xref: /linux/fs/gfs2/bmap.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	int release = 0;
60 
61 	if (!page || page->index) {
62 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
63 		if (!page)
64 			return -ENOMEM;
65 		release = 1;
66 	}
67 
68 	if (!PageUptodate(page)) {
69 		void *kaddr = kmap(page);
70 		u64 dsize = i_size_read(inode);
71 
72 		if (dsize > gfs2_max_stuffed_size(ip))
73 			dsize = gfs2_max_stuffed_size(ip);
74 
75 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
76 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
77 		kunmap(page);
78 
79 		SetPageUptodate(page);
80 	}
81 
82 	if (gfs2_is_jdata(ip)) {
83 		struct buffer_head *bh;
84 
85 		if (!page_has_buffers(page))
86 			create_empty_buffers(page, BIT(inode->i_blkbits),
87 					     BIT(BH_Uptodate));
88 
89 		bh = page_buffers(page);
90 		if (!buffer_mapped(bh))
91 			map_bh(bh, inode->i_sb, block);
92 
93 		set_buffer_uptodate(bh);
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	} else {
96 		set_page_dirty(page);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			    struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 			fallthrough;	/* To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 			fallthrough;	/* To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			  unsigned flags, struct iomap *iomap,
844 			  struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - pos;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 /**
965  * gfs2_lblk_to_dblk - convert logical block to disk block
966  * @inode: the inode of the file we're mapping
967  * @lblock: the block relative to the start of the file
968  * @dblock: the returned dblock, if no error
969  *
970  * This function maps a single block from a file logical block (relative to
971  * the start of the file) to a file system absolute block using iomap.
972  *
973  * Returns: the absolute file system block, or an error
974  */
975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
976 {
977 	struct iomap iomap = { };
978 	struct metapath mp = { .mp_aheight = 1, };
979 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
980 	int ret;
981 
982 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
983 	release_metapath(&mp);
984 	if (ret == 0)
985 		*dblock = iomap.addr >> inode->i_blkbits;
986 
987 	return ret;
988 }
989 
990 static int gfs2_write_lock(struct inode *inode)
991 {
992 	struct gfs2_inode *ip = GFS2_I(inode);
993 	struct gfs2_sbd *sdp = GFS2_SB(inode);
994 	int error;
995 
996 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
997 	error = gfs2_glock_nq(&ip->i_gh);
998 	if (error)
999 		goto out_uninit;
1000 	if (&ip->i_inode == sdp->sd_rindex) {
1001 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1002 
1003 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1004 					   GL_NOCACHE, &m_ip->i_gh);
1005 		if (error)
1006 			goto out_unlock;
1007 	}
1008 	return 0;
1009 
1010 out_unlock:
1011 	gfs2_glock_dq(&ip->i_gh);
1012 out_uninit:
1013 	gfs2_holder_uninit(&ip->i_gh);
1014 	return error;
1015 }
1016 
1017 static void gfs2_write_unlock(struct inode *inode)
1018 {
1019 	struct gfs2_inode *ip = GFS2_I(inode);
1020 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1021 
1022 	if (&ip->i_inode == sdp->sd_rindex) {
1023 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1024 
1025 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1026 	}
1027 	gfs2_glock_dq_uninit(&ip->i_gh);
1028 }
1029 
1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1031 				   unsigned len, struct iomap *iomap)
1032 {
1033 	unsigned int blockmask = i_blocksize(inode) - 1;
1034 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1035 	unsigned int blocks;
1036 
1037 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1038 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1039 }
1040 
1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1042 				 unsigned copied, struct page *page,
1043 				 struct iomap *iomap)
1044 {
1045 	struct gfs2_trans *tr = current->journal_info;
1046 	struct gfs2_inode *ip = GFS2_I(inode);
1047 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1048 
1049 	if (page && !gfs2_is_stuffed(ip))
1050 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1051 
1052 	if (tr->tr_num_buf_new)
1053 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1054 
1055 	gfs2_trans_end(sdp);
1056 }
1057 
1058 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1059 	.page_prepare = gfs2_iomap_page_prepare,
1060 	.page_done = gfs2_iomap_page_done,
1061 };
1062 
1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1064 				  loff_t length, unsigned flags,
1065 				  struct iomap *iomap,
1066 				  struct metapath *mp)
1067 {
1068 	struct gfs2_inode *ip = GFS2_I(inode);
1069 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1070 	bool unstuff;
1071 	int ret;
1072 
1073 	unstuff = gfs2_is_stuffed(ip) &&
1074 		  pos + length > gfs2_max_stuffed_size(ip);
1075 
1076 	if (unstuff || iomap->type == IOMAP_HOLE) {
1077 		unsigned int data_blocks, ind_blocks;
1078 		struct gfs2_alloc_parms ap = {};
1079 		unsigned int rblocks;
1080 		struct gfs2_trans *tr;
1081 
1082 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1083 				       &ind_blocks);
1084 		ap.target = data_blocks + ind_blocks;
1085 		ret = gfs2_quota_lock_check(ip, &ap);
1086 		if (ret)
1087 			return ret;
1088 
1089 		ret = gfs2_inplace_reserve(ip, &ap);
1090 		if (ret)
1091 			goto out_qunlock;
1092 
1093 		rblocks = RES_DINODE + ind_blocks;
1094 		if (gfs2_is_jdata(ip))
1095 			rblocks += data_blocks;
1096 		if (ind_blocks || data_blocks)
1097 			rblocks += RES_STATFS + RES_QUOTA;
1098 		if (inode == sdp->sd_rindex)
1099 			rblocks += 2 * RES_STATFS;
1100 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1101 
1102 		ret = gfs2_trans_begin(sdp, rblocks,
1103 				       iomap->length >> inode->i_blkbits);
1104 		if (ret)
1105 			goto out_trans_fail;
1106 
1107 		if (unstuff) {
1108 			ret = gfs2_unstuff_dinode(ip, NULL);
1109 			if (ret)
1110 				goto out_trans_end;
1111 			release_metapath(mp);
1112 			ret = gfs2_iomap_get(inode, iomap->offset,
1113 					     iomap->length, flags, iomap, mp);
1114 			if (ret)
1115 				goto out_trans_end;
1116 		}
1117 
1118 		if (iomap->type == IOMAP_HOLE) {
1119 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1120 			if (ret) {
1121 				gfs2_trans_end(sdp);
1122 				gfs2_inplace_release(ip);
1123 				punch_hole(ip, iomap->offset, iomap->length);
1124 				goto out_qunlock;
1125 			}
1126 		}
1127 
1128 		tr = current->journal_info;
1129 		if (tr->tr_num_buf_new)
1130 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1131 
1132 		gfs2_trans_end(sdp);
1133 	}
1134 
1135 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1136 		iomap->page_ops = &gfs2_iomap_page_ops;
1137 	return 0;
1138 
1139 out_trans_end:
1140 	gfs2_trans_end(sdp);
1141 out_trans_fail:
1142 	gfs2_inplace_release(ip);
1143 out_qunlock:
1144 	gfs2_quota_unlock(ip);
1145 	return ret;
1146 }
1147 
1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1149 {
1150 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1151 }
1152 
1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1154 			    unsigned flags, struct iomap *iomap,
1155 			    struct iomap *srcmap)
1156 {
1157 	struct gfs2_inode *ip = GFS2_I(inode);
1158 	struct metapath mp = { .mp_aheight = 1, };
1159 	int ret;
1160 
1161 	if (gfs2_is_jdata(ip))
1162 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1163 
1164 	trace_gfs2_iomap_start(ip, pos, length, flags);
1165 	if (gfs2_iomap_need_write_lock(flags)) {
1166 		ret = gfs2_write_lock(inode);
1167 		if (ret)
1168 			goto out;
1169 	}
1170 
1171 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1172 	if (ret)
1173 		goto out_unlock;
1174 
1175 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1176 	case IOMAP_WRITE:
1177 		if (flags & IOMAP_DIRECT) {
1178 			/*
1179 			 * Silently fall back to buffered I/O for stuffed files
1180 			 * or if we've got a hole (see gfs2_file_direct_write).
1181 			 */
1182 			if (iomap->type != IOMAP_MAPPED)
1183 				ret = -ENOTBLK;
1184 			goto out_unlock;
1185 		}
1186 		break;
1187 	case IOMAP_ZERO:
1188 		if (iomap->type == IOMAP_HOLE)
1189 			goto out_unlock;
1190 		break;
1191 	default:
1192 		goto out_unlock;
1193 	}
1194 
1195 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1196 
1197 out_unlock:
1198 	if (ret && gfs2_iomap_need_write_lock(flags))
1199 		gfs2_write_unlock(inode);
1200 	release_metapath(&mp);
1201 out:
1202 	trace_gfs2_iomap_end(ip, iomap, ret);
1203 	return ret;
1204 }
1205 
1206 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1207 			  ssize_t written, unsigned flags, struct iomap *iomap)
1208 {
1209 	struct gfs2_inode *ip = GFS2_I(inode);
1210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1211 
1212 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1213 	case IOMAP_WRITE:
1214 		if (flags & IOMAP_DIRECT)
1215 			return 0;
1216 		break;
1217 	case IOMAP_ZERO:
1218 		 if (iomap->type == IOMAP_HOLE)
1219 			 return 0;
1220 		 break;
1221 	default:
1222 		 return 0;
1223 	}
1224 
1225 	if (!gfs2_is_stuffed(ip))
1226 		gfs2_ordered_add_inode(ip);
1227 
1228 	if (inode == sdp->sd_rindex)
1229 		adjust_fs_space(inode);
1230 
1231 	gfs2_inplace_release(ip);
1232 
1233 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1234 		gfs2_quota_unlock(ip);
1235 
1236 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1237 		/* Deallocate blocks that were just allocated. */
1238 		loff_t blockmask = i_blocksize(inode) - 1;
1239 		loff_t end = (pos + length) & ~blockmask;
1240 
1241 		pos = (pos + written + blockmask) & ~blockmask;
1242 		if (pos < end) {
1243 			truncate_pagecache_range(inode, pos, end - 1);
1244 			punch_hole(ip, pos, end - pos);
1245 		}
1246 	}
1247 
1248 	if (unlikely(!written))
1249 		goto out_unlock;
1250 
1251 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1252 		mark_inode_dirty(inode);
1253 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1254 
1255 out_unlock:
1256 	if (gfs2_iomap_need_write_lock(flags))
1257 		gfs2_write_unlock(inode);
1258 	return 0;
1259 }
1260 
1261 const struct iomap_ops gfs2_iomap_ops = {
1262 	.iomap_begin = gfs2_iomap_begin,
1263 	.iomap_end = gfs2_iomap_end,
1264 };
1265 
1266 /**
1267  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1268  * @inode: The inode
1269  * @lblock: The logical block number
1270  * @bh_map: The bh to be mapped
1271  * @create: True if its ok to alloc blocks to satify the request
1272  *
1273  * The size of the requested mapping is defined in bh_map->b_size.
1274  *
1275  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1276  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1277  * bh_map->b_size to indicate the size of the mapping when @lblock and
1278  * successive blocks are mapped, up to the requested size.
1279  *
1280  * Sets buffer_boundary() if a read of metadata will be required
1281  * before the next block can be mapped. Sets buffer_new() if new
1282  * blocks were allocated.
1283  *
1284  * Returns: errno
1285  */
1286 
1287 int gfs2_block_map(struct inode *inode, sector_t lblock,
1288 		   struct buffer_head *bh_map, int create)
1289 {
1290 	struct gfs2_inode *ip = GFS2_I(inode);
1291 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1292 	loff_t length = bh_map->b_size;
1293 	struct metapath mp = { .mp_aheight = 1, };
1294 	struct iomap iomap = { };
1295 	int flags = create ? IOMAP_WRITE : 0;
1296 	int ret;
1297 
1298 	clear_buffer_mapped(bh_map);
1299 	clear_buffer_new(bh_map);
1300 	clear_buffer_boundary(bh_map);
1301 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1302 
1303 	ret = gfs2_iomap_get(inode, pos, length, flags, &iomap, &mp);
1304 	if (create && !ret && iomap.type == IOMAP_HOLE)
1305 		ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1306 	release_metapath(&mp);
1307 	if (ret)
1308 		goto out;
1309 
1310 	if (iomap.length > bh_map->b_size) {
1311 		iomap.length = bh_map->b_size;
1312 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1313 	}
1314 	if (iomap.addr != IOMAP_NULL_ADDR)
1315 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1316 	bh_map->b_size = iomap.length;
1317 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1318 		set_buffer_boundary(bh_map);
1319 	if (iomap.flags & IOMAP_F_NEW)
1320 		set_buffer_new(bh_map);
1321 
1322 out:
1323 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1324 	return ret;
1325 }
1326 
1327 /*
1328  * Deprecated: do not use in new code
1329  */
1330 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1331 {
1332 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1333 	int ret;
1334 	int create = *new;
1335 
1336 	BUG_ON(!extlen);
1337 	BUG_ON(!dblock);
1338 	BUG_ON(!new);
1339 
1340 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1341 	ret = gfs2_block_map(inode, lblock, &bh, create);
1342 	*extlen = bh.b_size >> inode->i_blkbits;
1343 	*dblock = bh.b_blocknr;
1344 	if (buffer_new(&bh))
1345 		*new = 1;
1346 	else
1347 		*new = 0;
1348 	return ret;
1349 }
1350 
1351 /*
1352  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1353  * uses iomap write to perform its actions, which begin their own transactions
1354  * (iomap_begin, page_prepare, etc.)
1355  */
1356 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1357 				 unsigned int length)
1358 {
1359 	BUG_ON(current->journal_info);
1360 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1361 }
1362 
1363 #define GFS2_JTRUNC_REVOKES 8192
1364 
1365 /**
1366  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1367  * @inode: The inode being truncated
1368  * @oldsize: The original (larger) size
1369  * @newsize: The new smaller size
1370  *
1371  * With jdata files, we have to journal a revoke for each block which is
1372  * truncated. As a result, we need to split this into separate transactions
1373  * if the number of pages being truncated gets too large.
1374  */
1375 
1376 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1377 {
1378 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1379 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1380 	u64 chunk;
1381 	int error;
1382 
1383 	while (oldsize != newsize) {
1384 		struct gfs2_trans *tr;
1385 		unsigned int offs;
1386 
1387 		chunk = oldsize - newsize;
1388 		if (chunk > max_chunk)
1389 			chunk = max_chunk;
1390 
1391 		offs = oldsize & ~PAGE_MASK;
1392 		if (offs && chunk > PAGE_SIZE)
1393 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1394 
1395 		truncate_pagecache(inode, oldsize - chunk);
1396 		oldsize -= chunk;
1397 
1398 		tr = current->journal_info;
1399 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1400 			continue;
1401 
1402 		gfs2_trans_end(sdp);
1403 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1404 		if (error)
1405 			return error;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static int trunc_start(struct inode *inode, u64 newsize)
1412 {
1413 	struct gfs2_inode *ip = GFS2_I(inode);
1414 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1415 	struct buffer_head *dibh = NULL;
1416 	int journaled = gfs2_is_jdata(ip);
1417 	u64 oldsize = inode->i_size;
1418 	int error;
1419 
1420 	if (!gfs2_is_stuffed(ip)) {
1421 		unsigned int blocksize = i_blocksize(inode);
1422 		unsigned int offs = newsize & (blocksize - 1);
1423 		if (offs) {
1424 			error = gfs2_block_zero_range(inode, newsize,
1425 						      blocksize - offs);
1426 			if (error)
1427 				return error;
1428 		}
1429 	}
1430 	if (journaled)
1431 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1432 	else
1433 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1434 	if (error)
1435 		return error;
1436 
1437 	error = gfs2_meta_inode_buffer(ip, &dibh);
1438 	if (error)
1439 		goto out;
1440 
1441 	gfs2_trans_add_meta(ip->i_gl, dibh);
1442 
1443 	if (gfs2_is_stuffed(ip))
1444 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1445 	else
1446 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1447 
1448 	i_size_write(inode, newsize);
1449 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1450 	gfs2_dinode_out(ip, dibh->b_data);
1451 
1452 	if (journaled)
1453 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1454 	else
1455 		truncate_pagecache(inode, newsize);
1456 
1457 out:
1458 	brelse(dibh);
1459 	if (current->journal_info)
1460 		gfs2_trans_end(sdp);
1461 	return error;
1462 }
1463 
1464 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1465 			 struct iomap *iomap)
1466 {
1467 	struct metapath mp = { .mp_aheight = 1, };
1468 	int ret;
1469 
1470 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1471 	if (!ret && iomap->type == IOMAP_HOLE)
1472 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1473 	release_metapath(&mp);
1474 	return ret;
1475 }
1476 
1477 /**
1478  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1479  * @ip: inode
1480  * @rg_gh: holder of resource group glock
1481  * @bh: buffer head to sweep
1482  * @start: starting point in bh
1483  * @end: end point in bh
1484  * @meta: true if bh points to metadata (rather than data)
1485  * @btotal: place to keep count of total blocks freed
1486  *
1487  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1488  * free, and free them all. However, we do it one rgrp at a time. If this
1489  * block has references to multiple rgrps, we break it into individual
1490  * transactions. This allows other processes to use the rgrps while we're
1491  * focused on a single one, for better concurrency / performance.
1492  * At every transaction boundary, we rewrite the inode into the journal.
1493  * That way the bitmaps are kept consistent with the inode and we can recover
1494  * if we're interrupted by power-outages.
1495  *
1496  * Returns: 0, or return code if an error occurred.
1497  *          *btotal has the total number of blocks freed
1498  */
1499 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1500 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1501 			      bool meta, u32 *btotal)
1502 {
1503 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1504 	struct gfs2_rgrpd *rgd;
1505 	struct gfs2_trans *tr;
1506 	__be64 *p;
1507 	int blks_outside_rgrp;
1508 	u64 bn, bstart, isize_blks;
1509 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1510 	int ret = 0;
1511 	bool buf_in_tr = false; /* buffer was added to transaction */
1512 
1513 more_rgrps:
1514 	rgd = NULL;
1515 	if (gfs2_holder_initialized(rd_gh)) {
1516 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1517 		gfs2_assert_withdraw(sdp,
1518 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1519 	}
1520 	blks_outside_rgrp = 0;
1521 	bstart = 0;
1522 	blen = 0;
1523 
1524 	for (p = start; p < end; p++) {
1525 		if (!*p)
1526 			continue;
1527 		bn = be64_to_cpu(*p);
1528 
1529 		if (rgd) {
1530 			if (!rgrp_contains_block(rgd, bn)) {
1531 				blks_outside_rgrp++;
1532 				continue;
1533 			}
1534 		} else {
1535 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1536 			if (unlikely(!rgd)) {
1537 				ret = -EIO;
1538 				goto out;
1539 			}
1540 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1541 						 LM_FLAG_NODE_SCOPE, rd_gh);
1542 			if (ret)
1543 				goto out;
1544 
1545 			/* Must be done with the rgrp glock held: */
1546 			if (gfs2_rs_active(&ip->i_res) &&
1547 			    rgd == ip->i_res.rs_rgd)
1548 				gfs2_rs_deltree(&ip->i_res);
1549 		}
1550 
1551 		/* The size of our transactions will be unknown until we
1552 		   actually process all the metadata blocks that relate to
1553 		   the rgrp. So we estimate. We know it can't be more than
1554 		   the dinode's i_blocks and we don't want to exceed the
1555 		   journal flush threshold, sd_log_thresh2. */
1556 		if (current->journal_info == NULL) {
1557 			unsigned int jblocks_rqsted, revokes;
1558 
1559 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1560 				RES_INDIRECT;
1561 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1562 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1563 				jblocks_rqsted +=
1564 					atomic_read(&sdp->sd_log_thresh2);
1565 			else
1566 				jblocks_rqsted += isize_blks;
1567 			revokes = jblocks_rqsted;
1568 			if (meta)
1569 				revokes += end - start;
1570 			else if (ip->i_depth)
1571 				revokes += sdp->sd_inptrs;
1572 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1573 			if (ret)
1574 				goto out_unlock;
1575 			down_write(&ip->i_rw_mutex);
1576 		}
1577 		/* check if we will exceed the transaction blocks requested */
1578 		tr = current->journal_info;
1579 		if (tr->tr_num_buf_new + RES_STATFS +
1580 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1581 			/* We set blks_outside_rgrp to ensure the loop will
1582 			   be repeated for the same rgrp, but with a new
1583 			   transaction. */
1584 			blks_outside_rgrp++;
1585 			/* This next part is tricky. If the buffer was added
1586 			   to the transaction, we've already set some block
1587 			   pointers to 0, so we better follow through and free
1588 			   them, or we will introduce corruption (so break).
1589 			   This may be impossible, or at least rare, but I
1590 			   decided to cover the case regardless.
1591 
1592 			   If the buffer was not added to the transaction
1593 			   (this call), doing so would exceed our transaction
1594 			   size, so we need to end the transaction and start a
1595 			   new one (so goto). */
1596 
1597 			if (buf_in_tr)
1598 				break;
1599 			goto out_unlock;
1600 		}
1601 
1602 		gfs2_trans_add_meta(ip->i_gl, bh);
1603 		buf_in_tr = true;
1604 		*p = 0;
1605 		if (bstart + blen == bn) {
1606 			blen++;
1607 			continue;
1608 		}
1609 		if (bstart) {
1610 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1611 			(*btotal) += blen;
1612 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1613 		}
1614 		bstart = bn;
1615 		blen = 1;
1616 	}
1617 	if (bstart) {
1618 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1619 		(*btotal) += blen;
1620 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1621 	}
1622 out_unlock:
1623 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1624 					    outside the rgrp we just processed,
1625 					    do it all over again. */
1626 		if (current->journal_info) {
1627 			struct buffer_head *dibh;
1628 
1629 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1630 			if (ret)
1631 				goto out;
1632 
1633 			/* Every transaction boundary, we rewrite the dinode
1634 			   to keep its di_blocks current in case of failure. */
1635 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1636 				current_time(&ip->i_inode);
1637 			gfs2_trans_add_meta(ip->i_gl, dibh);
1638 			gfs2_dinode_out(ip, dibh->b_data);
1639 			brelse(dibh);
1640 			up_write(&ip->i_rw_mutex);
1641 			gfs2_trans_end(sdp);
1642 			buf_in_tr = false;
1643 		}
1644 		gfs2_glock_dq_uninit(rd_gh);
1645 		cond_resched();
1646 		goto more_rgrps;
1647 	}
1648 out:
1649 	return ret;
1650 }
1651 
1652 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1653 {
1654 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1655 		return false;
1656 	return true;
1657 }
1658 
1659 /**
1660  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1661  * @mp: starting metapath
1662  * @h: desired height to search
1663  *
1664  * Assumes the metapath is valid (with buffers) out to height h.
1665  * Returns: true if a non-null pointer was found in the metapath buffer
1666  *          false if all remaining pointers are NULL in the buffer
1667  */
1668 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1669 			     unsigned int h,
1670 			     __u16 *end_list, unsigned int end_aligned)
1671 {
1672 	struct buffer_head *bh = mp->mp_bh[h];
1673 	__be64 *first, *ptr, *end;
1674 
1675 	first = metaptr1(h, mp);
1676 	ptr = first + mp->mp_list[h];
1677 	end = (__be64 *)(bh->b_data + bh->b_size);
1678 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1679 		bool keep_end = h < end_aligned;
1680 		end = first + end_list[h] + keep_end;
1681 	}
1682 
1683 	while (ptr < end) {
1684 		if (*ptr) { /* if we have a non-null pointer */
1685 			mp->mp_list[h] = ptr - first;
1686 			h++;
1687 			if (h < GFS2_MAX_META_HEIGHT)
1688 				mp->mp_list[h] = 0;
1689 			return true;
1690 		}
1691 		ptr++;
1692 	}
1693 	return false;
1694 }
1695 
1696 enum dealloc_states {
1697 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1698 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1699 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1700 	DEALLOC_DONE = 3,       /* process complete */
1701 };
1702 
1703 static inline void
1704 metapointer_range(struct metapath *mp, int height,
1705 		  __u16 *start_list, unsigned int start_aligned,
1706 		  __u16 *end_list, unsigned int end_aligned,
1707 		  __be64 **start, __be64 **end)
1708 {
1709 	struct buffer_head *bh = mp->mp_bh[height];
1710 	__be64 *first;
1711 
1712 	first = metaptr1(height, mp);
1713 	*start = first;
1714 	if (mp_eq_to_hgt(mp, start_list, height)) {
1715 		bool keep_start = height < start_aligned;
1716 		*start = first + start_list[height] + keep_start;
1717 	}
1718 	*end = (__be64 *)(bh->b_data + bh->b_size);
1719 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1720 		bool keep_end = height < end_aligned;
1721 		*end = first + end_list[height] + keep_end;
1722 	}
1723 }
1724 
1725 static inline bool walk_done(struct gfs2_sbd *sdp,
1726 			     struct metapath *mp, int height,
1727 			     __u16 *end_list, unsigned int end_aligned)
1728 {
1729 	__u16 end;
1730 
1731 	if (end_list) {
1732 		bool keep_end = height < end_aligned;
1733 		if (!mp_eq_to_hgt(mp, end_list, height))
1734 			return false;
1735 		end = end_list[height] + keep_end;
1736 	} else
1737 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1738 	return mp->mp_list[height] >= end;
1739 }
1740 
1741 /**
1742  * punch_hole - deallocate blocks in a file
1743  * @ip: inode to truncate
1744  * @offset: the start of the hole
1745  * @length: the size of the hole (or 0 for truncate)
1746  *
1747  * Punch a hole into a file or truncate a file at a given position.  This
1748  * function operates in whole blocks (@offset and @length are rounded
1749  * accordingly); partially filled blocks must be cleared otherwise.
1750  *
1751  * This function works from the bottom up, and from the right to the left. In
1752  * other words, it strips off the highest layer (data) before stripping any of
1753  * the metadata. Doing it this way is best in case the operation is interrupted
1754  * by power failure, etc.  The dinode is rewritten in every transaction to
1755  * guarantee integrity.
1756  */
1757 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1758 {
1759 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1760 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1761 	struct metapath mp = {};
1762 	struct buffer_head *dibh, *bh;
1763 	struct gfs2_holder rd_gh;
1764 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1765 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1766 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1767 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1768 	unsigned int start_aligned, end_aligned;
1769 	unsigned int strip_h = ip->i_height - 1;
1770 	u32 btotal = 0;
1771 	int ret, state;
1772 	int mp_h; /* metapath buffers are read in to this height */
1773 	u64 prev_bnr = 0;
1774 	__be64 *start, *end;
1775 
1776 	if (offset >= maxsize) {
1777 		/*
1778 		 * The starting point lies beyond the allocated meta-data;
1779 		 * there are no blocks do deallocate.
1780 		 */
1781 		return 0;
1782 	}
1783 
1784 	/*
1785 	 * The start position of the hole is defined by lblock, start_list, and
1786 	 * start_aligned.  The end position of the hole is defined by lend,
1787 	 * end_list, and end_aligned.
1788 	 *
1789 	 * start_aligned and end_aligned define down to which height the start
1790 	 * and end positions are aligned to the metadata tree (i.e., the
1791 	 * position is a multiple of the metadata granularity at the height
1792 	 * above).  This determines at which heights additional meta pointers
1793 	 * needs to be preserved for the remaining data.
1794 	 */
1795 
1796 	if (length) {
1797 		u64 end_offset = offset + length;
1798 		u64 lend;
1799 
1800 		/*
1801 		 * Clip the end at the maximum file size for the given height:
1802 		 * that's how far the metadata goes; files bigger than that
1803 		 * will have additional layers of indirection.
1804 		 */
1805 		if (end_offset > maxsize)
1806 			end_offset = maxsize;
1807 		lend = end_offset >> bsize_shift;
1808 
1809 		if (lblock >= lend)
1810 			return 0;
1811 
1812 		find_metapath(sdp, lend, &mp, ip->i_height);
1813 		end_list = __end_list;
1814 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1815 
1816 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1817 			if (end_list[mp_h])
1818 				break;
1819 		}
1820 		end_aligned = mp_h;
1821 	}
1822 
1823 	find_metapath(sdp, lblock, &mp, ip->i_height);
1824 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1825 
1826 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1827 		if (start_list[mp_h])
1828 			break;
1829 	}
1830 	start_aligned = mp_h;
1831 
1832 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1833 	if (ret)
1834 		return ret;
1835 
1836 	mp.mp_bh[0] = dibh;
1837 	ret = lookup_metapath(ip, &mp);
1838 	if (ret)
1839 		goto out_metapath;
1840 
1841 	/* issue read-ahead on metadata */
1842 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1843 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1844 				  end_list, end_aligned, &start, &end);
1845 		gfs2_metapath_ra(ip->i_gl, start, end);
1846 	}
1847 
1848 	if (mp.mp_aheight == ip->i_height)
1849 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1850 	else
1851 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1852 
1853 	ret = gfs2_rindex_update(sdp);
1854 	if (ret)
1855 		goto out_metapath;
1856 
1857 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1858 	if (ret)
1859 		goto out_metapath;
1860 	gfs2_holder_mark_uninitialized(&rd_gh);
1861 
1862 	mp_h = strip_h;
1863 
1864 	while (state != DEALLOC_DONE) {
1865 		switch (state) {
1866 		/* Truncate a full metapath at the given strip height.
1867 		 * Note that strip_h == mp_h in order to be in this state. */
1868 		case DEALLOC_MP_FULL:
1869 			bh = mp.mp_bh[mp_h];
1870 			gfs2_assert_withdraw(sdp, bh);
1871 			if (gfs2_assert_withdraw(sdp,
1872 						 prev_bnr != bh->b_blocknr)) {
1873 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1874 					 "s_h:%u, mp_h:%u\n",
1875 				       (unsigned long long)ip->i_no_addr,
1876 				       prev_bnr, ip->i_height, strip_h, mp_h);
1877 			}
1878 			prev_bnr = bh->b_blocknr;
1879 
1880 			if (gfs2_metatype_check(sdp, bh,
1881 						(mp_h ? GFS2_METATYPE_IN :
1882 							GFS2_METATYPE_DI))) {
1883 				ret = -EIO;
1884 				goto out;
1885 			}
1886 
1887 			/*
1888 			 * Below, passing end_aligned as 0 gives us the
1889 			 * metapointer range excluding the end point: the end
1890 			 * point is the first metapath we must not deallocate!
1891 			 */
1892 
1893 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1894 					  end_list, 0 /* end_aligned */,
1895 					  &start, &end);
1896 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1897 						 start, end,
1898 						 mp_h != ip->i_height - 1,
1899 						 &btotal);
1900 
1901 			/* If we hit an error or just swept dinode buffer,
1902 			   just exit. */
1903 			if (ret || !mp_h) {
1904 				state = DEALLOC_DONE;
1905 				break;
1906 			}
1907 			state = DEALLOC_MP_LOWER;
1908 			break;
1909 
1910 		/* lower the metapath strip height */
1911 		case DEALLOC_MP_LOWER:
1912 			/* We're done with the current buffer, so release it,
1913 			   unless it's the dinode buffer. Then back up to the
1914 			   previous pointer. */
1915 			if (mp_h) {
1916 				brelse(mp.mp_bh[mp_h]);
1917 				mp.mp_bh[mp_h] = NULL;
1918 			}
1919 			/* If we can't get any lower in height, we've stripped
1920 			   off all we can. Next step is to back up and start
1921 			   stripping the previous level of metadata. */
1922 			if (mp_h == 0) {
1923 				strip_h--;
1924 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1925 				mp_h = strip_h;
1926 				state = DEALLOC_FILL_MP;
1927 				break;
1928 			}
1929 			mp.mp_list[mp_h] = 0;
1930 			mp_h--; /* search one metadata height down */
1931 			mp.mp_list[mp_h]++;
1932 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1933 				break;
1934 			/* Here we've found a part of the metapath that is not
1935 			 * allocated. We need to search at that height for the
1936 			 * next non-null pointer. */
1937 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1938 				state = DEALLOC_FILL_MP;
1939 				mp_h++;
1940 			}
1941 			/* No more non-null pointers at this height. Back up
1942 			   to the previous height and try again. */
1943 			break; /* loop around in the same state */
1944 
1945 		/* Fill the metapath with buffers to the given height. */
1946 		case DEALLOC_FILL_MP:
1947 			/* Fill the buffers out to the current height. */
1948 			ret = fillup_metapath(ip, &mp, mp_h);
1949 			if (ret < 0)
1950 				goto out;
1951 
1952 			/* On the first pass, issue read-ahead on metadata. */
1953 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1954 				unsigned int height = mp.mp_aheight - 1;
1955 
1956 				/* No read-ahead for data blocks. */
1957 				if (mp.mp_aheight - 1 == strip_h)
1958 					height--;
1959 
1960 				for (; height >= mp.mp_aheight - ret; height--) {
1961 					metapointer_range(&mp, height,
1962 							  start_list, start_aligned,
1963 							  end_list, end_aligned,
1964 							  &start, &end);
1965 					gfs2_metapath_ra(ip->i_gl, start, end);
1966 				}
1967 			}
1968 
1969 			/* If buffers found for the entire strip height */
1970 			if (mp.mp_aheight - 1 == strip_h) {
1971 				state = DEALLOC_MP_FULL;
1972 				break;
1973 			}
1974 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1975 				mp_h = mp.mp_aheight - 1;
1976 
1977 			/* If we find a non-null block pointer, crawl a bit
1978 			   higher up in the metapath and try again, otherwise
1979 			   we need to look lower for a new starting point. */
1980 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1981 				mp_h++;
1982 			else
1983 				state = DEALLOC_MP_LOWER;
1984 			break;
1985 		}
1986 	}
1987 
1988 	if (btotal) {
1989 		if (current->journal_info == NULL) {
1990 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1991 					       RES_QUOTA, 0);
1992 			if (ret)
1993 				goto out;
1994 			down_write(&ip->i_rw_mutex);
1995 		}
1996 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1997 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1998 				  ip->i_inode.i_gid);
1999 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2000 		gfs2_trans_add_meta(ip->i_gl, dibh);
2001 		gfs2_dinode_out(ip, dibh->b_data);
2002 		up_write(&ip->i_rw_mutex);
2003 		gfs2_trans_end(sdp);
2004 	}
2005 
2006 out:
2007 	if (gfs2_holder_initialized(&rd_gh))
2008 		gfs2_glock_dq_uninit(&rd_gh);
2009 	if (current->journal_info) {
2010 		up_write(&ip->i_rw_mutex);
2011 		gfs2_trans_end(sdp);
2012 		cond_resched();
2013 	}
2014 	gfs2_quota_unhold(ip);
2015 out_metapath:
2016 	release_metapath(&mp);
2017 	return ret;
2018 }
2019 
2020 static int trunc_end(struct gfs2_inode *ip)
2021 {
2022 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2023 	struct buffer_head *dibh;
2024 	int error;
2025 
2026 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2027 	if (error)
2028 		return error;
2029 
2030 	down_write(&ip->i_rw_mutex);
2031 
2032 	error = gfs2_meta_inode_buffer(ip, &dibh);
2033 	if (error)
2034 		goto out;
2035 
2036 	if (!i_size_read(&ip->i_inode)) {
2037 		ip->i_height = 0;
2038 		ip->i_goal = ip->i_no_addr;
2039 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2040 		gfs2_ordered_del_inode(ip);
2041 	}
2042 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2043 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2044 
2045 	gfs2_trans_add_meta(ip->i_gl, dibh);
2046 	gfs2_dinode_out(ip, dibh->b_data);
2047 	brelse(dibh);
2048 
2049 out:
2050 	up_write(&ip->i_rw_mutex);
2051 	gfs2_trans_end(sdp);
2052 	return error;
2053 }
2054 
2055 /**
2056  * do_shrink - make a file smaller
2057  * @inode: the inode
2058  * @newsize: the size to make the file
2059  *
2060  * Called with an exclusive lock on @inode. The @size must
2061  * be equal to or smaller than the current inode size.
2062  *
2063  * Returns: errno
2064  */
2065 
2066 static int do_shrink(struct inode *inode, u64 newsize)
2067 {
2068 	struct gfs2_inode *ip = GFS2_I(inode);
2069 	int error;
2070 
2071 	error = trunc_start(inode, newsize);
2072 	if (error < 0)
2073 		return error;
2074 	if (gfs2_is_stuffed(ip))
2075 		return 0;
2076 
2077 	error = punch_hole(ip, newsize, 0);
2078 	if (error == 0)
2079 		error = trunc_end(ip);
2080 
2081 	return error;
2082 }
2083 
2084 void gfs2_trim_blocks(struct inode *inode)
2085 {
2086 	int ret;
2087 
2088 	ret = do_shrink(inode, inode->i_size);
2089 	WARN_ON(ret != 0);
2090 }
2091 
2092 /**
2093  * do_grow - Touch and update inode size
2094  * @inode: The inode
2095  * @size: The new size
2096  *
2097  * This function updates the timestamps on the inode and
2098  * may also increase the size of the inode. This function
2099  * must not be called with @size any smaller than the current
2100  * inode size.
2101  *
2102  * Although it is not strictly required to unstuff files here,
2103  * earlier versions of GFS2 have a bug in the stuffed file reading
2104  * code which will result in a buffer overrun if the size is larger
2105  * than the max stuffed file size. In order to prevent this from
2106  * occurring, such files are unstuffed, but in other cases we can
2107  * just update the inode size directly.
2108  *
2109  * Returns: 0 on success, or -ve on error
2110  */
2111 
2112 static int do_grow(struct inode *inode, u64 size)
2113 {
2114 	struct gfs2_inode *ip = GFS2_I(inode);
2115 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2116 	struct gfs2_alloc_parms ap = { .target = 1, };
2117 	struct buffer_head *dibh;
2118 	int error;
2119 	int unstuff = 0;
2120 
2121 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2122 		error = gfs2_quota_lock_check(ip, &ap);
2123 		if (error)
2124 			return error;
2125 
2126 		error = gfs2_inplace_reserve(ip, &ap);
2127 		if (error)
2128 			goto do_grow_qunlock;
2129 		unstuff = 1;
2130 	}
2131 
2132 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2133 				 (unstuff &&
2134 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2135 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2136 				  0 : RES_QUOTA), 0);
2137 	if (error)
2138 		goto do_grow_release;
2139 
2140 	if (unstuff) {
2141 		error = gfs2_unstuff_dinode(ip, NULL);
2142 		if (error)
2143 			goto do_end_trans;
2144 	}
2145 
2146 	error = gfs2_meta_inode_buffer(ip, &dibh);
2147 	if (error)
2148 		goto do_end_trans;
2149 
2150 	truncate_setsize(inode, size);
2151 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2152 	gfs2_trans_add_meta(ip->i_gl, dibh);
2153 	gfs2_dinode_out(ip, dibh->b_data);
2154 	brelse(dibh);
2155 
2156 do_end_trans:
2157 	gfs2_trans_end(sdp);
2158 do_grow_release:
2159 	if (unstuff) {
2160 		gfs2_inplace_release(ip);
2161 do_grow_qunlock:
2162 		gfs2_quota_unlock(ip);
2163 	}
2164 	return error;
2165 }
2166 
2167 /**
2168  * gfs2_setattr_size - make a file a given size
2169  * @inode: the inode
2170  * @newsize: the size to make the file
2171  *
2172  * The file size can grow, shrink, or stay the same size. This
2173  * is called holding i_rwsem and an exclusive glock on the inode
2174  * in question.
2175  *
2176  * Returns: errno
2177  */
2178 
2179 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2180 {
2181 	struct gfs2_inode *ip = GFS2_I(inode);
2182 	int ret;
2183 
2184 	BUG_ON(!S_ISREG(inode->i_mode));
2185 
2186 	ret = inode_newsize_ok(inode, newsize);
2187 	if (ret)
2188 		return ret;
2189 
2190 	inode_dio_wait(inode);
2191 
2192 	ret = gfs2_qa_get(ip);
2193 	if (ret)
2194 		goto out;
2195 
2196 	if (newsize >= inode->i_size) {
2197 		ret = do_grow(inode, newsize);
2198 		goto out;
2199 	}
2200 
2201 	ret = do_shrink(inode, newsize);
2202 out:
2203 	gfs2_rs_delete(ip, NULL);
2204 	gfs2_qa_put(ip);
2205 	return ret;
2206 }
2207 
2208 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2209 {
2210 	int error;
2211 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2212 	if (!error)
2213 		error = trunc_end(ip);
2214 	return error;
2215 }
2216 
2217 int gfs2_file_dealloc(struct gfs2_inode *ip)
2218 {
2219 	return punch_hole(ip, 0, 0);
2220 }
2221 
2222 /**
2223  * gfs2_free_journal_extents - Free cached journal bmap info
2224  * @jd: The journal
2225  *
2226  */
2227 
2228 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2229 {
2230 	struct gfs2_journal_extent *jext;
2231 
2232 	while(!list_empty(&jd->extent_list)) {
2233 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2234 		list_del(&jext->list);
2235 		kfree(jext);
2236 	}
2237 }
2238 
2239 /**
2240  * gfs2_add_jextent - Add or merge a new extent to extent cache
2241  * @jd: The journal descriptor
2242  * @lblock: The logical block at start of new extent
2243  * @dblock: The physical block at start of new extent
2244  * @blocks: Size of extent in fs blocks
2245  *
2246  * Returns: 0 on success or -ENOMEM
2247  */
2248 
2249 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2250 {
2251 	struct gfs2_journal_extent *jext;
2252 
2253 	if (!list_empty(&jd->extent_list)) {
2254 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2255 		if ((jext->dblock + jext->blocks) == dblock) {
2256 			jext->blocks += blocks;
2257 			return 0;
2258 		}
2259 	}
2260 
2261 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2262 	if (jext == NULL)
2263 		return -ENOMEM;
2264 	jext->dblock = dblock;
2265 	jext->lblock = lblock;
2266 	jext->blocks = blocks;
2267 	list_add_tail(&jext->list, &jd->extent_list);
2268 	jd->nr_extents++;
2269 	return 0;
2270 }
2271 
2272 /**
2273  * gfs2_map_journal_extents - Cache journal bmap info
2274  * @sdp: The super block
2275  * @jd: The journal to map
2276  *
2277  * Create a reusable "extent" mapping from all logical
2278  * blocks to all physical blocks for the given journal.  This will save
2279  * us time when writing journal blocks.  Most journals will have only one
2280  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2281  * arranges the journal blocks sequentially to maximize performance.
2282  * So the extent would map the first block for the entire file length.
2283  * However, gfs2_jadd can happen while file activity is happening, so
2284  * those journals may not be sequential.  Less likely is the case where
2285  * the users created their own journals by mounting the metafs and
2286  * laying it out.  But it's still possible.  These journals might have
2287  * several extents.
2288  *
2289  * Returns: 0 on success, or error on failure
2290  */
2291 
2292 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2293 {
2294 	u64 lblock = 0;
2295 	u64 lblock_stop;
2296 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2297 	struct buffer_head bh;
2298 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2299 	u64 size;
2300 	int rc;
2301 	ktime_t start, end;
2302 
2303 	start = ktime_get();
2304 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2305 	size = (lblock_stop - lblock) << shift;
2306 	jd->nr_extents = 0;
2307 	WARN_ON(!list_empty(&jd->extent_list));
2308 
2309 	do {
2310 		bh.b_state = 0;
2311 		bh.b_blocknr = 0;
2312 		bh.b_size = size;
2313 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2314 		if (rc || !buffer_mapped(&bh))
2315 			goto fail;
2316 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2317 		if (rc)
2318 			goto fail;
2319 		size -= bh.b_size;
2320 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2321 	} while(size > 0);
2322 
2323 	end = ktime_get();
2324 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2325 		jd->nr_extents, ktime_ms_delta(end, start));
2326 	return 0;
2327 
2328 fail:
2329 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2330 		rc, jd->jd_jid,
2331 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2332 		jd->nr_extents);
2333 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2334 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2335 		bh.b_state, (unsigned long long)bh.b_size);
2336 	gfs2_free_journal_extents(jd);
2337 	return rc;
2338 }
2339 
2340 /**
2341  * gfs2_write_alloc_required - figure out if a write will require an allocation
2342  * @ip: the file being written to
2343  * @offset: the offset to write to
2344  * @len: the number of bytes being written
2345  *
2346  * Returns: 1 if an alloc is required, 0 otherwise
2347  */
2348 
2349 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2350 			      unsigned int len)
2351 {
2352 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2353 	struct buffer_head bh;
2354 	unsigned int shift;
2355 	u64 lblock, lblock_stop, size;
2356 	u64 end_of_file;
2357 
2358 	if (!len)
2359 		return 0;
2360 
2361 	if (gfs2_is_stuffed(ip)) {
2362 		if (offset + len > gfs2_max_stuffed_size(ip))
2363 			return 1;
2364 		return 0;
2365 	}
2366 
2367 	shift = sdp->sd_sb.sb_bsize_shift;
2368 	BUG_ON(gfs2_is_dir(ip));
2369 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2370 	lblock = offset >> shift;
2371 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2372 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2373 		return 1;
2374 
2375 	size = (lblock_stop - lblock) << shift;
2376 	do {
2377 		bh.b_state = 0;
2378 		bh.b_size = size;
2379 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2380 		if (!buffer_mapped(&bh))
2381 			return 1;
2382 		size -= bh.b_size;
2383 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2384 	} while(size > 0);
2385 
2386 	return 0;
2387 }
2388 
2389 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2390 {
2391 	struct gfs2_inode *ip = GFS2_I(inode);
2392 	struct buffer_head *dibh;
2393 	int error;
2394 
2395 	if (offset >= inode->i_size)
2396 		return 0;
2397 	if (offset + length > inode->i_size)
2398 		length = inode->i_size - offset;
2399 
2400 	error = gfs2_meta_inode_buffer(ip, &dibh);
2401 	if (error)
2402 		return error;
2403 	gfs2_trans_add_meta(ip->i_gl, dibh);
2404 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2405 	       length);
2406 	brelse(dibh);
2407 	return 0;
2408 }
2409 
2410 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2411 					 loff_t length)
2412 {
2413 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2414 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2415 	int error;
2416 
2417 	while (length) {
2418 		struct gfs2_trans *tr;
2419 		loff_t chunk;
2420 		unsigned int offs;
2421 
2422 		chunk = length;
2423 		if (chunk > max_chunk)
2424 			chunk = max_chunk;
2425 
2426 		offs = offset & ~PAGE_MASK;
2427 		if (offs && chunk > PAGE_SIZE)
2428 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2429 
2430 		truncate_pagecache_range(inode, offset, chunk);
2431 		offset += chunk;
2432 		length -= chunk;
2433 
2434 		tr = current->journal_info;
2435 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2436 			continue;
2437 
2438 		gfs2_trans_end(sdp);
2439 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2440 		if (error)
2441 			return error;
2442 	}
2443 	return 0;
2444 }
2445 
2446 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2447 {
2448 	struct inode *inode = file_inode(file);
2449 	struct gfs2_inode *ip = GFS2_I(inode);
2450 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2451 	unsigned int blocksize = i_blocksize(inode);
2452 	loff_t start, end;
2453 	int error;
2454 
2455 	if (!gfs2_is_stuffed(ip)) {
2456 		unsigned int start_off, end_len;
2457 
2458 		start_off = offset & (blocksize - 1);
2459 		end_len = (offset + length) & (blocksize - 1);
2460 		if (start_off) {
2461 			unsigned int len = length;
2462 			if (length > blocksize - start_off)
2463 				len = blocksize - start_off;
2464 			error = gfs2_block_zero_range(inode, offset, len);
2465 			if (error)
2466 				goto out;
2467 			if (start_off + length < blocksize)
2468 				end_len = 0;
2469 		}
2470 		if (end_len) {
2471 			error = gfs2_block_zero_range(inode,
2472 				offset + length - end_len, end_len);
2473 			if (error)
2474 				goto out;
2475 		}
2476 	}
2477 
2478 	start = round_down(offset, blocksize);
2479 	end = round_up(offset + length, blocksize) - 1;
2480 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2481 	if (error)
2482 		return error;
2483 
2484 	if (gfs2_is_jdata(ip))
2485 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2486 					 GFS2_JTRUNC_REVOKES);
2487 	else
2488 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2489 	if (error)
2490 		return error;
2491 
2492 	if (gfs2_is_stuffed(ip)) {
2493 		error = stuffed_zero_range(inode, offset, length);
2494 		if (error)
2495 			goto out;
2496 	}
2497 
2498 	if (gfs2_is_jdata(ip)) {
2499 		BUG_ON(!current->journal_info);
2500 		gfs2_journaled_truncate_range(inode, offset, length);
2501 	} else
2502 		truncate_pagecache_range(inode, offset, offset + length - 1);
2503 
2504 	file_update_time(file);
2505 	mark_inode_dirty(inode);
2506 
2507 	if (current->journal_info)
2508 		gfs2_trans_end(sdp);
2509 
2510 	if (!gfs2_is_stuffed(ip))
2511 		error = punch_hole(ip, offset, length);
2512 
2513 out:
2514 	if (current->journal_info)
2515 		gfs2_trans_end(sdp);
2516 	return error;
2517 }
2518 
2519 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2520 		loff_t offset)
2521 {
2522 	struct metapath mp = { .mp_aheight = 1, };
2523 	int ret;
2524 
2525 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2526 		return -EIO;
2527 
2528 	if (offset >= wpc->iomap.offset &&
2529 	    offset < wpc->iomap.offset + wpc->iomap.length)
2530 		return 0;
2531 
2532 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2533 	ret = gfs2_iomap_get(inode, offset, INT_MAX, 0, &wpc->iomap, &mp);
2534 	release_metapath(&mp);
2535 	return ret;
2536 }
2537 
2538 const struct iomap_writeback_ops gfs2_writeback_ops = {
2539 	.map_blocks		= gfs2_map_blocks,
2540 };
2541