1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 int release = 0; 60 61 if (!page || page->index) { 62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 63 if (!page) 64 return -ENOMEM; 65 release = 1; 66 } 67 68 if (!PageUptodate(page)) { 69 void *kaddr = kmap(page); 70 u64 dsize = i_size_read(inode); 71 72 if (dsize > gfs2_max_stuffed_size(ip)) 73 dsize = gfs2_max_stuffed_size(ip); 74 75 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 76 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 77 kunmap(page); 78 79 SetPageUptodate(page); 80 } 81 82 if (gfs2_is_jdata(ip)) { 83 struct buffer_head *bh; 84 85 if (!page_has_buffers(page)) 86 create_empty_buffers(page, BIT(inode->i_blkbits), 87 BIT(BH_Uptodate)); 88 89 bh = page_buffers(page); 90 if (!buffer_mapped(bh)) 91 map_bh(bh, inode->i_sb, block); 92 93 set_buffer_uptodate(bh); 94 gfs2_trans_add_data(ip->i_gl, bh); 95 } else { 96 set_page_dirty(page); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 return ptr; 625 } 626 627 enum alloc_state { 628 ALLOC_DATA = 0, 629 ALLOC_GROW_DEPTH = 1, 630 ALLOC_GROW_HEIGHT = 2, 631 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 632 }; 633 634 /** 635 * gfs2_iomap_alloc - Build a metadata tree of the requested height 636 * @inode: The GFS2 inode 637 * @iomap: The iomap structure 638 * @mp: The metapath, with proper height information calculated 639 * 640 * In this routine we may have to alloc: 641 * i) Indirect blocks to grow the metadata tree height 642 * ii) Indirect blocks to fill in lower part of the metadata tree 643 * iii) Data blocks 644 * 645 * This function is called after gfs2_iomap_get, which works out the 646 * total number of blocks which we need via gfs2_alloc_size. 647 * 648 * We then do the actual allocation asking for an extent at a time (if 649 * enough contiguous free blocks are available, there will only be one 650 * allocation request per call) and uses the state machine to initialise 651 * the blocks in order. 652 * 653 * Right now, this function will allocate at most one indirect block 654 * worth of data -- with a default block size of 4K, that's slightly 655 * less than 2M. If this limitation is ever removed to allow huge 656 * allocations, we would probably still want to limit the iomap size we 657 * return to avoid stalling other tasks during huge writes; the next 658 * iomap iteration would then find the blocks already allocated. 659 * 660 * Returns: errno on error 661 */ 662 663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 664 struct metapath *mp) 665 { 666 struct gfs2_inode *ip = GFS2_I(inode); 667 struct gfs2_sbd *sdp = GFS2_SB(inode); 668 struct buffer_head *dibh = mp->mp_bh[0]; 669 u64 bn; 670 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 671 size_t dblks = iomap->length >> inode->i_blkbits; 672 const unsigned end_of_metadata = mp->mp_fheight - 1; 673 int ret; 674 enum alloc_state state; 675 __be64 *ptr; 676 __be64 zero_bn = 0; 677 678 BUG_ON(mp->mp_aheight < 1); 679 BUG_ON(dibh == NULL); 680 BUG_ON(dblks < 1); 681 682 gfs2_trans_add_meta(ip->i_gl, dibh); 683 684 down_write(&ip->i_rw_mutex); 685 686 if (mp->mp_fheight == mp->mp_aheight) { 687 /* Bottom indirect block exists */ 688 state = ALLOC_DATA; 689 } else { 690 /* Need to allocate indirect blocks */ 691 if (mp->mp_fheight == ip->i_height) { 692 /* Writing into existing tree, extend tree down */ 693 iblks = mp->mp_fheight - mp->mp_aheight; 694 state = ALLOC_GROW_DEPTH; 695 } else { 696 /* Building up tree height */ 697 state = ALLOC_GROW_HEIGHT; 698 iblks = mp->mp_fheight - ip->i_height; 699 branch_start = metapath_branch_start(mp); 700 iblks += (mp->mp_fheight - branch_start); 701 } 702 } 703 704 /* start of the second part of the function (state machine) */ 705 706 blks = dblks + iblks; 707 i = mp->mp_aheight; 708 do { 709 n = blks - alloced; 710 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 711 if (ret) 712 goto out; 713 alloced += n; 714 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 715 gfs2_trans_remove_revoke(sdp, bn, n); 716 switch (state) { 717 /* Growing height of tree */ 718 case ALLOC_GROW_HEIGHT: 719 if (i == 1) { 720 ptr = (__be64 *)(dibh->b_data + 721 sizeof(struct gfs2_dinode)); 722 zero_bn = *ptr; 723 } 724 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 725 i++, n--) 726 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 727 if (i - 1 == mp->mp_fheight - ip->i_height) { 728 i--; 729 gfs2_buffer_copy_tail(mp->mp_bh[i], 730 sizeof(struct gfs2_meta_header), 731 dibh, sizeof(struct gfs2_dinode)); 732 gfs2_buffer_clear_tail(dibh, 733 sizeof(struct gfs2_dinode) + 734 sizeof(__be64)); 735 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 736 sizeof(struct gfs2_meta_header)); 737 *ptr = zero_bn; 738 state = ALLOC_GROW_DEPTH; 739 for(i = branch_start; i < mp->mp_fheight; i++) { 740 if (mp->mp_bh[i] == NULL) 741 break; 742 brelse(mp->mp_bh[i]); 743 mp->mp_bh[i] = NULL; 744 } 745 i = branch_start; 746 } 747 if (n == 0) 748 break; 749 fallthrough; /* To branching from existing tree */ 750 case ALLOC_GROW_DEPTH: 751 if (i > 1 && i < mp->mp_fheight) 752 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 753 for (; i < mp->mp_fheight && n > 0; i++, n--) 754 gfs2_indirect_init(mp, ip->i_gl, i, 755 mp->mp_list[i-1], bn++); 756 if (i == mp->mp_fheight) 757 state = ALLOC_DATA; 758 if (n == 0) 759 break; 760 fallthrough; /* To tree complete, adding data blocks */ 761 case ALLOC_DATA: 762 BUG_ON(n > dblks); 763 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 764 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 765 dblks = n; 766 ptr = metapointer(end_of_metadata, mp); 767 iomap->addr = bn << inode->i_blkbits; 768 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 769 while (n-- > 0) 770 *ptr++ = cpu_to_be64(bn++); 771 break; 772 } 773 } while (iomap->addr == IOMAP_NULL_ADDR); 774 775 iomap->type = IOMAP_MAPPED; 776 iomap->length = (u64)dblks << inode->i_blkbits; 777 ip->i_height = mp->mp_fheight; 778 gfs2_add_inode_blocks(&ip->i_inode, alloced); 779 gfs2_dinode_out(ip, dibh->b_data); 780 out: 781 up_write(&ip->i_rw_mutex); 782 return ret; 783 } 784 785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 786 787 /** 788 * gfs2_alloc_size - Compute the maximum allocation size 789 * @inode: The inode 790 * @mp: The metapath 791 * @size: Requested size in blocks 792 * 793 * Compute the maximum size of the next allocation at @mp. 794 * 795 * Returns: size in blocks 796 */ 797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 798 { 799 struct gfs2_inode *ip = GFS2_I(inode); 800 struct gfs2_sbd *sdp = GFS2_SB(inode); 801 const __be64 *first, *ptr, *end; 802 803 /* 804 * For writes to stuffed files, this function is called twice via 805 * gfs2_iomap_get, before and after unstuffing. The size we return the 806 * first time needs to be large enough to get the reservation and 807 * allocation sizes right. The size we return the second time must 808 * be exact or else gfs2_iomap_alloc won't do the right thing. 809 */ 810 811 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 812 unsigned int maxsize = mp->mp_fheight > 1 ? 813 sdp->sd_inptrs : sdp->sd_diptrs; 814 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 815 if (size > maxsize) 816 size = maxsize; 817 return size; 818 } 819 820 first = metapointer(ip->i_height - 1, mp); 821 end = metaend(ip->i_height - 1, mp); 822 if (end - first > size) 823 end = first + size; 824 for (ptr = first; ptr < end; ptr++) { 825 if (*ptr) 826 break; 827 } 828 return ptr - first; 829 } 830 831 /** 832 * gfs2_iomap_get - Map blocks from an inode to disk blocks 833 * @inode: The inode 834 * @pos: Starting position in bytes 835 * @length: Length to map, in bytes 836 * @flags: iomap flags 837 * @iomap: The iomap structure 838 * @mp: The metapath 839 * 840 * Returns: errno 841 */ 842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 843 unsigned flags, struct iomap *iomap, 844 struct metapath *mp) 845 { 846 struct gfs2_inode *ip = GFS2_I(inode); 847 struct gfs2_sbd *sdp = GFS2_SB(inode); 848 loff_t size = i_size_read(inode); 849 __be64 *ptr; 850 sector_t lblock; 851 sector_t lblock_stop; 852 int ret; 853 int eob; 854 u64 len; 855 struct buffer_head *dibh = NULL, *bh; 856 u8 height; 857 858 if (!length) 859 return -EINVAL; 860 861 down_read(&ip->i_rw_mutex); 862 863 ret = gfs2_meta_inode_buffer(ip, &dibh); 864 if (ret) 865 goto unlock; 866 mp->mp_bh[0] = dibh; 867 868 if (gfs2_is_stuffed(ip)) { 869 if (flags & IOMAP_WRITE) { 870 loff_t max_size = gfs2_max_stuffed_size(ip); 871 872 if (pos + length > max_size) 873 goto unstuff; 874 iomap->length = max_size; 875 } else { 876 if (pos >= size) { 877 if (flags & IOMAP_REPORT) { 878 ret = -ENOENT; 879 goto unlock; 880 } else { 881 iomap->offset = pos; 882 iomap->length = length; 883 goto hole_found; 884 } 885 } 886 iomap->length = size; 887 } 888 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 889 sizeof(struct gfs2_dinode); 890 iomap->type = IOMAP_INLINE; 891 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 892 goto out; 893 } 894 895 unstuff: 896 lblock = pos >> inode->i_blkbits; 897 iomap->offset = lblock << inode->i_blkbits; 898 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 899 len = lblock_stop - lblock + 1; 900 iomap->length = len << inode->i_blkbits; 901 902 height = ip->i_height; 903 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 904 height++; 905 find_metapath(sdp, lblock, mp, height); 906 if (height > ip->i_height || gfs2_is_stuffed(ip)) 907 goto do_alloc; 908 909 ret = lookup_metapath(ip, mp); 910 if (ret) 911 goto unlock; 912 913 if (mp->mp_aheight != ip->i_height) 914 goto do_alloc; 915 916 ptr = metapointer(ip->i_height - 1, mp); 917 if (*ptr == 0) 918 goto do_alloc; 919 920 bh = mp->mp_bh[ip->i_height - 1]; 921 len = gfs2_extent_length(bh, ptr, len, &eob); 922 923 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 924 iomap->length = len << inode->i_blkbits; 925 iomap->type = IOMAP_MAPPED; 926 iomap->flags |= IOMAP_F_MERGED; 927 if (eob) 928 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 929 930 out: 931 iomap->bdev = inode->i_sb->s_bdev; 932 unlock: 933 up_read(&ip->i_rw_mutex); 934 return ret; 935 936 do_alloc: 937 if (flags & IOMAP_REPORT) { 938 if (pos >= size) 939 ret = -ENOENT; 940 else if (height == ip->i_height) 941 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 942 else 943 iomap->length = size - pos; 944 } else if (flags & IOMAP_WRITE) { 945 u64 alloc_size; 946 947 if (flags & IOMAP_DIRECT) 948 goto out; /* (see gfs2_file_direct_write) */ 949 950 len = gfs2_alloc_size(inode, mp, len); 951 alloc_size = len << inode->i_blkbits; 952 if (alloc_size < iomap->length) 953 iomap->length = alloc_size; 954 } else { 955 if (pos < size && height == ip->i_height) 956 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 957 } 958 hole_found: 959 iomap->addr = IOMAP_NULL_ADDR; 960 iomap->type = IOMAP_HOLE; 961 goto out; 962 } 963 964 /** 965 * gfs2_lblk_to_dblk - convert logical block to disk block 966 * @inode: the inode of the file we're mapping 967 * @lblock: the block relative to the start of the file 968 * @dblock: the returned dblock, if no error 969 * 970 * This function maps a single block from a file logical block (relative to 971 * the start of the file) to a file system absolute block using iomap. 972 * 973 * Returns: the absolute file system block, or an error 974 */ 975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 976 { 977 struct iomap iomap = { }; 978 struct metapath mp = { .mp_aheight = 1, }; 979 loff_t pos = (loff_t)lblock << inode->i_blkbits; 980 int ret; 981 982 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 983 release_metapath(&mp); 984 if (ret == 0) 985 *dblock = iomap.addr >> inode->i_blkbits; 986 987 return ret; 988 } 989 990 static int gfs2_write_lock(struct inode *inode) 991 { 992 struct gfs2_inode *ip = GFS2_I(inode); 993 struct gfs2_sbd *sdp = GFS2_SB(inode); 994 int error; 995 996 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 997 error = gfs2_glock_nq(&ip->i_gh); 998 if (error) 999 goto out_uninit; 1000 if (&ip->i_inode == sdp->sd_rindex) { 1001 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1002 1003 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1004 GL_NOCACHE, &m_ip->i_gh); 1005 if (error) 1006 goto out_unlock; 1007 } 1008 return 0; 1009 1010 out_unlock: 1011 gfs2_glock_dq(&ip->i_gh); 1012 out_uninit: 1013 gfs2_holder_uninit(&ip->i_gh); 1014 return error; 1015 } 1016 1017 static void gfs2_write_unlock(struct inode *inode) 1018 { 1019 struct gfs2_inode *ip = GFS2_I(inode); 1020 struct gfs2_sbd *sdp = GFS2_SB(inode); 1021 1022 if (&ip->i_inode == sdp->sd_rindex) { 1023 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1024 1025 gfs2_glock_dq_uninit(&m_ip->i_gh); 1026 } 1027 gfs2_glock_dq_uninit(&ip->i_gh); 1028 } 1029 1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1031 unsigned len, struct iomap *iomap) 1032 { 1033 unsigned int blockmask = i_blocksize(inode) - 1; 1034 struct gfs2_sbd *sdp = GFS2_SB(inode); 1035 unsigned int blocks; 1036 1037 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1038 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1039 } 1040 1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1042 unsigned copied, struct page *page, 1043 struct iomap *iomap) 1044 { 1045 struct gfs2_trans *tr = current->journal_info; 1046 struct gfs2_inode *ip = GFS2_I(inode); 1047 struct gfs2_sbd *sdp = GFS2_SB(inode); 1048 1049 if (page && !gfs2_is_stuffed(ip)) 1050 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1051 1052 if (tr->tr_num_buf_new) 1053 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1054 1055 gfs2_trans_end(sdp); 1056 } 1057 1058 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1059 .page_prepare = gfs2_iomap_page_prepare, 1060 .page_done = gfs2_iomap_page_done, 1061 }; 1062 1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1064 loff_t length, unsigned flags, 1065 struct iomap *iomap, 1066 struct metapath *mp) 1067 { 1068 struct gfs2_inode *ip = GFS2_I(inode); 1069 struct gfs2_sbd *sdp = GFS2_SB(inode); 1070 bool unstuff; 1071 int ret; 1072 1073 unstuff = gfs2_is_stuffed(ip) && 1074 pos + length > gfs2_max_stuffed_size(ip); 1075 1076 if (unstuff || iomap->type == IOMAP_HOLE) { 1077 unsigned int data_blocks, ind_blocks; 1078 struct gfs2_alloc_parms ap = {}; 1079 unsigned int rblocks; 1080 struct gfs2_trans *tr; 1081 1082 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1083 &ind_blocks); 1084 ap.target = data_blocks + ind_blocks; 1085 ret = gfs2_quota_lock_check(ip, &ap); 1086 if (ret) 1087 return ret; 1088 1089 ret = gfs2_inplace_reserve(ip, &ap); 1090 if (ret) 1091 goto out_qunlock; 1092 1093 rblocks = RES_DINODE + ind_blocks; 1094 if (gfs2_is_jdata(ip)) 1095 rblocks += data_blocks; 1096 if (ind_blocks || data_blocks) 1097 rblocks += RES_STATFS + RES_QUOTA; 1098 if (inode == sdp->sd_rindex) 1099 rblocks += 2 * RES_STATFS; 1100 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1101 1102 ret = gfs2_trans_begin(sdp, rblocks, 1103 iomap->length >> inode->i_blkbits); 1104 if (ret) 1105 goto out_trans_fail; 1106 1107 if (unstuff) { 1108 ret = gfs2_unstuff_dinode(ip, NULL); 1109 if (ret) 1110 goto out_trans_end; 1111 release_metapath(mp); 1112 ret = gfs2_iomap_get(inode, iomap->offset, 1113 iomap->length, flags, iomap, mp); 1114 if (ret) 1115 goto out_trans_end; 1116 } 1117 1118 if (iomap->type == IOMAP_HOLE) { 1119 ret = gfs2_iomap_alloc(inode, iomap, mp); 1120 if (ret) { 1121 gfs2_trans_end(sdp); 1122 gfs2_inplace_release(ip); 1123 punch_hole(ip, iomap->offset, iomap->length); 1124 goto out_qunlock; 1125 } 1126 } 1127 1128 tr = current->journal_info; 1129 if (tr->tr_num_buf_new) 1130 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1131 1132 gfs2_trans_end(sdp); 1133 } 1134 1135 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1136 iomap->page_ops = &gfs2_iomap_page_ops; 1137 return 0; 1138 1139 out_trans_end: 1140 gfs2_trans_end(sdp); 1141 out_trans_fail: 1142 gfs2_inplace_release(ip); 1143 out_qunlock: 1144 gfs2_quota_unlock(ip); 1145 return ret; 1146 } 1147 1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1149 { 1150 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1151 } 1152 1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1154 unsigned flags, struct iomap *iomap, 1155 struct iomap *srcmap) 1156 { 1157 struct gfs2_inode *ip = GFS2_I(inode); 1158 struct metapath mp = { .mp_aheight = 1, }; 1159 int ret; 1160 1161 if (gfs2_is_jdata(ip)) 1162 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1163 1164 trace_gfs2_iomap_start(ip, pos, length, flags); 1165 if (gfs2_iomap_need_write_lock(flags)) { 1166 ret = gfs2_write_lock(inode); 1167 if (ret) 1168 goto out; 1169 } 1170 1171 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1172 if (ret) 1173 goto out_unlock; 1174 1175 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1176 case IOMAP_WRITE: 1177 if (flags & IOMAP_DIRECT) { 1178 /* 1179 * Silently fall back to buffered I/O for stuffed files 1180 * or if we've got a hole (see gfs2_file_direct_write). 1181 */ 1182 if (iomap->type != IOMAP_MAPPED) 1183 ret = -ENOTBLK; 1184 goto out_unlock; 1185 } 1186 break; 1187 case IOMAP_ZERO: 1188 if (iomap->type == IOMAP_HOLE) 1189 goto out_unlock; 1190 break; 1191 default: 1192 goto out_unlock; 1193 } 1194 1195 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1196 1197 out_unlock: 1198 if (ret && gfs2_iomap_need_write_lock(flags)) 1199 gfs2_write_unlock(inode); 1200 release_metapath(&mp); 1201 out: 1202 trace_gfs2_iomap_end(ip, iomap, ret); 1203 return ret; 1204 } 1205 1206 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1207 ssize_t written, unsigned flags, struct iomap *iomap) 1208 { 1209 struct gfs2_inode *ip = GFS2_I(inode); 1210 struct gfs2_sbd *sdp = GFS2_SB(inode); 1211 1212 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1213 case IOMAP_WRITE: 1214 if (flags & IOMAP_DIRECT) 1215 return 0; 1216 break; 1217 case IOMAP_ZERO: 1218 if (iomap->type == IOMAP_HOLE) 1219 return 0; 1220 break; 1221 default: 1222 return 0; 1223 } 1224 1225 if (!gfs2_is_stuffed(ip)) 1226 gfs2_ordered_add_inode(ip); 1227 1228 if (inode == sdp->sd_rindex) 1229 adjust_fs_space(inode); 1230 1231 gfs2_inplace_release(ip); 1232 1233 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1234 gfs2_quota_unlock(ip); 1235 1236 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1237 /* Deallocate blocks that were just allocated. */ 1238 loff_t blockmask = i_blocksize(inode) - 1; 1239 loff_t end = (pos + length) & ~blockmask; 1240 1241 pos = (pos + written + blockmask) & ~blockmask; 1242 if (pos < end) { 1243 truncate_pagecache_range(inode, pos, end - 1); 1244 punch_hole(ip, pos, end - pos); 1245 } 1246 } 1247 1248 if (unlikely(!written)) 1249 goto out_unlock; 1250 1251 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1252 mark_inode_dirty(inode); 1253 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1254 1255 out_unlock: 1256 if (gfs2_iomap_need_write_lock(flags)) 1257 gfs2_write_unlock(inode); 1258 return 0; 1259 } 1260 1261 const struct iomap_ops gfs2_iomap_ops = { 1262 .iomap_begin = gfs2_iomap_begin, 1263 .iomap_end = gfs2_iomap_end, 1264 }; 1265 1266 /** 1267 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1268 * @inode: The inode 1269 * @lblock: The logical block number 1270 * @bh_map: The bh to be mapped 1271 * @create: True if its ok to alloc blocks to satify the request 1272 * 1273 * The size of the requested mapping is defined in bh_map->b_size. 1274 * 1275 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1276 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1277 * bh_map->b_size to indicate the size of the mapping when @lblock and 1278 * successive blocks are mapped, up to the requested size. 1279 * 1280 * Sets buffer_boundary() if a read of metadata will be required 1281 * before the next block can be mapped. Sets buffer_new() if new 1282 * blocks were allocated. 1283 * 1284 * Returns: errno 1285 */ 1286 1287 int gfs2_block_map(struct inode *inode, sector_t lblock, 1288 struct buffer_head *bh_map, int create) 1289 { 1290 struct gfs2_inode *ip = GFS2_I(inode); 1291 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1292 loff_t length = bh_map->b_size; 1293 struct metapath mp = { .mp_aheight = 1, }; 1294 struct iomap iomap = { }; 1295 int flags = create ? IOMAP_WRITE : 0; 1296 int ret; 1297 1298 clear_buffer_mapped(bh_map); 1299 clear_buffer_new(bh_map); 1300 clear_buffer_boundary(bh_map); 1301 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1302 1303 ret = gfs2_iomap_get(inode, pos, length, flags, &iomap, &mp); 1304 if (create && !ret && iomap.type == IOMAP_HOLE) 1305 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1306 release_metapath(&mp); 1307 if (ret) 1308 goto out; 1309 1310 if (iomap.length > bh_map->b_size) { 1311 iomap.length = bh_map->b_size; 1312 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1313 } 1314 if (iomap.addr != IOMAP_NULL_ADDR) 1315 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1316 bh_map->b_size = iomap.length; 1317 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1318 set_buffer_boundary(bh_map); 1319 if (iomap.flags & IOMAP_F_NEW) 1320 set_buffer_new(bh_map); 1321 1322 out: 1323 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1324 return ret; 1325 } 1326 1327 /* 1328 * Deprecated: do not use in new code 1329 */ 1330 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1331 { 1332 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1333 int ret; 1334 int create = *new; 1335 1336 BUG_ON(!extlen); 1337 BUG_ON(!dblock); 1338 BUG_ON(!new); 1339 1340 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1341 ret = gfs2_block_map(inode, lblock, &bh, create); 1342 *extlen = bh.b_size >> inode->i_blkbits; 1343 *dblock = bh.b_blocknr; 1344 if (buffer_new(&bh)) 1345 *new = 1; 1346 else 1347 *new = 0; 1348 return ret; 1349 } 1350 1351 /* 1352 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1353 * uses iomap write to perform its actions, which begin their own transactions 1354 * (iomap_begin, page_prepare, etc.) 1355 */ 1356 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1357 unsigned int length) 1358 { 1359 BUG_ON(current->journal_info); 1360 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1361 } 1362 1363 #define GFS2_JTRUNC_REVOKES 8192 1364 1365 /** 1366 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1367 * @inode: The inode being truncated 1368 * @oldsize: The original (larger) size 1369 * @newsize: The new smaller size 1370 * 1371 * With jdata files, we have to journal a revoke for each block which is 1372 * truncated. As a result, we need to split this into separate transactions 1373 * if the number of pages being truncated gets too large. 1374 */ 1375 1376 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1377 { 1378 struct gfs2_sbd *sdp = GFS2_SB(inode); 1379 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1380 u64 chunk; 1381 int error; 1382 1383 while (oldsize != newsize) { 1384 struct gfs2_trans *tr; 1385 unsigned int offs; 1386 1387 chunk = oldsize - newsize; 1388 if (chunk > max_chunk) 1389 chunk = max_chunk; 1390 1391 offs = oldsize & ~PAGE_MASK; 1392 if (offs && chunk > PAGE_SIZE) 1393 chunk = offs + ((chunk - offs) & PAGE_MASK); 1394 1395 truncate_pagecache(inode, oldsize - chunk); 1396 oldsize -= chunk; 1397 1398 tr = current->journal_info; 1399 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1400 continue; 1401 1402 gfs2_trans_end(sdp); 1403 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1404 if (error) 1405 return error; 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int trunc_start(struct inode *inode, u64 newsize) 1412 { 1413 struct gfs2_inode *ip = GFS2_I(inode); 1414 struct gfs2_sbd *sdp = GFS2_SB(inode); 1415 struct buffer_head *dibh = NULL; 1416 int journaled = gfs2_is_jdata(ip); 1417 u64 oldsize = inode->i_size; 1418 int error; 1419 1420 if (!gfs2_is_stuffed(ip)) { 1421 unsigned int blocksize = i_blocksize(inode); 1422 unsigned int offs = newsize & (blocksize - 1); 1423 if (offs) { 1424 error = gfs2_block_zero_range(inode, newsize, 1425 blocksize - offs); 1426 if (error) 1427 return error; 1428 } 1429 } 1430 if (journaled) 1431 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1432 else 1433 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1434 if (error) 1435 return error; 1436 1437 error = gfs2_meta_inode_buffer(ip, &dibh); 1438 if (error) 1439 goto out; 1440 1441 gfs2_trans_add_meta(ip->i_gl, dibh); 1442 1443 if (gfs2_is_stuffed(ip)) 1444 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1445 else 1446 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1447 1448 i_size_write(inode, newsize); 1449 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1450 gfs2_dinode_out(ip, dibh->b_data); 1451 1452 if (journaled) 1453 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1454 else 1455 truncate_pagecache(inode, newsize); 1456 1457 out: 1458 brelse(dibh); 1459 if (current->journal_info) 1460 gfs2_trans_end(sdp); 1461 return error; 1462 } 1463 1464 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1465 struct iomap *iomap) 1466 { 1467 struct metapath mp = { .mp_aheight = 1, }; 1468 int ret; 1469 1470 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1471 if (!ret && iomap->type == IOMAP_HOLE) 1472 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1473 release_metapath(&mp); 1474 return ret; 1475 } 1476 1477 /** 1478 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1479 * @ip: inode 1480 * @rg_gh: holder of resource group glock 1481 * @bh: buffer head to sweep 1482 * @start: starting point in bh 1483 * @end: end point in bh 1484 * @meta: true if bh points to metadata (rather than data) 1485 * @btotal: place to keep count of total blocks freed 1486 * 1487 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1488 * free, and free them all. However, we do it one rgrp at a time. If this 1489 * block has references to multiple rgrps, we break it into individual 1490 * transactions. This allows other processes to use the rgrps while we're 1491 * focused on a single one, for better concurrency / performance. 1492 * At every transaction boundary, we rewrite the inode into the journal. 1493 * That way the bitmaps are kept consistent with the inode and we can recover 1494 * if we're interrupted by power-outages. 1495 * 1496 * Returns: 0, or return code if an error occurred. 1497 * *btotal has the total number of blocks freed 1498 */ 1499 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1500 struct buffer_head *bh, __be64 *start, __be64 *end, 1501 bool meta, u32 *btotal) 1502 { 1503 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1504 struct gfs2_rgrpd *rgd; 1505 struct gfs2_trans *tr; 1506 __be64 *p; 1507 int blks_outside_rgrp; 1508 u64 bn, bstart, isize_blks; 1509 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1510 int ret = 0; 1511 bool buf_in_tr = false; /* buffer was added to transaction */ 1512 1513 more_rgrps: 1514 rgd = NULL; 1515 if (gfs2_holder_initialized(rd_gh)) { 1516 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1517 gfs2_assert_withdraw(sdp, 1518 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1519 } 1520 blks_outside_rgrp = 0; 1521 bstart = 0; 1522 blen = 0; 1523 1524 for (p = start; p < end; p++) { 1525 if (!*p) 1526 continue; 1527 bn = be64_to_cpu(*p); 1528 1529 if (rgd) { 1530 if (!rgrp_contains_block(rgd, bn)) { 1531 blks_outside_rgrp++; 1532 continue; 1533 } 1534 } else { 1535 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1536 if (unlikely(!rgd)) { 1537 ret = -EIO; 1538 goto out; 1539 } 1540 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1541 LM_FLAG_NODE_SCOPE, rd_gh); 1542 if (ret) 1543 goto out; 1544 1545 /* Must be done with the rgrp glock held: */ 1546 if (gfs2_rs_active(&ip->i_res) && 1547 rgd == ip->i_res.rs_rgd) 1548 gfs2_rs_deltree(&ip->i_res); 1549 } 1550 1551 /* The size of our transactions will be unknown until we 1552 actually process all the metadata blocks that relate to 1553 the rgrp. So we estimate. We know it can't be more than 1554 the dinode's i_blocks and we don't want to exceed the 1555 journal flush threshold, sd_log_thresh2. */ 1556 if (current->journal_info == NULL) { 1557 unsigned int jblocks_rqsted, revokes; 1558 1559 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1560 RES_INDIRECT; 1561 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1562 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1563 jblocks_rqsted += 1564 atomic_read(&sdp->sd_log_thresh2); 1565 else 1566 jblocks_rqsted += isize_blks; 1567 revokes = jblocks_rqsted; 1568 if (meta) 1569 revokes += end - start; 1570 else if (ip->i_depth) 1571 revokes += sdp->sd_inptrs; 1572 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1573 if (ret) 1574 goto out_unlock; 1575 down_write(&ip->i_rw_mutex); 1576 } 1577 /* check if we will exceed the transaction blocks requested */ 1578 tr = current->journal_info; 1579 if (tr->tr_num_buf_new + RES_STATFS + 1580 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1581 /* We set blks_outside_rgrp to ensure the loop will 1582 be repeated for the same rgrp, but with a new 1583 transaction. */ 1584 blks_outside_rgrp++; 1585 /* This next part is tricky. If the buffer was added 1586 to the transaction, we've already set some block 1587 pointers to 0, so we better follow through and free 1588 them, or we will introduce corruption (so break). 1589 This may be impossible, or at least rare, but I 1590 decided to cover the case regardless. 1591 1592 If the buffer was not added to the transaction 1593 (this call), doing so would exceed our transaction 1594 size, so we need to end the transaction and start a 1595 new one (so goto). */ 1596 1597 if (buf_in_tr) 1598 break; 1599 goto out_unlock; 1600 } 1601 1602 gfs2_trans_add_meta(ip->i_gl, bh); 1603 buf_in_tr = true; 1604 *p = 0; 1605 if (bstart + blen == bn) { 1606 blen++; 1607 continue; 1608 } 1609 if (bstart) { 1610 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1611 (*btotal) += blen; 1612 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1613 } 1614 bstart = bn; 1615 blen = 1; 1616 } 1617 if (bstart) { 1618 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1619 (*btotal) += blen; 1620 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1621 } 1622 out_unlock: 1623 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1624 outside the rgrp we just processed, 1625 do it all over again. */ 1626 if (current->journal_info) { 1627 struct buffer_head *dibh; 1628 1629 ret = gfs2_meta_inode_buffer(ip, &dibh); 1630 if (ret) 1631 goto out; 1632 1633 /* Every transaction boundary, we rewrite the dinode 1634 to keep its di_blocks current in case of failure. */ 1635 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1636 current_time(&ip->i_inode); 1637 gfs2_trans_add_meta(ip->i_gl, dibh); 1638 gfs2_dinode_out(ip, dibh->b_data); 1639 brelse(dibh); 1640 up_write(&ip->i_rw_mutex); 1641 gfs2_trans_end(sdp); 1642 buf_in_tr = false; 1643 } 1644 gfs2_glock_dq_uninit(rd_gh); 1645 cond_resched(); 1646 goto more_rgrps; 1647 } 1648 out: 1649 return ret; 1650 } 1651 1652 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1653 { 1654 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1655 return false; 1656 return true; 1657 } 1658 1659 /** 1660 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1661 * @mp: starting metapath 1662 * @h: desired height to search 1663 * 1664 * Assumes the metapath is valid (with buffers) out to height h. 1665 * Returns: true if a non-null pointer was found in the metapath buffer 1666 * false if all remaining pointers are NULL in the buffer 1667 */ 1668 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1669 unsigned int h, 1670 __u16 *end_list, unsigned int end_aligned) 1671 { 1672 struct buffer_head *bh = mp->mp_bh[h]; 1673 __be64 *first, *ptr, *end; 1674 1675 first = metaptr1(h, mp); 1676 ptr = first + mp->mp_list[h]; 1677 end = (__be64 *)(bh->b_data + bh->b_size); 1678 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1679 bool keep_end = h < end_aligned; 1680 end = first + end_list[h] + keep_end; 1681 } 1682 1683 while (ptr < end) { 1684 if (*ptr) { /* if we have a non-null pointer */ 1685 mp->mp_list[h] = ptr - first; 1686 h++; 1687 if (h < GFS2_MAX_META_HEIGHT) 1688 mp->mp_list[h] = 0; 1689 return true; 1690 } 1691 ptr++; 1692 } 1693 return false; 1694 } 1695 1696 enum dealloc_states { 1697 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1698 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1699 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1700 DEALLOC_DONE = 3, /* process complete */ 1701 }; 1702 1703 static inline void 1704 metapointer_range(struct metapath *mp, int height, 1705 __u16 *start_list, unsigned int start_aligned, 1706 __u16 *end_list, unsigned int end_aligned, 1707 __be64 **start, __be64 **end) 1708 { 1709 struct buffer_head *bh = mp->mp_bh[height]; 1710 __be64 *first; 1711 1712 first = metaptr1(height, mp); 1713 *start = first; 1714 if (mp_eq_to_hgt(mp, start_list, height)) { 1715 bool keep_start = height < start_aligned; 1716 *start = first + start_list[height] + keep_start; 1717 } 1718 *end = (__be64 *)(bh->b_data + bh->b_size); 1719 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1720 bool keep_end = height < end_aligned; 1721 *end = first + end_list[height] + keep_end; 1722 } 1723 } 1724 1725 static inline bool walk_done(struct gfs2_sbd *sdp, 1726 struct metapath *mp, int height, 1727 __u16 *end_list, unsigned int end_aligned) 1728 { 1729 __u16 end; 1730 1731 if (end_list) { 1732 bool keep_end = height < end_aligned; 1733 if (!mp_eq_to_hgt(mp, end_list, height)) 1734 return false; 1735 end = end_list[height] + keep_end; 1736 } else 1737 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1738 return mp->mp_list[height] >= end; 1739 } 1740 1741 /** 1742 * punch_hole - deallocate blocks in a file 1743 * @ip: inode to truncate 1744 * @offset: the start of the hole 1745 * @length: the size of the hole (or 0 for truncate) 1746 * 1747 * Punch a hole into a file or truncate a file at a given position. This 1748 * function operates in whole blocks (@offset and @length are rounded 1749 * accordingly); partially filled blocks must be cleared otherwise. 1750 * 1751 * This function works from the bottom up, and from the right to the left. In 1752 * other words, it strips off the highest layer (data) before stripping any of 1753 * the metadata. Doing it this way is best in case the operation is interrupted 1754 * by power failure, etc. The dinode is rewritten in every transaction to 1755 * guarantee integrity. 1756 */ 1757 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1758 { 1759 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1760 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1761 struct metapath mp = {}; 1762 struct buffer_head *dibh, *bh; 1763 struct gfs2_holder rd_gh; 1764 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1765 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1766 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1767 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1768 unsigned int start_aligned, end_aligned; 1769 unsigned int strip_h = ip->i_height - 1; 1770 u32 btotal = 0; 1771 int ret, state; 1772 int mp_h; /* metapath buffers are read in to this height */ 1773 u64 prev_bnr = 0; 1774 __be64 *start, *end; 1775 1776 if (offset >= maxsize) { 1777 /* 1778 * The starting point lies beyond the allocated meta-data; 1779 * there are no blocks do deallocate. 1780 */ 1781 return 0; 1782 } 1783 1784 /* 1785 * The start position of the hole is defined by lblock, start_list, and 1786 * start_aligned. The end position of the hole is defined by lend, 1787 * end_list, and end_aligned. 1788 * 1789 * start_aligned and end_aligned define down to which height the start 1790 * and end positions are aligned to the metadata tree (i.e., the 1791 * position is a multiple of the metadata granularity at the height 1792 * above). This determines at which heights additional meta pointers 1793 * needs to be preserved for the remaining data. 1794 */ 1795 1796 if (length) { 1797 u64 end_offset = offset + length; 1798 u64 lend; 1799 1800 /* 1801 * Clip the end at the maximum file size for the given height: 1802 * that's how far the metadata goes; files bigger than that 1803 * will have additional layers of indirection. 1804 */ 1805 if (end_offset > maxsize) 1806 end_offset = maxsize; 1807 lend = end_offset >> bsize_shift; 1808 1809 if (lblock >= lend) 1810 return 0; 1811 1812 find_metapath(sdp, lend, &mp, ip->i_height); 1813 end_list = __end_list; 1814 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1815 1816 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1817 if (end_list[mp_h]) 1818 break; 1819 } 1820 end_aligned = mp_h; 1821 } 1822 1823 find_metapath(sdp, lblock, &mp, ip->i_height); 1824 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1825 1826 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1827 if (start_list[mp_h]) 1828 break; 1829 } 1830 start_aligned = mp_h; 1831 1832 ret = gfs2_meta_inode_buffer(ip, &dibh); 1833 if (ret) 1834 return ret; 1835 1836 mp.mp_bh[0] = dibh; 1837 ret = lookup_metapath(ip, &mp); 1838 if (ret) 1839 goto out_metapath; 1840 1841 /* issue read-ahead on metadata */ 1842 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1843 metapointer_range(&mp, mp_h, start_list, start_aligned, 1844 end_list, end_aligned, &start, &end); 1845 gfs2_metapath_ra(ip->i_gl, start, end); 1846 } 1847 1848 if (mp.mp_aheight == ip->i_height) 1849 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1850 else 1851 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1852 1853 ret = gfs2_rindex_update(sdp); 1854 if (ret) 1855 goto out_metapath; 1856 1857 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1858 if (ret) 1859 goto out_metapath; 1860 gfs2_holder_mark_uninitialized(&rd_gh); 1861 1862 mp_h = strip_h; 1863 1864 while (state != DEALLOC_DONE) { 1865 switch (state) { 1866 /* Truncate a full metapath at the given strip height. 1867 * Note that strip_h == mp_h in order to be in this state. */ 1868 case DEALLOC_MP_FULL: 1869 bh = mp.mp_bh[mp_h]; 1870 gfs2_assert_withdraw(sdp, bh); 1871 if (gfs2_assert_withdraw(sdp, 1872 prev_bnr != bh->b_blocknr)) { 1873 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1874 "s_h:%u, mp_h:%u\n", 1875 (unsigned long long)ip->i_no_addr, 1876 prev_bnr, ip->i_height, strip_h, mp_h); 1877 } 1878 prev_bnr = bh->b_blocknr; 1879 1880 if (gfs2_metatype_check(sdp, bh, 1881 (mp_h ? GFS2_METATYPE_IN : 1882 GFS2_METATYPE_DI))) { 1883 ret = -EIO; 1884 goto out; 1885 } 1886 1887 /* 1888 * Below, passing end_aligned as 0 gives us the 1889 * metapointer range excluding the end point: the end 1890 * point is the first metapath we must not deallocate! 1891 */ 1892 1893 metapointer_range(&mp, mp_h, start_list, start_aligned, 1894 end_list, 0 /* end_aligned */, 1895 &start, &end); 1896 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1897 start, end, 1898 mp_h != ip->i_height - 1, 1899 &btotal); 1900 1901 /* If we hit an error or just swept dinode buffer, 1902 just exit. */ 1903 if (ret || !mp_h) { 1904 state = DEALLOC_DONE; 1905 break; 1906 } 1907 state = DEALLOC_MP_LOWER; 1908 break; 1909 1910 /* lower the metapath strip height */ 1911 case DEALLOC_MP_LOWER: 1912 /* We're done with the current buffer, so release it, 1913 unless it's the dinode buffer. Then back up to the 1914 previous pointer. */ 1915 if (mp_h) { 1916 brelse(mp.mp_bh[mp_h]); 1917 mp.mp_bh[mp_h] = NULL; 1918 } 1919 /* If we can't get any lower in height, we've stripped 1920 off all we can. Next step is to back up and start 1921 stripping the previous level of metadata. */ 1922 if (mp_h == 0) { 1923 strip_h--; 1924 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1925 mp_h = strip_h; 1926 state = DEALLOC_FILL_MP; 1927 break; 1928 } 1929 mp.mp_list[mp_h] = 0; 1930 mp_h--; /* search one metadata height down */ 1931 mp.mp_list[mp_h]++; 1932 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1933 break; 1934 /* Here we've found a part of the metapath that is not 1935 * allocated. We need to search at that height for the 1936 * next non-null pointer. */ 1937 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1938 state = DEALLOC_FILL_MP; 1939 mp_h++; 1940 } 1941 /* No more non-null pointers at this height. Back up 1942 to the previous height and try again. */ 1943 break; /* loop around in the same state */ 1944 1945 /* Fill the metapath with buffers to the given height. */ 1946 case DEALLOC_FILL_MP: 1947 /* Fill the buffers out to the current height. */ 1948 ret = fillup_metapath(ip, &mp, mp_h); 1949 if (ret < 0) 1950 goto out; 1951 1952 /* On the first pass, issue read-ahead on metadata. */ 1953 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1954 unsigned int height = mp.mp_aheight - 1; 1955 1956 /* No read-ahead for data blocks. */ 1957 if (mp.mp_aheight - 1 == strip_h) 1958 height--; 1959 1960 for (; height >= mp.mp_aheight - ret; height--) { 1961 metapointer_range(&mp, height, 1962 start_list, start_aligned, 1963 end_list, end_aligned, 1964 &start, &end); 1965 gfs2_metapath_ra(ip->i_gl, start, end); 1966 } 1967 } 1968 1969 /* If buffers found for the entire strip height */ 1970 if (mp.mp_aheight - 1 == strip_h) { 1971 state = DEALLOC_MP_FULL; 1972 break; 1973 } 1974 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1975 mp_h = mp.mp_aheight - 1; 1976 1977 /* If we find a non-null block pointer, crawl a bit 1978 higher up in the metapath and try again, otherwise 1979 we need to look lower for a new starting point. */ 1980 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1981 mp_h++; 1982 else 1983 state = DEALLOC_MP_LOWER; 1984 break; 1985 } 1986 } 1987 1988 if (btotal) { 1989 if (current->journal_info == NULL) { 1990 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1991 RES_QUOTA, 0); 1992 if (ret) 1993 goto out; 1994 down_write(&ip->i_rw_mutex); 1995 } 1996 gfs2_statfs_change(sdp, 0, +btotal, 0); 1997 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1998 ip->i_inode.i_gid); 1999 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2000 gfs2_trans_add_meta(ip->i_gl, dibh); 2001 gfs2_dinode_out(ip, dibh->b_data); 2002 up_write(&ip->i_rw_mutex); 2003 gfs2_trans_end(sdp); 2004 } 2005 2006 out: 2007 if (gfs2_holder_initialized(&rd_gh)) 2008 gfs2_glock_dq_uninit(&rd_gh); 2009 if (current->journal_info) { 2010 up_write(&ip->i_rw_mutex); 2011 gfs2_trans_end(sdp); 2012 cond_resched(); 2013 } 2014 gfs2_quota_unhold(ip); 2015 out_metapath: 2016 release_metapath(&mp); 2017 return ret; 2018 } 2019 2020 static int trunc_end(struct gfs2_inode *ip) 2021 { 2022 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2023 struct buffer_head *dibh; 2024 int error; 2025 2026 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2027 if (error) 2028 return error; 2029 2030 down_write(&ip->i_rw_mutex); 2031 2032 error = gfs2_meta_inode_buffer(ip, &dibh); 2033 if (error) 2034 goto out; 2035 2036 if (!i_size_read(&ip->i_inode)) { 2037 ip->i_height = 0; 2038 ip->i_goal = ip->i_no_addr; 2039 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2040 gfs2_ordered_del_inode(ip); 2041 } 2042 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2043 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2044 2045 gfs2_trans_add_meta(ip->i_gl, dibh); 2046 gfs2_dinode_out(ip, dibh->b_data); 2047 brelse(dibh); 2048 2049 out: 2050 up_write(&ip->i_rw_mutex); 2051 gfs2_trans_end(sdp); 2052 return error; 2053 } 2054 2055 /** 2056 * do_shrink - make a file smaller 2057 * @inode: the inode 2058 * @newsize: the size to make the file 2059 * 2060 * Called with an exclusive lock on @inode. The @size must 2061 * be equal to or smaller than the current inode size. 2062 * 2063 * Returns: errno 2064 */ 2065 2066 static int do_shrink(struct inode *inode, u64 newsize) 2067 { 2068 struct gfs2_inode *ip = GFS2_I(inode); 2069 int error; 2070 2071 error = trunc_start(inode, newsize); 2072 if (error < 0) 2073 return error; 2074 if (gfs2_is_stuffed(ip)) 2075 return 0; 2076 2077 error = punch_hole(ip, newsize, 0); 2078 if (error == 0) 2079 error = trunc_end(ip); 2080 2081 return error; 2082 } 2083 2084 void gfs2_trim_blocks(struct inode *inode) 2085 { 2086 int ret; 2087 2088 ret = do_shrink(inode, inode->i_size); 2089 WARN_ON(ret != 0); 2090 } 2091 2092 /** 2093 * do_grow - Touch and update inode size 2094 * @inode: The inode 2095 * @size: The new size 2096 * 2097 * This function updates the timestamps on the inode and 2098 * may also increase the size of the inode. This function 2099 * must not be called with @size any smaller than the current 2100 * inode size. 2101 * 2102 * Although it is not strictly required to unstuff files here, 2103 * earlier versions of GFS2 have a bug in the stuffed file reading 2104 * code which will result in a buffer overrun if the size is larger 2105 * than the max stuffed file size. In order to prevent this from 2106 * occurring, such files are unstuffed, but in other cases we can 2107 * just update the inode size directly. 2108 * 2109 * Returns: 0 on success, or -ve on error 2110 */ 2111 2112 static int do_grow(struct inode *inode, u64 size) 2113 { 2114 struct gfs2_inode *ip = GFS2_I(inode); 2115 struct gfs2_sbd *sdp = GFS2_SB(inode); 2116 struct gfs2_alloc_parms ap = { .target = 1, }; 2117 struct buffer_head *dibh; 2118 int error; 2119 int unstuff = 0; 2120 2121 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2122 error = gfs2_quota_lock_check(ip, &ap); 2123 if (error) 2124 return error; 2125 2126 error = gfs2_inplace_reserve(ip, &ap); 2127 if (error) 2128 goto do_grow_qunlock; 2129 unstuff = 1; 2130 } 2131 2132 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2133 (unstuff && 2134 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2135 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2136 0 : RES_QUOTA), 0); 2137 if (error) 2138 goto do_grow_release; 2139 2140 if (unstuff) { 2141 error = gfs2_unstuff_dinode(ip, NULL); 2142 if (error) 2143 goto do_end_trans; 2144 } 2145 2146 error = gfs2_meta_inode_buffer(ip, &dibh); 2147 if (error) 2148 goto do_end_trans; 2149 2150 truncate_setsize(inode, size); 2151 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2152 gfs2_trans_add_meta(ip->i_gl, dibh); 2153 gfs2_dinode_out(ip, dibh->b_data); 2154 brelse(dibh); 2155 2156 do_end_trans: 2157 gfs2_trans_end(sdp); 2158 do_grow_release: 2159 if (unstuff) { 2160 gfs2_inplace_release(ip); 2161 do_grow_qunlock: 2162 gfs2_quota_unlock(ip); 2163 } 2164 return error; 2165 } 2166 2167 /** 2168 * gfs2_setattr_size - make a file a given size 2169 * @inode: the inode 2170 * @newsize: the size to make the file 2171 * 2172 * The file size can grow, shrink, or stay the same size. This 2173 * is called holding i_rwsem and an exclusive glock on the inode 2174 * in question. 2175 * 2176 * Returns: errno 2177 */ 2178 2179 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2180 { 2181 struct gfs2_inode *ip = GFS2_I(inode); 2182 int ret; 2183 2184 BUG_ON(!S_ISREG(inode->i_mode)); 2185 2186 ret = inode_newsize_ok(inode, newsize); 2187 if (ret) 2188 return ret; 2189 2190 inode_dio_wait(inode); 2191 2192 ret = gfs2_qa_get(ip); 2193 if (ret) 2194 goto out; 2195 2196 if (newsize >= inode->i_size) { 2197 ret = do_grow(inode, newsize); 2198 goto out; 2199 } 2200 2201 ret = do_shrink(inode, newsize); 2202 out: 2203 gfs2_rs_delete(ip, NULL); 2204 gfs2_qa_put(ip); 2205 return ret; 2206 } 2207 2208 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2209 { 2210 int error; 2211 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2212 if (!error) 2213 error = trunc_end(ip); 2214 return error; 2215 } 2216 2217 int gfs2_file_dealloc(struct gfs2_inode *ip) 2218 { 2219 return punch_hole(ip, 0, 0); 2220 } 2221 2222 /** 2223 * gfs2_free_journal_extents - Free cached journal bmap info 2224 * @jd: The journal 2225 * 2226 */ 2227 2228 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2229 { 2230 struct gfs2_journal_extent *jext; 2231 2232 while(!list_empty(&jd->extent_list)) { 2233 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2234 list_del(&jext->list); 2235 kfree(jext); 2236 } 2237 } 2238 2239 /** 2240 * gfs2_add_jextent - Add or merge a new extent to extent cache 2241 * @jd: The journal descriptor 2242 * @lblock: The logical block at start of new extent 2243 * @dblock: The physical block at start of new extent 2244 * @blocks: Size of extent in fs blocks 2245 * 2246 * Returns: 0 on success or -ENOMEM 2247 */ 2248 2249 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2250 { 2251 struct gfs2_journal_extent *jext; 2252 2253 if (!list_empty(&jd->extent_list)) { 2254 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2255 if ((jext->dblock + jext->blocks) == dblock) { 2256 jext->blocks += blocks; 2257 return 0; 2258 } 2259 } 2260 2261 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2262 if (jext == NULL) 2263 return -ENOMEM; 2264 jext->dblock = dblock; 2265 jext->lblock = lblock; 2266 jext->blocks = blocks; 2267 list_add_tail(&jext->list, &jd->extent_list); 2268 jd->nr_extents++; 2269 return 0; 2270 } 2271 2272 /** 2273 * gfs2_map_journal_extents - Cache journal bmap info 2274 * @sdp: The super block 2275 * @jd: The journal to map 2276 * 2277 * Create a reusable "extent" mapping from all logical 2278 * blocks to all physical blocks for the given journal. This will save 2279 * us time when writing journal blocks. Most journals will have only one 2280 * extent that maps all their logical blocks. That's because gfs2.mkfs 2281 * arranges the journal blocks sequentially to maximize performance. 2282 * So the extent would map the first block for the entire file length. 2283 * However, gfs2_jadd can happen while file activity is happening, so 2284 * those journals may not be sequential. Less likely is the case where 2285 * the users created their own journals by mounting the metafs and 2286 * laying it out. But it's still possible. These journals might have 2287 * several extents. 2288 * 2289 * Returns: 0 on success, or error on failure 2290 */ 2291 2292 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2293 { 2294 u64 lblock = 0; 2295 u64 lblock_stop; 2296 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2297 struct buffer_head bh; 2298 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2299 u64 size; 2300 int rc; 2301 ktime_t start, end; 2302 2303 start = ktime_get(); 2304 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2305 size = (lblock_stop - lblock) << shift; 2306 jd->nr_extents = 0; 2307 WARN_ON(!list_empty(&jd->extent_list)); 2308 2309 do { 2310 bh.b_state = 0; 2311 bh.b_blocknr = 0; 2312 bh.b_size = size; 2313 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2314 if (rc || !buffer_mapped(&bh)) 2315 goto fail; 2316 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2317 if (rc) 2318 goto fail; 2319 size -= bh.b_size; 2320 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2321 } while(size > 0); 2322 2323 end = ktime_get(); 2324 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2325 jd->nr_extents, ktime_ms_delta(end, start)); 2326 return 0; 2327 2328 fail: 2329 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2330 rc, jd->jd_jid, 2331 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2332 jd->nr_extents); 2333 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2334 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2335 bh.b_state, (unsigned long long)bh.b_size); 2336 gfs2_free_journal_extents(jd); 2337 return rc; 2338 } 2339 2340 /** 2341 * gfs2_write_alloc_required - figure out if a write will require an allocation 2342 * @ip: the file being written to 2343 * @offset: the offset to write to 2344 * @len: the number of bytes being written 2345 * 2346 * Returns: 1 if an alloc is required, 0 otherwise 2347 */ 2348 2349 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2350 unsigned int len) 2351 { 2352 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2353 struct buffer_head bh; 2354 unsigned int shift; 2355 u64 lblock, lblock_stop, size; 2356 u64 end_of_file; 2357 2358 if (!len) 2359 return 0; 2360 2361 if (gfs2_is_stuffed(ip)) { 2362 if (offset + len > gfs2_max_stuffed_size(ip)) 2363 return 1; 2364 return 0; 2365 } 2366 2367 shift = sdp->sd_sb.sb_bsize_shift; 2368 BUG_ON(gfs2_is_dir(ip)); 2369 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2370 lblock = offset >> shift; 2371 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2372 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2373 return 1; 2374 2375 size = (lblock_stop - lblock) << shift; 2376 do { 2377 bh.b_state = 0; 2378 bh.b_size = size; 2379 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2380 if (!buffer_mapped(&bh)) 2381 return 1; 2382 size -= bh.b_size; 2383 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2384 } while(size > 0); 2385 2386 return 0; 2387 } 2388 2389 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2390 { 2391 struct gfs2_inode *ip = GFS2_I(inode); 2392 struct buffer_head *dibh; 2393 int error; 2394 2395 if (offset >= inode->i_size) 2396 return 0; 2397 if (offset + length > inode->i_size) 2398 length = inode->i_size - offset; 2399 2400 error = gfs2_meta_inode_buffer(ip, &dibh); 2401 if (error) 2402 return error; 2403 gfs2_trans_add_meta(ip->i_gl, dibh); 2404 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2405 length); 2406 brelse(dibh); 2407 return 0; 2408 } 2409 2410 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2411 loff_t length) 2412 { 2413 struct gfs2_sbd *sdp = GFS2_SB(inode); 2414 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2415 int error; 2416 2417 while (length) { 2418 struct gfs2_trans *tr; 2419 loff_t chunk; 2420 unsigned int offs; 2421 2422 chunk = length; 2423 if (chunk > max_chunk) 2424 chunk = max_chunk; 2425 2426 offs = offset & ~PAGE_MASK; 2427 if (offs && chunk > PAGE_SIZE) 2428 chunk = offs + ((chunk - offs) & PAGE_MASK); 2429 2430 truncate_pagecache_range(inode, offset, chunk); 2431 offset += chunk; 2432 length -= chunk; 2433 2434 tr = current->journal_info; 2435 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2436 continue; 2437 2438 gfs2_trans_end(sdp); 2439 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2440 if (error) 2441 return error; 2442 } 2443 return 0; 2444 } 2445 2446 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2447 { 2448 struct inode *inode = file_inode(file); 2449 struct gfs2_inode *ip = GFS2_I(inode); 2450 struct gfs2_sbd *sdp = GFS2_SB(inode); 2451 unsigned int blocksize = i_blocksize(inode); 2452 loff_t start, end; 2453 int error; 2454 2455 if (!gfs2_is_stuffed(ip)) { 2456 unsigned int start_off, end_len; 2457 2458 start_off = offset & (blocksize - 1); 2459 end_len = (offset + length) & (blocksize - 1); 2460 if (start_off) { 2461 unsigned int len = length; 2462 if (length > blocksize - start_off) 2463 len = blocksize - start_off; 2464 error = gfs2_block_zero_range(inode, offset, len); 2465 if (error) 2466 goto out; 2467 if (start_off + length < blocksize) 2468 end_len = 0; 2469 } 2470 if (end_len) { 2471 error = gfs2_block_zero_range(inode, 2472 offset + length - end_len, end_len); 2473 if (error) 2474 goto out; 2475 } 2476 } 2477 2478 start = round_down(offset, blocksize); 2479 end = round_up(offset + length, blocksize) - 1; 2480 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2481 if (error) 2482 return error; 2483 2484 if (gfs2_is_jdata(ip)) 2485 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2486 GFS2_JTRUNC_REVOKES); 2487 else 2488 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2489 if (error) 2490 return error; 2491 2492 if (gfs2_is_stuffed(ip)) { 2493 error = stuffed_zero_range(inode, offset, length); 2494 if (error) 2495 goto out; 2496 } 2497 2498 if (gfs2_is_jdata(ip)) { 2499 BUG_ON(!current->journal_info); 2500 gfs2_journaled_truncate_range(inode, offset, length); 2501 } else 2502 truncate_pagecache_range(inode, offset, offset + length - 1); 2503 2504 file_update_time(file); 2505 mark_inode_dirty(inode); 2506 2507 if (current->journal_info) 2508 gfs2_trans_end(sdp); 2509 2510 if (!gfs2_is_stuffed(ip)) 2511 error = punch_hole(ip, offset, length); 2512 2513 out: 2514 if (current->journal_info) 2515 gfs2_trans_end(sdp); 2516 return error; 2517 } 2518 2519 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2520 loff_t offset) 2521 { 2522 struct metapath mp = { .mp_aheight = 1, }; 2523 int ret; 2524 2525 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2526 return -EIO; 2527 2528 if (offset >= wpc->iomap.offset && 2529 offset < wpc->iomap.offset + wpc->iomap.length) 2530 return 0; 2531 2532 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2533 ret = gfs2_iomap_get(inode, offset, INT_MAX, 0, &wpc->iomap, &mp); 2534 release_metapath(&mp); 2535 return ret; 2536 } 2537 2538 const struct iomap_writeback_ops gfs2_writeback_ops = { 2539 .map_blocks = gfs2_map_blocks, 2540 }; 2541