xref: /linux/fs/gfs2/bmap.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 
60 	if (!PageUptodate(page)) {
61 		void *kaddr = kmap(page);
62 		u64 dsize = i_size_read(inode);
63 
64 		if (dsize > gfs2_max_stuffed_size(ip))
65 			dsize = gfs2_max_stuffed_size(ip);
66 
67 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
68 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
69 		kunmap(page);
70 
71 		SetPageUptodate(page);
72 	}
73 
74 	if (gfs2_is_jdata(ip)) {
75 		struct buffer_head *bh;
76 
77 		if (!page_has_buffers(page))
78 			create_empty_buffers(page, BIT(inode->i_blkbits),
79 					     BIT(BH_Uptodate));
80 
81 		bh = page_buffers(page);
82 		if (!buffer_mapped(bh))
83 			map_bh(bh, inode->i_sb, block);
84 
85 		set_buffer_uptodate(bh);
86 		gfs2_trans_add_data(ip->i_gl, bh);
87 	} else {
88 		set_page_dirty(page);
89 		gfs2_ordered_add_inode(ip);
90 	}
91 
92 	return 0;
93 }
94 
95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
96 {
97 	struct buffer_head *bh, *dibh;
98 	struct gfs2_dinode *di;
99 	u64 block = 0;
100 	int isdir = gfs2_is_dir(ip);
101 	int error;
102 
103 	error = gfs2_meta_inode_buffer(ip, &dibh);
104 	if (error)
105 		return error;
106 
107 	if (i_size_read(&ip->i_inode)) {
108 		/* Get a free block, fill it with the stuffed data,
109 		   and write it out to disk */
110 
111 		unsigned int n = 1;
112 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
113 		if (error)
114 			goto out_brelse;
115 		if (isdir) {
116 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
117 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
118 			if (error)
119 				goto out_brelse;
120 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
121 					      dibh, sizeof(struct gfs2_dinode));
122 			brelse(bh);
123 		} else {
124 			error = gfs2_unstuffer_page(ip, dibh, block, page);
125 			if (error)
126 				goto out_brelse;
127 		}
128 	}
129 
130 	/*  Set up the pointer to the new block  */
131 
132 	gfs2_trans_add_meta(ip->i_gl, dibh);
133 	di = (struct gfs2_dinode *)dibh->b_data;
134 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
135 
136 	if (i_size_read(&ip->i_inode)) {
137 		*(__be64 *)(di + 1) = cpu_to_be64(block);
138 		gfs2_add_inode_blocks(&ip->i_inode, 1);
139 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
140 	}
141 
142 	ip->i_height = 1;
143 	di->di_height = cpu_to_be16(1);
144 
145 out_brelse:
146 	brelse(dibh);
147 	return error;
148 }
149 
150 /**
151  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
152  * @ip: The GFS2 inode to unstuff
153  *
154  * This routine unstuffs a dinode and returns it to a "normal" state such
155  * that the height can be grown in the traditional way.
156  *
157  * Returns: errno
158  */
159 
160 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
161 {
162 	struct inode *inode = &ip->i_inode;
163 	struct page *page;
164 	int error;
165 
166 	down_write(&ip->i_rw_mutex);
167 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
168 	error = -ENOMEM;
169 	if (!page)
170 		goto out;
171 	error = __gfs2_unstuff_inode(ip, page);
172 	unlock_page(page);
173 	put_page(page);
174 out:
175 	up_write(&ip->i_rw_mutex);
176 	return error;
177 }
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after __gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
663 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			      struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 			fallthrough;	/* To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 			fallthrough;	/* To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
842 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			    unsigned flags, struct iomap *iomap,
844 			    struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - pos;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
965 				   unsigned len)
966 {
967 	unsigned int blockmask = i_blocksize(inode) - 1;
968 	struct gfs2_sbd *sdp = GFS2_SB(inode);
969 	unsigned int blocks;
970 
971 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
972 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
973 }
974 
975 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
976 				 unsigned copied, struct page *page)
977 {
978 	struct gfs2_trans *tr = current->journal_info;
979 	struct gfs2_inode *ip = GFS2_I(inode);
980 	struct gfs2_sbd *sdp = GFS2_SB(inode);
981 
982 	if (page && !gfs2_is_stuffed(ip))
983 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
984 
985 	if (tr->tr_num_buf_new)
986 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
987 
988 	gfs2_trans_end(sdp);
989 }
990 
991 static const struct iomap_page_ops gfs2_iomap_page_ops = {
992 	.page_prepare = gfs2_iomap_page_prepare,
993 	.page_done = gfs2_iomap_page_done,
994 };
995 
996 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
997 				  loff_t length, unsigned flags,
998 				  struct iomap *iomap,
999 				  struct metapath *mp)
1000 {
1001 	struct gfs2_inode *ip = GFS2_I(inode);
1002 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1003 	bool unstuff;
1004 	int ret;
1005 
1006 	unstuff = gfs2_is_stuffed(ip) &&
1007 		  pos + length > gfs2_max_stuffed_size(ip);
1008 
1009 	if (unstuff || iomap->type == IOMAP_HOLE) {
1010 		unsigned int data_blocks, ind_blocks;
1011 		struct gfs2_alloc_parms ap = {};
1012 		unsigned int rblocks;
1013 		struct gfs2_trans *tr;
1014 
1015 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1016 				       &ind_blocks);
1017 		ap.target = data_blocks + ind_blocks;
1018 		ret = gfs2_quota_lock_check(ip, &ap);
1019 		if (ret)
1020 			return ret;
1021 
1022 		ret = gfs2_inplace_reserve(ip, &ap);
1023 		if (ret)
1024 			goto out_qunlock;
1025 
1026 		rblocks = RES_DINODE + ind_blocks;
1027 		if (gfs2_is_jdata(ip))
1028 			rblocks += data_blocks;
1029 		if (ind_blocks || data_blocks)
1030 			rblocks += RES_STATFS + RES_QUOTA;
1031 		if (inode == sdp->sd_rindex)
1032 			rblocks += 2 * RES_STATFS;
1033 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1034 
1035 		ret = gfs2_trans_begin(sdp, rblocks,
1036 				       iomap->length >> inode->i_blkbits);
1037 		if (ret)
1038 			goto out_trans_fail;
1039 
1040 		if (unstuff) {
1041 			ret = gfs2_unstuff_dinode(ip);
1042 			if (ret)
1043 				goto out_trans_end;
1044 			release_metapath(mp);
1045 			ret = __gfs2_iomap_get(inode, iomap->offset,
1046 					       iomap->length, flags, iomap, mp);
1047 			if (ret)
1048 				goto out_trans_end;
1049 		}
1050 
1051 		if (iomap->type == IOMAP_HOLE) {
1052 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1053 			if (ret) {
1054 				gfs2_trans_end(sdp);
1055 				gfs2_inplace_release(ip);
1056 				punch_hole(ip, iomap->offset, iomap->length);
1057 				goto out_qunlock;
1058 			}
1059 		}
1060 
1061 		tr = current->journal_info;
1062 		if (tr->tr_num_buf_new)
1063 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1064 
1065 		gfs2_trans_end(sdp);
1066 	}
1067 
1068 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1069 		iomap->page_ops = &gfs2_iomap_page_ops;
1070 	return 0;
1071 
1072 out_trans_end:
1073 	gfs2_trans_end(sdp);
1074 out_trans_fail:
1075 	gfs2_inplace_release(ip);
1076 out_qunlock:
1077 	gfs2_quota_unlock(ip);
1078 	return ret;
1079 }
1080 
1081 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1082 			    unsigned flags, struct iomap *iomap,
1083 			    struct iomap *srcmap)
1084 {
1085 	struct gfs2_inode *ip = GFS2_I(inode);
1086 	struct metapath mp = { .mp_aheight = 1, };
1087 	int ret;
1088 
1089 	if (gfs2_is_jdata(ip))
1090 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1091 
1092 	trace_gfs2_iomap_start(ip, pos, length, flags);
1093 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1094 	if (ret)
1095 		goto out_unlock;
1096 
1097 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1098 	case IOMAP_WRITE:
1099 		if (flags & IOMAP_DIRECT) {
1100 			/*
1101 			 * Silently fall back to buffered I/O for stuffed files
1102 			 * or if we've got a hole (see gfs2_file_direct_write).
1103 			 */
1104 			if (iomap->type != IOMAP_MAPPED)
1105 				ret = -ENOTBLK;
1106 			goto out_unlock;
1107 		}
1108 		break;
1109 	case IOMAP_ZERO:
1110 		if (iomap->type == IOMAP_HOLE)
1111 			goto out_unlock;
1112 		break;
1113 	default:
1114 		goto out_unlock;
1115 	}
1116 
1117 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1118 
1119 out_unlock:
1120 	release_metapath(&mp);
1121 	trace_gfs2_iomap_end(ip, iomap, ret);
1122 	return ret;
1123 }
1124 
1125 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1126 			  ssize_t written, unsigned flags, struct iomap *iomap)
1127 {
1128 	struct gfs2_inode *ip = GFS2_I(inode);
1129 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1130 
1131 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1132 	case IOMAP_WRITE:
1133 		if (flags & IOMAP_DIRECT)
1134 			return 0;
1135 		break;
1136 	case IOMAP_ZERO:
1137 		 if (iomap->type == IOMAP_HOLE)
1138 			 return 0;
1139 		 break;
1140 	default:
1141 		 return 0;
1142 	}
1143 
1144 	if (!gfs2_is_stuffed(ip))
1145 		gfs2_ordered_add_inode(ip);
1146 
1147 	if (inode == sdp->sd_rindex)
1148 		adjust_fs_space(inode);
1149 
1150 	gfs2_inplace_release(ip);
1151 
1152 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1153 		gfs2_quota_unlock(ip);
1154 
1155 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1156 		/* Deallocate blocks that were just allocated. */
1157 		loff_t blockmask = i_blocksize(inode) - 1;
1158 		loff_t end = (pos + length) & ~blockmask;
1159 
1160 		pos = (pos + written + blockmask) & ~blockmask;
1161 		if (pos < end) {
1162 			truncate_pagecache_range(inode, pos, end - 1);
1163 			punch_hole(ip, pos, end - pos);
1164 		}
1165 	}
1166 
1167 	if (unlikely(!written))
1168 		return 0;
1169 
1170 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1171 		mark_inode_dirty(inode);
1172 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1173 	return 0;
1174 }
1175 
1176 const struct iomap_ops gfs2_iomap_ops = {
1177 	.iomap_begin = gfs2_iomap_begin,
1178 	.iomap_end = gfs2_iomap_end,
1179 };
1180 
1181 /**
1182  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1183  * @inode: The inode
1184  * @lblock: The logical block number
1185  * @bh_map: The bh to be mapped
1186  * @create: True if its ok to alloc blocks to satify the request
1187  *
1188  * The size of the requested mapping is defined in bh_map->b_size.
1189  *
1190  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1191  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1192  * bh_map->b_size to indicate the size of the mapping when @lblock and
1193  * successive blocks are mapped, up to the requested size.
1194  *
1195  * Sets buffer_boundary() if a read of metadata will be required
1196  * before the next block can be mapped. Sets buffer_new() if new
1197  * blocks were allocated.
1198  *
1199  * Returns: errno
1200  */
1201 
1202 int gfs2_block_map(struct inode *inode, sector_t lblock,
1203 		   struct buffer_head *bh_map, int create)
1204 {
1205 	struct gfs2_inode *ip = GFS2_I(inode);
1206 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1207 	loff_t length = bh_map->b_size;
1208 	struct iomap iomap = { };
1209 	int ret;
1210 
1211 	clear_buffer_mapped(bh_map);
1212 	clear_buffer_new(bh_map);
1213 	clear_buffer_boundary(bh_map);
1214 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1215 
1216 	if (!create)
1217 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1218 	else
1219 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1220 	if (ret)
1221 		goto out;
1222 
1223 	if (iomap.length > bh_map->b_size) {
1224 		iomap.length = bh_map->b_size;
1225 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1226 	}
1227 	if (iomap.addr != IOMAP_NULL_ADDR)
1228 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1229 	bh_map->b_size = iomap.length;
1230 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1231 		set_buffer_boundary(bh_map);
1232 	if (iomap.flags & IOMAP_F_NEW)
1233 		set_buffer_new(bh_map);
1234 
1235 out:
1236 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1237 	return ret;
1238 }
1239 
1240 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1241 		    unsigned int *extlen)
1242 {
1243 	unsigned int blkbits = inode->i_blkbits;
1244 	struct iomap iomap = { };
1245 	unsigned int len;
1246 	int ret;
1247 
1248 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1249 			     &iomap);
1250 	if (ret)
1251 		return ret;
1252 	if (iomap.type != IOMAP_MAPPED)
1253 		return -EIO;
1254 	*dblock = iomap.addr >> blkbits;
1255 	len = iomap.length >> blkbits;
1256 	if (len < *extlen)
1257 		*extlen = len;
1258 	return 0;
1259 }
1260 
1261 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1262 		      unsigned int *extlen, bool *new)
1263 {
1264 	unsigned int blkbits = inode->i_blkbits;
1265 	struct iomap iomap = { };
1266 	unsigned int len;
1267 	int ret;
1268 
1269 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1270 			       &iomap);
1271 	if (ret)
1272 		return ret;
1273 	if (iomap.type != IOMAP_MAPPED)
1274 		return -EIO;
1275 	*dblock = iomap.addr >> blkbits;
1276 	len = iomap.length >> blkbits;
1277 	if (len < *extlen)
1278 		*extlen = len;
1279 	*new = iomap.flags & IOMAP_F_NEW;
1280 	return 0;
1281 }
1282 
1283 /*
1284  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1285  * uses iomap write to perform its actions, which begin their own transactions
1286  * (iomap_begin, page_prepare, etc.)
1287  */
1288 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1289 				 unsigned int length)
1290 {
1291 	BUG_ON(current->journal_info);
1292 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1293 }
1294 
1295 #define GFS2_JTRUNC_REVOKES 8192
1296 
1297 /**
1298  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1299  * @inode: The inode being truncated
1300  * @oldsize: The original (larger) size
1301  * @newsize: The new smaller size
1302  *
1303  * With jdata files, we have to journal a revoke for each block which is
1304  * truncated. As a result, we need to split this into separate transactions
1305  * if the number of pages being truncated gets too large.
1306  */
1307 
1308 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1309 {
1310 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1311 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1312 	u64 chunk;
1313 	int error;
1314 
1315 	while (oldsize != newsize) {
1316 		struct gfs2_trans *tr;
1317 		unsigned int offs;
1318 
1319 		chunk = oldsize - newsize;
1320 		if (chunk > max_chunk)
1321 			chunk = max_chunk;
1322 
1323 		offs = oldsize & ~PAGE_MASK;
1324 		if (offs && chunk > PAGE_SIZE)
1325 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1326 
1327 		truncate_pagecache(inode, oldsize - chunk);
1328 		oldsize -= chunk;
1329 
1330 		tr = current->journal_info;
1331 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1332 			continue;
1333 
1334 		gfs2_trans_end(sdp);
1335 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1336 		if (error)
1337 			return error;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static int trunc_start(struct inode *inode, u64 newsize)
1344 {
1345 	struct gfs2_inode *ip = GFS2_I(inode);
1346 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1347 	struct buffer_head *dibh = NULL;
1348 	int journaled = gfs2_is_jdata(ip);
1349 	u64 oldsize = inode->i_size;
1350 	int error;
1351 
1352 	if (!gfs2_is_stuffed(ip)) {
1353 		unsigned int blocksize = i_blocksize(inode);
1354 		unsigned int offs = newsize & (blocksize - 1);
1355 		if (offs) {
1356 			error = gfs2_block_zero_range(inode, newsize,
1357 						      blocksize - offs);
1358 			if (error)
1359 				return error;
1360 		}
1361 	}
1362 	if (journaled)
1363 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1364 	else
1365 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1366 	if (error)
1367 		return error;
1368 
1369 	error = gfs2_meta_inode_buffer(ip, &dibh);
1370 	if (error)
1371 		goto out;
1372 
1373 	gfs2_trans_add_meta(ip->i_gl, dibh);
1374 
1375 	if (gfs2_is_stuffed(ip))
1376 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1377 	else
1378 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1379 
1380 	i_size_write(inode, newsize);
1381 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1382 	gfs2_dinode_out(ip, dibh->b_data);
1383 
1384 	if (journaled)
1385 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1386 	else
1387 		truncate_pagecache(inode, newsize);
1388 
1389 out:
1390 	brelse(dibh);
1391 	if (current->journal_info)
1392 		gfs2_trans_end(sdp);
1393 	return error;
1394 }
1395 
1396 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1397 		   struct iomap *iomap)
1398 {
1399 	struct metapath mp = { .mp_aheight = 1, };
1400 	int ret;
1401 
1402 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1403 	release_metapath(&mp);
1404 	return ret;
1405 }
1406 
1407 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1408 		     struct iomap *iomap)
1409 {
1410 	struct metapath mp = { .mp_aheight = 1, };
1411 	int ret;
1412 
1413 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1414 	if (!ret && iomap->type == IOMAP_HOLE)
1415 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1416 	release_metapath(&mp);
1417 	return ret;
1418 }
1419 
1420 /**
1421  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1422  * @ip: inode
1423  * @rd_gh: holder of resource group glock
1424  * @bh: buffer head to sweep
1425  * @start: starting point in bh
1426  * @end: end point in bh
1427  * @meta: true if bh points to metadata (rather than data)
1428  * @btotal: place to keep count of total blocks freed
1429  *
1430  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1431  * free, and free them all. However, we do it one rgrp at a time. If this
1432  * block has references to multiple rgrps, we break it into individual
1433  * transactions. This allows other processes to use the rgrps while we're
1434  * focused on a single one, for better concurrency / performance.
1435  * At every transaction boundary, we rewrite the inode into the journal.
1436  * That way the bitmaps are kept consistent with the inode and we can recover
1437  * if we're interrupted by power-outages.
1438  *
1439  * Returns: 0, or return code if an error occurred.
1440  *          *btotal has the total number of blocks freed
1441  */
1442 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1443 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1444 			      bool meta, u32 *btotal)
1445 {
1446 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1447 	struct gfs2_rgrpd *rgd;
1448 	struct gfs2_trans *tr;
1449 	__be64 *p;
1450 	int blks_outside_rgrp;
1451 	u64 bn, bstart, isize_blks;
1452 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1453 	int ret = 0;
1454 	bool buf_in_tr = false; /* buffer was added to transaction */
1455 
1456 more_rgrps:
1457 	rgd = NULL;
1458 	if (gfs2_holder_initialized(rd_gh)) {
1459 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1460 		gfs2_assert_withdraw(sdp,
1461 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1462 	}
1463 	blks_outside_rgrp = 0;
1464 	bstart = 0;
1465 	blen = 0;
1466 
1467 	for (p = start; p < end; p++) {
1468 		if (!*p)
1469 			continue;
1470 		bn = be64_to_cpu(*p);
1471 
1472 		if (rgd) {
1473 			if (!rgrp_contains_block(rgd, bn)) {
1474 				blks_outside_rgrp++;
1475 				continue;
1476 			}
1477 		} else {
1478 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1479 			if (unlikely(!rgd)) {
1480 				ret = -EIO;
1481 				goto out;
1482 			}
1483 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1484 						 LM_FLAG_NODE_SCOPE, rd_gh);
1485 			if (ret)
1486 				goto out;
1487 
1488 			/* Must be done with the rgrp glock held: */
1489 			if (gfs2_rs_active(&ip->i_res) &&
1490 			    rgd == ip->i_res.rs_rgd)
1491 				gfs2_rs_deltree(&ip->i_res);
1492 		}
1493 
1494 		/* The size of our transactions will be unknown until we
1495 		   actually process all the metadata blocks that relate to
1496 		   the rgrp. So we estimate. We know it can't be more than
1497 		   the dinode's i_blocks and we don't want to exceed the
1498 		   journal flush threshold, sd_log_thresh2. */
1499 		if (current->journal_info == NULL) {
1500 			unsigned int jblocks_rqsted, revokes;
1501 
1502 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1503 				RES_INDIRECT;
1504 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1505 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1506 				jblocks_rqsted +=
1507 					atomic_read(&sdp->sd_log_thresh2);
1508 			else
1509 				jblocks_rqsted += isize_blks;
1510 			revokes = jblocks_rqsted;
1511 			if (meta)
1512 				revokes += end - start;
1513 			else if (ip->i_depth)
1514 				revokes += sdp->sd_inptrs;
1515 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1516 			if (ret)
1517 				goto out_unlock;
1518 			down_write(&ip->i_rw_mutex);
1519 		}
1520 		/* check if we will exceed the transaction blocks requested */
1521 		tr = current->journal_info;
1522 		if (tr->tr_num_buf_new + RES_STATFS +
1523 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1524 			/* We set blks_outside_rgrp to ensure the loop will
1525 			   be repeated for the same rgrp, but with a new
1526 			   transaction. */
1527 			blks_outside_rgrp++;
1528 			/* This next part is tricky. If the buffer was added
1529 			   to the transaction, we've already set some block
1530 			   pointers to 0, so we better follow through and free
1531 			   them, or we will introduce corruption (so break).
1532 			   This may be impossible, or at least rare, but I
1533 			   decided to cover the case regardless.
1534 
1535 			   If the buffer was not added to the transaction
1536 			   (this call), doing so would exceed our transaction
1537 			   size, so we need to end the transaction and start a
1538 			   new one (so goto). */
1539 
1540 			if (buf_in_tr)
1541 				break;
1542 			goto out_unlock;
1543 		}
1544 
1545 		gfs2_trans_add_meta(ip->i_gl, bh);
1546 		buf_in_tr = true;
1547 		*p = 0;
1548 		if (bstart + blen == bn) {
1549 			blen++;
1550 			continue;
1551 		}
1552 		if (bstart) {
1553 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1554 			(*btotal) += blen;
1555 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1556 		}
1557 		bstart = bn;
1558 		blen = 1;
1559 	}
1560 	if (bstart) {
1561 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1562 		(*btotal) += blen;
1563 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1564 	}
1565 out_unlock:
1566 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1567 					    outside the rgrp we just processed,
1568 					    do it all over again. */
1569 		if (current->journal_info) {
1570 			struct buffer_head *dibh;
1571 
1572 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1573 			if (ret)
1574 				goto out;
1575 
1576 			/* Every transaction boundary, we rewrite the dinode
1577 			   to keep its di_blocks current in case of failure. */
1578 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1579 				current_time(&ip->i_inode);
1580 			gfs2_trans_add_meta(ip->i_gl, dibh);
1581 			gfs2_dinode_out(ip, dibh->b_data);
1582 			brelse(dibh);
1583 			up_write(&ip->i_rw_mutex);
1584 			gfs2_trans_end(sdp);
1585 			buf_in_tr = false;
1586 		}
1587 		gfs2_glock_dq_uninit(rd_gh);
1588 		cond_resched();
1589 		goto more_rgrps;
1590 	}
1591 out:
1592 	return ret;
1593 }
1594 
1595 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1596 {
1597 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1598 		return false;
1599 	return true;
1600 }
1601 
1602 /**
1603  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1604  * @sdp: The superblock
1605  * @mp: starting metapath
1606  * @h: desired height to search
1607  * @end_list: See punch_hole().
1608  * @end_aligned: See punch_hole().
1609  *
1610  * Assumes the metapath is valid (with buffers) out to height h.
1611  * Returns: true if a non-null pointer was found in the metapath buffer
1612  *          false if all remaining pointers are NULL in the buffer
1613  */
1614 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1615 			     unsigned int h,
1616 			     __u16 *end_list, unsigned int end_aligned)
1617 {
1618 	struct buffer_head *bh = mp->mp_bh[h];
1619 	__be64 *first, *ptr, *end;
1620 
1621 	first = metaptr1(h, mp);
1622 	ptr = first + mp->mp_list[h];
1623 	end = (__be64 *)(bh->b_data + bh->b_size);
1624 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1625 		bool keep_end = h < end_aligned;
1626 		end = first + end_list[h] + keep_end;
1627 	}
1628 
1629 	while (ptr < end) {
1630 		if (*ptr) { /* if we have a non-null pointer */
1631 			mp->mp_list[h] = ptr - first;
1632 			h++;
1633 			if (h < GFS2_MAX_META_HEIGHT)
1634 				mp->mp_list[h] = 0;
1635 			return true;
1636 		}
1637 		ptr++;
1638 	}
1639 	return false;
1640 }
1641 
1642 enum dealloc_states {
1643 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1644 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1645 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1646 	DEALLOC_DONE = 3,       /* process complete */
1647 };
1648 
1649 static inline void
1650 metapointer_range(struct metapath *mp, int height,
1651 		  __u16 *start_list, unsigned int start_aligned,
1652 		  __u16 *end_list, unsigned int end_aligned,
1653 		  __be64 **start, __be64 **end)
1654 {
1655 	struct buffer_head *bh = mp->mp_bh[height];
1656 	__be64 *first;
1657 
1658 	first = metaptr1(height, mp);
1659 	*start = first;
1660 	if (mp_eq_to_hgt(mp, start_list, height)) {
1661 		bool keep_start = height < start_aligned;
1662 		*start = first + start_list[height] + keep_start;
1663 	}
1664 	*end = (__be64 *)(bh->b_data + bh->b_size);
1665 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1666 		bool keep_end = height < end_aligned;
1667 		*end = first + end_list[height] + keep_end;
1668 	}
1669 }
1670 
1671 static inline bool walk_done(struct gfs2_sbd *sdp,
1672 			     struct metapath *mp, int height,
1673 			     __u16 *end_list, unsigned int end_aligned)
1674 {
1675 	__u16 end;
1676 
1677 	if (end_list) {
1678 		bool keep_end = height < end_aligned;
1679 		if (!mp_eq_to_hgt(mp, end_list, height))
1680 			return false;
1681 		end = end_list[height] + keep_end;
1682 	} else
1683 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1684 	return mp->mp_list[height] >= end;
1685 }
1686 
1687 /**
1688  * punch_hole - deallocate blocks in a file
1689  * @ip: inode to truncate
1690  * @offset: the start of the hole
1691  * @length: the size of the hole (or 0 for truncate)
1692  *
1693  * Punch a hole into a file or truncate a file at a given position.  This
1694  * function operates in whole blocks (@offset and @length are rounded
1695  * accordingly); partially filled blocks must be cleared otherwise.
1696  *
1697  * This function works from the bottom up, and from the right to the left. In
1698  * other words, it strips off the highest layer (data) before stripping any of
1699  * the metadata. Doing it this way is best in case the operation is interrupted
1700  * by power failure, etc.  The dinode is rewritten in every transaction to
1701  * guarantee integrity.
1702  */
1703 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1704 {
1705 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1706 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1707 	struct metapath mp = {};
1708 	struct buffer_head *dibh, *bh;
1709 	struct gfs2_holder rd_gh;
1710 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1711 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1712 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1713 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1714 	unsigned int start_aligned, end_aligned;
1715 	unsigned int strip_h = ip->i_height - 1;
1716 	u32 btotal = 0;
1717 	int ret, state;
1718 	int mp_h; /* metapath buffers are read in to this height */
1719 	u64 prev_bnr = 0;
1720 	__be64 *start, *end;
1721 
1722 	if (offset >= maxsize) {
1723 		/*
1724 		 * The starting point lies beyond the allocated meta-data;
1725 		 * there are no blocks do deallocate.
1726 		 */
1727 		return 0;
1728 	}
1729 
1730 	/*
1731 	 * The start position of the hole is defined by lblock, start_list, and
1732 	 * start_aligned.  The end position of the hole is defined by lend,
1733 	 * end_list, and end_aligned.
1734 	 *
1735 	 * start_aligned and end_aligned define down to which height the start
1736 	 * and end positions are aligned to the metadata tree (i.e., the
1737 	 * position is a multiple of the metadata granularity at the height
1738 	 * above).  This determines at which heights additional meta pointers
1739 	 * needs to be preserved for the remaining data.
1740 	 */
1741 
1742 	if (length) {
1743 		u64 end_offset = offset + length;
1744 		u64 lend;
1745 
1746 		/*
1747 		 * Clip the end at the maximum file size for the given height:
1748 		 * that's how far the metadata goes; files bigger than that
1749 		 * will have additional layers of indirection.
1750 		 */
1751 		if (end_offset > maxsize)
1752 			end_offset = maxsize;
1753 		lend = end_offset >> bsize_shift;
1754 
1755 		if (lblock >= lend)
1756 			return 0;
1757 
1758 		find_metapath(sdp, lend, &mp, ip->i_height);
1759 		end_list = __end_list;
1760 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1761 
1762 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1763 			if (end_list[mp_h])
1764 				break;
1765 		}
1766 		end_aligned = mp_h;
1767 	}
1768 
1769 	find_metapath(sdp, lblock, &mp, ip->i_height);
1770 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1771 
1772 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1773 		if (start_list[mp_h])
1774 			break;
1775 	}
1776 	start_aligned = mp_h;
1777 
1778 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1779 	if (ret)
1780 		return ret;
1781 
1782 	mp.mp_bh[0] = dibh;
1783 	ret = lookup_metapath(ip, &mp);
1784 	if (ret)
1785 		goto out_metapath;
1786 
1787 	/* issue read-ahead on metadata */
1788 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1789 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1790 				  end_list, end_aligned, &start, &end);
1791 		gfs2_metapath_ra(ip->i_gl, start, end);
1792 	}
1793 
1794 	if (mp.mp_aheight == ip->i_height)
1795 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1796 	else
1797 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1798 
1799 	ret = gfs2_rindex_update(sdp);
1800 	if (ret)
1801 		goto out_metapath;
1802 
1803 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1804 	if (ret)
1805 		goto out_metapath;
1806 	gfs2_holder_mark_uninitialized(&rd_gh);
1807 
1808 	mp_h = strip_h;
1809 
1810 	while (state != DEALLOC_DONE) {
1811 		switch (state) {
1812 		/* Truncate a full metapath at the given strip height.
1813 		 * Note that strip_h == mp_h in order to be in this state. */
1814 		case DEALLOC_MP_FULL:
1815 			bh = mp.mp_bh[mp_h];
1816 			gfs2_assert_withdraw(sdp, bh);
1817 			if (gfs2_assert_withdraw(sdp,
1818 						 prev_bnr != bh->b_blocknr)) {
1819 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1820 					 "s_h:%u, mp_h:%u\n",
1821 				       (unsigned long long)ip->i_no_addr,
1822 				       prev_bnr, ip->i_height, strip_h, mp_h);
1823 			}
1824 			prev_bnr = bh->b_blocknr;
1825 
1826 			if (gfs2_metatype_check(sdp, bh,
1827 						(mp_h ? GFS2_METATYPE_IN :
1828 							GFS2_METATYPE_DI))) {
1829 				ret = -EIO;
1830 				goto out;
1831 			}
1832 
1833 			/*
1834 			 * Below, passing end_aligned as 0 gives us the
1835 			 * metapointer range excluding the end point: the end
1836 			 * point is the first metapath we must not deallocate!
1837 			 */
1838 
1839 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1840 					  end_list, 0 /* end_aligned */,
1841 					  &start, &end);
1842 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1843 						 start, end,
1844 						 mp_h != ip->i_height - 1,
1845 						 &btotal);
1846 
1847 			/* If we hit an error or just swept dinode buffer,
1848 			   just exit. */
1849 			if (ret || !mp_h) {
1850 				state = DEALLOC_DONE;
1851 				break;
1852 			}
1853 			state = DEALLOC_MP_LOWER;
1854 			break;
1855 
1856 		/* lower the metapath strip height */
1857 		case DEALLOC_MP_LOWER:
1858 			/* We're done with the current buffer, so release it,
1859 			   unless it's the dinode buffer. Then back up to the
1860 			   previous pointer. */
1861 			if (mp_h) {
1862 				brelse(mp.mp_bh[mp_h]);
1863 				mp.mp_bh[mp_h] = NULL;
1864 			}
1865 			/* If we can't get any lower in height, we've stripped
1866 			   off all we can. Next step is to back up and start
1867 			   stripping the previous level of metadata. */
1868 			if (mp_h == 0) {
1869 				strip_h--;
1870 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1871 				mp_h = strip_h;
1872 				state = DEALLOC_FILL_MP;
1873 				break;
1874 			}
1875 			mp.mp_list[mp_h] = 0;
1876 			mp_h--; /* search one metadata height down */
1877 			mp.mp_list[mp_h]++;
1878 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1879 				break;
1880 			/* Here we've found a part of the metapath that is not
1881 			 * allocated. We need to search at that height for the
1882 			 * next non-null pointer. */
1883 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1884 				state = DEALLOC_FILL_MP;
1885 				mp_h++;
1886 			}
1887 			/* No more non-null pointers at this height. Back up
1888 			   to the previous height and try again. */
1889 			break; /* loop around in the same state */
1890 
1891 		/* Fill the metapath with buffers to the given height. */
1892 		case DEALLOC_FILL_MP:
1893 			/* Fill the buffers out to the current height. */
1894 			ret = fillup_metapath(ip, &mp, mp_h);
1895 			if (ret < 0)
1896 				goto out;
1897 
1898 			/* On the first pass, issue read-ahead on metadata. */
1899 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1900 				unsigned int height = mp.mp_aheight - 1;
1901 
1902 				/* No read-ahead for data blocks. */
1903 				if (mp.mp_aheight - 1 == strip_h)
1904 					height--;
1905 
1906 				for (; height >= mp.mp_aheight - ret; height--) {
1907 					metapointer_range(&mp, height,
1908 							  start_list, start_aligned,
1909 							  end_list, end_aligned,
1910 							  &start, &end);
1911 					gfs2_metapath_ra(ip->i_gl, start, end);
1912 				}
1913 			}
1914 
1915 			/* If buffers found for the entire strip height */
1916 			if (mp.mp_aheight - 1 == strip_h) {
1917 				state = DEALLOC_MP_FULL;
1918 				break;
1919 			}
1920 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1921 				mp_h = mp.mp_aheight - 1;
1922 
1923 			/* If we find a non-null block pointer, crawl a bit
1924 			   higher up in the metapath and try again, otherwise
1925 			   we need to look lower for a new starting point. */
1926 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1927 				mp_h++;
1928 			else
1929 				state = DEALLOC_MP_LOWER;
1930 			break;
1931 		}
1932 	}
1933 
1934 	if (btotal) {
1935 		if (current->journal_info == NULL) {
1936 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1937 					       RES_QUOTA, 0);
1938 			if (ret)
1939 				goto out;
1940 			down_write(&ip->i_rw_mutex);
1941 		}
1942 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1943 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1944 				  ip->i_inode.i_gid);
1945 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1946 		gfs2_trans_add_meta(ip->i_gl, dibh);
1947 		gfs2_dinode_out(ip, dibh->b_data);
1948 		up_write(&ip->i_rw_mutex);
1949 		gfs2_trans_end(sdp);
1950 	}
1951 
1952 out:
1953 	if (gfs2_holder_initialized(&rd_gh))
1954 		gfs2_glock_dq_uninit(&rd_gh);
1955 	if (current->journal_info) {
1956 		up_write(&ip->i_rw_mutex);
1957 		gfs2_trans_end(sdp);
1958 		cond_resched();
1959 	}
1960 	gfs2_quota_unhold(ip);
1961 out_metapath:
1962 	release_metapath(&mp);
1963 	return ret;
1964 }
1965 
1966 static int trunc_end(struct gfs2_inode *ip)
1967 {
1968 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1969 	struct buffer_head *dibh;
1970 	int error;
1971 
1972 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1973 	if (error)
1974 		return error;
1975 
1976 	down_write(&ip->i_rw_mutex);
1977 
1978 	error = gfs2_meta_inode_buffer(ip, &dibh);
1979 	if (error)
1980 		goto out;
1981 
1982 	if (!i_size_read(&ip->i_inode)) {
1983 		ip->i_height = 0;
1984 		ip->i_goal = ip->i_no_addr;
1985 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1986 		gfs2_ordered_del_inode(ip);
1987 	}
1988 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1989 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1990 
1991 	gfs2_trans_add_meta(ip->i_gl, dibh);
1992 	gfs2_dinode_out(ip, dibh->b_data);
1993 	brelse(dibh);
1994 
1995 out:
1996 	up_write(&ip->i_rw_mutex);
1997 	gfs2_trans_end(sdp);
1998 	return error;
1999 }
2000 
2001 /**
2002  * do_shrink - make a file smaller
2003  * @inode: the inode
2004  * @newsize: the size to make the file
2005  *
2006  * Called with an exclusive lock on @inode. The @size must
2007  * be equal to or smaller than the current inode size.
2008  *
2009  * Returns: errno
2010  */
2011 
2012 static int do_shrink(struct inode *inode, u64 newsize)
2013 {
2014 	struct gfs2_inode *ip = GFS2_I(inode);
2015 	int error;
2016 
2017 	error = trunc_start(inode, newsize);
2018 	if (error < 0)
2019 		return error;
2020 	if (gfs2_is_stuffed(ip))
2021 		return 0;
2022 
2023 	error = punch_hole(ip, newsize, 0);
2024 	if (error == 0)
2025 		error = trunc_end(ip);
2026 
2027 	return error;
2028 }
2029 
2030 void gfs2_trim_blocks(struct inode *inode)
2031 {
2032 	int ret;
2033 
2034 	ret = do_shrink(inode, inode->i_size);
2035 	WARN_ON(ret != 0);
2036 }
2037 
2038 /**
2039  * do_grow - Touch and update inode size
2040  * @inode: The inode
2041  * @size: The new size
2042  *
2043  * This function updates the timestamps on the inode and
2044  * may also increase the size of the inode. This function
2045  * must not be called with @size any smaller than the current
2046  * inode size.
2047  *
2048  * Although it is not strictly required to unstuff files here,
2049  * earlier versions of GFS2 have a bug in the stuffed file reading
2050  * code which will result in a buffer overrun if the size is larger
2051  * than the max stuffed file size. In order to prevent this from
2052  * occurring, such files are unstuffed, but in other cases we can
2053  * just update the inode size directly.
2054  *
2055  * Returns: 0 on success, or -ve on error
2056  */
2057 
2058 static int do_grow(struct inode *inode, u64 size)
2059 {
2060 	struct gfs2_inode *ip = GFS2_I(inode);
2061 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2062 	struct gfs2_alloc_parms ap = { .target = 1, };
2063 	struct buffer_head *dibh;
2064 	int error;
2065 	int unstuff = 0;
2066 
2067 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2068 		error = gfs2_quota_lock_check(ip, &ap);
2069 		if (error)
2070 			return error;
2071 
2072 		error = gfs2_inplace_reserve(ip, &ap);
2073 		if (error)
2074 			goto do_grow_qunlock;
2075 		unstuff = 1;
2076 	}
2077 
2078 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2079 				 (unstuff &&
2080 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2081 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2082 				  0 : RES_QUOTA), 0);
2083 	if (error)
2084 		goto do_grow_release;
2085 
2086 	if (unstuff) {
2087 		error = gfs2_unstuff_dinode(ip);
2088 		if (error)
2089 			goto do_end_trans;
2090 	}
2091 
2092 	error = gfs2_meta_inode_buffer(ip, &dibh);
2093 	if (error)
2094 		goto do_end_trans;
2095 
2096 	truncate_setsize(inode, size);
2097 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2098 	gfs2_trans_add_meta(ip->i_gl, dibh);
2099 	gfs2_dinode_out(ip, dibh->b_data);
2100 	brelse(dibh);
2101 
2102 do_end_trans:
2103 	gfs2_trans_end(sdp);
2104 do_grow_release:
2105 	if (unstuff) {
2106 		gfs2_inplace_release(ip);
2107 do_grow_qunlock:
2108 		gfs2_quota_unlock(ip);
2109 	}
2110 	return error;
2111 }
2112 
2113 /**
2114  * gfs2_setattr_size - make a file a given size
2115  * @inode: the inode
2116  * @newsize: the size to make the file
2117  *
2118  * The file size can grow, shrink, or stay the same size. This
2119  * is called holding i_rwsem and an exclusive glock on the inode
2120  * in question.
2121  *
2122  * Returns: errno
2123  */
2124 
2125 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2126 {
2127 	struct gfs2_inode *ip = GFS2_I(inode);
2128 	int ret;
2129 
2130 	BUG_ON(!S_ISREG(inode->i_mode));
2131 
2132 	ret = inode_newsize_ok(inode, newsize);
2133 	if (ret)
2134 		return ret;
2135 
2136 	inode_dio_wait(inode);
2137 
2138 	ret = gfs2_qa_get(ip);
2139 	if (ret)
2140 		goto out;
2141 
2142 	if (newsize >= inode->i_size) {
2143 		ret = do_grow(inode, newsize);
2144 		goto out;
2145 	}
2146 
2147 	ret = do_shrink(inode, newsize);
2148 out:
2149 	gfs2_rs_delete(ip, NULL);
2150 	gfs2_qa_put(ip);
2151 	return ret;
2152 }
2153 
2154 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2155 {
2156 	int error;
2157 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2158 	if (!error)
2159 		error = trunc_end(ip);
2160 	return error;
2161 }
2162 
2163 int gfs2_file_dealloc(struct gfs2_inode *ip)
2164 {
2165 	return punch_hole(ip, 0, 0);
2166 }
2167 
2168 /**
2169  * gfs2_free_journal_extents - Free cached journal bmap info
2170  * @jd: The journal
2171  *
2172  */
2173 
2174 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2175 {
2176 	struct gfs2_journal_extent *jext;
2177 
2178 	while(!list_empty(&jd->extent_list)) {
2179 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2180 		list_del(&jext->list);
2181 		kfree(jext);
2182 	}
2183 }
2184 
2185 /**
2186  * gfs2_add_jextent - Add or merge a new extent to extent cache
2187  * @jd: The journal descriptor
2188  * @lblock: The logical block at start of new extent
2189  * @dblock: The physical block at start of new extent
2190  * @blocks: Size of extent in fs blocks
2191  *
2192  * Returns: 0 on success or -ENOMEM
2193  */
2194 
2195 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2196 {
2197 	struct gfs2_journal_extent *jext;
2198 
2199 	if (!list_empty(&jd->extent_list)) {
2200 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2201 		if ((jext->dblock + jext->blocks) == dblock) {
2202 			jext->blocks += blocks;
2203 			return 0;
2204 		}
2205 	}
2206 
2207 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2208 	if (jext == NULL)
2209 		return -ENOMEM;
2210 	jext->dblock = dblock;
2211 	jext->lblock = lblock;
2212 	jext->blocks = blocks;
2213 	list_add_tail(&jext->list, &jd->extent_list);
2214 	jd->nr_extents++;
2215 	return 0;
2216 }
2217 
2218 /**
2219  * gfs2_map_journal_extents - Cache journal bmap info
2220  * @sdp: The super block
2221  * @jd: The journal to map
2222  *
2223  * Create a reusable "extent" mapping from all logical
2224  * blocks to all physical blocks for the given journal.  This will save
2225  * us time when writing journal blocks.  Most journals will have only one
2226  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2227  * arranges the journal blocks sequentially to maximize performance.
2228  * So the extent would map the first block for the entire file length.
2229  * However, gfs2_jadd can happen while file activity is happening, so
2230  * those journals may not be sequential.  Less likely is the case where
2231  * the users created their own journals by mounting the metafs and
2232  * laying it out.  But it's still possible.  These journals might have
2233  * several extents.
2234  *
2235  * Returns: 0 on success, or error on failure
2236  */
2237 
2238 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2239 {
2240 	u64 lblock = 0;
2241 	u64 lblock_stop;
2242 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2243 	struct buffer_head bh;
2244 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2245 	u64 size;
2246 	int rc;
2247 	ktime_t start, end;
2248 
2249 	start = ktime_get();
2250 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2251 	size = (lblock_stop - lblock) << shift;
2252 	jd->nr_extents = 0;
2253 	WARN_ON(!list_empty(&jd->extent_list));
2254 
2255 	do {
2256 		bh.b_state = 0;
2257 		bh.b_blocknr = 0;
2258 		bh.b_size = size;
2259 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2260 		if (rc || !buffer_mapped(&bh))
2261 			goto fail;
2262 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2263 		if (rc)
2264 			goto fail;
2265 		size -= bh.b_size;
2266 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2267 	} while(size > 0);
2268 
2269 	end = ktime_get();
2270 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2271 		jd->nr_extents, ktime_ms_delta(end, start));
2272 	return 0;
2273 
2274 fail:
2275 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2276 		rc, jd->jd_jid,
2277 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2278 		jd->nr_extents);
2279 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2280 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2281 		bh.b_state, (unsigned long long)bh.b_size);
2282 	gfs2_free_journal_extents(jd);
2283 	return rc;
2284 }
2285 
2286 /**
2287  * gfs2_write_alloc_required - figure out if a write will require an allocation
2288  * @ip: the file being written to
2289  * @offset: the offset to write to
2290  * @len: the number of bytes being written
2291  *
2292  * Returns: 1 if an alloc is required, 0 otherwise
2293  */
2294 
2295 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2296 			      unsigned int len)
2297 {
2298 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2299 	struct buffer_head bh;
2300 	unsigned int shift;
2301 	u64 lblock, lblock_stop, size;
2302 	u64 end_of_file;
2303 
2304 	if (!len)
2305 		return 0;
2306 
2307 	if (gfs2_is_stuffed(ip)) {
2308 		if (offset + len > gfs2_max_stuffed_size(ip))
2309 			return 1;
2310 		return 0;
2311 	}
2312 
2313 	shift = sdp->sd_sb.sb_bsize_shift;
2314 	BUG_ON(gfs2_is_dir(ip));
2315 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2316 	lblock = offset >> shift;
2317 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2318 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2319 		return 1;
2320 
2321 	size = (lblock_stop - lblock) << shift;
2322 	do {
2323 		bh.b_state = 0;
2324 		bh.b_size = size;
2325 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2326 		if (!buffer_mapped(&bh))
2327 			return 1;
2328 		size -= bh.b_size;
2329 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2330 	} while(size > 0);
2331 
2332 	return 0;
2333 }
2334 
2335 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2336 {
2337 	struct gfs2_inode *ip = GFS2_I(inode);
2338 	struct buffer_head *dibh;
2339 	int error;
2340 
2341 	if (offset >= inode->i_size)
2342 		return 0;
2343 	if (offset + length > inode->i_size)
2344 		length = inode->i_size - offset;
2345 
2346 	error = gfs2_meta_inode_buffer(ip, &dibh);
2347 	if (error)
2348 		return error;
2349 	gfs2_trans_add_meta(ip->i_gl, dibh);
2350 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2351 	       length);
2352 	brelse(dibh);
2353 	return 0;
2354 }
2355 
2356 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2357 					 loff_t length)
2358 {
2359 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2360 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2361 	int error;
2362 
2363 	while (length) {
2364 		struct gfs2_trans *tr;
2365 		loff_t chunk;
2366 		unsigned int offs;
2367 
2368 		chunk = length;
2369 		if (chunk > max_chunk)
2370 			chunk = max_chunk;
2371 
2372 		offs = offset & ~PAGE_MASK;
2373 		if (offs && chunk > PAGE_SIZE)
2374 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2375 
2376 		truncate_pagecache_range(inode, offset, chunk);
2377 		offset += chunk;
2378 		length -= chunk;
2379 
2380 		tr = current->journal_info;
2381 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2382 			continue;
2383 
2384 		gfs2_trans_end(sdp);
2385 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2386 		if (error)
2387 			return error;
2388 	}
2389 	return 0;
2390 }
2391 
2392 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2393 {
2394 	struct inode *inode = file_inode(file);
2395 	struct gfs2_inode *ip = GFS2_I(inode);
2396 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2397 	unsigned int blocksize = i_blocksize(inode);
2398 	loff_t start, end;
2399 	int error;
2400 
2401 	if (!gfs2_is_stuffed(ip)) {
2402 		unsigned int start_off, end_len;
2403 
2404 		start_off = offset & (blocksize - 1);
2405 		end_len = (offset + length) & (blocksize - 1);
2406 		if (start_off) {
2407 			unsigned int len = length;
2408 			if (length > blocksize - start_off)
2409 				len = blocksize - start_off;
2410 			error = gfs2_block_zero_range(inode, offset, len);
2411 			if (error)
2412 				goto out;
2413 			if (start_off + length < blocksize)
2414 				end_len = 0;
2415 		}
2416 		if (end_len) {
2417 			error = gfs2_block_zero_range(inode,
2418 				offset + length - end_len, end_len);
2419 			if (error)
2420 				goto out;
2421 		}
2422 	}
2423 
2424 	start = round_down(offset, blocksize);
2425 	end = round_up(offset + length, blocksize) - 1;
2426 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2427 	if (error)
2428 		return error;
2429 
2430 	if (gfs2_is_jdata(ip))
2431 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2432 					 GFS2_JTRUNC_REVOKES);
2433 	else
2434 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2435 	if (error)
2436 		return error;
2437 
2438 	if (gfs2_is_stuffed(ip)) {
2439 		error = stuffed_zero_range(inode, offset, length);
2440 		if (error)
2441 			goto out;
2442 	}
2443 
2444 	if (gfs2_is_jdata(ip)) {
2445 		BUG_ON(!current->journal_info);
2446 		gfs2_journaled_truncate_range(inode, offset, length);
2447 	} else
2448 		truncate_pagecache_range(inode, offset, offset + length - 1);
2449 
2450 	file_update_time(file);
2451 	mark_inode_dirty(inode);
2452 
2453 	if (current->journal_info)
2454 		gfs2_trans_end(sdp);
2455 
2456 	if (!gfs2_is_stuffed(ip))
2457 		error = punch_hole(ip, offset, length);
2458 
2459 out:
2460 	if (current->journal_info)
2461 		gfs2_trans_end(sdp);
2462 	return error;
2463 }
2464 
2465 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2466 		loff_t offset)
2467 {
2468 	int ret;
2469 
2470 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2471 		return -EIO;
2472 
2473 	if (offset >= wpc->iomap.offset &&
2474 	    offset < wpc->iomap.offset + wpc->iomap.length)
2475 		return 0;
2476 
2477 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2478 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2479 	return ret;
2480 }
2481 
2482 const struct iomap_writeback_ops gfs2_writeback_ops = {
2483 	.map_blocks		= gfs2_map_blocks,
2484 };
2485