splice_write, 1373 .setlease = simple_nosetlease, 1374 .fallocate = gfs2_fallocate, 1375 }; 1376 1377 const struct file_operations gfs2_dir_fops = { 1378 .iterate_shared = gfs2_readdir, 1379 .unlocked_ioctl = gfs2_ioctl, 1380 .compat_ioctl = gfs2_compat_ioctl, 1381 .open = gfs2_open, 1382 .release = gfs2_release, 1383 .fsync = gfs2_fsync, 1384 .lock = gfs2_lock, 1385 .flock = gfs2_flock, 1386 .llseek = default_llseek, 1387 }; 1388 1389 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1390 1391 const struct file_operations gfs2_file_fops_nolock = { 1392 .llseek = gfs2_llseek, 1393 .read_iter = gfs2_file_read_iter, 1394 .write_iter = gfs2_file_write_iter, 1395 .iopoll = iomap_dio_iopoll, 1396 .unlocked_ioctl = gfs2_ioctl, 1397 .compat_ioctl = gfs2_compat_ioctl, 1398 .mmap = gfs2_mmap, 1399 .open = gfs2_open, 1400 .release = gfs2_release, 1401 .fsync = gfs2_fsync, 1402 .splice_read = generic_file_splice_read, 1403 .splice_write = gfs2_file_splice_write, 1404 .setlease = generic_setlease, 1405 .fallocate = gfs2_fallocate, 1406 }; 1407 1408 const struct file_operations gfs2_dir_fops_nolock = { 1409 .iterate_shared = gfs2_readdir, 1410 .unlocked_ioctl = gfs2_ioctl, 1411 .compat_ioctl = gfs2_compat_ioctl, 1412 .open = gfs2_open, 1413 .release = gfs2_release, 1414 .fsync = gfs2_fsync, 1415 .llseek = default_llseek, 1416 }; 1417 1418