1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 struct buffer_head *bh; 60 int release = 0; 61 62 if (!page || page->index) { 63 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 64 if (!page) 65 return -ENOMEM; 66 release = 1; 67 } 68 69 if (!PageUptodate(page)) { 70 void *kaddr = kmap(page); 71 u64 dsize = i_size_read(inode); 72 73 if (dsize > gfs2_max_stuffed_size(ip)) 74 dsize = gfs2_max_stuffed_size(ip); 75 76 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 77 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 78 kunmap(page); 79 80 SetPageUptodate(page); 81 } 82 83 if (!page_has_buffers(page)) 84 create_empty_buffers(page, BIT(inode->i_blkbits), 85 BIT(BH_Uptodate)); 86 87 bh = page_buffers(page); 88 89 if (!buffer_mapped(bh)) 90 map_bh(bh, inode->i_sb, block); 91 92 set_buffer_uptodate(bh); 93 if (gfs2_is_jdata(ip)) 94 gfs2_trans_add_data(ip->i_gl, bh); 95 else { 96 mark_buffer_dirty(bh); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 return ptr; 625 } 626 627 enum alloc_state { 628 ALLOC_DATA = 0, 629 ALLOC_GROW_DEPTH = 1, 630 ALLOC_GROW_HEIGHT = 2, 631 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 632 }; 633 634 /** 635 * gfs2_iomap_alloc - Build a metadata tree of the requested height 636 * @inode: The GFS2 inode 637 * @iomap: The iomap structure 638 * @mp: The metapath, with proper height information calculated 639 * 640 * In this routine we may have to alloc: 641 * i) Indirect blocks to grow the metadata tree height 642 * ii) Indirect blocks to fill in lower part of the metadata tree 643 * iii) Data blocks 644 * 645 * This function is called after gfs2_iomap_get, which works out the 646 * total number of blocks which we need via gfs2_alloc_size. 647 * 648 * We then do the actual allocation asking for an extent at a time (if 649 * enough contiguous free blocks are available, there will only be one 650 * allocation request per call) and uses the state machine to initialise 651 * the blocks in order. 652 * 653 * Right now, this function will allocate at most one indirect block 654 * worth of data -- with a default block size of 4K, that's slightly 655 * less than 2M. If this limitation is ever removed to allow huge 656 * allocations, we would probably still want to limit the iomap size we 657 * return to avoid stalling other tasks during huge writes; the next 658 * iomap iteration would then find the blocks already allocated. 659 * 660 * Returns: errno on error 661 */ 662 663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 664 struct metapath *mp) 665 { 666 struct gfs2_inode *ip = GFS2_I(inode); 667 struct gfs2_sbd *sdp = GFS2_SB(inode); 668 struct buffer_head *dibh = mp->mp_bh[0]; 669 u64 bn; 670 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 671 size_t dblks = iomap->length >> inode->i_blkbits; 672 const unsigned end_of_metadata = mp->mp_fheight - 1; 673 int ret; 674 enum alloc_state state; 675 __be64 *ptr; 676 __be64 zero_bn = 0; 677 678 BUG_ON(mp->mp_aheight < 1); 679 BUG_ON(dibh == NULL); 680 BUG_ON(dblks < 1); 681 682 gfs2_trans_add_meta(ip->i_gl, dibh); 683 684 down_write(&ip->i_rw_mutex); 685 686 if (mp->mp_fheight == mp->mp_aheight) { 687 /* Bottom indirect block exists */ 688 state = ALLOC_DATA; 689 } else { 690 /* Need to allocate indirect blocks */ 691 if (mp->mp_fheight == ip->i_height) { 692 /* Writing into existing tree, extend tree down */ 693 iblks = mp->mp_fheight - mp->mp_aheight; 694 state = ALLOC_GROW_DEPTH; 695 } else { 696 /* Building up tree height */ 697 state = ALLOC_GROW_HEIGHT; 698 iblks = mp->mp_fheight - ip->i_height; 699 branch_start = metapath_branch_start(mp); 700 iblks += (mp->mp_fheight - branch_start); 701 } 702 } 703 704 /* start of the second part of the function (state machine) */ 705 706 blks = dblks + iblks; 707 i = mp->mp_aheight; 708 do { 709 n = blks - alloced; 710 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 711 if (ret) 712 goto out; 713 alloced += n; 714 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 715 gfs2_trans_remove_revoke(sdp, bn, n); 716 switch (state) { 717 /* Growing height of tree */ 718 case ALLOC_GROW_HEIGHT: 719 if (i == 1) { 720 ptr = (__be64 *)(dibh->b_data + 721 sizeof(struct gfs2_dinode)); 722 zero_bn = *ptr; 723 } 724 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 725 i++, n--) 726 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 727 if (i - 1 == mp->mp_fheight - ip->i_height) { 728 i--; 729 gfs2_buffer_copy_tail(mp->mp_bh[i], 730 sizeof(struct gfs2_meta_header), 731 dibh, sizeof(struct gfs2_dinode)); 732 gfs2_buffer_clear_tail(dibh, 733 sizeof(struct gfs2_dinode) + 734 sizeof(__be64)); 735 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 736 sizeof(struct gfs2_meta_header)); 737 *ptr = zero_bn; 738 state = ALLOC_GROW_DEPTH; 739 for(i = branch_start; i < mp->mp_fheight; i++) { 740 if (mp->mp_bh[i] == NULL) 741 break; 742 brelse(mp->mp_bh[i]); 743 mp->mp_bh[i] = NULL; 744 } 745 i = branch_start; 746 } 747 if (n == 0) 748 break; 749 /* fall through - To branching from existing tree */ 750 case ALLOC_GROW_DEPTH: 751 if (i > 1 && i < mp->mp_fheight) 752 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 753 for (; i < mp->mp_fheight && n > 0; i++, n--) 754 gfs2_indirect_init(mp, ip->i_gl, i, 755 mp->mp_list[i-1], bn++); 756 if (i == mp->mp_fheight) 757 state = ALLOC_DATA; 758 if (n == 0) 759 break; 760 /* fall through - To tree complete, adding data blocks */ 761 case ALLOC_DATA: 762 BUG_ON(n > dblks); 763 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 764 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 765 dblks = n; 766 ptr = metapointer(end_of_metadata, mp); 767 iomap->addr = bn << inode->i_blkbits; 768 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 769 while (n-- > 0) 770 *ptr++ = cpu_to_be64(bn++); 771 break; 772 } 773 } while (iomap->addr == IOMAP_NULL_ADDR); 774 775 iomap->type = IOMAP_MAPPED; 776 iomap->length = (u64)dblks << inode->i_blkbits; 777 ip->i_height = mp->mp_fheight; 778 gfs2_add_inode_blocks(&ip->i_inode, alloced); 779 gfs2_dinode_out(ip, dibh->b_data); 780 out: 781 up_write(&ip->i_rw_mutex); 782 return ret; 783 } 784 785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 786 787 /** 788 * gfs2_alloc_size - Compute the maximum allocation size 789 * @inode: The inode 790 * @mp: The metapath 791 * @size: Requested size in blocks 792 * 793 * Compute the maximum size of the next allocation at @mp. 794 * 795 * Returns: size in blocks 796 */ 797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 798 { 799 struct gfs2_inode *ip = GFS2_I(inode); 800 struct gfs2_sbd *sdp = GFS2_SB(inode); 801 const __be64 *first, *ptr, *end; 802 803 /* 804 * For writes to stuffed files, this function is called twice via 805 * gfs2_iomap_get, before and after unstuffing. The size we return the 806 * first time needs to be large enough to get the reservation and 807 * allocation sizes right. The size we return the second time must 808 * be exact or else gfs2_iomap_alloc won't do the right thing. 809 */ 810 811 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 812 unsigned int maxsize = mp->mp_fheight > 1 ? 813 sdp->sd_inptrs : sdp->sd_diptrs; 814 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 815 if (size > maxsize) 816 size = maxsize; 817 return size; 818 } 819 820 first = metapointer(ip->i_height - 1, mp); 821 end = metaend(ip->i_height - 1, mp); 822 if (end - first > size) 823 end = first + size; 824 for (ptr = first; ptr < end; ptr++) { 825 if (*ptr) 826 break; 827 } 828 return ptr - first; 829 } 830 831 /** 832 * gfs2_iomap_get - Map blocks from an inode to disk blocks 833 * @inode: The inode 834 * @pos: Starting position in bytes 835 * @length: Length to map, in bytes 836 * @flags: iomap flags 837 * @iomap: The iomap structure 838 * @mp: The metapath 839 * 840 * Returns: errno 841 */ 842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 843 unsigned flags, struct iomap *iomap, 844 struct metapath *mp) 845 { 846 struct gfs2_inode *ip = GFS2_I(inode); 847 struct gfs2_sbd *sdp = GFS2_SB(inode); 848 loff_t size = i_size_read(inode); 849 __be64 *ptr; 850 sector_t lblock; 851 sector_t lblock_stop; 852 int ret; 853 int eob; 854 u64 len; 855 struct buffer_head *dibh = NULL, *bh; 856 u8 height; 857 858 if (!length) 859 return -EINVAL; 860 861 down_read(&ip->i_rw_mutex); 862 863 ret = gfs2_meta_inode_buffer(ip, &dibh); 864 if (ret) 865 goto unlock; 866 mp->mp_bh[0] = dibh; 867 868 if (gfs2_is_stuffed(ip)) { 869 if (flags & IOMAP_WRITE) { 870 loff_t max_size = gfs2_max_stuffed_size(ip); 871 872 if (pos + length > max_size) 873 goto unstuff; 874 iomap->length = max_size; 875 } else { 876 if (pos >= size) { 877 if (flags & IOMAP_REPORT) { 878 ret = -ENOENT; 879 goto unlock; 880 } else { 881 iomap->offset = pos; 882 iomap->length = length; 883 goto hole_found; 884 } 885 } 886 iomap->length = size; 887 } 888 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 889 sizeof(struct gfs2_dinode); 890 iomap->type = IOMAP_INLINE; 891 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 892 goto out; 893 } 894 895 unstuff: 896 lblock = pos >> inode->i_blkbits; 897 iomap->offset = lblock << inode->i_blkbits; 898 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 899 len = lblock_stop - lblock + 1; 900 iomap->length = len << inode->i_blkbits; 901 902 height = ip->i_height; 903 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 904 height++; 905 find_metapath(sdp, lblock, mp, height); 906 if (height > ip->i_height || gfs2_is_stuffed(ip)) 907 goto do_alloc; 908 909 ret = lookup_metapath(ip, mp); 910 if (ret) 911 goto unlock; 912 913 if (mp->mp_aheight != ip->i_height) 914 goto do_alloc; 915 916 ptr = metapointer(ip->i_height - 1, mp); 917 if (*ptr == 0) 918 goto do_alloc; 919 920 bh = mp->mp_bh[ip->i_height - 1]; 921 len = gfs2_extent_length(bh, ptr, len, &eob); 922 923 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 924 iomap->length = len << inode->i_blkbits; 925 iomap->type = IOMAP_MAPPED; 926 iomap->flags |= IOMAP_F_MERGED; 927 if (eob) 928 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 929 930 out: 931 iomap->bdev = inode->i_sb->s_bdev; 932 unlock: 933 up_read(&ip->i_rw_mutex); 934 return ret; 935 936 do_alloc: 937 if (flags & IOMAP_REPORT) { 938 if (pos >= size) 939 ret = -ENOENT; 940 else if (height == ip->i_height) 941 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 942 else 943 iomap->length = size - pos; 944 } else if (flags & IOMAP_WRITE) { 945 u64 alloc_size; 946 947 if (flags & IOMAP_DIRECT) 948 goto out; /* (see gfs2_file_direct_write) */ 949 950 len = gfs2_alloc_size(inode, mp, len); 951 alloc_size = len << inode->i_blkbits; 952 if (alloc_size < iomap->length) 953 iomap->length = alloc_size; 954 } else { 955 if (pos < size && height == ip->i_height) 956 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 957 } 958 hole_found: 959 iomap->addr = IOMAP_NULL_ADDR; 960 iomap->type = IOMAP_HOLE; 961 goto out; 962 } 963 964 /** 965 * gfs2_lblk_to_dblk - convert logical block to disk block 966 * @inode: the inode of the file we're mapping 967 * @lblock: the block relative to the start of the file 968 * @dblock: the returned dblock, if no error 969 * 970 * This function maps a single block from a file logical block (relative to 971 * the start of the file) to a file system absolute block using iomap. 972 * 973 * Returns: the absolute file system block, or an error 974 */ 975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 976 { 977 struct iomap iomap = { }; 978 struct metapath mp = { .mp_aheight = 1, }; 979 loff_t pos = (loff_t)lblock << inode->i_blkbits; 980 int ret; 981 982 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 983 release_metapath(&mp); 984 if (ret == 0) 985 *dblock = iomap.addr >> inode->i_blkbits; 986 987 return ret; 988 } 989 990 static int gfs2_write_lock(struct inode *inode) 991 { 992 struct gfs2_inode *ip = GFS2_I(inode); 993 struct gfs2_sbd *sdp = GFS2_SB(inode); 994 int error; 995 996 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 997 error = gfs2_glock_nq(&ip->i_gh); 998 if (error) 999 goto out_uninit; 1000 if (&ip->i_inode == sdp->sd_rindex) { 1001 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1002 1003 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1004 GL_NOCACHE, &m_ip->i_gh); 1005 if (error) 1006 goto out_unlock; 1007 } 1008 return 0; 1009 1010 out_unlock: 1011 gfs2_glock_dq(&ip->i_gh); 1012 out_uninit: 1013 gfs2_holder_uninit(&ip->i_gh); 1014 return error; 1015 } 1016 1017 static void gfs2_write_unlock(struct inode *inode) 1018 { 1019 struct gfs2_inode *ip = GFS2_I(inode); 1020 struct gfs2_sbd *sdp = GFS2_SB(inode); 1021 1022 if (&ip->i_inode == sdp->sd_rindex) { 1023 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1024 1025 gfs2_glock_dq_uninit(&m_ip->i_gh); 1026 } 1027 gfs2_glock_dq_uninit(&ip->i_gh); 1028 } 1029 1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1031 unsigned len, struct iomap *iomap) 1032 { 1033 unsigned int blockmask = i_blocksize(inode) - 1; 1034 struct gfs2_sbd *sdp = GFS2_SB(inode); 1035 unsigned int blocks; 1036 1037 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1038 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1039 } 1040 1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1042 unsigned copied, struct page *page, 1043 struct iomap *iomap) 1044 { 1045 struct gfs2_trans *tr = current->journal_info; 1046 struct gfs2_inode *ip = GFS2_I(inode); 1047 struct gfs2_sbd *sdp = GFS2_SB(inode); 1048 1049 if (page && !gfs2_is_stuffed(ip)) 1050 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1051 1052 if (tr->tr_num_buf_new) 1053 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1054 1055 gfs2_trans_end(sdp); 1056 } 1057 1058 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1059 .page_prepare = gfs2_iomap_page_prepare, 1060 .page_done = gfs2_iomap_page_done, 1061 }; 1062 1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1064 loff_t length, unsigned flags, 1065 struct iomap *iomap, 1066 struct metapath *mp) 1067 { 1068 struct gfs2_inode *ip = GFS2_I(inode); 1069 struct gfs2_sbd *sdp = GFS2_SB(inode); 1070 bool unstuff; 1071 int ret; 1072 1073 unstuff = gfs2_is_stuffed(ip) && 1074 pos + length > gfs2_max_stuffed_size(ip); 1075 1076 if (unstuff || iomap->type == IOMAP_HOLE) { 1077 unsigned int data_blocks, ind_blocks; 1078 struct gfs2_alloc_parms ap = {}; 1079 unsigned int rblocks; 1080 struct gfs2_trans *tr; 1081 1082 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1083 &ind_blocks); 1084 ap.target = data_blocks + ind_blocks; 1085 ret = gfs2_quota_lock_check(ip, &ap); 1086 if (ret) 1087 return ret; 1088 1089 ret = gfs2_inplace_reserve(ip, &ap); 1090 if (ret) 1091 goto out_qunlock; 1092 1093 rblocks = RES_DINODE + ind_blocks; 1094 if (gfs2_is_jdata(ip)) 1095 rblocks += data_blocks; 1096 if (ind_blocks || data_blocks) 1097 rblocks += RES_STATFS + RES_QUOTA; 1098 if (inode == sdp->sd_rindex) 1099 rblocks += 2 * RES_STATFS; 1100 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1101 1102 ret = gfs2_trans_begin(sdp, rblocks, 1103 iomap->length >> inode->i_blkbits); 1104 if (ret) 1105 goto out_trans_fail; 1106 1107 if (unstuff) { 1108 ret = gfs2_unstuff_dinode(ip, NULL); 1109 if (ret) 1110 goto out_trans_end; 1111 release_metapath(mp); 1112 ret = gfs2_iomap_get(inode, iomap->offset, 1113 iomap->length, flags, iomap, mp); 1114 if (ret) 1115 goto out_trans_end; 1116 } 1117 1118 if (iomap->type == IOMAP_HOLE) { 1119 ret = gfs2_iomap_alloc(inode, iomap, mp); 1120 if (ret) { 1121 gfs2_trans_end(sdp); 1122 gfs2_inplace_release(ip); 1123 punch_hole(ip, iomap->offset, iomap->length); 1124 goto out_qunlock; 1125 } 1126 } 1127 1128 tr = current->journal_info; 1129 if (tr->tr_num_buf_new) 1130 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1131 1132 gfs2_trans_end(sdp); 1133 } 1134 1135 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1136 iomap->page_ops = &gfs2_iomap_page_ops; 1137 return 0; 1138 1139 out_trans_end: 1140 gfs2_trans_end(sdp); 1141 out_trans_fail: 1142 gfs2_inplace_release(ip); 1143 out_qunlock: 1144 gfs2_quota_unlock(ip); 1145 return ret; 1146 } 1147 1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1149 { 1150 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1151 } 1152 1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1154 unsigned flags, struct iomap *iomap, 1155 struct iomap *srcmap) 1156 { 1157 struct gfs2_inode *ip = GFS2_I(inode); 1158 struct metapath mp = { .mp_aheight = 1, }; 1159 int ret; 1160 1161 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1162 1163 trace_gfs2_iomap_start(ip, pos, length, flags); 1164 if (gfs2_iomap_need_write_lock(flags)) { 1165 ret = gfs2_write_lock(inode); 1166 if (ret) 1167 goto out; 1168 } 1169 1170 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1171 if (ret) 1172 goto out_unlock; 1173 1174 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1175 case IOMAP_WRITE: 1176 if (flags & IOMAP_DIRECT) { 1177 /* 1178 * Silently fall back to buffered I/O for stuffed files 1179 * or if we've got a hole (see gfs2_file_direct_write). 1180 */ 1181 if (iomap->type != IOMAP_MAPPED) 1182 ret = -ENOTBLK; 1183 goto out_unlock; 1184 } 1185 break; 1186 case IOMAP_ZERO: 1187 if (iomap->type == IOMAP_HOLE) 1188 goto out_unlock; 1189 break; 1190 default: 1191 goto out_unlock; 1192 } 1193 1194 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1195 1196 out_unlock: 1197 if (ret && gfs2_iomap_need_write_lock(flags)) 1198 gfs2_write_unlock(inode); 1199 release_metapath(&mp); 1200 out: 1201 trace_gfs2_iomap_end(ip, iomap, ret); 1202 return ret; 1203 } 1204 1205 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1206 ssize_t written, unsigned flags, struct iomap *iomap) 1207 { 1208 struct gfs2_inode *ip = GFS2_I(inode); 1209 struct gfs2_sbd *sdp = GFS2_SB(inode); 1210 1211 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1212 case IOMAP_WRITE: 1213 if (flags & IOMAP_DIRECT) 1214 return 0; 1215 break; 1216 case IOMAP_ZERO: 1217 if (iomap->type == IOMAP_HOLE) 1218 return 0; 1219 break; 1220 default: 1221 return 0; 1222 } 1223 1224 if (!gfs2_is_stuffed(ip)) 1225 gfs2_ordered_add_inode(ip); 1226 1227 if (inode == sdp->sd_rindex) 1228 adjust_fs_space(inode); 1229 1230 gfs2_inplace_release(ip); 1231 1232 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1233 /* Deallocate blocks that were just allocated. */ 1234 loff_t blockmask = i_blocksize(inode) - 1; 1235 loff_t end = (pos + length) & ~blockmask; 1236 1237 pos = (pos + written + blockmask) & ~blockmask; 1238 if (pos < end) { 1239 truncate_pagecache_range(inode, pos, end - 1); 1240 punch_hole(ip, pos, end - pos); 1241 } 1242 } 1243 1244 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1245 gfs2_quota_unlock(ip); 1246 1247 if (unlikely(!written)) 1248 goto out_unlock; 1249 1250 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1251 mark_inode_dirty(inode); 1252 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1253 1254 out_unlock: 1255 if (gfs2_iomap_need_write_lock(flags)) 1256 gfs2_write_unlock(inode); 1257 return 0; 1258 } 1259 1260 const struct iomap_ops gfs2_iomap_ops = { 1261 .iomap_begin = gfs2_iomap_begin, 1262 .iomap_end = gfs2_iomap_end, 1263 }; 1264 1265 /** 1266 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1267 * @inode: The inode 1268 * @lblock: The logical block number 1269 * @bh_map: The bh to be mapped 1270 * @create: True if its ok to alloc blocks to satify the request 1271 * 1272 * The size of the requested mapping is defined in bh_map->b_size. 1273 * 1274 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1275 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1276 * bh_map->b_size to indicate the size of the mapping when @lblock and 1277 * successive blocks are mapped, up to the requested size. 1278 * 1279 * Sets buffer_boundary() if a read of metadata will be required 1280 * before the next block can be mapped. Sets buffer_new() if new 1281 * blocks were allocated. 1282 * 1283 * Returns: errno 1284 */ 1285 1286 int gfs2_block_map(struct inode *inode, sector_t lblock, 1287 struct buffer_head *bh_map, int create) 1288 { 1289 struct gfs2_inode *ip = GFS2_I(inode); 1290 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1291 loff_t length = bh_map->b_size; 1292 struct metapath mp = { .mp_aheight = 1, }; 1293 struct iomap iomap = { }; 1294 int ret; 1295 1296 clear_buffer_mapped(bh_map); 1297 clear_buffer_new(bh_map); 1298 clear_buffer_boundary(bh_map); 1299 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1300 1301 if (create) { 1302 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1303 if (!ret && iomap.type == IOMAP_HOLE) 1304 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1305 release_metapath(&mp); 1306 } else { 1307 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1308 release_metapath(&mp); 1309 } 1310 if (ret) 1311 goto out; 1312 1313 if (iomap.length > bh_map->b_size) { 1314 iomap.length = bh_map->b_size; 1315 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1316 } 1317 if (iomap.addr != IOMAP_NULL_ADDR) 1318 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1319 bh_map->b_size = iomap.length; 1320 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1321 set_buffer_boundary(bh_map); 1322 if (iomap.flags & IOMAP_F_NEW) 1323 set_buffer_new(bh_map); 1324 1325 out: 1326 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1327 return ret; 1328 } 1329 1330 /* 1331 * Deprecated: do not use in new code 1332 */ 1333 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1334 { 1335 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1336 int ret; 1337 int create = *new; 1338 1339 BUG_ON(!extlen); 1340 BUG_ON(!dblock); 1341 BUG_ON(!new); 1342 1343 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1344 ret = gfs2_block_map(inode, lblock, &bh, create); 1345 *extlen = bh.b_size >> inode->i_blkbits; 1346 *dblock = bh.b_blocknr; 1347 if (buffer_new(&bh)) 1348 *new = 1; 1349 else 1350 *new = 0; 1351 return ret; 1352 } 1353 1354 /* 1355 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1356 * uses iomap write to perform its actions, which begin their own transactions 1357 * (iomap_begin, page_prepare, etc.) 1358 */ 1359 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1360 unsigned int length) 1361 { 1362 BUG_ON(current->journal_info); 1363 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1364 } 1365 1366 #define GFS2_JTRUNC_REVOKES 8192 1367 1368 /** 1369 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1370 * @inode: The inode being truncated 1371 * @oldsize: The original (larger) size 1372 * @newsize: The new smaller size 1373 * 1374 * With jdata files, we have to journal a revoke for each block which is 1375 * truncated. As a result, we need to split this into separate transactions 1376 * if the number of pages being truncated gets too large. 1377 */ 1378 1379 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1380 { 1381 struct gfs2_sbd *sdp = GFS2_SB(inode); 1382 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1383 u64 chunk; 1384 int error; 1385 1386 while (oldsize != newsize) { 1387 struct gfs2_trans *tr; 1388 unsigned int offs; 1389 1390 chunk = oldsize - newsize; 1391 if (chunk > max_chunk) 1392 chunk = max_chunk; 1393 1394 offs = oldsize & ~PAGE_MASK; 1395 if (offs && chunk > PAGE_SIZE) 1396 chunk = offs + ((chunk - offs) & PAGE_MASK); 1397 1398 truncate_pagecache(inode, oldsize - chunk); 1399 oldsize -= chunk; 1400 1401 tr = current->journal_info; 1402 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1403 continue; 1404 1405 gfs2_trans_end(sdp); 1406 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1407 if (error) 1408 return error; 1409 } 1410 1411 return 0; 1412 } 1413 1414 static int trunc_start(struct inode *inode, u64 newsize) 1415 { 1416 struct gfs2_inode *ip = GFS2_I(inode); 1417 struct gfs2_sbd *sdp = GFS2_SB(inode); 1418 struct buffer_head *dibh = NULL; 1419 int journaled = gfs2_is_jdata(ip); 1420 u64 oldsize = inode->i_size; 1421 int error; 1422 1423 if (!gfs2_is_stuffed(ip)) { 1424 unsigned int blocksize = i_blocksize(inode); 1425 unsigned int offs = newsize & (blocksize - 1); 1426 if (offs) { 1427 error = gfs2_block_zero_range(inode, newsize, 1428 blocksize - offs); 1429 if (error) 1430 return error; 1431 } 1432 } 1433 if (journaled) 1434 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1435 else 1436 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1437 if (error) 1438 return error; 1439 1440 error = gfs2_meta_inode_buffer(ip, &dibh); 1441 if (error) 1442 goto out; 1443 1444 gfs2_trans_add_meta(ip->i_gl, dibh); 1445 1446 if (gfs2_is_stuffed(ip)) 1447 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1448 else 1449 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1450 1451 i_size_write(inode, newsize); 1452 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1453 gfs2_dinode_out(ip, dibh->b_data); 1454 1455 if (journaled) 1456 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1457 else 1458 truncate_pagecache(inode, newsize); 1459 1460 out: 1461 brelse(dibh); 1462 if (current->journal_info) 1463 gfs2_trans_end(sdp); 1464 return error; 1465 } 1466 1467 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1468 struct iomap *iomap) 1469 { 1470 struct metapath mp = { .mp_aheight = 1, }; 1471 int ret; 1472 1473 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1474 if (!ret && iomap->type == IOMAP_HOLE) 1475 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1476 release_metapath(&mp); 1477 return ret; 1478 } 1479 1480 /** 1481 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1482 * @ip: inode 1483 * @rg_gh: holder of resource group glock 1484 * @bh: buffer head to sweep 1485 * @start: starting point in bh 1486 * @end: end point in bh 1487 * @meta: true if bh points to metadata (rather than data) 1488 * @btotal: place to keep count of total blocks freed 1489 * 1490 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1491 * free, and free them all. However, we do it one rgrp at a time. If this 1492 * block has references to multiple rgrps, we break it into individual 1493 * transactions. This allows other processes to use the rgrps while we're 1494 * focused on a single one, for better concurrency / performance. 1495 * At every transaction boundary, we rewrite the inode into the journal. 1496 * That way the bitmaps are kept consistent with the inode and we can recover 1497 * if we're interrupted by power-outages. 1498 * 1499 * Returns: 0, or return code if an error occurred. 1500 * *btotal has the total number of blocks freed 1501 */ 1502 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1503 struct buffer_head *bh, __be64 *start, __be64 *end, 1504 bool meta, u32 *btotal) 1505 { 1506 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1507 struct gfs2_rgrpd *rgd; 1508 struct gfs2_trans *tr; 1509 __be64 *p; 1510 int blks_outside_rgrp; 1511 u64 bn, bstart, isize_blks; 1512 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1513 int ret = 0; 1514 bool buf_in_tr = false; /* buffer was added to transaction */ 1515 1516 more_rgrps: 1517 rgd = NULL; 1518 if (gfs2_holder_initialized(rd_gh)) { 1519 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1520 gfs2_assert_withdraw(sdp, 1521 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1522 } 1523 blks_outside_rgrp = 0; 1524 bstart = 0; 1525 blen = 0; 1526 1527 for (p = start; p < end; p++) { 1528 if (!*p) 1529 continue; 1530 bn = be64_to_cpu(*p); 1531 1532 if (rgd) { 1533 if (!rgrp_contains_block(rgd, bn)) { 1534 blks_outside_rgrp++; 1535 continue; 1536 } 1537 } else { 1538 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1539 if (unlikely(!rgd)) { 1540 ret = -EIO; 1541 goto out; 1542 } 1543 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1544 0, rd_gh); 1545 if (ret) 1546 goto out; 1547 1548 /* Must be done with the rgrp glock held: */ 1549 if (gfs2_rs_active(&ip->i_res) && 1550 rgd == ip->i_res.rs_rbm.rgd) 1551 gfs2_rs_deltree(&ip->i_res); 1552 } 1553 1554 /* The size of our transactions will be unknown until we 1555 actually process all the metadata blocks that relate to 1556 the rgrp. So we estimate. We know it can't be more than 1557 the dinode's i_blocks and we don't want to exceed the 1558 journal flush threshold, sd_log_thresh2. */ 1559 if (current->journal_info == NULL) { 1560 unsigned int jblocks_rqsted, revokes; 1561 1562 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1563 RES_INDIRECT; 1564 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1565 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1566 jblocks_rqsted += 1567 atomic_read(&sdp->sd_log_thresh2); 1568 else 1569 jblocks_rqsted += isize_blks; 1570 revokes = jblocks_rqsted; 1571 if (meta) 1572 revokes += end - start; 1573 else if (ip->i_depth) 1574 revokes += sdp->sd_inptrs; 1575 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1576 if (ret) 1577 goto out_unlock; 1578 down_write(&ip->i_rw_mutex); 1579 } 1580 /* check if we will exceed the transaction blocks requested */ 1581 tr = current->journal_info; 1582 if (tr->tr_num_buf_new + RES_STATFS + 1583 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1584 /* We set blks_outside_rgrp to ensure the loop will 1585 be repeated for the same rgrp, but with a new 1586 transaction. */ 1587 blks_outside_rgrp++; 1588 /* This next part is tricky. If the buffer was added 1589 to the transaction, we've already set some block 1590 pointers to 0, so we better follow through and free 1591 them, or we will introduce corruption (so break). 1592 This may be impossible, or at least rare, but I 1593 decided to cover the case regardless. 1594 1595 If the buffer was not added to the transaction 1596 (this call), doing so would exceed our transaction 1597 size, so we need to end the transaction and start a 1598 new one (so goto). */ 1599 1600 if (buf_in_tr) 1601 break; 1602 goto out_unlock; 1603 } 1604 1605 gfs2_trans_add_meta(ip->i_gl, bh); 1606 buf_in_tr = true; 1607 *p = 0; 1608 if (bstart + blen == bn) { 1609 blen++; 1610 continue; 1611 } 1612 if (bstart) { 1613 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1614 (*btotal) += blen; 1615 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1616 } 1617 bstart = bn; 1618 blen = 1; 1619 } 1620 if (bstart) { 1621 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1622 (*btotal) += blen; 1623 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1624 } 1625 out_unlock: 1626 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1627 outside the rgrp we just processed, 1628 do it all over again. */ 1629 if (current->journal_info) { 1630 struct buffer_head *dibh; 1631 1632 ret = gfs2_meta_inode_buffer(ip, &dibh); 1633 if (ret) 1634 goto out; 1635 1636 /* Every transaction boundary, we rewrite the dinode 1637 to keep its di_blocks current in case of failure. */ 1638 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1639 current_time(&ip->i_inode); 1640 gfs2_trans_add_meta(ip->i_gl, dibh); 1641 gfs2_dinode_out(ip, dibh->b_data); 1642 brelse(dibh); 1643 up_write(&ip->i_rw_mutex); 1644 gfs2_trans_end(sdp); 1645 buf_in_tr = false; 1646 } 1647 gfs2_glock_dq_uninit(rd_gh); 1648 cond_resched(); 1649 goto more_rgrps; 1650 } 1651 out: 1652 return ret; 1653 } 1654 1655 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1656 { 1657 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1658 return false; 1659 return true; 1660 } 1661 1662 /** 1663 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1664 * @mp: starting metapath 1665 * @h: desired height to search 1666 * 1667 * Assumes the metapath is valid (with buffers) out to height h. 1668 * Returns: true if a non-null pointer was found in the metapath buffer 1669 * false if all remaining pointers are NULL in the buffer 1670 */ 1671 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1672 unsigned int h, 1673 __u16 *end_list, unsigned int end_aligned) 1674 { 1675 struct buffer_head *bh = mp->mp_bh[h]; 1676 __be64 *first, *ptr, *end; 1677 1678 first = metaptr1(h, mp); 1679 ptr = first + mp->mp_list[h]; 1680 end = (__be64 *)(bh->b_data + bh->b_size); 1681 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1682 bool keep_end = h < end_aligned; 1683 end = first + end_list[h] + keep_end; 1684 } 1685 1686 while (ptr < end) { 1687 if (*ptr) { /* if we have a non-null pointer */ 1688 mp->mp_list[h] = ptr - first; 1689 h++; 1690 if (h < GFS2_MAX_META_HEIGHT) 1691 mp->mp_list[h] = 0; 1692 return true; 1693 } 1694 ptr++; 1695 } 1696 return false; 1697 } 1698 1699 enum dealloc_states { 1700 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1701 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1702 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1703 DEALLOC_DONE = 3, /* process complete */ 1704 }; 1705 1706 static inline void 1707 metapointer_range(struct metapath *mp, int height, 1708 __u16 *start_list, unsigned int start_aligned, 1709 __u16 *end_list, unsigned int end_aligned, 1710 __be64 **start, __be64 **end) 1711 { 1712 struct buffer_head *bh = mp->mp_bh[height]; 1713 __be64 *first; 1714 1715 first = metaptr1(height, mp); 1716 *start = first; 1717 if (mp_eq_to_hgt(mp, start_list, height)) { 1718 bool keep_start = height < start_aligned; 1719 *start = first + start_list[height] + keep_start; 1720 } 1721 *end = (__be64 *)(bh->b_data + bh->b_size); 1722 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1723 bool keep_end = height < end_aligned; 1724 *end = first + end_list[height] + keep_end; 1725 } 1726 } 1727 1728 static inline bool walk_done(struct gfs2_sbd *sdp, 1729 struct metapath *mp, int height, 1730 __u16 *end_list, unsigned int end_aligned) 1731 { 1732 __u16 end; 1733 1734 if (end_list) { 1735 bool keep_end = height < end_aligned; 1736 if (!mp_eq_to_hgt(mp, end_list, height)) 1737 return false; 1738 end = end_list[height] + keep_end; 1739 } else 1740 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1741 return mp->mp_list[height] >= end; 1742 } 1743 1744 /** 1745 * punch_hole - deallocate blocks in a file 1746 * @ip: inode to truncate 1747 * @offset: the start of the hole 1748 * @length: the size of the hole (or 0 for truncate) 1749 * 1750 * Punch a hole into a file or truncate a file at a given position. This 1751 * function operates in whole blocks (@offset and @length are rounded 1752 * accordingly); partially filled blocks must be cleared otherwise. 1753 * 1754 * This function works from the bottom up, and from the right to the left. In 1755 * other words, it strips off the highest layer (data) before stripping any of 1756 * the metadata. Doing it this way is best in case the operation is interrupted 1757 * by power failure, etc. The dinode is rewritten in every transaction to 1758 * guarantee integrity. 1759 */ 1760 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1761 { 1762 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1763 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1764 struct metapath mp = {}; 1765 struct buffer_head *dibh, *bh; 1766 struct gfs2_holder rd_gh; 1767 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1768 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1769 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1770 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1771 unsigned int start_aligned, end_aligned; 1772 unsigned int strip_h = ip->i_height - 1; 1773 u32 btotal = 0; 1774 int ret, state; 1775 int mp_h; /* metapath buffers are read in to this height */ 1776 u64 prev_bnr = 0; 1777 __be64 *start, *end; 1778 1779 if (offset >= maxsize) { 1780 /* 1781 * The starting point lies beyond the allocated meta-data; 1782 * there are no blocks do deallocate. 1783 */ 1784 return 0; 1785 } 1786 1787 /* 1788 * The start position of the hole is defined by lblock, start_list, and 1789 * start_aligned. The end position of the hole is defined by lend, 1790 * end_list, and end_aligned. 1791 * 1792 * start_aligned and end_aligned define down to which height the start 1793 * and end positions are aligned to the metadata tree (i.e., the 1794 * position is a multiple of the metadata granularity at the height 1795 * above). This determines at which heights additional meta pointers 1796 * needs to be preserved for the remaining data. 1797 */ 1798 1799 if (length) { 1800 u64 end_offset = offset + length; 1801 u64 lend; 1802 1803 /* 1804 * Clip the end at the maximum file size for the given height: 1805 * that's how far the metadata goes; files bigger than that 1806 * will have additional layers of indirection. 1807 */ 1808 if (end_offset > maxsize) 1809 end_offset = maxsize; 1810 lend = end_offset >> bsize_shift; 1811 1812 if (lblock >= lend) 1813 return 0; 1814 1815 find_metapath(sdp, lend, &mp, ip->i_height); 1816 end_list = __end_list; 1817 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1818 1819 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1820 if (end_list[mp_h]) 1821 break; 1822 } 1823 end_aligned = mp_h; 1824 } 1825 1826 find_metapath(sdp, lblock, &mp, ip->i_height); 1827 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1828 1829 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1830 if (start_list[mp_h]) 1831 break; 1832 } 1833 start_aligned = mp_h; 1834 1835 ret = gfs2_meta_inode_buffer(ip, &dibh); 1836 if (ret) 1837 return ret; 1838 1839 mp.mp_bh[0] = dibh; 1840 ret = lookup_metapath(ip, &mp); 1841 if (ret) 1842 goto out_metapath; 1843 1844 /* issue read-ahead on metadata */ 1845 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1846 metapointer_range(&mp, mp_h, start_list, start_aligned, 1847 end_list, end_aligned, &start, &end); 1848 gfs2_metapath_ra(ip->i_gl, start, end); 1849 } 1850 1851 if (mp.mp_aheight == ip->i_height) 1852 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1853 else 1854 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1855 1856 ret = gfs2_rindex_update(sdp); 1857 if (ret) 1858 goto out_metapath; 1859 1860 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1861 if (ret) 1862 goto out_metapath; 1863 gfs2_holder_mark_uninitialized(&rd_gh); 1864 1865 mp_h = strip_h; 1866 1867 while (state != DEALLOC_DONE) { 1868 switch (state) { 1869 /* Truncate a full metapath at the given strip height. 1870 * Note that strip_h == mp_h in order to be in this state. */ 1871 case DEALLOC_MP_FULL: 1872 bh = mp.mp_bh[mp_h]; 1873 gfs2_assert_withdraw(sdp, bh); 1874 if (gfs2_assert_withdraw(sdp, 1875 prev_bnr != bh->b_blocknr)) { 1876 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1877 "s_h:%u, mp_h:%u\n", 1878 (unsigned long long)ip->i_no_addr, 1879 prev_bnr, ip->i_height, strip_h, mp_h); 1880 } 1881 prev_bnr = bh->b_blocknr; 1882 1883 if (gfs2_metatype_check(sdp, bh, 1884 (mp_h ? GFS2_METATYPE_IN : 1885 GFS2_METATYPE_DI))) { 1886 ret = -EIO; 1887 goto out; 1888 } 1889 1890 /* 1891 * Below, passing end_aligned as 0 gives us the 1892 * metapointer range excluding the end point: the end 1893 * point is the first metapath we must not deallocate! 1894 */ 1895 1896 metapointer_range(&mp, mp_h, start_list, start_aligned, 1897 end_list, 0 /* end_aligned */, 1898 &start, &end); 1899 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1900 start, end, 1901 mp_h != ip->i_height - 1, 1902 &btotal); 1903 1904 /* If we hit an error or just swept dinode buffer, 1905 just exit. */ 1906 if (ret || !mp_h) { 1907 state = DEALLOC_DONE; 1908 break; 1909 } 1910 state = DEALLOC_MP_LOWER; 1911 break; 1912 1913 /* lower the metapath strip height */ 1914 case DEALLOC_MP_LOWER: 1915 /* We're done with the current buffer, so release it, 1916 unless it's the dinode buffer. Then back up to the 1917 previous pointer. */ 1918 if (mp_h) { 1919 brelse(mp.mp_bh[mp_h]); 1920 mp.mp_bh[mp_h] = NULL; 1921 } 1922 /* If we can't get any lower in height, we've stripped 1923 off all we can. Next step is to back up and start 1924 stripping the previous level of metadata. */ 1925 if (mp_h == 0) { 1926 strip_h--; 1927 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1928 mp_h = strip_h; 1929 state = DEALLOC_FILL_MP; 1930 break; 1931 } 1932 mp.mp_list[mp_h] = 0; 1933 mp_h--; /* search one metadata height down */ 1934 mp.mp_list[mp_h]++; 1935 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1936 break; 1937 /* Here we've found a part of the metapath that is not 1938 * allocated. We need to search at that height for the 1939 * next non-null pointer. */ 1940 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1941 state = DEALLOC_FILL_MP; 1942 mp_h++; 1943 } 1944 /* No more non-null pointers at this height. Back up 1945 to the previous height and try again. */ 1946 break; /* loop around in the same state */ 1947 1948 /* Fill the metapath with buffers to the given height. */ 1949 case DEALLOC_FILL_MP: 1950 /* Fill the buffers out to the current height. */ 1951 ret = fillup_metapath(ip, &mp, mp_h); 1952 if (ret < 0) 1953 goto out; 1954 1955 /* On the first pass, issue read-ahead on metadata. */ 1956 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1957 unsigned int height = mp.mp_aheight - 1; 1958 1959 /* No read-ahead for data blocks. */ 1960 if (mp.mp_aheight - 1 == strip_h) 1961 height--; 1962 1963 for (; height >= mp.mp_aheight - ret; height--) { 1964 metapointer_range(&mp, height, 1965 start_list, start_aligned, 1966 end_list, end_aligned, 1967 &start, &end); 1968 gfs2_metapath_ra(ip->i_gl, start, end); 1969 } 1970 } 1971 1972 /* If buffers found for the entire strip height */ 1973 if (mp.mp_aheight - 1 == strip_h) { 1974 state = DEALLOC_MP_FULL; 1975 break; 1976 } 1977 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1978 mp_h = mp.mp_aheight - 1; 1979 1980 /* If we find a non-null block pointer, crawl a bit 1981 higher up in the metapath and try again, otherwise 1982 we need to look lower for a new starting point. */ 1983 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1984 mp_h++; 1985 else 1986 state = DEALLOC_MP_LOWER; 1987 break; 1988 } 1989 } 1990 1991 if (btotal) { 1992 if (current->journal_info == NULL) { 1993 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1994 RES_QUOTA, 0); 1995 if (ret) 1996 goto out; 1997 down_write(&ip->i_rw_mutex); 1998 } 1999 gfs2_statfs_change(sdp, 0, +btotal, 0); 2000 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 2001 ip->i_inode.i_gid); 2002 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2003 gfs2_trans_add_meta(ip->i_gl, dibh); 2004 gfs2_dinode_out(ip, dibh->b_data); 2005 up_write(&ip->i_rw_mutex); 2006 gfs2_trans_end(sdp); 2007 } 2008 2009 out: 2010 if (gfs2_holder_initialized(&rd_gh)) 2011 gfs2_glock_dq_uninit(&rd_gh); 2012 if (current->journal_info) { 2013 up_write(&ip->i_rw_mutex); 2014 gfs2_trans_end(sdp); 2015 cond_resched(); 2016 } 2017 gfs2_quota_unhold(ip); 2018 out_metapath: 2019 release_metapath(&mp); 2020 return ret; 2021 } 2022 2023 static int trunc_end(struct gfs2_inode *ip) 2024 { 2025 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2026 struct buffer_head *dibh; 2027 int error; 2028 2029 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2030 if (error) 2031 return error; 2032 2033 down_write(&ip->i_rw_mutex); 2034 2035 error = gfs2_meta_inode_buffer(ip, &dibh); 2036 if (error) 2037 goto out; 2038 2039 if (!i_size_read(&ip->i_inode)) { 2040 ip->i_height = 0; 2041 ip->i_goal = ip->i_no_addr; 2042 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2043 gfs2_ordered_del_inode(ip); 2044 } 2045 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2046 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2047 2048 gfs2_trans_add_meta(ip->i_gl, dibh); 2049 gfs2_dinode_out(ip, dibh->b_data); 2050 brelse(dibh); 2051 2052 out: 2053 up_write(&ip->i_rw_mutex); 2054 gfs2_trans_end(sdp); 2055 return error; 2056 } 2057 2058 /** 2059 * do_shrink - make a file smaller 2060 * @inode: the inode 2061 * @newsize: the size to make the file 2062 * 2063 * Called with an exclusive lock on @inode. The @size must 2064 * be equal to or smaller than the current inode size. 2065 * 2066 * Returns: errno 2067 */ 2068 2069 static int do_shrink(struct inode *inode, u64 newsize) 2070 { 2071 struct gfs2_inode *ip = GFS2_I(inode); 2072 int error; 2073 2074 error = trunc_start(inode, newsize); 2075 if (error < 0) 2076 return error; 2077 if (gfs2_is_stuffed(ip)) 2078 return 0; 2079 2080 error = punch_hole(ip, newsize, 0); 2081 if (error == 0) 2082 error = trunc_end(ip); 2083 2084 return error; 2085 } 2086 2087 void gfs2_trim_blocks(struct inode *inode) 2088 { 2089 int ret; 2090 2091 ret = do_shrink(inode, inode->i_size); 2092 WARN_ON(ret != 0); 2093 } 2094 2095 /** 2096 * do_grow - Touch and update inode size 2097 * @inode: The inode 2098 * @size: The new size 2099 * 2100 * This function updates the timestamps on the inode and 2101 * may also increase the size of the inode. This function 2102 * must not be called with @size any smaller than the current 2103 * inode size. 2104 * 2105 * Although it is not strictly required to unstuff files here, 2106 * earlier versions of GFS2 have a bug in the stuffed file reading 2107 * code which will result in a buffer overrun if the size is larger 2108 * than the max stuffed file size. In order to prevent this from 2109 * occurring, such files are unstuffed, but in other cases we can 2110 * just update the inode size directly. 2111 * 2112 * Returns: 0 on success, or -ve on error 2113 */ 2114 2115 static int do_grow(struct inode *inode, u64 size) 2116 { 2117 struct gfs2_inode *ip = GFS2_I(inode); 2118 struct gfs2_sbd *sdp = GFS2_SB(inode); 2119 struct gfs2_alloc_parms ap = { .target = 1, }; 2120 struct buffer_head *dibh; 2121 int error; 2122 int unstuff = 0; 2123 2124 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2125 error = gfs2_quota_lock_check(ip, &ap); 2126 if (error) 2127 return error; 2128 2129 error = gfs2_inplace_reserve(ip, &ap); 2130 if (error) 2131 goto do_grow_qunlock; 2132 unstuff = 1; 2133 } 2134 2135 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2136 (unstuff && 2137 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2138 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2139 0 : RES_QUOTA), 0); 2140 if (error) 2141 goto do_grow_release; 2142 2143 if (unstuff) { 2144 error = gfs2_unstuff_dinode(ip, NULL); 2145 if (error) 2146 goto do_end_trans; 2147 } 2148 2149 error = gfs2_meta_inode_buffer(ip, &dibh); 2150 if (error) 2151 goto do_end_trans; 2152 2153 truncate_setsize(inode, size); 2154 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2155 gfs2_trans_add_meta(ip->i_gl, dibh); 2156 gfs2_dinode_out(ip, dibh->b_data); 2157 brelse(dibh); 2158 2159 do_end_trans: 2160 gfs2_trans_end(sdp); 2161 do_grow_release: 2162 if (unstuff) { 2163 gfs2_inplace_release(ip); 2164 do_grow_qunlock: 2165 gfs2_quota_unlock(ip); 2166 } 2167 return error; 2168 } 2169 2170 /** 2171 * gfs2_setattr_size - make a file a given size 2172 * @inode: the inode 2173 * @newsize: the size to make the file 2174 * 2175 * The file size can grow, shrink, or stay the same size. This 2176 * is called holding i_rwsem and an exclusive glock on the inode 2177 * in question. 2178 * 2179 * Returns: errno 2180 */ 2181 2182 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2183 { 2184 struct gfs2_inode *ip = GFS2_I(inode); 2185 int ret; 2186 2187 BUG_ON(!S_ISREG(inode->i_mode)); 2188 2189 ret = inode_newsize_ok(inode, newsize); 2190 if (ret) 2191 return ret; 2192 2193 inode_dio_wait(inode); 2194 2195 ret = gfs2_qa_get(ip); 2196 if (ret) 2197 goto out; 2198 2199 if (newsize >= inode->i_size) { 2200 ret = do_grow(inode, newsize); 2201 goto out; 2202 } 2203 2204 ret = do_shrink(inode, newsize); 2205 out: 2206 gfs2_rs_delete(ip, NULL); 2207 gfs2_qa_put(ip); 2208 return ret; 2209 } 2210 2211 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2212 { 2213 int error; 2214 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2215 if (!error) 2216 error = trunc_end(ip); 2217 return error; 2218 } 2219 2220 int gfs2_file_dealloc(struct gfs2_inode *ip) 2221 { 2222 return punch_hole(ip, 0, 0); 2223 } 2224 2225 /** 2226 * gfs2_free_journal_extents - Free cached journal bmap info 2227 * @jd: The journal 2228 * 2229 */ 2230 2231 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2232 { 2233 struct gfs2_journal_extent *jext; 2234 2235 while(!list_empty(&jd->extent_list)) { 2236 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2237 list_del(&jext->list); 2238 kfree(jext); 2239 } 2240 } 2241 2242 /** 2243 * gfs2_add_jextent - Add or merge a new extent to extent cache 2244 * @jd: The journal descriptor 2245 * @lblock: The logical block at start of new extent 2246 * @dblock: The physical block at start of new extent 2247 * @blocks: Size of extent in fs blocks 2248 * 2249 * Returns: 0 on success or -ENOMEM 2250 */ 2251 2252 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2253 { 2254 struct gfs2_journal_extent *jext; 2255 2256 if (!list_empty(&jd->extent_list)) { 2257 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2258 if ((jext->dblock + jext->blocks) == dblock) { 2259 jext->blocks += blocks; 2260 return 0; 2261 } 2262 } 2263 2264 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2265 if (jext == NULL) 2266 return -ENOMEM; 2267 jext->dblock = dblock; 2268 jext->lblock = lblock; 2269 jext->blocks = blocks; 2270 list_add_tail(&jext->list, &jd->extent_list); 2271 jd->nr_extents++; 2272 return 0; 2273 } 2274 2275 /** 2276 * gfs2_map_journal_extents - Cache journal bmap info 2277 * @sdp: The super block 2278 * @jd: The journal to map 2279 * 2280 * Create a reusable "extent" mapping from all logical 2281 * blocks to all physical blocks for the given journal. This will save 2282 * us time when writing journal blocks. Most journals will have only one 2283 * extent that maps all their logical blocks. That's because gfs2.mkfs 2284 * arranges the journal blocks sequentially to maximize performance. 2285 * So the extent would map the first block for the entire file length. 2286 * However, gfs2_jadd can happen while file activity is happening, so 2287 * those journals may not be sequential. Less likely is the case where 2288 * the users created their own journals by mounting the metafs and 2289 * laying it out. But it's still possible. These journals might have 2290 * several extents. 2291 * 2292 * Returns: 0 on success, or error on failure 2293 */ 2294 2295 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2296 { 2297 u64 lblock = 0; 2298 u64 lblock_stop; 2299 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2300 struct buffer_head bh; 2301 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2302 u64 size; 2303 int rc; 2304 ktime_t start, end; 2305 2306 start = ktime_get(); 2307 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2308 size = (lblock_stop - lblock) << shift; 2309 jd->nr_extents = 0; 2310 WARN_ON(!list_empty(&jd->extent_list)); 2311 2312 do { 2313 bh.b_state = 0; 2314 bh.b_blocknr = 0; 2315 bh.b_size = size; 2316 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2317 if (rc || !buffer_mapped(&bh)) 2318 goto fail; 2319 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2320 if (rc) 2321 goto fail; 2322 size -= bh.b_size; 2323 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2324 } while(size > 0); 2325 2326 end = ktime_get(); 2327 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2328 jd->nr_extents, ktime_ms_delta(end, start)); 2329 return 0; 2330 2331 fail: 2332 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2333 rc, jd->jd_jid, 2334 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2335 jd->nr_extents); 2336 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2337 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2338 bh.b_state, (unsigned long long)bh.b_size); 2339 gfs2_free_journal_extents(jd); 2340 return rc; 2341 } 2342 2343 /** 2344 * gfs2_write_alloc_required - figure out if a write will require an allocation 2345 * @ip: the file being written to 2346 * @offset: the offset to write to 2347 * @len: the number of bytes being written 2348 * 2349 * Returns: 1 if an alloc is required, 0 otherwise 2350 */ 2351 2352 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2353 unsigned int len) 2354 { 2355 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2356 struct buffer_head bh; 2357 unsigned int shift; 2358 u64 lblock, lblock_stop, size; 2359 u64 end_of_file; 2360 2361 if (!len) 2362 return 0; 2363 2364 if (gfs2_is_stuffed(ip)) { 2365 if (offset + len > gfs2_max_stuffed_size(ip)) 2366 return 1; 2367 return 0; 2368 } 2369 2370 shift = sdp->sd_sb.sb_bsize_shift; 2371 BUG_ON(gfs2_is_dir(ip)); 2372 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2373 lblock = offset >> shift; 2374 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2375 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2376 return 1; 2377 2378 size = (lblock_stop - lblock) << shift; 2379 do { 2380 bh.b_state = 0; 2381 bh.b_size = size; 2382 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2383 if (!buffer_mapped(&bh)) 2384 return 1; 2385 size -= bh.b_size; 2386 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2387 } while(size > 0); 2388 2389 return 0; 2390 } 2391 2392 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2393 { 2394 struct gfs2_inode *ip = GFS2_I(inode); 2395 struct buffer_head *dibh; 2396 int error; 2397 2398 if (offset >= inode->i_size) 2399 return 0; 2400 if (offset + length > inode->i_size) 2401 length = inode->i_size - offset; 2402 2403 error = gfs2_meta_inode_buffer(ip, &dibh); 2404 if (error) 2405 return error; 2406 gfs2_trans_add_meta(ip->i_gl, dibh); 2407 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2408 length); 2409 brelse(dibh); 2410 return 0; 2411 } 2412 2413 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2414 loff_t length) 2415 { 2416 struct gfs2_sbd *sdp = GFS2_SB(inode); 2417 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2418 int error; 2419 2420 while (length) { 2421 struct gfs2_trans *tr; 2422 loff_t chunk; 2423 unsigned int offs; 2424 2425 chunk = length; 2426 if (chunk > max_chunk) 2427 chunk = max_chunk; 2428 2429 offs = offset & ~PAGE_MASK; 2430 if (offs && chunk > PAGE_SIZE) 2431 chunk = offs + ((chunk - offs) & PAGE_MASK); 2432 2433 truncate_pagecache_range(inode, offset, chunk); 2434 offset += chunk; 2435 length -= chunk; 2436 2437 tr = current->journal_info; 2438 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2439 continue; 2440 2441 gfs2_trans_end(sdp); 2442 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2443 if (error) 2444 return error; 2445 } 2446 return 0; 2447 } 2448 2449 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2450 { 2451 struct inode *inode = file_inode(file); 2452 struct gfs2_inode *ip = GFS2_I(inode); 2453 struct gfs2_sbd *sdp = GFS2_SB(inode); 2454 unsigned int blocksize = i_blocksize(inode); 2455 loff_t start, end; 2456 int error; 2457 2458 if (!gfs2_is_stuffed(ip)) { 2459 unsigned int start_off, end_len; 2460 2461 start_off = offset & (blocksize - 1); 2462 end_len = (offset + length) & (blocksize - 1); 2463 if (start_off) { 2464 unsigned int len = length; 2465 if (length > blocksize - start_off) 2466 len = blocksize - start_off; 2467 error = gfs2_block_zero_range(inode, offset, len); 2468 if (error) 2469 goto out; 2470 if (start_off + length < blocksize) 2471 end_len = 0; 2472 } 2473 if (end_len) { 2474 error = gfs2_block_zero_range(inode, 2475 offset + length - end_len, end_len); 2476 if (error) 2477 goto out; 2478 } 2479 } 2480 2481 start = round_down(offset, blocksize); 2482 end = round_up(offset + length, blocksize) - 1; 2483 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2484 if (error) 2485 return error; 2486 2487 if (gfs2_is_jdata(ip)) 2488 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2489 GFS2_JTRUNC_REVOKES); 2490 else 2491 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2492 if (error) 2493 return error; 2494 2495 if (gfs2_is_stuffed(ip)) { 2496 error = stuffed_zero_range(inode, offset, length); 2497 if (error) 2498 goto out; 2499 } 2500 2501 if (gfs2_is_jdata(ip)) { 2502 BUG_ON(!current->journal_info); 2503 gfs2_journaled_truncate_range(inode, offset, length); 2504 } else 2505 truncate_pagecache_range(inode, offset, offset + length - 1); 2506 2507 file_update_time(file); 2508 mark_inode_dirty(inode); 2509 2510 if (current->journal_info) 2511 gfs2_trans_end(sdp); 2512 2513 if (!gfs2_is_stuffed(ip)) 2514 error = punch_hole(ip, offset, length); 2515 2516 out: 2517 if (current->journal_info) 2518 gfs2_trans_end(sdp); 2519 return error; 2520 } 2521