1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 18 #include "gfs2.h" 19 #include "incore.h" 20 #include "bmap.h" 21 #include "glock.h" 22 #include "inode.h" 23 #include "meta_io.h" 24 #include "quota.h" 25 #include "rgrp.h" 26 #include "log.h" 27 #include "super.h" 28 #include "trans.h" 29 #include "dir.h" 30 #include "util.h" 31 #include "aops.h" 32 #include "trace_gfs2.h" 33 34 /* This doesn't need to be that large as max 64 bit pointers in a 4k 35 * block is 512, so __u16 is fine for that. It saves stack space to 36 * keep it small. 37 */ 38 struct metapath { 39 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 40 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 41 int mp_fheight; /* find_metapath height */ 42 int mp_aheight; /* actual height (lookup height) */ 43 }; 44 45 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 46 47 /** 48 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 49 * @ip: the inode 50 * @dibh: the dinode buffer 51 * @block: the block number that was allocated 52 * @page: The (optional) page. This is looked up if @page is NULL 53 * 54 * Returns: errno 55 */ 56 57 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 58 u64 block, struct page *page) 59 { 60 struct inode *inode = &ip->i_inode; 61 struct buffer_head *bh; 62 int release = 0; 63 64 if (!page || page->index) { 65 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 66 if (!page) 67 return -ENOMEM; 68 release = 1; 69 } 70 71 if (!PageUptodate(page)) { 72 void *kaddr = kmap(page); 73 u64 dsize = i_size_read(inode); 74 75 if (dsize > gfs2_max_stuffed_size(ip)) 76 dsize = gfs2_max_stuffed_size(ip); 77 78 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 79 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 80 kunmap(page); 81 82 SetPageUptodate(page); 83 } 84 85 if (!page_has_buffers(page)) 86 create_empty_buffers(page, BIT(inode->i_blkbits), 87 BIT(BH_Uptodate)); 88 89 bh = page_buffers(page); 90 91 if (!buffer_mapped(bh)) 92 map_bh(bh, inode->i_sb, block); 93 94 set_buffer_uptodate(bh); 95 if (gfs2_is_jdata(ip)) 96 gfs2_trans_add_data(ip->i_gl, bh); 97 else { 98 mark_buffer_dirty(bh); 99 gfs2_ordered_add_inode(ip); 100 } 101 102 if (release) { 103 unlock_page(page); 104 put_page(page); 105 } 106 107 return 0; 108 } 109 110 /** 111 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 112 * @ip: The GFS2 inode to unstuff 113 * @page: The (optional) page. This is looked up if the @page is NULL 114 * 115 * This routine unstuffs a dinode and returns it to a "normal" state such 116 * that the height can be grown in the traditional way. 117 * 118 * Returns: errno 119 */ 120 121 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 122 { 123 struct buffer_head *bh, *dibh; 124 struct gfs2_dinode *di; 125 u64 block = 0; 126 int isdir = gfs2_is_dir(ip); 127 int error; 128 129 down_write(&ip->i_rw_mutex); 130 131 error = gfs2_meta_inode_buffer(ip, &dibh); 132 if (error) 133 goto out; 134 135 if (i_size_read(&ip->i_inode)) { 136 /* Get a free block, fill it with the stuffed data, 137 and write it out to disk */ 138 139 unsigned int n = 1; 140 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 141 if (error) 142 goto out_brelse; 143 if (isdir) { 144 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1); 145 error = gfs2_dir_get_new_buffer(ip, block, &bh); 146 if (error) 147 goto out_brelse; 148 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 149 dibh, sizeof(struct gfs2_dinode)); 150 brelse(bh); 151 } else { 152 error = gfs2_unstuffer_page(ip, dibh, block, page); 153 if (error) 154 goto out_brelse; 155 } 156 } 157 158 /* Set up the pointer to the new block */ 159 160 gfs2_trans_add_meta(ip->i_gl, dibh); 161 di = (struct gfs2_dinode *)dibh->b_data; 162 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 163 164 if (i_size_read(&ip->i_inode)) { 165 *(__be64 *)(di + 1) = cpu_to_be64(block); 166 gfs2_add_inode_blocks(&ip->i_inode, 1); 167 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 168 } 169 170 ip->i_height = 1; 171 di->di_height = cpu_to_be16(1); 172 173 out_brelse: 174 brelse(dibh); 175 out: 176 up_write(&ip->i_rw_mutex); 177 return error; 178 } 179 180 181 /** 182 * find_metapath - Find path through the metadata tree 183 * @sdp: The superblock 184 * @block: The disk block to look up 185 * @mp: The metapath to return the result in 186 * @height: The pre-calculated height of the metadata tree 187 * 188 * This routine returns a struct metapath structure that defines a path 189 * through the metadata of inode "ip" to get to block "block". 190 * 191 * Example: 192 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 193 * filesystem with a blocksize of 4096. 194 * 195 * find_metapath() would return a struct metapath structure set to: 196 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 197 * 198 * That means that in order to get to the block containing the byte at 199 * offset 101342453, we would load the indirect block pointed to by pointer 200 * 0 in the dinode. We would then load the indirect block pointed to by 201 * pointer 48 in that indirect block. We would then load the data block 202 * pointed to by pointer 165 in that indirect block. 203 * 204 * ---------------------------------------- 205 * | Dinode | | 206 * | | 4| 207 * | |0 1 2 3 4 5 9| 208 * | | 6| 209 * ---------------------------------------- 210 * | 211 * | 212 * V 213 * ---------------------------------------- 214 * | Indirect Block | 215 * | 5| 216 * | 4 4 4 4 4 5 5 1| 217 * |0 5 6 7 8 9 0 1 2| 218 * ---------------------------------------- 219 * | 220 * | 221 * V 222 * ---------------------------------------- 223 * | Indirect Block | 224 * | 1 1 1 1 1 5| 225 * | 6 6 6 6 6 1| 226 * |0 3 4 5 6 7 2| 227 * ---------------------------------------- 228 * | 229 * | 230 * V 231 * ---------------------------------------- 232 * | Data block containing offset | 233 * | 101342453 | 234 * | | 235 * | | 236 * ---------------------------------------- 237 * 238 */ 239 240 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 241 struct metapath *mp, unsigned int height) 242 { 243 unsigned int i; 244 245 mp->mp_fheight = height; 246 for (i = height; i--;) 247 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 248 } 249 250 static inline unsigned int metapath_branch_start(const struct metapath *mp) 251 { 252 if (mp->mp_list[0] == 0) 253 return 2; 254 return 1; 255 } 256 257 /** 258 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 259 * @height: The metadata height (0 = dinode) 260 * @mp: The metapath 261 */ 262 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 263 { 264 struct buffer_head *bh = mp->mp_bh[height]; 265 if (height == 0) 266 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 267 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 268 } 269 270 /** 271 * metapointer - Return pointer to start of metadata in a buffer 272 * @height: The metadata height (0 = dinode) 273 * @mp: The metapath 274 * 275 * Return a pointer to the block number of the next height of the metadata 276 * tree given a buffer containing the pointer to the current height of the 277 * metadata tree. 278 */ 279 280 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 281 { 282 __be64 *p = metaptr1(height, mp); 283 return p + mp->mp_list[height]; 284 } 285 286 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 287 { 288 const struct buffer_head *bh = mp->mp_bh[height]; 289 return (const __be64 *)(bh->b_data + bh->b_size); 290 } 291 292 static void clone_metapath(struct metapath *clone, struct metapath *mp) 293 { 294 unsigned int hgt; 295 296 *clone = *mp; 297 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 298 get_bh(clone->mp_bh[hgt]); 299 } 300 301 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 302 { 303 const __be64 *t; 304 305 for (t = start; t < end; t++) { 306 struct buffer_head *rabh; 307 308 if (!*t) 309 continue; 310 311 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 312 if (trylock_buffer(rabh)) { 313 if (!buffer_uptodate(rabh)) { 314 rabh->b_end_io = end_buffer_read_sync; 315 submit_bh(REQ_OP_READ, 316 REQ_RAHEAD | REQ_META | REQ_PRIO, 317 rabh); 318 continue; 319 } 320 unlock_buffer(rabh); 321 } 322 brelse(rabh); 323 } 324 } 325 326 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 327 unsigned int x, unsigned int h) 328 { 329 for (; x < h; x++) { 330 __be64 *ptr = metapointer(x, mp); 331 u64 dblock = be64_to_cpu(*ptr); 332 int ret; 333 334 if (!dblock) 335 break; 336 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 337 if (ret) 338 return ret; 339 } 340 mp->mp_aheight = x + 1; 341 return 0; 342 } 343 344 /** 345 * lookup_metapath - Walk the metadata tree to a specific point 346 * @ip: The inode 347 * @mp: The metapath 348 * 349 * Assumes that the inode's buffer has already been looked up and 350 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 351 * by find_metapath(). 352 * 353 * If this function encounters part of the tree which has not been 354 * allocated, it returns the current height of the tree at the point 355 * at which it found the unallocated block. Blocks which are found are 356 * added to the mp->mp_bh[] list. 357 * 358 * Returns: error 359 */ 360 361 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 362 { 363 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 364 } 365 366 /** 367 * fillup_metapath - fill up buffers for the metadata path to a specific height 368 * @ip: The inode 369 * @mp: The metapath 370 * @h: The height to which it should be mapped 371 * 372 * Similar to lookup_metapath, but does lookups for a range of heights 373 * 374 * Returns: error or the number of buffers filled 375 */ 376 377 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 378 { 379 unsigned int x = 0; 380 int ret; 381 382 if (h) { 383 /* find the first buffer we need to look up. */ 384 for (x = h - 1; x > 0; x--) { 385 if (mp->mp_bh[x]) 386 break; 387 } 388 } 389 ret = __fillup_metapath(ip, mp, x, h); 390 if (ret) 391 return ret; 392 return mp->mp_aheight - x - 1; 393 } 394 395 static void release_metapath(struct metapath *mp) 396 { 397 int i; 398 399 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 400 if (mp->mp_bh[i] == NULL) 401 break; 402 brelse(mp->mp_bh[i]); 403 mp->mp_bh[i] = NULL; 404 } 405 } 406 407 /** 408 * gfs2_extent_length - Returns length of an extent of blocks 409 * @bh: The metadata block 410 * @ptr: Current position in @bh 411 * @limit: Max extent length to return 412 * @eob: Set to 1 if we hit "end of block" 413 * 414 * Returns: The length of the extent (minimum of one block) 415 */ 416 417 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 418 { 419 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 420 const __be64 *first = ptr; 421 u64 d = be64_to_cpu(*ptr); 422 423 *eob = 0; 424 do { 425 ptr++; 426 if (ptr >= end) 427 break; 428 d++; 429 } while(be64_to_cpu(*ptr) == d); 430 if (ptr >= end) 431 *eob = 1; 432 return ptr - first; 433 } 434 435 typedef const __be64 *(*gfs2_metadata_walker)( 436 struct metapath *mp, 437 const __be64 *start, const __be64 *end, 438 u64 factor, void *data); 439 440 #define WALK_STOP ((__be64 *)0) 441 #define WALK_NEXT ((__be64 *)1) 442 443 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 444 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 445 void *data) 446 { 447 struct metapath clone; 448 struct gfs2_inode *ip = GFS2_I(inode); 449 struct gfs2_sbd *sdp = GFS2_SB(inode); 450 const __be64 *start, *end, *ptr; 451 u64 factor = 1; 452 unsigned int hgt; 453 int ret = 0; 454 455 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 456 factor *= sdp->sd_inptrs; 457 458 for (;;) { 459 u64 step; 460 461 /* Walk indirect block. */ 462 start = metapointer(hgt, mp); 463 end = metaend(hgt, mp); 464 465 step = (end - start) * factor; 466 if (step > len) 467 end = start + DIV_ROUND_UP_ULL(len, factor); 468 469 ptr = walker(mp, start, end, factor, data); 470 if (ptr == WALK_STOP) 471 break; 472 if (step >= len) 473 break; 474 len -= step; 475 if (ptr != WALK_NEXT) { 476 BUG_ON(!*ptr); 477 mp->mp_list[hgt] += ptr - start; 478 goto fill_up_metapath; 479 } 480 481 lower_metapath: 482 /* Decrease height of metapath. */ 483 if (mp != &clone) { 484 clone_metapath(&clone, mp); 485 mp = &clone; 486 } 487 brelse(mp->mp_bh[hgt]); 488 mp->mp_bh[hgt] = NULL; 489 if (!hgt) 490 break; 491 hgt--; 492 factor *= sdp->sd_inptrs; 493 494 /* Advance in metadata tree. */ 495 (mp->mp_list[hgt])++; 496 start = metapointer(hgt, mp); 497 end = metaend(hgt, mp); 498 if (start >= end) { 499 mp->mp_list[hgt] = 0; 500 if (!hgt) 501 break; 502 goto lower_metapath; 503 } 504 505 fill_up_metapath: 506 /* Increase height of metapath. */ 507 if (mp != &clone) { 508 clone_metapath(&clone, mp); 509 mp = &clone; 510 } 511 ret = fillup_metapath(ip, mp, ip->i_height - 1); 512 if (ret < 0) 513 break; 514 hgt += ret; 515 for (; ret; ret--) 516 do_div(factor, sdp->sd_inptrs); 517 mp->mp_aheight = hgt + 1; 518 } 519 if (mp == &clone) 520 release_metapath(mp); 521 return ret; 522 } 523 524 struct gfs2_hole_walker_args { 525 u64 blocks; 526 }; 527 528 static const __be64 *gfs2_hole_walker(struct metapath *mp, 529 const __be64 *start, const __be64 *end, 530 u64 factor, void *data) 531 { 532 struct gfs2_hole_walker_args *args = data; 533 const __be64 *ptr; 534 535 for (ptr = start; ptr < end; ptr++) { 536 if (*ptr) { 537 args->blocks += (ptr - start) * factor; 538 if (mp->mp_aheight == mp->mp_fheight) 539 return WALK_STOP; 540 return ptr; /* increase height */ 541 } 542 } 543 args->blocks += (end - start) * factor; 544 return WALK_NEXT; 545 } 546 547 /** 548 * gfs2_hole_size - figure out the size of a hole 549 * @inode: The inode 550 * @lblock: The logical starting block number 551 * @len: How far to look (in blocks) 552 * @mp: The metapath at lblock 553 * @iomap: The iomap to store the hole size in 554 * 555 * This function modifies @mp. 556 * 557 * Returns: errno on error 558 */ 559 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 560 struct metapath *mp, struct iomap *iomap) 561 { 562 struct gfs2_hole_walker_args args = { }; 563 int ret = 0; 564 565 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 566 if (!ret) 567 iomap->length = args.blocks << inode->i_blkbits; 568 return ret; 569 } 570 571 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 572 struct gfs2_glock *gl, unsigned int i, 573 unsigned offset, u64 bn) 574 { 575 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 576 ((i > 1) ? sizeof(struct gfs2_meta_header) : 577 sizeof(struct gfs2_dinode))); 578 BUG_ON(i < 1); 579 BUG_ON(mp->mp_bh[i] != NULL); 580 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 581 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 582 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 583 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 584 ptr += offset; 585 *ptr = cpu_to_be64(bn); 586 return ptr; 587 } 588 589 enum alloc_state { 590 ALLOC_DATA = 0, 591 ALLOC_GROW_DEPTH = 1, 592 ALLOC_GROW_HEIGHT = 2, 593 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 594 }; 595 596 /** 597 * gfs2_iomap_alloc - Build a metadata tree of the requested height 598 * @inode: The GFS2 inode 599 * @iomap: The iomap structure 600 * @flags: iomap flags 601 * @mp: The metapath, with proper height information calculated 602 * 603 * In this routine we may have to alloc: 604 * i) Indirect blocks to grow the metadata tree height 605 * ii) Indirect blocks to fill in lower part of the metadata tree 606 * iii) Data blocks 607 * 608 * This function is called after gfs2_iomap_get, which works out the 609 * total number of blocks which we need via gfs2_alloc_size. 610 * 611 * We then do the actual allocation asking for an extent at a time (if 612 * enough contiguous free blocks are available, there will only be one 613 * allocation request per call) and uses the state machine to initialise 614 * the blocks in order. 615 * 616 * Right now, this function will allocate at most one indirect block 617 * worth of data -- with a default block size of 4K, that's slightly 618 * less than 2M. If this limitation is ever removed to allow huge 619 * allocations, we would probably still want to limit the iomap size we 620 * return to avoid stalling other tasks during huge writes; the next 621 * iomap iteration would then find the blocks already allocated. 622 * 623 * Returns: errno on error 624 */ 625 626 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 627 unsigned flags, struct metapath *mp) 628 { 629 struct gfs2_inode *ip = GFS2_I(inode); 630 struct gfs2_sbd *sdp = GFS2_SB(inode); 631 struct buffer_head *dibh = mp->mp_bh[0]; 632 u64 bn; 633 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 634 size_t dblks = iomap->length >> inode->i_blkbits; 635 const unsigned end_of_metadata = mp->mp_fheight - 1; 636 int ret; 637 enum alloc_state state; 638 __be64 *ptr; 639 __be64 zero_bn = 0; 640 641 BUG_ON(mp->mp_aheight < 1); 642 BUG_ON(dibh == NULL); 643 BUG_ON(dblks < 1); 644 645 gfs2_trans_add_meta(ip->i_gl, dibh); 646 647 down_write(&ip->i_rw_mutex); 648 649 if (mp->mp_fheight == mp->mp_aheight) { 650 /* Bottom indirect block exists */ 651 state = ALLOC_DATA; 652 } else { 653 /* Need to allocate indirect blocks */ 654 if (mp->mp_fheight == ip->i_height) { 655 /* Writing into existing tree, extend tree down */ 656 iblks = mp->mp_fheight - mp->mp_aheight; 657 state = ALLOC_GROW_DEPTH; 658 } else { 659 /* Building up tree height */ 660 state = ALLOC_GROW_HEIGHT; 661 iblks = mp->mp_fheight - ip->i_height; 662 branch_start = metapath_branch_start(mp); 663 iblks += (mp->mp_fheight - branch_start); 664 } 665 } 666 667 /* start of the second part of the function (state machine) */ 668 669 blks = dblks + iblks; 670 i = mp->mp_aheight; 671 do { 672 n = blks - alloced; 673 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 674 if (ret) 675 goto out; 676 alloced += n; 677 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 678 gfs2_trans_add_unrevoke(sdp, bn, n); 679 switch (state) { 680 /* Growing height of tree */ 681 case ALLOC_GROW_HEIGHT: 682 if (i == 1) { 683 ptr = (__be64 *)(dibh->b_data + 684 sizeof(struct gfs2_dinode)); 685 zero_bn = *ptr; 686 } 687 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 688 i++, n--) 689 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 690 if (i - 1 == mp->mp_fheight - ip->i_height) { 691 i--; 692 gfs2_buffer_copy_tail(mp->mp_bh[i], 693 sizeof(struct gfs2_meta_header), 694 dibh, sizeof(struct gfs2_dinode)); 695 gfs2_buffer_clear_tail(dibh, 696 sizeof(struct gfs2_dinode) + 697 sizeof(__be64)); 698 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 699 sizeof(struct gfs2_meta_header)); 700 *ptr = zero_bn; 701 state = ALLOC_GROW_DEPTH; 702 for(i = branch_start; i < mp->mp_fheight; i++) { 703 if (mp->mp_bh[i] == NULL) 704 break; 705 brelse(mp->mp_bh[i]); 706 mp->mp_bh[i] = NULL; 707 } 708 i = branch_start; 709 } 710 if (n == 0) 711 break; 712 /* Branching from existing tree */ 713 case ALLOC_GROW_DEPTH: 714 if (i > 1 && i < mp->mp_fheight) 715 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 716 for (; i < mp->mp_fheight && n > 0; i++, n--) 717 gfs2_indirect_init(mp, ip->i_gl, i, 718 mp->mp_list[i-1], bn++); 719 if (i == mp->mp_fheight) 720 state = ALLOC_DATA; 721 if (n == 0) 722 break; 723 /* Tree complete, adding data blocks */ 724 case ALLOC_DATA: 725 BUG_ON(n > dblks); 726 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 727 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 728 dblks = n; 729 ptr = metapointer(end_of_metadata, mp); 730 iomap->addr = bn << inode->i_blkbits; 731 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 732 while (n-- > 0) 733 *ptr++ = cpu_to_be64(bn++); 734 break; 735 } 736 } while (iomap->addr == IOMAP_NULL_ADDR); 737 738 iomap->type = IOMAP_MAPPED; 739 iomap->length = (u64)dblks << inode->i_blkbits; 740 ip->i_height = mp->mp_fheight; 741 gfs2_add_inode_blocks(&ip->i_inode, alloced); 742 gfs2_dinode_out(ip, dibh->b_data); 743 out: 744 up_write(&ip->i_rw_mutex); 745 return ret; 746 } 747 748 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 749 750 /** 751 * gfs2_alloc_size - Compute the maximum allocation size 752 * @inode: The inode 753 * @mp: The metapath 754 * @size: Requested size in blocks 755 * 756 * Compute the maximum size of the next allocation at @mp. 757 * 758 * Returns: size in blocks 759 */ 760 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 761 { 762 struct gfs2_inode *ip = GFS2_I(inode); 763 struct gfs2_sbd *sdp = GFS2_SB(inode); 764 const __be64 *first, *ptr, *end; 765 766 /* 767 * For writes to stuffed files, this function is called twice via 768 * gfs2_iomap_get, before and after unstuffing. The size we return the 769 * first time needs to be large enough to get the reservation and 770 * allocation sizes right. The size we return the second time must 771 * be exact or else gfs2_iomap_alloc won't do the right thing. 772 */ 773 774 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 775 unsigned int maxsize = mp->mp_fheight > 1 ? 776 sdp->sd_inptrs : sdp->sd_diptrs; 777 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 778 if (size > maxsize) 779 size = maxsize; 780 return size; 781 } 782 783 first = metapointer(ip->i_height - 1, mp); 784 end = metaend(ip->i_height - 1, mp); 785 if (end - first > size) 786 end = first + size; 787 for (ptr = first; ptr < end; ptr++) { 788 if (*ptr) 789 break; 790 } 791 return ptr - first; 792 } 793 794 /** 795 * gfs2_iomap_get - Map blocks from an inode to disk blocks 796 * @inode: The inode 797 * @pos: Starting position in bytes 798 * @length: Length to map, in bytes 799 * @flags: iomap flags 800 * @iomap: The iomap structure 801 * @mp: The metapath 802 * 803 * Returns: errno 804 */ 805 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 806 unsigned flags, struct iomap *iomap, 807 struct metapath *mp) 808 { 809 struct gfs2_inode *ip = GFS2_I(inode); 810 struct gfs2_sbd *sdp = GFS2_SB(inode); 811 loff_t size = i_size_read(inode); 812 __be64 *ptr; 813 sector_t lblock; 814 sector_t lblock_stop; 815 int ret; 816 int eob; 817 u64 len; 818 struct buffer_head *dibh = NULL, *bh; 819 u8 height; 820 821 if (!length) 822 return -EINVAL; 823 824 down_read(&ip->i_rw_mutex); 825 826 ret = gfs2_meta_inode_buffer(ip, &dibh); 827 if (ret) 828 goto unlock; 829 iomap->private = dibh; 830 831 if (gfs2_is_stuffed(ip)) { 832 if (flags & IOMAP_WRITE) { 833 loff_t max_size = gfs2_max_stuffed_size(ip); 834 835 if (pos + length > max_size) 836 goto unstuff; 837 iomap->length = max_size; 838 } else { 839 if (pos >= size) { 840 if (flags & IOMAP_REPORT) { 841 ret = -ENOENT; 842 goto unlock; 843 } else { 844 /* report a hole */ 845 iomap->offset = pos; 846 iomap->length = length; 847 goto do_alloc; 848 } 849 } 850 iomap->length = size; 851 } 852 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 853 sizeof(struct gfs2_dinode); 854 iomap->type = IOMAP_INLINE; 855 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 856 goto out; 857 } 858 859 unstuff: 860 lblock = pos >> inode->i_blkbits; 861 iomap->offset = lblock << inode->i_blkbits; 862 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 863 len = lblock_stop - lblock + 1; 864 iomap->length = len << inode->i_blkbits; 865 866 get_bh(dibh); 867 mp->mp_bh[0] = dibh; 868 869 height = ip->i_height; 870 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 871 height++; 872 find_metapath(sdp, lblock, mp, height); 873 if (height > ip->i_height || gfs2_is_stuffed(ip)) 874 goto do_alloc; 875 876 ret = lookup_metapath(ip, mp); 877 if (ret) 878 goto unlock; 879 880 if (mp->mp_aheight != ip->i_height) 881 goto do_alloc; 882 883 ptr = metapointer(ip->i_height - 1, mp); 884 if (*ptr == 0) 885 goto do_alloc; 886 887 bh = mp->mp_bh[ip->i_height - 1]; 888 len = gfs2_extent_length(bh, ptr, len, &eob); 889 890 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 891 iomap->length = len << inode->i_blkbits; 892 iomap->type = IOMAP_MAPPED; 893 iomap->flags |= IOMAP_F_MERGED; 894 if (eob) 895 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 896 897 out: 898 iomap->bdev = inode->i_sb->s_bdev; 899 unlock: 900 up_read(&ip->i_rw_mutex); 901 if (ret && dibh) 902 brelse(dibh); 903 return ret; 904 905 do_alloc: 906 iomap->addr = IOMAP_NULL_ADDR; 907 iomap->type = IOMAP_HOLE; 908 if (flags & IOMAP_REPORT) { 909 if (pos >= size) 910 ret = -ENOENT; 911 else if (height == ip->i_height) 912 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 913 else 914 iomap->length = size - pos; 915 } else if (flags & IOMAP_WRITE) { 916 u64 alloc_size; 917 918 if (flags & IOMAP_DIRECT) 919 goto out; /* (see gfs2_file_direct_write) */ 920 921 len = gfs2_alloc_size(inode, mp, len); 922 alloc_size = len << inode->i_blkbits; 923 if (alloc_size < iomap->length) 924 iomap->length = alloc_size; 925 } else { 926 if (pos < size && height == ip->i_height) 927 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 928 } 929 goto out; 930 } 931 932 static int gfs2_write_lock(struct inode *inode) 933 { 934 struct gfs2_inode *ip = GFS2_I(inode); 935 struct gfs2_sbd *sdp = GFS2_SB(inode); 936 int error; 937 938 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 939 error = gfs2_glock_nq(&ip->i_gh); 940 if (error) 941 goto out_uninit; 942 if (&ip->i_inode == sdp->sd_rindex) { 943 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 944 945 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 946 GL_NOCACHE, &m_ip->i_gh); 947 if (error) 948 goto out_unlock; 949 } 950 return 0; 951 952 out_unlock: 953 gfs2_glock_dq(&ip->i_gh); 954 out_uninit: 955 gfs2_holder_uninit(&ip->i_gh); 956 return error; 957 } 958 959 static void gfs2_write_unlock(struct inode *inode) 960 { 961 struct gfs2_inode *ip = GFS2_I(inode); 962 struct gfs2_sbd *sdp = GFS2_SB(inode); 963 964 if (&ip->i_inode == sdp->sd_rindex) { 965 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 966 967 gfs2_glock_dq_uninit(&m_ip->i_gh); 968 } 969 gfs2_glock_dq_uninit(&ip->i_gh); 970 } 971 972 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos, 973 unsigned copied, struct page *page, 974 struct iomap *iomap) 975 { 976 struct gfs2_inode *ip = GFS2_I(inode); 977 978 if (!page_has_buffers(page)) { 979 create_empty_buffers(page, inode->i_sb->s_blocksize, 980 (1 << BH_Dirty)|(1 << BH_Uptodate)); 981 } 982 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 983 } 984 985 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 986 loff_t length, unsigned flags, 987 struct iomap *iomap) 988 { 989 struct metapath mp = { .mp_aheight = 1, }; 990 struct gfs2_inode *ip = GFS2_I(inode); 991 struct gfs2_sbd *sdp = GFS2_SB(inode); 992 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 993 bool unstuff, alloc_required; 994 int ret; 995 996 ret = gfs2_write_lock(inode); 997 if (ret) 998 return ret; 999 1000 unstuff = gfs2_is_stuffed(ip) && 1001 pos + length > gfs2_max_stuffed_size(ip); 1002 1003 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1004 if (ret) 1005 goto out_release; 1006 1007 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 1008 1009 if (alloc_required || gfs2_is_jdata(ip)) 1010 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1011 &ind_blocks); 1012 1013 if (alloc_required) { 1014 struct gfs2_alloc_parms ap = { 1015 .target = data_blocks + ind_blocks 1016 }; 1017 1018 ret = gfs2_quota_lock_check(ip, &ap); 1019 if (ret) 1020 goto out_release; 1021 1022 ret = gfs2_inplace_reserve(ip, &ap); 1023 if (ret) 1024 goto out_qunlock; 1025 } 1026 1027 rblocks = RES_DINODE + ind_blocks; 1028 if (gfs2_is_jdata(ip)) 1029 rblocks += data_blocks; 1030 if (ind_blocks || data_blocks) 1031 rblocks += RES_STATFS + RES_QUOTA; 1032 if (inode == sdp->sd_rindex) 1033 rblocks += 2 * RES_STATFS; 1034 if (alloc_required) 1035 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1036 1037 ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits); 1038 if (ret) 1039 goto out_trans_fail; 1040 1041 if (unstuff) { 1042 ret = gfs2_unstuff_dinode(ip, NULL); 1043 if (ret) 1044 goto out_trans_end; 1045 release_metapath(&mp); 1046 brelse(iomap->private); 1047 iomap->private = NULL; 1048 ret = gfs2_iomap_get(inode, iomap->offset, iomap->length, 1049 flags, iomap, &mp); 1050 if (ret) 1051 goto out_trans_end; 1052 } 1053 1054 if (iomap->type == IOMAP_HOLE) { 1055 ret = gfs2_iomap_alloc(inode, iomap, flags, &mp); 1056 if (ret) { 1057 gfs2_trans_end(sdp); 1058 gfs2_inplace_release(ip); 1059 punch_hole(ip, iomap->offset, iomap->length); 1060 goto out_qunlock; 1061 } 1062 } 1063 release_metapath(&mp); 1064 if (gfs2_is_jdata(ip)) 1065 iomap->page_done = gfs2_iomap_journaled_page_done; 1066 return 0; 1067 1068 out_trans_end: 1069 gfs2_trans_end(sdp); 1070 out_trans_fail: 1071 if (alloc_required) 1072 gfs2_inplace_release(ip); 1073 out_qunlock: 1074 if (alloc_required) 1075 gfs2_quota_unlock(ip); 1076 out_release: 1077 if (iomap->private) 1078 brelse(iomap->private); 1079 release_metapath(&mp); 1080 gfs2_write_unlock(inode); 1081 return ret; 1082 } 1083 1084 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1085 unsigned flags, struct iomap *iomap) 1086 { 1087 struct gfs2_inode *ip = GFS2_I(inode); 1088 struct metapath mp = { .mp_aheight = 1, }; 1089 int ret; 1090 1091 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1092 1093 trace_gfs2_iomap_start(ip, pos, length, flags); 1094 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1095 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap); 1096 } else { 1097 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1098 release_metapath(&mp); 1099 /* 1100 * Silently fall back to buffered I/O for stuffed files or if 1101 * we've hot a hole (see gfs2_file_direct_write). 1102 */ 1103 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1104 iomap->type != IOMAP_MAPPED) 1105 ret = -ENOTBLK; 1106 } 1107 trace_gfs2_iomap_end(ip, iomap, ret); 1108 return ret; 1109 } 1110 1111 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1112 ssize_t written, unsigned flags, struct iomap *iomap) 1113 { 1114 struct gfs2_inode *ip = GFS2_I(inode); 1115 struct gfs2_sbd *sdp = GFS2_SB(inode); 1116 struct gfs2_trans *tr = current->journal_info; 1117 struct buffer_head *dibh = iomap->private; 1118 1119 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1120 goto out; 1121 1122 if (iomap->type != IOMAP_INLINE) { 1123 gfs2_ordered_add_inode(ip); 1124 1125 if (tr->tr_num_buf_new) 1126 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1127 else 1128 gfs2_trans_add_meta(ip->i_gl, dibh); 1129 } 1130 1131 if (inode == sdp->sd_rindex) { 1132 adjust_fs_space(inode); 1133 sdp->sd_rindex_uptodate = 0; 1134 } 1135 1136 gfs2_trans_end(sdp); 1137 gfs2_inplace_release(ip); 1138 1139 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1140 /* Deallocate blocks that were just allocated. */ 1141 loff_t blockmask = i_blocksize(inode) - 1; 1142 loff_t end = (pos + length) & ~blockmask; 1143 1144 pos = (pos + written + blockmask) & ~blockmask; 1145 if (pos < end) { 1146 truncate_pagecache_range(inode, pos, end - 1); 1147 punch_hole(ip, pos, end - pos); 1148 } 1149 } 1150 1151 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1152 gfs2_quota_unlock(ip); 1153 gfs2_write_unlock(inode); 1154 1155 out: 1156 if (dibh) 1157 brelse(dibh); 1158 return 0; 1159 } 1160 1161 const struct iomap_ops gfs2_iomap_ops = { 1162 .iomap_begin = gfs2_iomap_begin, 1163 .iomap_end = gfs2_iomap_end, 1164 }; 1165 1166 /** 1167 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1168 * @inode: The inode 1169 * @lblock: The logical block number 1170 * @bh_map: The bh to be mapped 1171 * @create: True if its ok to alloc blocks to satify the request 1172 * 1173 * The size of the requested mapping is defined in bh_map->b_size. 1174 * 1175 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1176 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1177 * bh_map->b_size to indicate the size of the mapping when @lblock and 1178 * successive blocks are mapped, up to the requested size. 1179 * 1180 * Sets buffer_boundary() if a read of metadata will be required 1181 * before the next block can be mapped. Sets buffer_new() if new 1182 * blocks were allocated. 1183 * 1184 * Returns: errno 1185 */ 1186 1187 int gfs2_block_map(struct inode *inode, sector_t lblock, 1188 struct buffer_head *bh_map, int create) 1189 { 1190 struct gfs2_inode *ip = GFS2_I(inode); 1191 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1192 loff_t length = bh_map->b_size; 1193 struct metapath mp = { .mp_aheight = 1, }; 1194 struct iomap iomap = { }; 1195 int ret; 1196 1197 clear_buffer_mapped(bh_map); 1198 clear_buffer_new(bh_map); 1199 clear_buffer_boundary(bh_map); 1200 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1201 1202 if (create) { 1203 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1204 if (!ret && iomap.type == IOMAP_HOLE) 1205 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 1206 release_metapath(&mp); 1207 } else { 1208 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1209 release_metapath(&mp); 1210 } 1211 if (ret) 1212 goto out; 1213 1214 if (iomap.length > bh_map->b_size) { 1215 iomap.length = bh_map->b_size; 1216 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1217 } 1218 if (iomap.addr != IOMAP_NULL_ADDR) 1219 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1220 bh_map->b_size = iomap.length; 1221 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1222 set_buffer_boundary(bh_map); 1223 if (iomap.flags & IOMAP_F_NEW) 1224 set_buffer_new(bh_map); 1225 1226 out: 1227 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1228 return ret; 1229 } 1230 1231 /* 1232 * Deprecated: do not use in new code 1233 */ 1234 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1235 { 1236 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1237 int ret; 1238 int create = *new; 1239 1240 BUG_ON(!extlen); 1241 BUG_ON(!dblock); 1242 BUG_ON(!new); 1243 1244 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1245 ret = gfs2_block_map(inode, lblock, &bh, create); 1246 *extlen = bh.b_size >> inode->i_blkbits; 1247 *dblock = bh.b_blocknr; 1248 if (buffer_new(&bh)) 1249 *new = 1; 1250 else 1251 *new = 0; 1252 return ret; 1253 } 1254 1255 /** 1256 * gfs2_block_zero_range - Deal with zeroing out data 1257 * 1258 * This is partly borrowed from ext3. 1259 */ 1260 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1261 unsigned int length) 1262 { 1263 struct address_space *mapping = inode->i_mapping; 1264 struct gfs2_inode *ip = GFS2_I(inode); 1265 unsigned long index = from >> PAGE_SHIFT; 1266 unsigned offset = from & (PAGE_SIZE-1); 1267 unsigned blocksize, iblock, pos; 1268 struct buffer_head *bh; 1269 struct page *page; 1270 int err; 1271 1272 page = find_or_create_page(mapping, index, GFP_NOFS); 1273 if (!page) 1274 return 0; 1275 1276 blocksize = inode->i_sb->s_blocksize; 1277 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1278 1279 if (!page_has_buffers(page)) 1280 create_empty_buffers(page, blocksize, 0); 1281 1282 /* Find the buffer that contains "offset" */ 1283 bh = page_buffers(page); 1284 pos = blocksize; 1285 while (offset >= pos) { 1286 bh = bh->b_this_page; 1287 iblock++; 1288 pos += blocksize; 1289 } 1290 1291 err = 0; 1292 1293 if (!buffer_mapped(bh)) { 1294 gfs2_block_map(inode, iblock, bh, 0); 1295 /* unmapped? It's a hole - nothing to do */ 1296 if (!buffer_mapped(bh)) 1297 goto unlock; 1298 } 1299 1300 /* Ok, it's mapped. Make sure it's up-to-date */ 1301 if (PageUptodate(page)) 1302 set_buffer_uptodate(bh); 1303 1304 if (!buffer_uptodate(bh)) { 1305 err = -EIO; 1306 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1307 wait_on_buffer(bh); 1308 /* Uhhuh. Read error. Complain and punt. */ 1309 if (!buffer_uptodate(bh)) 1310 goto unlock; 1311 err = 0; 1312 } 1313 1314 if (gfs2_is_jdata(ip)) 1315 gfs2_trans_add_data(ip->i_gl, bh); 1316 else 1317 gfs2_ordered_add_inode(ip); 1318 1319 zero_user(page, offset, length); 1320 mark_buffer_dirty(bh); 1321 unlock: 1322 unlock_page(page); 1323 put_page(page); 1324 return err; 1325 } 1326 1327 #define GFS2_JTRUNC_REVOKES 8192 1328 1329 /** 1330 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1331 * @inode: The inode being truncated 1332 * @oldsize: The original (larger) size 1333 * @newsize: The new smaller size 1334 * 1335 * With jdata files, we have to journal a revoke for each block which is 1336 * truncated. As a result, we need to split this into separate transactions 1337 * if the number of pages being truncated gets too large. 1338 */ 1339 1340 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1341 { 1342 struct gfs2_sbd *sdp = GFS2_SB(inode); 1343 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1344 u64 chunk; 1345 int error; 1346 1347 while (oldsize != newsize) { 1348 struct gfs2_trans *tr; 1349 unsigned int offs; 1350 1351 chunk = oldsize - newsize; 1352 if (chunk > max_chunk) 1353 chunk = max_chunk; 1354 1355 offs = oldsize & ~PAGE_MASK; 1356 if (offs && chunk > PAGE_SIZE) 1357 chunk = offs + ((chunk - offs) & PAGE_MASK); 1358 1359 truncate_pagecache(inode, oldsize - chunk); 1360 oldsize -= chunk; 1361 1362 tr = current->journal_info; 1363 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1364 continue; 1365 1366 gfs2_trans_end(sdp); 1367 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1368 if (error) 1369 return error; 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int trunc_start(struct inode *inode, u64 newsize) 1376 { 1377 struct gfs2_inode *ip = GFS2_I(inode); 1378 struct gfs2_sbd *sdp = GFS2_SB(inode); 1379 struct buffer_head *dibh = NULL; 1380 int journaled = gfs2_is_jdata(ip); 1381 u64 oldsize = inode->i_size; 1382 int error; 1383 1384 if (journaled) 1385 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1386 else 1387 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1388 if (error) 1389 return error; 1390 1391 error = gfs2_meta_inode_buffer(ip, &dibh); 1392 if (error) 1393 goto out; 1394 1395 gfs2_trans_add_meta(ip->i_gl, dibh); 1396 1397 if (gfs2_is_stuffed(ip)) { 1398 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1399 } else { 1400 unsigned int blocksize = i_blocksize(inode); 1401 unsigned int offs = newsize & (blocksize - 1); 1402 if (offs) { 1403 error = gfs2_block_zero_range(inode, newsize, 1404 blocksize - offs); 1405 if (error) 1406 goto out; 1407 } 1408 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1409 } 1410 1411 i_size_write(inode, newsize); 1412 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1413 gfs2_dinode_out(ip, dibh->b_data); 1414 1415 if (journaled) 1416 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1417 else 1418 truncate_pagecache(inode, newsize); 1419 1420 out: 1421 brelse(dibh); 1422 if (current->journal_info) 1423 gfs2_trans_end(sdp); 1424 return error; 1425 } 1426 1427 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1428 struct iomap *iomap) 1429 { 1430 struct metapath mp = { .mp_aheight = 1, }; 1431 int ret; 1432 1433 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1434 if (!ret && iomap->type == IOMAP_HOLE) 1435 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1436 release_metapath(&mp); 1437 return ret; 1438 } 1439 1440 /** 1441 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1442 * @ip: inode 1443 * @rg_gh: holder of resource group glock 1444 * @bh: buffer head to sweep 1445 * @start: starting point in bh 1446 * @end: end point in bh 1447 * @meta: true if bh points to metadata (rather than data) 1448 * @btotal: place to keep count of total blocks freed 1449 * 1450 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1451 * free, and free them all. However, we do it one rgrp at a time. If this 1452 * block has references to multiple rgrps, we break it into individual 1453 * transactions. This allows other processes to use the rgrps while we're 1454 * focused on a single one, for better concurrency / performance. 1455 * At every transaction boundary, we rewrite the inode into the journal. 1456 * That way the bitmaps are kept consistent with the inode and we can recover 1457 * if we're interrupted by power-outages. 1458 * 1459 * Returns: 0, or return code if an error occurred. 1460 * *btotal has the total number of blocks freed 1461 */ 1462 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1463 struct buffer_head *bh, __be64 *start, __be64 *end, 1464 bool meta, u32 *btotal) 1465 { 1466 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1467 struct gfs2_rgrpd *rgd; 1468 struct gfs2_trans *tr; 1469 __be64 *p; 1470 int blks_outside_rgrp; 1471 u64 bn, bstart, isize_blks; 1472 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1473 int ret = 0; 1474 bool buf_in_tr = false; /* buffer was added to transaction */ 1475 1476 more_rgrps: 1477 rgd = NULL; 1478 if (gfs2_holder_initialized(rd_gh)) { 1479 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1480 gfs2_assert_withdraw(sdp, 1481 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1482 } 1483 blks_outside_rgrp = 0; 1484 bstart = 0; 1485 blen = 0; 1486 1487 for (p = start; p < end; p++) { 1488 if (!*p) 1489 continue; 1490 bn = be64_to_cpu(*p); 1491 1492 if (rgd) { 1493 if (!rgrp_contains_block(rgd, bn)) { 1494 blks_outside_rgrp++; 1495 continue; 1496 } 1497 } else { 1498 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1499 if (unlikely(!rgd)) { 1500 ret = -EIO; 1501 goto out; 1502 } 1503 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1504 0, rd_gh); 1505 if (ret) 1506 goto out; 1507 1508 /* Must be done with the rgrp glock held: */ 1509 if (gfs2_rs_active(&ip->i_res) && 1510 rgd == ip->i_res.rs_rbm.rgd) 1511 gfs2_rs_deltree(&ip->i_res); 1512 } 1513 1514 /* The size of our transactions will be unknown until we 1515 actually process all the metadata blocks that relate to 1516 the rgrp. So we estimate. We know it can't be more than 1517 the dinode's i_blocks and we don't want to exceed the 1518 journal flush threshold, sd_log_thresh2. */ 1519 if (current->journal_info == NULL) { 1520 unsigned int jblocks_rqsted, revokes; 1521 1522 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1523 RES_INDIRECT; 1524 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1525 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1526 jblocks_rqsted += 1527 atomic_read(&sdp->sd_log_thresh2); 1528 else 1529 jblocks_rqsted += isize_blks; 1530 revokes = jblocks_rqsted; 1531 if (meta) 1532 revokes += end - start; 1533 else if (ip->i_depth) 1534 revokes += sdp->sd_inptrs; 1535 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1536 if (ret) 1537 goto out_unlock; 1538 down_write(&ip->i_rw_mutex); 1539 } 1540 /* check if we will exceed the transaction blocks requested */ 1541 tr = current->journal_info; 1542 if (tr->tr_num_buf_new + RES_STATFS + 1543 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1544 /* We set blks_outside_rgrp to ensure the loop will 1545 be repeated for the same rgrp, but with a new 1546 transaction. */ 1547 blks_outside_rgrp++; 1548 /* This next part is tricky. If the buffer was added 1549 to the transaction, we've already set some block 1550 pointers to 0, so we better follow through and free 1551 them, or we will introduce corruption (so break). 1552 This may be impossible, or at least rare, but I 1553 decided to cover the case regardless. 1554 1555 If the buffer was not added to the transaction 1556 (this call), doing so would exceed our transaction 1557 size, so we need to end the transaction and start a 1558 new one (so goto). */ 1559 1560 if (buf_in_tr) 1561 break; 1562 goto out_unlock; 1563 } 1564 1565 gfs2_trans_add_meta(ip->i_gl, bh); 1566 buf_in_tr = true; 1567 *p = 0; 1568 if (bstart + blen == bn) { 1569 blen++; 1570 continue; 1571 } 1572 if (bstart) { 1573 __gfs2_free_blocks(ip, bstart, (u32)blen, meta); 1574 (*btotal) += blen; 1575 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1576 } 1577 bstart = bn; 1578 blen = 1; 1579 } 1580 if (bstart) { 1581 __gfs2_free_blocks(ip, bstart, (u32)blen, meta); 1582 (*btotal) += blen; 1583 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1584 } 1585 out_unlock: 1586 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1587 outside the rgrp we just processed, 1588 do it all over again. */ 1589 if (current->journal_info) { 1590 struct buffer_head *dibh; 1591 1592 ret = gfs2_meta_inode_buffer(ip, &dibh); 1593 if (ret) 1594 goto out; 1595 1596 /* Every transaction boundary, we rewrite the dinode 1597 to keep its di_blocks current in case of failure. */ 1598 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1599 current_time(&ip->i_inode); 1600 gfs2_trans_add_meta(ip->i_gl, dibh); 1601 gfs2_dinode_out(ip, dibh->b_data); 1602 brelse(dibh); 1603 up_write(&ip->i_rw_mutex); 1604 gfs2_trans_end(sdp); 1605 } 1606 gfs2_glock_dq_uninit(rd_gh); 1607 cond_resched(); 1608 goto more_rgrps; 1609 } 1610 out: 1611 return ret; 1612 } 1613 1614 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1615 { 1616 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1617 return false; 1618 return true; 1619 } 1620 1621 /** 1622 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1623 * @mp: starting metapath 1624 * @h: desired height to search 1625 * 1626 * Assumes the metapath is valid (with buffers) out to height h. 1627 * Returns: true if a non-null pointer was found in the metapath buffer 1628 * false if all remaining pointers are NULL in the buffer 1629 */ 1630 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1631 unsigned int h, 1632 __u16 *end_list, unsigned int end_aligned) 1633 { 1634 struct buffer_head *bh = mp->mp_bh[h]; 1635 __be64 *first, *ptr, *end; 1636 1637 first = metaptr1(h, mp); 1638 ptr = first + mp->mp_list[h]; 1639 end = (__be64 *)(bh->b_data + bh->b_size); 1640 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1641 bool keep_end = h < end_aligned; 1642 end = first + end_list[h] + keep_end; 1643 } 1644 1645 while (ptr < end) { 1646 if (*ptr) { /* if we have a non-null pointer */ 1647 mp->mp_list[h] = ptr - first; 1648 h++; 1649 if (h < GFS2_MAX_META_HEIGHT) 1650 mp->mp_list[h] = 0; 1651 return true; 1652 } 1653 ptr++; 1654 } 1655 return false; 1656 } 1657 1658 enum dealloc_states { 1659 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1660 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1661 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1662 DEALLOC_DONE = 3, /* process complete */ 1663 }; 1664 1665 static inline void 1666 metapointer_range(struct metapath *mp, int height, 1667 __u16 *start_list, unsigned int start_aligned, 1668 __u16 *end_list, unsigned int end_aligned, 1669 __be64 **start, __be64 **end) 1670 { 1671 struct buffer_head *bh = mp->mp_bh[height]; 1672 __be64 *first; 1673 1674 first = metaptr1(height, mp); 1675 *start = first; 1676 if (mp_eq_to_hgt(mp, start_list, height)) { 1677 bool keep_start = height < start_aligned; 1678 *start = first + start_list[height] + keep_start; 1679 } 1680 *end = (__be64 *)(bh->b_data + bh->b_size); 1681 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1682 bool keep_end = height < end_aligned; 1683 *end = first + end_list[height] + keep_end; 1684 } 1685 } 1686 1687 static inline bool walk_done(struct gfs2_sbd *sdp, 1688 struct metapath *mp, int height, 1689 __u16 *end_list, unsigned int end_aligned) 1690 { 1691 __u16 end; 1692 1693 if (end_list) { 1694 bool keep_end = height < end_aligned; 1695 if (!mp_eq_to_hgt(mp, end_list, height)) 1696 return false; 1697 end = end_list[height] + keep_end; 1698 } else 1699 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1700 return mp->mp_list[height] >= end; 1701 } 1702 1703 /** 1704 * punch_hole - deallocate blocks in a file 1705 * @ip: inode to truncate 1706 * @offset: the start of the hole 1707 * @length: the size of the hole (or 0 for truncate) 1708 * 1709 * Punch a hole into a file or truncate a file at a given position. This 1710 * function operates in whole blocks (@offset and @length are rounded 1711 * accordingly); partially filled blocks must be cleared otherwise. 1712 * 1713 * This function works from the bottom up, and from the right to the left. In 1714 * other words, it strips off the highest layer (data) before stripping any of 1715 * the metadata. Doing it this way is best in case the operation is interrupted 1716 * by power failure, etc. The dinode is rewritten in every transaction to 1717 * guarantee integrity. 1718 */ 1719 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1720 { 1721 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1722 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1723 struct metapath mp = {}; 1724 struct buffer_head *dibh, *bh; 1725 struct gfs2_holder rd_gh; 1726 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1727 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1728 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1729 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1730 unsigned int start_aligned, uninitialized_var(end_aligned); 1731 unsigned int strip_h = ip->i_height - 1; 1732 u32 btotal = 0; 1733 int ret, state; 1734 int mp_h; /* metapath buffers are read in to this height */ 1735 u64 prev_bnr = 0; 1736 __be64 *start, *end; 1737 1738 if (offset >= maxsize) { 1739 /* 1740 * The starting point lies beyond the allocated meta-data; 1741 * there are no blocks do deallocate. 1742 */ 1743 return 0; 1744 } 1745 1746 /* 1747 * The start position of the hole is defined by lblock, start_list, and 1748 * start_aligned. The end position of the hole is defined by lend, 1749 * end_list, and end_aligned. 1750 * 1751 * start_aligned and end_aligned define down to which height the start 1752 * and end positions are aligned to the metadata tree (i.e., the 1753 * position is a multiple of the metadata granularity at the height 1754 * above). This determines at which heights additional meta pointers 1755 * needs to be preserved for the remaining data. 1756 */ 1757 1758 if (length) { 1759 u64 end_offset = offset + length; 1760 u64 lend; 1761 1762 /* 1763 * Clip the end at the maximum file size for the given height: 1764 * that's how far the metadata goes; files bigger than that 1765 * will have additional layers of indirection. 1766 */ 1767 if (end_offset > maxsize) 1768 end_offset = maxsize; 1769 lend = end_offset >> bsize_shift; 1770 1771 if (lblock >= lend) 1772 return 0; 1773 1774 find_metapath(sdp, lend, &mp, ip->i_height); 1775 end_list = __end_list; 1776 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1777 1778 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1779 if (end_list[mp_h]) 1780 break; 1781 } 1782 end_aligned = mp_h; 1783 } 1784 1785 find_metapath(sdp, lblock, &mp, ip->i_height); 1786 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1787 1788 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1789 if (start_list[mp_h]) 1790 break; 1791 } 1792 start_aligned = mp_h; 1793 1794 ret = gfs2_meta_inode_buffer(ip, &dibh); 1795 if (ret) 1796 return ret; 1797 1798 mp.mp_bh[0] = dibh; 1799 ret = lookup_metapath(ip, &mp); 1800 if (ret) 1801 goto out_metapath; 1802 1803 /* issue read-ahead on metadata */ 1804 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1805 metapointer_range(&mp, mp_h, start_list, start_aligned, 1806 end_list, end_aligned, &start, &end); 1807 gfs2_metapath_ra(ip->i_gl, start, end); 1808 } 1809 1810 if (mp.mp_aheight == ip->i_height) 1811 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1812 else 1813 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1814 1815 ret = gfs2_rindex_update(sdp); 1816 if (ret) 1817 goto out_metapath; 1818 1819 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1820 if (ret) 1821 goto out_metapath; 1822 gfs2_holder_mark_uninitialized(&rd_gh); 1823 1824 mp_h = strip_h; 1825 1826 while (state != DEALLOC_DONE) { 1827 switch (state) { 1828 /* Truncate a full metapath at the given strip height. 1829 * Note that strip_h == mp_h in order to be in this state. */ 1830 case DEALLOC_MP_FULL: 1831 bh = mp.mp_bh[mp_h]; 1832 gfs2_assert_withdraw(sdp, bh); 1833 if (gfs2_assert_withdraw(sdp, 1834 prev_bnr != bh->b_blocknr)) { 1835 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1836 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1837 sdp->sd_fsname, 1838 (unsigned long long)ip->i_no_addr, 1839 prev_bnr, ip->i_height, strip_h, mp_h); 1840 } 1841 prev_bnr = bh->b_blocknr; 1842 1843 if (gfs2_metatype_check(sdp, bh, 1844 (mp_h ? GFS2_METATYPE_IN : 1845 GFS2_METATYPE_DI))) { 1846 ret = -EIO; 1847 goto out; 1848 } 1849 1850 /* 1851 * Below, passing end_aligned as 0 gives us the 1852 * metapointer range excluding the end point: the end 1853 * point is the first metapath we must not deallocate! 1854 */ 1855 1856 metapointer_range(&mp, mp_h, start_list, start_aligned, 1857 end_list, 0 /* end_aligned */, 1858 &start, &end); 1859 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1860 start, end, 1861 mp_h != ip->i_height - 1, 1862 &btotal); 1863 1864 /* If we hit an error or just swept dinode buffer, 1865 just exit. */ 1866 if (ret || !mp_h) { 1867 state = DEALLOC_DONE; 1868 break; 1869 } 1870 state = DEALLOC_MP_LOWER; 1871 break; 1872 1873 /* lower the metapath strip height */ 1874 case DEALLOC_MP_LOWER: 1875 /* We're done with the current buffer, so release it, 1876 unless it's the dinode buffer. Then back up to the 1877 previous pointer. */ 1878 if (mp_h) { 1879 brelse(mp.mp_bh[mp_h]); 1880 mp.mp_bh[mp_h] = NULL; 1881 } 1882 /* If we can't get any lower in height, we've stripped 1883 off all we can. Next step is to back up and start 1884 stripping the previous level of metadata. */ 1885 if (mp_h == 0) { 1886 strip_h--; 1887 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1888 mp_h = strip_h; 1889 state = DEALLOC_FILL_MP; 1890 break; 1891 } 1892 mp.mp_list[mp_h] = 0; 1893 mp_h--; /* search one metadata height down */ 1894 mp.mp_list[mp_h]++; 1895 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1896 break; 1897 /* Here we've found a part of the metapath that is not 1898 * allocated. We need to search at that height for the 1899 * next non-null pointer. */ 1900 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1901 state = DEALLOC_FILL_MP; 1902 mp_h++; 1903 } 1904 /* No more non-null pointers at this height. Back up 1905 to the previous height and try again. */ 1906 break; /* loop around in the same state */ 1907 1908 /* Fill the metapath with buffers to the given height. */ 1909 case DEALLOC_FILL_MP: 1910 /* Fill the buffers out to the current height. */ 1911 ret = fillup_metapath(ip, &mp, mp_h); 1912 if (ret < 0) 1913 goto out; 1914 1915 /* issue read-ahead on metadata */ 1916 if (mp.mp_aheight > 1) { 1917 for (; ret > 1; ret--) { 1918 metapointer_range(&mp, mp.mp_aheight - ret, 1919 start_list, start_aligned, 1920 end_list, end_aligned, 1921 &start, &end); 1922 gfs2_metapath_ra(ip->i_gl, start, end); 1923 } 1924 } 1925 1926 /* If buffers found for the entire strip height */ 1927 if (mp.mp_aheight - 1 == strip_h) { 1928 state = DEALLOC_MP_FULL; 1929 break; 1930 } 1931 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1932 mp_h = mp.mp_aheight - 1; 1933 1934 /* If we find a non-null block pointer, crawl a bit 1935 higher up in the metapath and try again, otherwise 1936 we need to look lower for a new starting point. */ 1937 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1938 mp_h++; 1939 else 1940 state = DEALLOC_MP_LOWER; 1941 break; 1942 } 1943 } 1944 1945 if (btotal) { 1946 if (current->journal_info == NULL) { 1947 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1948 RES_QUOTA, 0); 1949 if (ret) 1950 goto out; 1951 down_write(&ip->i_rw_mutex); 1952 } 1953 gfs2_statfs_change(sdp, 0, +btotal, 0); 1954 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1955 ip->i_inode.i_gid); 1956 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1957 gfs2_trans_add_meta(ip->i_gl, dibh); 1958 gfs2_dinode_out(ip, dibh->b_data); 1959 up_write(&ip->i_rw_mutex); 1960 gfs2_trans_end(sdp); 1961 } 1962 1963 out: 1964 if (gfs2_holder_initialized(&rd_gh)) 1965 gfs2_glock_dq_uninit(&rd_gh); 1966 if (current->journal_info) { 1967 up_write(&ip->i_rw_mutex); 1968 gfs2_trans_end(sdp); 1969 cond_resched(); 1970 } 1971 gfs2_quota_unhold(ip); 1972 out_metapath: 1973 release_metapath(&mp); 1974 return ret; 1975 } 1976 1977 static int trunc_end(struct gfs2_inode *ip) 1978 { 1979 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1980 struct buffer_head *dibh; 1981 int error; 1982 1983 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1984 if (error) 1985 return error; 1986 1987 down_write(&ip->i_rw_mutex); 1988 1989 error = gfs2_meta_inode_buffer(ip, &dibh); 1990 if (error) 1991 goto out; 1992 1993 if (!i_size_read(&ip->i_inode)) { 1994 ip->i_height = 0; 1995 ip->i_goal = ip->i_no_addr; 1996 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1997 gfs2_ordered_del_inode(ip); 1998 } 1999 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2000 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2001 2002 gfs2_trans_add_meta(ip->i_gl, dibh); 2003 gfs2_dinode_out(ip, dibh->b_data); 2004 brelse(dibh); 2005 2006 out: 2007 up_write(&ip->i_rw_mutex); 2008 gfs2_trans_end(sdp); 2009 return error; 2010 } 2011 2012 /** 2013 * do_shrink - make a file smaller 2014 * @inode: the inode 2015 * @newsize: the size to make the file 2016 * 2017 * Called with an exclusive lock on @inode. The @size must 2018 * be equal to or smaller than the current inode size. 2019 * 2020 * Returns: errno 2021 */ 2022 2023 static int do_shrink(struct inode *inode, u64 newsize) 2024 { 2025 struct gfs2_inode *ip = GFS2_I(inode); 2026 int error; 2027 2028 error = trunc_start(inode, newsize); 2029 if (error < 0) 2030 return error; 2031 if (gfs2_is_stuffed(ip)) 2032 return 0; 2033 2034 error = punch_hole(ip, newsize, 0); 2035 if (error == 0) 2036 error = trunc_end(ip); 2037 2038 return error; 2039 } 2040 2041 void gfs2_trim_blocks(struct inode *inode) 2042 { 2043 int ret; 2044 2045 ret = do_shrink(inode, inode->i_size); 2046 WARN_ON(ret != 0); 2047 } 2048 2049 /** 2050 * do_grow - Touch and update inode size 2051 * @inode: The inode 2052 * @size: The new size 2053 * 2054 * This function updates the timestamps on the inode and 2055 * may also increase the size of the inode. This function 2056 * must not be called with @size any smaller than the current 2057 * inode size. 2058 * 2059 * Although it is not strictly required to unstuff files here, 2060 * earlier versions of GFS2 have a bug in the stuffed file reading 2061 * code which will result in a buffer overrun if the size is larger 2062 * than the max stuffed file size. In order to prevent this from 2063 * occurring, such files are unstuffed, but in other cases we can 2064 * just update the inode size directly. 2065 * 2066 * Returns: 0 on success, or -ve on error 2067 */ 2068 2069 static int do_grow(struct inode *inode, u64 size) 2070 { 2071 struct gfs2_inode *ip = GFS2_I(inode); 2072 struct gfs2_sbd *sdp = GFS2_SB(inode); 2073 struct gfs2_alloc_parms ap = { .target = 1, }; 2074 struct buffer_head *dibh; 2075 int error; 2076 int unstuff = 0; 2077 2078 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2079 error = gfs2_quota_lock_check(ip, &ap); 2080 if (error) 2081 return error; 2082 2083 error = gfs2_inplace_reserve(ip, &ap); 2084 if (error) 2085 goto do_grow_qunlock; 2086 unstuff = 1; 2087 } 2088 2089 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2090 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2091 0 : RES_QUOTA), 0); 2092 if (error) 2093 goto do_grow_release; 2094 2095 if (unstuff) { 2096 error = gfs2_unstuff_dinode(ip, NULL); 2097 if (error) 2098 goto do_end_trans; 2099 } 2100 2101 error = gfs2_meta_inode_buffer(ip, &dibh); 2102 if (error) 2103 goto do_end_trans; 2104 2105 i_size_write(inode, size); 2106 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2107 gfs2_trans_add_meta(ip->i_gl, dibh); 2108 gfs2_dinode_out(ip, dibh->b_data); 2109 brelse(dibh); 2110 2111 do_end_trans: 2112 gfs2_trans_end(sdp); 2113 do_grow_release: 2114 if (unstuff) { 2115 gfs2_inplace_release(ip); 2116 do_grow_qunlock: 2117 gfs2_quota_unlock(ip); 2118 } 2119 return error; 2120 } 2121 2122 /** 2123 * gfs2_setattr_size - make a file a given size 2124 * @inode: the inode 2125 * @newsize: the size to make the file 2126 * 2127 * The file size can grow, shrink, or stay the same size. This 2128 * is called holding i_rwsem and an exclusive glock on the inode 2129 * in question. 2130 * 2131 * Returns: errno 2132 */ 2133 2134 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2135 { 2136 struct gfs2_inode *ip = GFS2_I(inode); 2137 int ret; 2138 2139 BUG_ON(!S_ISREG(inode->i_mode)); 2140 2141 ret = inode_newsize_ok(inode, newsize); 2142 if (ret) 2143 return ret; 2144 2145 inode_dio_wait(inode); 2146 2147 ret = gfs2_rsqa_alloc(ip); 2148 if (ret) 2149 goto out; 2150 2151 if (newsize >= inode->i_size) { 2152 ret = do_grow(inode, newsize); 2153 goto out; 2154 } 2155 2156 ret = do_shrink(inode, newsize); 2157 out: 2158 gfs2_rsqa_delete(ip, NULL); 2159 return ret; 2160 } 2161 2162 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2163 { 2164 int error; 2165 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2166 if (!error) 2167 error = trunc_end(ip); 2168 return error; 2169 } 2170 2171 int gfs2_file_dealloc(struct gfs2_inode *ip) 2172 { 2173 return punch_hole(ip, 0, 0); 2174 } 2175 2176 /** 2177 * gfs2_free_journal_extents - Free cached journal bmap info 2178 * @jd: The journal 2179 * 2180 */ 2181 2182 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2183 { 2184 struct gfs2_journal_extent *jext; 2185 2186 while(!list_empty(&jd->extent_list)) { 2187 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2188 list_del(&jext->list); 2189 kfree(jext); 2190 } 2191 } 2192 2193 /** 2194 * gfs2_add_jextent - Add or merge a new extent to extent cache 2195 * @jd: The journal descriptor 2196 * @lblock: The logical block at start of new extent 2197 * @dblock: The physical block at start of new extent 2198 * @blocks: Size of extent in fs blocks 2199 * 2200 * Returns: 0 on success or -ENOMEM 2201 */ 2202 2203 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2204 { 2205 struct gfs2_journal_extent *jext; 2206 2207 if (!list_empty(&jd->extent_list)) { 2208 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2209 if ((jext->dblock + jext->blocks) == dblock) { 2210 jext->blocks += blocks; 2211 return 0; 2212 } 2213 } 2214 2215 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2216 if (jext == NULL) 2217 return -ENOMEM; 2218 jext->dblock = dblock; 2219 jext->lblock = lblock; 2220 jext->blocks = blocks; 2221 list_add_tail(&jext->list, &jd->extent_list); 2222 jd->nr_extents++; 2223 return 0; 2224 } 2225 2226 /** 2227 * gfs2_map_journal_extents - Cache journal bmap info 2228 * @sdp: The super block 2229 * @jd: The journal to map 2230 * 2231 * Create a reusable "extent" mapping from all logical 2232 * blocks to all physical blocks for the given journal. This will save 2233 * us time when writing journal blocks. Most journals will have only one 2234 * extent that maps all their logical blocks. That's because gfs2.mkfs 2235 * arranges the journal blocks sequentially to maximize performance. 2236 * So the extent would map the first block for the entire file length. 2237 * However, gfs2_jadd can happen while file activity is happening, so 2238 * those journals may not be sequential. Less likely is the case where 2239 * the users created their own journals by mounting the metafs and 2240 * laying it out. But it's still possible. These journals might have 2241 * several extents. 2242 * 2243 * Returns: 0 on success, or error on failure 2244 */ 2245 2246 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2247 { 2248 u64 lblock = 0; 2249 u64 lblock_stop; 2250 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2251 struct buffer_head bh; 2252 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2253 u64 size; 2254 int rc; 2255 2256 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2257 size = (lblock_stop - lblock) << shift; 2258 jd->nr_extents = 0; 2259 WARN_ON(!list_empty(&jd->extent_list)); 2260 2261 do { 2262 bh.b_state = 0; 2263 bh.b_blocknr = 0; 2264 bh.b_size = size; 2265 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2266 if (rc || !buffer_mapped(&bh)) 2267 goto fail; 2268 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2269 if (rc) 2270 goto fail; 2271 size -= bh.b_size; 2272 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2273 } while(size > 0); 2274 2275 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid, 2276 jd->nr_extents); 2277 return 0; 2278 2279 fail: 2280 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2281 rc, jd->jd_jid, 2282 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2283 jd->nr_extents); 2284 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2285 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2286 bh.b_state, (unsigned long long)bh.b_size); 2287 gfs2_free_journal_extents(jd); 2288 return rc; 2289 } 2290 2291 /** 2292 * gfs2_write_alloc_required - figure out if a write will require an allocation 2293 * @ip: the file being written to 2294 * @offset: the offset to write to 2295 * @len: the number of bytes being written 2296 * 2297 * Returns: 1 if an alloc is required, 0 otherwise 2298 */ 2299 2300 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2301 unsigned int len) 2302 { 2303 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2304 struct buffer_head bh; 2305 unsigned int shift; 2306 u64 lblock, lblock_stop, size; 2307 u64 end_of_file; 2308 2309 if (!len) 2310 return 0; 2311 2312 if (gfs2_is_stuffed(ip)) { 2313 if (offset + len > gfs2_max_stuffed_size(ip)) 2314 return 1; 2315 return 0; 2316 } 2317 2318 shift = sdp->sd_sb.sb_bsize_shift; 2319 BUG_ON(gfs2_is_dir(ip)); 2320 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2321 lblock = offset >> shift; 2322 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2323 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2324 return 1; 2325 2326 size = (lblock_stop - lblock) << shift; 2327 do { 2328 bh.b_state = 0; 2329 bh.b_size = size; 2330 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2331 if (!buffer_mapped(&bh)) 2332 return 1; 2333 size -= bh.b_size; 2334 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2335 } while(size > 0); 2336 2337 return 0; 2338 } 2339 2340 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2341 { 2342 struct gfs2_inode *ip = GFS2_I(inode); 2343 struct buffer_head *dibh; 2344 int error; 2345 2346 if (offset >= inode->i_size) 2347 return 0; 2348 if (offset + length > inode->i_size) 2349 length = inode->i_size - offset; 2350 2351 error = gfs2_meta_inode_buffer(ip, &dibh); 2352 if (error) 2353 return error; 2354 gfs2_trans_add_meta(ip->i_gl, dibh); 2355 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2356 length); 2357 brelse(dibh); 2358 return 0; 2359 } 2360 2361 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2362 loff_t length) 2363 { 2364 struct gfs2_sbd *sdp = GFS2_SB(inode); 2365 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2366 int error; 2367 2368 while (length) { 2369 struct gfs2_trans *tr; 2370 loff_t chunk; 2371 unsigned int offs; 2372 2373 chunk = length; 2374 if (chunk > max_chunk) 2375 chunk = max_chunk; 2376 2377 offs = offset & ~PAGE_MASK; 2378 if (offs && chunk > PAGE_SIZE) 2379 chunk = offs + ((chunk - offs) & PAGE_MASK); 2380 2381 truncate_pagecache_range(inode, offset, chunk); 2382 offset += chunk; 2383 length -= chunk; 2384 2385 tr = current->journal_info; 2386 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2387 continue; 2388 2389 gfs2_trans_end(sdp); 2390 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2391 if (error) 2392 return error; 2393 } 2394 return 0; 2395 } 2396 2397 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2398 { 2399 struct inode *inode = file_inode(file); 2400 struct gfs2_inode *ip = GFS2_I(inode); 2401 struct gfs2_sbd *sdp = GFS2_SB(inode); 2402 int error; 2403 2404 if (gfs2_is_jdata(ip)) 2405 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2406 GFS2_JTRUNC_REVOKES); 2407 else 2408 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2409 if (error) 2410 return error; 2411 2412 if (gfs2_is_stuffed(ip)) { 2413 error = stuffed_zero_range(inode, offset, length); 2414 if (error) 2415 goto out; 2416 } else { 2417 unsigned int start_off, end_len, blocksize; 2418 2419 blocksize = i_blocksize(inode); 2420 start_off = offset & (blocksize - 1); 2421 end_len = (offset + length) & (blocksize - 1); 2422 if (start_off) { 2423 unsigned int len = length; 2424 if (length > blocksize - start_off) 2425 len = blocksize - start_off; 2426 error = gfs2_block_zero_range(inode, offset, len); 2427 if (error) 2428 goto out; 2429 if (start_off + length < blocksize) 2430 end_len = 0; 2431 } 2432 if (end_len) { 2433 error = gfs2_block_zero_range(inode, 2434 offset + length - end_len, end_len); 2435 if (error) 2436 goto out; 2437 } 2438 } 2439 2440 if (gfs2_is_jdata(ip)) { 2441 BUG_ON(!current->journal_info); 2442 gfs2_journaled_truncate_range(inode, offset, length); 2443 } else 2444 truncate_pagecache_range(inode, offset, offset + length - 1); 2445 2446 file_update_time(file); 2447 mark_inode_dirty(inode); 2448 2449 if (current->journal_info) 2450 gfs2_trans_end(sdp); 2451 2452 if (!gfs2_is_stuffed(ip)) 2453 error = punch_hole(ip, offset, length); 2454 2455 out: 2456 if (current->journal_info) 2457 gfs2_trans_end(sdp); 2458 return error; 2459 } 2460