1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 int release = 0; 60 61 if (!page || page->index) { 62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 63 if (!page) 64 return -ENOMEM; 65 release = 1; 66 } 67 68 if (!PageUptodate(page)) { 69 void *kaddr = kmap(page); 70 u64 dsize = i_size_read(inode); 71 72 if (dsize > gfs2_max_stuffed_size(ip)) 73 dsize = gfs2_max_stuffed_size(ip); 74 75 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 76 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 77 kunmap(page); 78 79 SetPageUptodate(page); 80 } 81 82 if (gfs2_is_jdata(ip)) { 83 struct buffer_head *bh; 84 85 if (!page_has_buffers(page)) 86 create_empty_buffers(page, BIT(inode->i_blkbits), 87 BIT(BH_Uptodate)); 88 89 bh = page_buffers(page); 90 if (!buffer_mapped(bh)) 91 map_bh(bh, inode->i_sb, block); 92 93 set_buffer_uptodate(bh); 94 gfs2_trans_add_data(ip->i_gl, bh); 95 } else { 96 set_page_dirty(page); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 return ptr; 625 } 626 627 enum alloc_state { 628 ALLOC_DATA = 0, 629 ALLOC_GROW_DEPTH = 1, 630 ALLOC_GROW_HEIGHT = 2, 631 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 632 }; 633 634 /** 635 * __gfs2_iomap_alloc - Build a metadata tree of the requested height 636 * @inode: The GFS2 inode 637 * @iomap: The iomap structure 638 * @mp: The metapath, with proper height information calculated 639 * 640 * In this routine we may have to alloc: 641 * i) Indirect blocks to grow the metadata tree height 642 * ii) Indirect blocks to fill in lower part of the metadata tree 643 * iii) Data blocks 644 * 645 * This function is called after __gfs2_iomap_get, which works out the 646 * total number of blocks which we need via gfs2_alloc_size. 647 * 648 * We then do the actual allocation asking for an extent at a time (if 649 * enough contiguous free blocks are available, there will only be one 650 * allocation request per call) and uses the state machine to initialise 651 * the blocks in order. 652 * 653 * Right now, this function will allocate at most one indirect block 654 * worth of data -- with a default block size of 4K, that's slightly 655 * less than 2M. If this limitation is ever removed to allow huge 656 * allocations, we would probably still want to limit the iomap size we 657 * return to avoid stalling other tasks during huge writes; the next 658 * iomap iteration would then find the blocks already allocated. 659 * 660 * Returns: errno on error 661 */ 662 663 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 664 struct metapath *mp) 665 { 666 struct gfs2_inode *ip = GFS2_I(inode); 667 struct gfs2_sbd *sdp = GFS2_SB(inode); 668 struct buffer_head *dibh = mp->mp_bh[0]; 669 u64 bn; 670 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 671 size_t dblks = iomap->length >> inode->i_blkbits; 672 const unsigned end_of_metadata = mp->mp_fheight - 1; 673 int ret; 674 enum alloc_state state; 675 __be64 *ptr; 676 __be64 zero_bn = 0; 677 678 BUG_ON(mp->mp_aheight < 1); 679 BUG_ON(dibh == NULL); 680 BUG_ON(dblks < 1); 681 682 gfs2_trans_add_meta(ip->i_gl, dibh); 683 684 down_write(&ip->i_rw_mutex); 685 686 if (mp->mp_fheight == mp->mp_aheight) { 687 /* Bottom indirect block exists */ 688 state = ALLOC_DATA; 689 } else { 690 /* Need to allocate indirect blocks */ 691 if (mp->mp_fheight == ip->i_height) { 692 /* Writing into existing tree, extend tree down */ 693 iblks = mp->mp_fheight - mp->mp_aheight; 694 state = ALLOC_GROW_DEPTH; 695 } else { 696 /* Building up tree height */ 697 state = ALLOC_GROW_HEIGHT; 698 iblks = mp->mp_fheight - ip->i_height; 699 branch_start = metapath_branch_start(mp); 700 iblks += (mp->mp_fheight - branch_start); 701 } 702 } 703 704 /* start of the second part of the function (state machine) */ 705 706 blks = dblks + iblks; 707 i = mp->mp_aheight; 708 do { 709 n = blks - alloced; 710 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 711 if (ret) 712 goto out; 713 alloced += n; 714 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 715 gfs2_trans_remove_revoke(sdp, bn, n); 716 switch (state) { 717 /* Growing height of tree */ 718 case ALLOC_GROW_HEIGHT: 719 if (i == 1) { 720 ptr = (__be64 *)(dibh->b_data + 721 sizeof(struct gfs2_dinode)); 722 zero_bn = *ptr; 723 } 724 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 725 i++, n--) 726 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 727 if (i - 1 == mp->mp_fheight - ip->i_height) { 728 i--; 729 gfs2_buffer_copy_tail(mp->mp_bh[i], 730 sizeof(struct gfs2_meta_header), 731 dibh, sizeof(struct gfs2_dinode)); 732 gfs2_buffer_clear_tail(dibh, 733 sizeof(struct gfs2_dinode) + 734 sizeof(__be64)); 735 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 736 sizeof(struct gfs2_meta_header)); 737 *ptr = zero_bn; 738 state = ALLOC_GROW_DEPTH; 739 for(i = branch_start; i < mp->mp_fheight; i++) { 740 if (mp->mp_bh[i] == NULL) 741 break; 742 brelse(mp->mp_bh[i]); 743 mp->mp_bh[i] = NULL; 744 } 745 i = branch_start; 746 } 747 if (n == 0) 748 break; 749 fallthrough; /* To branching from existing tree */ 750 case ALLOC_GROW_DEPTH: 751 if (i > 1 && i < mp->mp_fheight) 752 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 753 for (; i < mp->mp_fheight && n > 0; i++, n--) 754 gfs2_indirect_init(mp, ip->i_gl, i, 755 mp->mp_list[i-1], bn++); 756 if (i == mp->mp_fheight) 757 state = ALLOC_DATA; 758 if (n == 0) 759 break; 760 fallthrough; /* To tree complete, adding data blocks */ 761 case ALLOC_DATA: 762 BUG_ON(n > dblks); 763 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 764 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 765 dblks = n; 766 ptr = metapointer(end_of_metadata, mp); 767 iomap->addr = bn << inode->i_blkbits; 768 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 769 while (n-- > 0) 770 *ptr++ = cpu_to_be64(bn++); 771 break; 772 } 773 } while (iomap->addr == IOMAP_NULL_ADDR); 774 775 iomap->type = IOMAP_MAPPED; 776 iomap->length = (u64)dblks << inode->i_blkbits; 777 ip->i_height = mp->mp_fheight; 778 gfs2_add_inode_blocks(&ip->i_inode, alloced); 779 gfs2_dinode_out(ip, dibh->b_data); 780 out: 781 up_write(&ip->i_rw_mutex); 782 return ret; 783 } 784 785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 786 787 /** 788 * gfs2_alloc_size - Compute the maximum allocation size 789 * @inode: The inode 790 * @mp: The metapath 791 * @size: Requested size in blocks 792 * 793 * Compute the maximum size of the next allocation at @mp. 794 * 795 * Returns: size in blocks 796 */ 797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 798 { 799 struct gfs2_inode *ip = GFS2_I(inode); 800 struct gfs2_sbd *sdp = GFS2_SB(inode); 801 const __be64 *first, *ptr, *end; 802 803 /* 804 * For writes to stuffed files, this function is called twice via 805 * __gfs2_iomap_get, before and after unstuffing. The size we return the 806 * first time needs to be large enough to get the reservation and 807 * allocation sizes right. The size we return the second time must 808 * be exact or else __gfs2_iomap_alloc won't do the right thing. 809 */ 810 811 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 812 unsigned int maxsize = mp->mp_fheight > 1 ? 813 sdp->sd_inptrs : sdp->sd_diptrs; 814 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 815 if (size > maxsize) 816 size = maxsize; 817 return size; 818 } 819 820 first = metapointer(ip->i_height - 1, mp); 821 end = metaend(ip->i_height - 1, mp); 822 if (end - first > size) 823 end = first + size; 824 for (ptr = first; ptr < end; ptr++) { 825 if (*ptr) 826 break; 827 } 828 return ptr - first; 829 } 830 831 /** 832 * __gfs2_iomap_get - Map blocks from an inode to disk blocks 833 * @inode: The inode 834 * @pos: Starting position in bytes 835 * @length: Length to map, in bytes 836 * @flags: iomap flags 837 * @iomap: The iomap structure 838 * @mp: The metapath 839 * 840 * Returns: errno 841 */ 842 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 843 unsigned flags, struct iomap *iomap, 844 struct metapath *mp) 845 { 846 struct gfs2_inode *ip = GFS2_I(inode); 847 struct gfs2_sbd *sdp = GFS2_SB(inode); 848 loff_t size = i_size_read(inode); 849 __be64 *ptr; 850 sector_t lblock; 851 sector_t lblock_stop; 852 int ret; 853 int eob; 854 u64 len; 855 struct buffer_head *dibh = NULL, *bh; 856 u8 height; 857 858 if (!length) 859 return -EINVAL; 860 861 down_read(&ip->i_rw_mutex); 862 863 ret = gfs2_meta_inode_buffer(ip, &dibh); 864 if (ret) 865 goto unlock; 866 mp->mp_bh[0] = dibh; 867 868 if (gfs2_is_stuffed(ip)) { 869 if (flags & IOMAP_WRITE) { 870 loff_t max_size = gfs2_max_stuffed_size(ip); 871 872 if (pos + length > max_size) 873 goto unstuff; 874 iomap->length = max_size; 875 } else { 876 if (pos >= size) { 877 if (flags & IOMAP_REPORT) { 878 ret = -ENOENT; 879 goto unlock; 880 } else { 881 iomap->offset = pos; 882 iomap->length = length; 883 goto hole_found; 884 } 885 } 886 iomap->length = size; 887 } 888 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 889 sizeof(struct gfs2_dinode); 890 iomap->type = IOMAP_INLINE; 891 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 892 goto out; 893 } 894 895 unstuff: 896 lblock = pos >> inode->i_blkbits; 897 iomap->offset = lblock << inode->i_blkbits; 898 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 899 len = lblock_stop - lblock + 1; 900 iomap->length = len << inode->i_blkbits; 901 902 height = ip->i_height; 903 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 904 height++; 905 find_metapath(sdp, lblock, mp, height); 906 if (height > ip->i_height || gfs2_is_stuffed(ip)) 907 goto do_alloc; 908 909 ret = lookup_metapath(ip, mp); 910 if (ret) 911 goto unlock; 912 913 if (mp->mp_aheight != ip->i_height) 914 goto do_alloc; 915 916 ptr = metapointer(ip->i_height - 1, mp); 917 if (*ptr == 0) 918 goto do_alloc; 919 920 bh = mp->mp_bh[ip->i_height - 1]; 921 len = gfs2_extent_length(bh, ptr, len, &eob); 922 923 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 924 iomap->length = len << inode->i_blkbits; 925 iomap->type = IOMAP_MAPPED; 926 iomap->flags |= IOMAP_F_MERGED; 927 if (eob) 928 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 929 930 out: 931 iomap->bdev = inode->i_sb->s_bdev; 932 unlock: 933 up_read(&ip->i_rw_mutex); 934 return ret; 935 936 do_alloc: 937 if (flags & IOMAP_REPORT) { 938 if (pos >= size) 939 ret = -ENOENT; 940 else if (height == ip->i_height) 941 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 942 else 943 iomap->length = size - pos; 944 } else if (flags & IOMAP_WRITE) { 945 u64 alloc_size; 946 947 if (flags & IOMAP_DIRECT) 948 goto out; /* (see gfs2_file_direct_write) */ 949 950 len = gfs2_alloc_size(inode, mp, len); 951 alloc_size = len << inode->i_blkbits; 952 if (alloc_size < iomap->length) 953 iomap->length = alloc_size; 954 } else { 955 if (pos < size && height == ip->i_height) 956 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 957 } 958 hole_found: 959 iomap->addr = IOMAP_NULL_ADDR; 960 iomap->type = IOMAP_HOLE; 961 goto out; 962 } 963 964 static int gfs2_write_lock(struct inode *inode) 965 { 966 struct gfs2_inode *ip = GFS2_I(inode); 967 struct gfs2_sbd *sdp = GFS2_SB(inode); 968 int error; 969 970 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 971 error = gfs2_glock_nq(&ip->i_gh); 972 if (error) 973 goto out_uninit; 974 if (&ip->i_inode == sdp->sd_rindex) { 975 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 976 977 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 978 GL_NOCACHE, &m_ip->i_gh); 979 if (error) 980 goto out_unlock; 981 } 982 return 0; 983 984 out_unlock: 985 gfs2_glock_dq(&ip->i_gh); 986 out_uninit: 987 gfs2_holder_uninit(&ip->i_gh); 988 return error; 989 } 990 991 static void gfs2_write_unlock(struct inode *inode) 992 { 993 struct gfs2_inode *ip = GFS2_I(inode); 994 struct gfs2_sbd *sdp = GFS2_SB(inode); 995 996 if (&ip->i_inode == sdp->sd_rindex) { 997 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 998 999 gfs2_glock_dq_uninit(&m_ip->i_gh); 1000 } 1001 gfs2_glock_dq_uninit(&ip->i_gh); 1002 } 1003 1004 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1005 unsigned len, struct iomap *iomap) 1006 { 1007 unsigned int blockmask = i_blocksize(inode) - 1; 1008 struct gfs2_sbd *sdp = GFS2_SB(inode); 1009 unsigned int blocks; 1010 1011 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1012 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1013 } 1014 1015 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1016 unsigned copied, struct page *page, 1017 struct iomap *iomap) 1018 { 1019 struct gfs2_trans *tr = current->journal_info; 1020 struct gfs2_inode *ip = GFS2_I(inode); 1021 struct gfs2_sbd *sdp = GFS2_SB(inode); 1022 1023 if (page && !gfs2_is_stuffed(ip)) 1024 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1025 1026 if (tr->tr_num_buf_new) 1027 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1028 1029 gfs2_trans_end(sdp); 1030 } 1031 1032 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1033 .page_prepare = gfs2_iomap_page_prepare, 1034 .page_done = gfs2_iomap_page_done, 1035 }; 1036 1037 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1038 loff_t length, unsigned flags, 1039 struct iomap *iomap, 1040 struct metapath *mp) 1041 { 1042 struct gfs2_inode *ip = GFS2_I(inode); 1043 struct gfs2_sbd *sdp = GFS2_SB(inode); 1044 bool unstuff; 1045 int ret; 1046 1047 unstuff = gfs2_is_stuffed(ip) && 1048 pos + length > gfs2_max_stuffed_size(ip); 1049 1050 if (unstuff || iomap->type == IOMAP_HOLE) { 1051 unsigned int data_blocks, ind_blocks; 1052 struct gfs2_alloc_parms ap = {}; 1053 unsigned int rblocks; 1054 struct gfs2_trans *tr; 1055 1056 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1057 &ind_blocks); 1058 ap.target = data_blocks + ind_blocks; 1059 ret = gfs2_quota_lock_check(ip, &ap); 1060 if (ret) 1061 return ret; 1062 1063 ret = gfs2_inplace_reserve(ip, &ap); 1064 if (ret) 1065 goto out_qunlock; 1066 1067 rblocks = RES_DINODE + ind_blocks; 1068 if (gfs2_is_jdata(ip)) 1069 rblocks += data_blocks; 1070 if (ind_blocks || data_blocks) 1071 rblocks += RES_STATFS + RES_QUOTA; 1072 if (inode == sdp->sd_rindex) 1073 rblocks += 2 * RES_STATFS; 1074 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1075 1076 ret = gfs2_trans_begin(sdp, rblocks, 1077 iomap->length >> inode->i_blkbits); 1078 if (ret) 1079 goto out_trans_fail; 1080 1081 if (unstuff) { 1082 ret = gfs2_unstuff_dinode(ip, NULL); 1083 if (ret) 1084 goto out_trans_end; 1085 release_metapath(mp); 1086 ret = __gfs2_iomap_get(inode, iomap->offset, 1087 iomap->length, flags, iomap, mp); 1088 if (ret) 1089 goto out_trans_end; 1090 } 1091 1092 if (iomap->type == IOMAP_HOLE) { 1093 ret = __gfs2_iomap_alloc(inode, iomap, mp); 1094 if (ret) { 1095 gfs2_trans_end(sdp); 1096 gfs2_inplace_release(ip); 1097 punch_hole(ip, iomap->offset, iomap->length); 1098 goto out_qunlock; 1099 } 1100 } 1101 1102 tr = current->journal_info; 1103 if (tr->tr_num_buf_new) 1104 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1105 1106 gfs2_trans_end(sdp); 1107 } 1108 1109 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1110 iomap->page_ops = &gfs2_iomap_page_ops; 1111 return 0; 1112 1113 out_trans_end: 1114 gfs2_trans_end(sdp); 1115 out_trans_fail: 1116 gfs2_inplace_release(ip); 1117 out_qunlock: 1118 gfs2_quota_unlock(ip); 1119 return ret; 1120 } 1121 1122 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1123 { 1124 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1125 } 1126 1127 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1128 unsigned flags, struct iomap *iomap, 1129 struct iomap *srcmap) 1130 { 1131 struct gfs2_inode *ip = GFS2_I(inode); 1132 struct metapath mp = { .mp_aheight = 1, }; 1133 int ret; 1134 1135 if (gfs2_is_jdata(ip)) 1136 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1137 1138 trace_gfs2_iomap_start(ip, pos, length, flags); 1139 if (gfs2_iomap_need_write_lock(flags)) { 1140 ret = gfs2_write_lock(inode); 1141 if (ret) 1142 goto out; 1143 } 1144 1145 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1146 if (ret) 1147 goto out_unlock; 1148 1149 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1150 case IOMAP_WRITE: 1151 if (flags & IOMAP_DIRECT) { 1152 /* 1153 * Silently fall back to buffered I/O for stuffed files 1154 * or if we've got a hole (see gfs2_file_direct_write). 1155 */ 1156 if (iomap->type != IOMAP_MAPPED) 1157 ret = -ENOTBLK; 1158 goto out_unlock; 1159 } 1160 break; 1161 case IOMAP_ZERO: 1162 if (iomap->type == IOMAP_HOLE) 1163 goto out_unlock; 1164 break; 1165 default: 1166 goto out_unlock; 1167 } 1168 1169 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1170 1171 out_unlock: 1172 if (ret && gfs2_iomap_need_write_lock(flags)) 1173 gfs2_write_unlock(inode); 1174 release_metapath(&mp); 1175 out: 1176 trace_gfs2_iomap_end(ip, iomap, ret); 1177 return ret; 1178 } 1179 1180 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1181 ssize_t written, unsigned flags, struct iomap *iomap) 1182 { 1183 struct gfs2_inode *ip = GFS2_I(inode); 1184 struct gfs2_sbd *sdp = GFS2_SB(inode); 1185 1186 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1187 case IOMAP_WRITE: 1188 if (flags & IOMAP_DIRECT) 1189 return 0; 1190 break; 1191 case IOMAP_ZERO: 1192 if (iomap->type == IOMAP_HOLE) 1193 return 0; 1194 break; 1195 default: 1196 return 0; 1197 } 1198 1199 if (!gfs2_is_stuffed(ip)) 1200 gfs2_ordered_add_inode(ip); 1201 1202 if (inode == sdp->sd_rindex) 1203 adjust_fs_space(inode); 1204 1205 gfs2_inplace_release(ip); 1206 1207 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1208 gfs2_quota_unlock(ip); 1209 1210 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1211 /* Deallocate blocks that were just allocated. */ 1212 loff_t blockmask = i_blocksize(inode) - 1; 1213 loff_t end = (pos + length) & ~blockmask; 1214 1215 pos = (pos + written + blockmask) & ~blockmask; 1216 if (pos < end) { 1217 truncate_pagecache_range(inode, pos, end - 1); 1218 punch_hole(ip, pos, end - pos); 1219 } 1220 } 1221 1222 if (unlikely(!written)) 1223 goto out_unlock; 1224 1225 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1226 mark_inode_dirty(inode); 1227 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1228 1229 out_unlock: 1230 if (gfs2_iomap_need_write_lock(flags)) 1231 gfs2_write_unlock(inode); 1232 return 0; 1233 } 1234 1235 const struct iomap_ops gfs2_iomap_ops = { 1236 .iomap_begin = gfs2_iomap_begin, 1237 .iomap_end = gfs2_iomap_end, 1238 }; 1239 1240 /** 1241 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1242 * @inode: The inode 1243 * @lblock: The logical block number 1244 * @bh_map: The bh to be mapped 1245 * @create: True if its ok to alloc blocks to satify the request 1246 * 1247 * The size of the requested mapping is defined in bh_map->b_size. 1248 * 1249 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1250 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1251 * bh_map->b_size to indicate the size of the mapping when @lblock and 1252 * successive blocks are mapped, up to the requested size. 1253 * 1254 * Sets buffer_boundary() if a read of metadata will be required 1255 * before the next block can be mapped. Sets buffer_new() if new 1256 * blocks were allocated. 1257 * 1258 * Returns: errno 1259 */ 1260 1261 int gfs2_block_map(struct inode *inode, sector_t lblock, 1262 struct buffer_head *bh_map, int create) 1263 { 1264 struct gfs2_inode *ip = GFS2_I(inode); 1265 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1266 loff_t length = bh_map->b_size; 1267 struct iomap iomap = { }; 1268 int ret; 1269 1270 clear_buffer_mapped(bh_map); 1271 clear_buffer_new(bh_map); 1272 clear_buffer_boundary(bh_map); 1273 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1274 1275 if (!create) 1276 ret = gfs2_iomap_get(inode, pos, length, &iomap); 1277 else 1278 ret = gfs2_iomap_alloc(inode, pos, length, &iomap); 1279 if (ret) 1280 goto out; 1281 1282 if (iomap.length > bh_map->b_size) { 1283 iomap.length = bh_map->b_size; 1284 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1285 } 1286 if (iomap.addr != IOMAP_NULL_ADDR) 1287 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1288 bh_map->b_size = iomap.length; 1289 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1290 set_buffer_boundary(bh_map); 1291 if (iomap.flags & IOMAP_F_NEW) 1292 set_buffer_new(bh_map); 1293 1294 out: 1295 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1296 return ret; 1297 } 1298 1299 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock, 1300 unsigned int *extlen) 1301 { 1302 unsigned int blkbits = inode->i_blkbits; 1303 struct iomap iomap = { }; 1304 unsigned int len; 1305 int ret; 1306 1307 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits, 1308 &iomap); 1309 if (ret) 1310 return ret; 1311 if (iomap.type != IOMAP_MAPPED) 1312 return -EIO; 1313 *dblock = iomap.addr >> blkbits; 1314 len = iomap.length >> blkbits; 1315 if (len < *extlen) 1316 *extlen = len; 1317 return 0; 1318 } 1319 1320 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock, 1321 unsigned int *extlen, bool *new) 1322 { 1323 unsigned int blkbits = inode->i_blkbits; 1324 struct iomap iomap = { }; 1325 unsigned int len; 1326 int ret; 1327 1328 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits, 1329 &iomap); 1330 if (ret) 1331 return ret; 1332 if (iomap.type != IOMAP_MAPPED) 1333 return -EIO; 1334 *dblock = iomap.addr >> blkbits; 1335 len = iomap.length >> blkbits; 1336 if (len < *extlen) 1337 *extlen = len; 1338 *new = iomap.flags & IOMAP_F_NEW; 1339 return 0; 1340 } 1341 1342 /* 1343 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1344 * uses iomap write to perform its actions, which begin their own transactions 1345 * (iomap_begin, page_prepare, etc.) 1346 */ 1347 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1348 unsigned int length) 1349 { 1350 BUG_ON(current->journal_info); 1351 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1352 } 1353 1354 #define GFS2_JTRUNC_REVOKES 8192 1355 1356 /** 1357 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1358 * @inode: The inode being truncated 1359 * @oldsize: The original (larger) size 1360 * @newsize: The new smaller size 1361 * 1362 * With jdata files, we have to journal a revoke for each block which is 1363 * truncated. As a result, we need to split this into separate transactions 1364 * if the number of pages being truncated gets too large. 1365 */ 1366 1367 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1368 { 1369 struct gfs2_sbd *sdp = GFS2_SB(inode); 1370 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1371 u64 chunk; 1372 int error; 1373 1374 while (oldsize != newsize) { 1375 struct gfs2_trans *tr; 1376 unsigned int offs; 1377 1378 chunk = oldsize - newsize; 1379 if (chunk > max_chunk) 1380 chunk = max_chunk; 1381 1382 offs = oldsize & ~PAGE_MASK; 1383 if (offs && chunk > PAGE_SIZE) 1384 chunk = offs + ((chunk - offs) & PAGE_MASK); 1385 1386 truncate_pagecache(inode, oldsize - chunk); 1387 oldsize -= chunk; 1388 1389 tr = current->journal_info; 1390 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1391 continue; 1392 1393 gfs2_trans_end(sdp); 1394 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1395 if (error) 1396 return error; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int trunc_start(struct inode *inode, u64 newsize) 1403 { 1404 struct gfs2_inode *ip = GFS2_I(inode); 1405 struct gfs2_sbd *sdp = GFS2_SB(inode); 1406 struct buffer_head *dibh = NULL; 1407 int journaled = gfs2_is_jdata(ip); 1408 u64 oldsize = inode->i_size; 1409 int error; 1410 1411 if (!gfs2_is_stuffed(ip)) { 1412 unsigned int blocksize = i_blocksize(inode); 1413 unsigned int offs = newsize & (blocksize - 1); 1414 if (offs) { 1415 error = gfs2_block_zero_range(inode, newsize, 1416 blocksize - offs); 1417 if (error) 1418 return error; 1419 } 1420 } 1421 if (journaled) 1422 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1423 else 1424 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1425 if (error) 1426 return error; 1427 1428 error = gfs2_meta_inode_buffer(ip, &dibh); 1429 if (error) 1430 goto out; 1431 1432 gfs2_trans_add_meta(ip->i_gl, dibh); 1433 1434 if (gfs2_is_stuffed(ip)) 1435 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1436 else 1437 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1438 1439 i_size_write(inode, newsize); 1440 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1441 gfs2_dinode_out(ip, dibh->b_data); 1442 1443 if (journaled) 1444 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1445 else 1446 truncate_pagecache(inode, newsize); 1447 1448 out: 1449 brelse(dibh); 1450 if (current->journal_info) 1451 gfs2_trans_end(sdp); 1452 return error; 1453 } 1454 1455 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 1456 struct iomap *iomap) 1457 { 1458 struct metapath mp = { .mp_aheight = 1, }; 1459 int ret; 1460 1461 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp); 1462 release_metapath(&mp); 1463 return ret; 1464 } 1465 1466 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length, 1467 struct iomap *iomap) 1468 { 1469 struct metapath mp = { .mp_aheight = 1, }; 1470 int ret; 1471 1472 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1473 if (!ret && iomap->type == IOMAP_HOLE) 1474 ret = __gfs2_iomap_alloc(inode, iomap, &mp); 1475 release_metapath(&mp); 1476 return ret; 1477 } 1478 1479 /** 1480 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1481 * @ip: inode 1482 * @rd_gh: holder of resource group glock 1483 * @bh: buffer head to sweep 1484 * @start: starting point in bh 1485 * @end: end point in bh 1486 * @meta: true if bh points to metadata (rather than data) 1487 * @btotal: place to keep count of total blocks freed 1488 * 1489 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1490 * free, and free them all. However, we do it one rgrp at a time. If this 1491 * block has references to multiple rgrps, we break it into individual 1492 * transactions. This allows other processes to use the rgrps while we're 1493 * focused on a single one, for better concurrency / performance. 1494 * At every transaction boundary, we rewrite the inode into the journal. 1495 * That way the bitmaps are kept consistent with the inode and we can recover 1496 * if we're interrupted by power-outages. 1497 * 1498 * Returns: 0, or return code if an error occurred. 1499 * *btotal has the total number of blocks freed 1500 */ 1501 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1502 struct buffer_head *bh, __be64 *start, __be64 *end, 1503 bool meta, u32 *btotal) 1504 { 1505 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1506 struct gfs2_rgrpd *rgd; 1507 struct gfs2_trans *tr; 1508 __be64 *p; 1509 int blks_outside_rgrp; 1510 u64 bn, bstart, isize_blks; 1511 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1512 int ret = 0; 1513 bool buf_in_tr = false; /* buffer was added to transaction */ 1514 1515 more_rgrps: 1516 rgd = NULL; 1517 if (gfs2_holder_initialized(rd_gh)) { 1518 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1519 gfs2_assert_withdraw(sdp, 1520 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1521 } 1522 blks_outside_rgrp = 0; 1523 bstart = 0; 1524 blen = 0; 1525 1526 for (p = start; p < end; p++) { 1527 if (!*p) 1528 continue; 1529 bn = be64_to_cpu(*p); 1530 1531 if (rgd) { 1532 if (!rgrp_contains_block(rgd, bn)) { 1533 blks_outside_rgrp++; 1534 continue; 1535 } 1536 } else { 1537 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1538 if (unlikely(!rgd)) { 1539 ret = -EIO; 1540 goto out; 1541 } 1542 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1543 LM_FLAG_NODE_SCOPE, rd_gh); 1544 if (ret) 1545 goto out; 1546 1547 /* Must be done with the rgrp glock held: */ 1548 if (gfs2_rs_active(&ip->i_res) && 1549 rgd == ip->i_res.rs_rgd) 1550 gfs2_rs_deltree(&ip->i_res); 1551 } 1552 1553 /* The size of our transactions will be unknown until we 1554 actually process all the metadata blocks that relate to 1555 the rgrp. So we estimate. We know it can't be more than 1556 the dinode's i_blocks and we don't want to exceed the 1557 journal flush threshold, sd_log_thresh2. */ 1558 if (current->journal_info == NULL) { 1559 unsigned int jblocks_rqsted, revokes; 1560 1561 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1562 RES_INDIRECT; 1563 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1564 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1565 jblocks_rqsted += 1566 atomic_read(&sdp->sd_log_thresh2); 1567 else 1568 jblocks_rqsted += isize_blks; 1569 revokes = jblocks_rqsted; 1570 if (meta) 1571 revokes += end - start; 1572 else if (ip->i_depth) 1573 revokes += sdp->sd_inptrs; 1574 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1575 if (ret) 1576 goto out_unlock; 1577 down_write(&ip->i_rw_mutex); 1578 } 1579 /* check if we will exceed the transaction blocks requested */ 1580 tr = current->journal_info; 1581 if (tr->tr_num_buf_new + RES_STATFS + 1582 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1583 /* We set blks_outside_rgrp to ensure the loop will 1584 be repeated for the same rgrp, but with a new 1585 transaction. */ 1586 blks_outside_rgrp++; 1587 /* This next part is tricky. If the buffer was added 1588 to the transaction, we've already set some block 1589 pointers to 0, so we better follow through and free 1590 them, or we will introduce corruption (so break). 1591 This may be impossible, or at least rare, but I 1592 decided to cover the case regardless. 1593 1594 If the buffer was not added to the transaction 1595 (this call), doing so would exceed our transaction 1596 size, so we need to end the transaction and start a 1597 new one (so goto). */ 1598 1599 if (buf_in_tr) 1600 break; 1601 goto out_unlock; 1602 } 1603 1604 gfs2_trans_add_meta(ip->i_gl, bh); 1605 buf_in_tr = true; 1606 *p = 0; 1607 if (bstart + blen == bn) { 1608 blen++; 1609 continue; 1610 } 1611 if (bstart) { 1612 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1613 (*btotal) += blen; 1614 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1615 } 1616 bstart = bn; 1617 blen = 1; 1618 } 1619 if (bstart) { 1620 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1621 (*btotal) += blen; 1622 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1623 } 1624 out_unlock: 1625 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1626 outside the rgrp we just processed, 1627 do it all over again. */ 1628 if (current->journal_info) { 1629 struct buffer_head *dibh; 1630 1631 ret = gfs2_meta_inode_buffer(ip, &dibh); 1632 if (ret) 1633 goto out; 1634 1635 /* Every transaction boundary, we rewrite the dinode 1636 to keep its di_blocks current in case of failure. */ 1637 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1638 current_time(&ip->i_inode); 1639 gfs2_trans_add_meta(ip->i_gl, dibh); 1640 gfs2_dinode_out(ip, dibh->b_data); 1641 brelse(dibh); 1642 up_write(&ip->i_rw_mutex); 1643 gfs2_trans_end(sdp); 1644 buf_in_tr = false; 1645 } 1646 gfs2_glock_dq_uninit(rd_gh); 1647 cond_resched(); 1648 goto more_rgrps; 1649 } 1650 out: 1651 return ret; 1652 } 1653 1654 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1655 { 1656 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1657 return false; 1658 return true; 1659 } 1660 1661 /** 1662 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1663 * @sdp: The superblock 1664 * @mp: starting metapath 1665 * @h: desired height to search 1666 * @end_list: See punch_hole(). 1667 * @end_aligned: See punch_hole(). 1668 * 1669 * Assumes the metapath is valid (with buffers) out to height h. 1670 * Returns: true if a non-null pointer was found in the metapath buffer 1671 * false if all remaining pointers are NULL in the buffer 1672 */ 1673 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1674 unsigned int h, 1675 __u16 *end_list, unsigned int end_aligned) 1676 { 1677 struct buffer_head *bh = mp->mp_bh[h]; 1678 __be64 *first, *ptr, *end; 1679 1680 first = metaptr1(h, mp); 1681 ptr = first + mp->mp_list[h]; 1682 end = (__be64 *)(bh->b_data + bh->b_size); 1683 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1684 bool keep_end = h < end_aligned; 1685 end = first + end_list[h] + keep_end; 1686 } 1687 1688 while (ptr < end) { 1689 if (*ptr) { /* if we have a non-null pointer */ 1690 mp->mp_list[h] = ptr - first; 1691 h++; 1692 if (h < GFS2_MAX_META_HEIGHT) 1693 mp->mp_list[h] = 0; 1694 return true; 1695 } 1696 ptr++; 1697 } 1698 return false; 1699 } 1700 1701 enum dealloc_states { 1702 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1703 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1704 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1705 DEALLOC_DONE = 3, /* process complete */ 1706 }; 1707 1708 static inline void 1709 metapointer_range(struct metapath *mp, int height, 1710 __u16 *start_list, unsigned int start_aligned, 1711 __u16 *end_list, unsigned int end_aligned, 1712 __be64 **start, __be64 **end) 1713 { 1714 struct buffer_head *bh = mp->mp_bh[height]; 1715 __be64 *first; 1716 1717 first = metaptr1(height, mp); 1718 *start = first; 1719 if (mp_eq_to_hgt(mp, start_list, height)) { 1720 bool keep_start = height < start_aligned; 1721 *start = first + start_list[height] + keep_start; 1722 } 1723 *end = (__be64 *)(bh->b_data + bh->b_size); 1724 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1725 bool keep_end = height < end_aligned; 1726 *end = first + end_list[height] + keep_end; 1727 } 1728 } 1729 1730 static inline bool walk_done(struct gfs2_sbd *sdp, 1731 struct metapath *mp, int height, 1732 __u16 *end_list, unsigned int end_aligned) 1733 { 1734 __u16 end; 1735 1736 if (end_list) { 1737 bool keep_end = height < end_aligned; 1738 if (!mp_eq_to_hgt(mp, end_list, height)) 1739 return false; 1740 end = end_list[height] + keep_end; 1741 } else 1742 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1743 return mp->mp_list[height] >= end; 1744 } 1745 1746 /** 1747 * punch_hole - deallocate blocks in a file 1748 * @ip: inode to truncate 1749 * @offset: the start of the hole 1750 * @length: the size of the hole (or 0 for truncate) 1751 * 1752 * Punch a hole into a file or truncate a file at a given position. This 1753 * function operates in whole blocks (@offset and @length are rounded 1754 * accordingly); partially filled blocks must be cleared otherwise. 1755 * 1756 * This function works from the bottom up, and from the right to the left. In 1757 * other words, it strips off the highest layer (data) before stripping any of 1758 * the metadata. Doing it this way is best in case the operation is interrupted 1759 * by power failure, etc. The dinode is rewritten in every transaction to 1760 * guarantee integrity. 1761 */ 1762 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1763 { 1764 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1765 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1766 struct metapath mp = {}; 1767 struct buffer_head *dibh, *bh; 1768 struct gfs2_holder rd_gh; 1769 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1770 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1771 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1772 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1773 unsigned int start_aligned, end_aligned; 1774 unsigned int strip_h = ip->i_height - 1; 1775 u32 btotal = 0; 1776 int ret, state; 1777 int mp_h; /* metapath buffers are read in to this height */ 1778 u64 prev_bnr = 0; 1779 __be64 *start, *end; 1780 1781 if (offset >= maxsize) { 1782 /* 1783 * The starting point lies beyond the allocated meta-data; 1784 * there are no blocks do deallocate. 1785 */ 1786 return 0; 1787 } 1788 1789 /* 1790 * The start position of the hole is defined by lblock, start_list, and 1791 * start_aligned. The end position of the hole is defined by lend, 1792 * end_list, and end_aligned. 1793 * 1794 * start_aligned and end_aligned define down to which height the start 1795 * and end positions are aligned to the metadata tree (i.e., the 1796 * position is a multiple of the metadata granularity at the height 1797 * above). This determines at which heights additional meta pointers 1798 * needs to be preserved for the remaining data. 1799 */ 1800 1801 if (length) { 1802 u64 end_offset = offset + length; 1803 u64 lend; 1804 1805 /* 1806 * Clip the end at the maximum file size for the given height: 1807 * that's how far the metadata goes; files bigger than that 1808 * will have additional layers of indirection. 1809 */ 1810 if (end_offset > maxsize) 1811 end_offset = maxsize; 1812 lend = end_offset >> bsize_shift; 1813 1814 if (lblock >= lend) 1815 return 0; 1816 1817 find_metapath(sdp, lend, &mp, ip->i_height); 1818 end_list = __end_list; 1819 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1820 1821 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1822 if (end_list[mp_h]) 1823 break; 1824 } 1825 end_aligned = mp_h; 1826 } 1827 1828 find_metapath(sdp, lblock, &mp, ip->i_height); 1829 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1830 1831 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1832 if (start_list[mp_h]) 1833 break; 1834 } 1835 start_aligned = mp_h; 1836 1837 ret = gfs2_meta_inode_buffer(ip, &dibh); 1838 if (ret) 1839 return ret; 1840 1841 mp.mp_bh[0] = dibh; 1842 ret = lookup_metapath(ip, &mp); 1843 if (ret) 1844 goto out_metapath; 1845 1846 /* issue read-ahead on metadata */ 1847 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1848 metapointer_range(&mp, mp_h, start_list, start_aligned, 1849 end_list, end_aligned, &start, &end); 1850 gfs2_metapath_ra(ip->i_gl, start, end); 1851 } 1852 1853 if (mp.mp_aheight == ip->i_height) 1854 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1855 else 1856 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1857 1858 ret = gfs2_rindex_update(sdp); 1859 if (ret) 1860 goto out_metapath; 1861 1862 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1863 if (ret) 1864 goto out_metapath; 1865 gfs2_holder_mark_uninitialized(&rd_gh); 1866 1867 mp_h = strip_h; 1868 1869 while (state != DEALLOC_DONE) { 1870 switch (state) { 1871 /* Truncate a full metapath at the given strip height. 1872 * Note that strip_h == mp_h in order to be in this state. */ 1873 case DEALLOC_MP_FULL: 1874 bh = mp.mp_bh[mp_h]; 1875 gfs2_assert_withdraw(sdp, bh); 1876 if (gfs2_assert_withdraw(sdp, 1877 prev_bnr != bh->b_blocknr)) { 1878 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1879 "s_h:%u, mp_h:%u\n", 1880 (unsigned long long)ip->i_no_addr, 1881 prev_bnr, ip->i_height, strip_h, mp_h); 1882 } 1883 prev_bnr = bh->b_blocknr; 1884 1885 if (gfs2_metatype_check(sdp, bh, 1886 (mp_h ? GFS2_METATYPE_IN : 1887 GFS2_METATYPE_DI))) { 1888 ret = -EIO; 1889 goto out; 1890 } 1891 1892 /* 1893 * Below, passing end_aligned as 0 gives us the 1894 * metapointer range excluding the end point: the end 1895 * point is the first metapath we must not deallocate! 1896 */ 1897 1898 metapointer_range(&mp, mp_h, start_list, start_aligned, 1899 end_list, 0 /* end_aligned */, 1900 &start, &end); 1901 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1902 start, end, 1903 mp_h != ip->i_height - 1, 1904 &btotal); 1905 1906 /* If we hit an error or just swept dinode buffer, 1907 just exit. */ 1908 if (ret || !mp_h) { 1909 state = DEALLOC_DONE; 1910 break; 1911 } 1912 state = DEALLOC_MP_LOWER; 1913 break; 1914 1915 /* lower the metapath strip height */ 1916 case DEALLOC_MP_LOWER: 1917 /* We're done with the current buffer, so release it, 1918 unless it's the dinode buffer. Then back up to the 1919 previous pointer. */ 1920 if (mp_h) { 1921 brelse(mp.mp_bh[mp_h]); 1922 mp.mp_bh[mp_h] = NULL; 1923 } 1924 /* If we can't get any lower in height, we've stripped 1925 off all we can. Next step is to back up and start 1926 stripping the previous level of metadata. */ 1927 if (mp_h == 0) { 1928 strip_h--; 1929 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1930 mp_h = strip_h; 1931 state = DEALLOC_FILL_MP; 1932 break; 1933 } 1934 mp.mp_list[mp_h] = 0; 1935 mp_h--; /* search one metadata height down */ 1936 mp.mp_list[mp_h]++; 1937 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1938 break; 1939 /* Here we've found a part of the metapath that is not 1940 * allocated. We need to search at that height for the 1941 * next non-null pointer. */ 1942 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1943 state = DEALLOC_FILL_MP; 1944 mp_h++; 1945 } 1946 /* No more non-null pointers at this height. Back up 1947 to the previous height and try again. */ 1948 break; /* loop around in the same state */ 1949 1950 /* Fill the metapath with buffers to the given height. */ 1951 case DEALLOC_FILL_MP: 1952 /* Fill the buffers out to the current height. */ 1953 ret = fillup_metapath(ip, &mp, mp_h); 1954 if (ret < 0) 1955 goto out; 1956 1957 /* On the first pass, issue read-ahead on metadata. */ 1958 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1959 unsigned int height = mp.mp_aheight - 1; 1960 1961 /* No read-ahead for data blocks. */ 1962 if (mp.mp_aheight - 1 == strip_h) 1963 height--; 1964 1965 for (; height >= mp.mp_aheight - ret; height--) { 1966 metapointer_range(&mp, height, 1967 start_list, start_aligned, 1968 end_list, end_aligned, 1969 &start, &end); 1970 gfs2_metapath_ra(ip->i_gl, start, end); 1971 } 1972 } 1973 1974 /* If buffers found for the entire strip height */ 1975 if (mp.mp_aheight - 1 == strip_h) { 1976 state = DEALLOC_MP_FULL; 1977 break; 1978 } 1979 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1980 mp_h = mp.mp_aheight - 1; 1981 1982 /* If we find a non-null block pointer, crawl a bit 1983 higher up in the metapath and try again, otherwise 1984 we need to look lower for a new starting point. */ 1985 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1986 mp_h++; 1987 else 1988 state = DEALLOC_MP_LOWER; 1989 break; 1990 } 1991 } 1992 1993 if (btotal) { 1994 if (current->journal_info == NULL) { 1995 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1996 RES_QUOTA, 0); 1997 if (ret) 1998 goto out; 1999 down_write(&ip->i_rw_mutex); 2000 } 2001 gfs2_statfs_change(sdp, 0, +btotal, 0); 2002 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 2003 ip->i_inode.i_gid); 2004 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2005 gfs2_trans_add_meta(ip->i_gl, dibh); 2006 gfs2_dinode_out(ip, dibh->b_data); 2007 up_write(&ip->i_rw_mutex); 2008 gfs2_trans_end(sdp); 2009 } 2010 2011 out: 2012 if (gfs2_holder_initialized(&rd_gh)) 2013 gfs2_glock_dq_uninit(&rd_gh); 2014 if (current->journal_info) { 2015 up_write(&ip->i_rw_mutex); 2016 gfs2_trans_end(sdp); 2017 cond_resched(); 2018 } 2019 gfs2_quota_unhold(ip); 2020 out_metapath: 2021 release_metapath(&mp); 2022 return ret; 2023 } 2024 2025 static int trunc_end(struct gfs2_inode *ip) 2026 { 2027 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2028 struct buffer_head *dibh; 2029 int error; 2030 2031 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2032 if (error) 2033 return error; 2034 2035 down_write(&ip->i_rw_mutex); 2036 2037 error = gfs2_meta_inode_buffer(ip, &dibh); 2038 if (error) 2039 goto out; 2040 2041 if (!i_size_read(&ip->i_inode)) { 2042 ip->i_height = 0; 2043 ip->i_goal = ip->i_no_addr; 2044 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2045 gfs2_ordered_del_inode(ip); 2046 } 2047 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2048 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2049 2050 gfs2_trans_add_meta(ip->i_gl, dibh); 2051 gfs2_dinode_out(ip, dibh->b_data); 2052 brelse(dibh); 2053 2054 out: 2055 up_write(&ip->i_rw_mutex); 2056 gfs2_trans_end(sdp); 2057 return error; 2058 } 2059 2060 /** 2061 * do_shrink - make a file smaller 2062 * @inode: the inode 2063 * @newsize: the size to make the file 2064 * 2065 * Called with an exclusive lock on @inode. The @size must 2066 * be equal to or smaller than the current inode size. 2067 * 2068 * Returns: errno 2069 */ 2070 2071 static int do_shrink(struct inode *inode, u64 newsize) 2072 { 2073 struct gfs2_inode *ip = GFS2_I(inode); 2074 int error; 2075 2076 error = trunc_start(inode, newsize); 2077 if (error < 0) 2078 return error; 2079 if (gfs2_is_stuffed(ip)) 2080 return 0; 2081 2082 error = punch_hole(ip, newsize, 0); 2083 if (error == 0) 2084 error = trunc_end(ip); 2085 2086 return error; 2087 } 2088 2089 void gfs2_trim_blocks(struct inode *inode) 2090 { 2091 int ret; 2092 2093 ret = do_shrink(inode, inode->i_size); 2094 WARN_ON(ret != 0); 2095 } 2096 2097 /** 2098 * do_grow - Touch and update inode size 2099 * @inode: The inode 2100 * @size: The new size 2101 * 2102 * This function updates the timestamps on the inode and 2103 * may also increase the size of the inode. This function 2104 * must not be called with @size any smaller than the current 2105 * inode size. 2106 * 2107 * Although it is not strictly required to unstuff files here, 2108 * earlier versions of GFS2 have a bug in the stuffed file reading 2109 * code which will result in a buffer overrun if the size is larger 2110 * than the max stuffed file size. In order to prevent this from 2111 * occurring, such files are unstuffed, but in other cases we can 2112 * just update the inode size directly. 2113 * 2114 * Returns: 0 on success, or -ve on error 2115 */ 2116 2117 static int do_grow(struct inode *inode, u64 size) 2118 { 2119 struct gfs2_inode *ip = GFS2_I(inode); 2120 struct gfs2_sbd *sdp = GFS2_SB(inode); 2121 struct gfs2_alloc_parms ap = { .target = 1, }; 2122 struct buffer_head *dibh; 2123 int error; 2124 int unstuff = 0; 2125 2126 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2127 error = gfs2_quota_lock_check(ip, &ap); 2128 if (error) 2129 return error; 2130 2131 error = gfs2_inplace_reserve(ip, &ap); 2132 if (error) 2133 goto do_grow_qunlock; 2134 unstuff = 1; 2135 } 2136 2137 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2138 (unstuff && 2139 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2140 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2141 0 : RES_QUOTA), 0); 2142 if (error) 2143 goto do_grow_release; 2144 2145 if (unstuff) { 2146 error = gfs2_unstuff_dinode(ip, NULL); 2147 if (error) 2148 goto do_end_trans; 2149 } 2150 2151 error = gfs2_meta_inode_buffer(ip, &dibh); 2152 if (error) 2153 goto do_end_trans; 2154 2155 truncate_setsize(inode, size); 2156 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2157 gfs2_trans_add_meta(ip->i_gl, dibh); 2158 gfs2_dinode_out(ip, dibh->b_data); 2159 brelse(dibh); 2160 2161 do_end_trans: 2162 gfs2_trans_end(sdp); 2163 do_grow_release: 2164 if (unstuff) { 2165 gfs2_inplace_release(ip); 2166 do_grow_qunlock: 2167 gfs2_quota_unlock(ip); 2168 } 2169 return error; 2170 } 2171 2172 /** 2173 * gfs2_setattr_size - make a file a given size 2174 * @inode: the inode 2175 * @newsize: the size to make the file 2176 * 2177 * The file size can grow, shrink, or stay the same size. This 2178 * is called holding i_rwsem and an exclusive glock on the inode 2179 * in question. 2180 * 2181 * Returns: errno 2182 */ 2183 2184 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2185 { 2186 struct gfs2_inode *ip = GFS2_I(inode); 2187 int ret; 2188 2189 BUG_ON(!S_ISREG(inode->i_mode)); 2190 2191 ret = inode_newsize_ok(inode, newsize); 2192 if (ret) 2193 return ret; 2194 2195 inode_dio_wait(inode); 2196 2197 ret = gfs2_qa_get(ip); 2198 if (ret) 2199 goto out; 2200 2201 if (newsize >= inode->i_size) { 2202 ret = do_grow(inode, newsize); 2203 goto out; 2204 } 2205 2206 ret = do_shrink(inode, newsize); 2207 out: 2208 gfs2_rs_delete(ip, NULL); 2209 gfs2_qa_put(ip); 2210 return ret; 2211 } 2212 2213 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2214 { 2215 int error; 2216 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2217 if (!error) 2218 error = trunc_end(ip); 2219 return error; 2220 } 2221 2222 int gfs2_file_dealloc(struct gfs2_inode *ip) 2223 { 2224 return punch_hole(ip, 0, 0); 2225 } 2226 2227 /** 2228 * gfs2_free_journal_extents - Free cached journal bmap info 2229 * @jd: The journal 2230 * 2231 */ 2232 2233 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2234 { 2235 struct gfs2_journal_extent *jext; 2236 2237 while(!list_empty(&jd->extent_list)) { 2238 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2239 list_del(&jext->list); 2240 kfree(jext); 2241 } 2242 } 2243 2244 /** 2245 * gfs2_add_jextent - Add or merge a new extent to extent cache 2246 * @jd: The journal descriptor 2247 * @lblock: The logical block at start of new extent 2248 * @dblock: The physical block at start of new extent 2249 * @blocks: Size of extent in fs blocks 2250 * 2251 * Returns: 0 on success or -ENOMEM 2252 */ 2253 2254 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2255 { 2256 struct gfs2_journal_extent *jext; 2257 2258 if (!list_empty(&jd->extent_list)) { 2259 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2260 if ((jext->dblock + jext->blocks) == dblock) { 2261 jext->blocks += blocks; 2262 return 0; 2263 } 2264 } 2265 2266 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2267 if (jext == NULL) 2268 return -ENOMEM; 2269 jext->dblock = dblock; 2270 jext->lblock = lblock; 2271 jext->blocks = blocks; 2272 list_add_tail(&jext->list, &jd->extent_list); 2273 jd->nr_extents++; 2274 return 0; 2275 } 2276 2277 /** 2278 * gfs2_map_journal_extents - Cache journal bmap info 2279 * @sdp: The super block 2280 * @jd: The journal to map 2281 * 2282 * Create a reusable "extent" mapping from all logical 2283 * blocks to all physical blocks for the given journal. This will save 2284 * us time when writing journal blocks. Most journals will have only one 2285 * extent that maps all their logical blocks. That's because gfs2.mkfs 2286 * arranges the journal blocks sequentially to maximize performance. 2287 * So the extent would map the first block for the entire file length. 2288 * However, gfs2_jadd can happen while file activity is happening, so 2289 * those journals may not be sequential. Less likely is the case where 2290 * the users created their own journals by mounting the metafs and 2291 * laying it out. But it's still possible. These journals might have 2292 * several extents. 2293 * 2294 * Returns: 0 on success, or error on failure 2295 */ 2296 2297 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2298 { 2299 u64 lblock = 0; 2300 u64 lblock_stop; 2301 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2302 struct buffer_head bh; 2303 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2304 u64 size; 2305 int rc; 2306 ktime_t start, end; 2307 2308 start = ktime_get(); 2309 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2310 size = (lblock_stop - lblock) << shift; 2311 jd->nr_extents = 0; 2312 WARN_ON(!list_empty(&jd->extent_list)); 2313 2314 do { 2315 bh.b_state = 0; 2316 bh.b_blocknr = 0; 2317 bh.b_size = size; 2318 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2319 if (rc || !buffer_mapped(&bh)) 2320 goto fail; 2321 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2322 if (rc) 2323 goto fail; 2324 size -= bh.b_size; 2325 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2326 } while(size > 0); 2327 2328 end = ktime_get(); 2329 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2330 jd->nr_extents, ktime_ms_delta(end, start)); 2331 return 0; 2332 2333 fail: 2334 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2335 rc, jd->jd_jid, 2336 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2337 jd->nr_extents); 2338 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2339 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2340 bh.b_state, (unsigned long long)bh.b_size); 2341 gfs2_free_journal_extents(jd); 2342 return rc; 2343 } 2344 2345 /** 2346 * gfs2_write_alloc_required - figure out if a write will require an allocation 2347 * @ip: the file being written to 2348 * @offset: the offset to write to 2349 * @len: the number of bytes being written 2350 * 2351 * Returns: 1 if an alloc is required, 0 otherwise 2352 */ 2353 2354 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2355 unsigned int len) 2356 { 2357 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2358 struct buffer_head bh; 2359 unsigned int shift; 2360 u64 lblock, lblock_stop, size; 2361 u64 end_of_file; 2362 2363 if (!len) 2364 return 0; 2365 2366 if (gfs2_is_stuffed(ip)) { 2367 if (offset + len > gfs2_max_stuffed_size(ip)) 2368 return 1; 2369 return 0; 2370 } 2371 2372 shift = sdp->sd_sb.sb_bsize_shift; 2373 BUG_ON(gfs2_is_dir(ip)); 2374 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2375 lblock = offset >> shift; 2376 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2377 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2378 return 1; 2379 2380 size = (lblock_stop - lblock) << shift; 2381 do { 2382 bh.b_state = 0; 2383 bh.b_size = size; 2384 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2385 if (!buffer_mapped(&bh)) 2386 return 1; 2387 size -= bh.b_size; 2388 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2389 } while(size > 0); 2390 2391 return 0; 2392 } 2393 2394 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2395 { 2396 struct gfs2_inode *ip = GFS2_I(inode); 2397 struct buffer_head *dibh; 2398 int error; 2399 2400 if (offset >= inode->i_size) 2401 return 0; 2402 if (offset + length > inode->i_size) 2403 length = inode->i_size - offset; 2404 2405 error = gfs2_meta_inode_buffer(ip, &dibh); 2406 if (error) 2407 return error; 2408 gfs2_trans_add_meta(ip->i_gl, dibh); 2409 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2410 length); 2411 brelse(dibh); 2412 return 0; 2413 } 2414 2415 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2416 loff_t length) 2417 { 2418 struct gfs2_sbd *sdp = GFS2_SB(inode); 2419 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2420 int error; 2421 2422 while (length) { 2423 struct gfs2_trans *tr; 2424 loff_t chunk; 2425 unsigned int offs; 2426 2427 chunk = length; 2428 if (chunk > max_chunk) 2429 chunk = max_chunk; 2430 2431 offs = offset & ~PAGE_MASK; 2432 if (offs && chunk > PAGE_SIZE) 2433 chunk = offs + ((chunk - offs) & PAGE_MASK); 2434 2435 truncate_pagecache_range(inode, offset, chunk); 2436 offset += chunk; 2437 length -= chunk; 2438 2439 tr = current->journal_info; 2440 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2441 continue; 2442 2443 gfs2_trans_end(sdp); 2444 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2445 if (error) 2446 return error; 2447 } 2448 return 0; 2449 } 2450 2451 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2452 { 2453 struct inode *inode = file_inode(file); 2454 struct gfs2_inode *ip = GFS2_I(inode); 2455 struct gfs2_sbd *sdp = GFS2_SB(inode); 2456 unsigned int blocksize = i_blocksize(inode); 2457 loff_t start, end; 2458 int error; 2459 2460 if (!gfs2_is_stuffed(ip)) { 2461 unsigned int start_off, end_len; 2462 2463 start_off = offset & (blocksize - 1); 2464 end_len = (offset + length) & (blocksize - 1); 2465 if (start_off) { 2466 unsigned int len = length; 2467 if (length > blocksize - start_off) 2468 len = blocksize - start_off; 2469 error = gfs2_block_zero_range(inode, offset, len); 2470 if (error) 2471 goto out; 2472 if (start_off + length < blocksize) 2473 end_len = 0; 2474 } 2475 if (end_len) { 2476 error = gfs2_block_zero_range(inode, 2477 offset + length - end_len, end_len); 2478 if (error) 2479 goto out; 2480 } 2481 } 2482 2483 start = round_down(offset, blocksize); 2484 end = round_up(offset + length, blocksize) - 1; 2485 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2486 if (error) 2487 return error; 2488 2489 if (gfs2_is_jdata(ip)) 2490 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2491 GFS2_JTRUNC_REVOKES); 2492 else 2493 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2494 if (error) 2495 return error; 2496 2497 if (gfs2_is_stuffed(ip)) { 2498 error = stuffed_zero_range(inode, offset, length); 2499 if (error) 2500 goto out; 2501 } 2502 2503 if (gfs2_is_jdata(ip)) { 2504 BUG_ON(!current->journal_info); 2505 gfs2_journaled_truncate_range(inode, offset, length); 2506 } else 2507 truncate_pagecache_range(inode, offset, offset + length - 1); 2508 2509 file_update_time(file); 2510 mark_inode_dirty(inode); 2511 2512 if (current->journal_info) 2513 gfs2_trans_end(sdp); 2514 2515 if (!gfs2_is_stuffed(ip)) 2516 error = punch_hole(ip, offset, length); 2517 2518 out: 2519 if (current->journal_info) 2520 gfs2_trans_end(sdp); 2521 return error; 2522 } 2523 2524 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2525 loff_t offset) 2526 { 2527 int ret; 2528 2529 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2530 return -EIO; 2531 2532 if (offset >= wpc->iomap.offset && 2533 offset < wpc->iomap.offset + wpc->iomap.length) 2534 return 0; 2535 2536 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2537 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap); 2538 return ret; 2539 } 2540 2541 const struct iomap_writeback_ops gfs2_writeback_ops = { 2542 .map_blocks = gfs2_map_blocks, 2543 }; 2544