1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 18 #include "gfs2.h" 19 #include "incore.h" 20 #include "bmap.h" 21 #include "glock.h" 22 #include "inode.h" 23 #include "meta_io.h" 24 #include "quota.h" 25 #include "rgrp.h" 26 #include "log.h" 27 #include "super.h" 28 #include "trans.h" 29 #include "dir.h" 30 #include "util.h" 31 #include "trace_gfs2.h" 32 33 /* This doesn't need to be that large as max 64 bit pointers in a 4k 34 * block is 512, so __u16 is fine for that. It saves stack space to 35 * keep it small. 36 */ 37 struct metapath { 38 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 39 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 40 int mp_fheight; /* find_metapath height */ 41 int mp_aheight; /* actual height (lookup height) */ 42 }; 43 44 /** 45 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 46 * @ip: the inode 47 * @dibh: the dinode buffer 48 * @block: the block number that was allocated 49 * @page: The (optional) page. This is looked up if @page is NULL 50 * 51 * Returns: errno 52 */ 53 54 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 55 u64 block, struct page *page) 56 { 57 struct inode *inode = &ip->i_inode; 58 struct buffer_head *bh; 59 int release = 0; 60 61 if (!page || page->index) { 62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 63 if (!page) 64 return -ENOMEM; 65 release = 1; 66 } 67 68 if (!PageUptodate(page)) { 69 void *kaddr = kmap(page); 70 u64 dsize = i_size_read(inode); 71 72 if (dsize > gfs2_max_stuffed_size(ip)) 73 dsize = gfs2_max_stuffed_size(ip); 74 75 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 76 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 77 kunmap(page); 78 79 SetPageUptodate(page); 80 } 81 82 if (!page_has_buffers(page)) 83 create_empty_buffers(page, BIT(inode->i_blkbits), 84 BIT(BH_Uptodate)); 85 86 bh = page_buffers(page); 87 88 if (!buffer_mapped(bh)) 89 map_bh(bh, inode->i_sb, block); 90 91 set_buffer_uptodate(bh); 92 if (gfs2_is_jdata(ip)) 93 gfs2_trans_add_data(ip->i_gl, bh); 94 else { 95 mark_buffer_dirty(bh); 96 gfs2_ordered_add_inode(ip); 97 } 98 99 if (release) { 100 unlock_page(page); 101 put_page(page); 102 } 103 104 return 0; 105 } 106 107 /** 108 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 109 * @ip: The GFS2 inode to unstuff 110 * @page: The (optional) page. This is looked up if the @page is NULL 111 * 112 * This routine unstuffs a dinode and returns it to a "normal" state such 113 * that the height can be grown in the traditional way. 114 * 115 * Returns: errno 116 */ 117 118 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 119 { 120 struct buffer_head *bh, *dibh; 121 struct gfs2_dinode *di; 122 u64 block = 0; 123 int isdir = gfs2_is_dir(ip); 124 int error; 125 126 down_write(&ip->i_rw_mutex); 127 128 error = gfs2_meta_inode_buffer(ip, &dibh); 129 if (error) 130 goto out; 131 132 if (i_size_read(&ip->i_inode)) { 133 /* Get a free block, fill it with the stuffed data, 134 and write it out to disk */ 135 136 unsigned int n = 1; 137 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 138 if (error) 139 goto out_brelse; 140 if (isdir) { 141 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1); 142 error = gfs2_dir_get_new_buffer(ip, block, &bh); 143 if (error) 144 goto out_brelse; 145 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 146 dibh, sizeof(struct gfs2_dinode)); 147 brelse(bh); 148 } else { 149 error = gfs2_unstuffer_page(ip, dibh, block, page); 150 if (error) 151 goto out_brelse; 152 } 153 } 154 155 /* Set up the pointer to the new block */ 156 157 gfs2_trans_add_meta(ip->i_gl, dibh); 158 di = (struct gfs2_dinode *)dibh->b_data; 159 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 160 161 if (i_size_read(&ip->i_inode)) { 162 *(__be64 *)(di + 1) = cpu_to_be64(block); 163 gfs2_add_inode_blocks(&ip->i_inode, 1); 164 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 165 } 166 167 ip->i_height = 1; 168 di->di_height = cpu_to_be16(1); 169 170 out_brelse: 171 brelse(dibh); 172 out: 173 up_write(&ip->i_rw_mutex); 174 return error; 175 } 176 177 178 /** 179 * find_metapath - Find path through the metadata tree 180 * @sdp: The superblock 181 * @block: The disk block to look up 182 * @mp: The metapath to return the result in 183 * @height: The pre-calculated height of the metadata tree 184 * 185 * This routine returns a struct metapath structure that defines a path 186 * through the metadata of inode "ip" to get to block "block". 187 * 188 * Example: 189 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 190 * filesystem with a blocksize of 4096. 191 * 192 * find_metapath() would return a struct metapath structure set to: 193 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 194 * 195 * That means that in order to get to the block containing the byte at 196 * offset 101342453, we would load the indirect block pointed to by pointer 197 * 0 in the dinode. We would then load the indirect block pointed to by 198 * pointer 48 in that indirect block. We would then load the data block 199 * pointed to by pointer 165 in that indirect block. 200 * 201 * ---------------------------------------- 202 * | Dinode | | 203 * | | 4| 204 * | |0 1 2 3 4 5 9| 205 * | | 6| 206 * ---------------------------------------- 207 * | 208 * | 209 * V 210 * ---------------------------------------- 211 * | Indirect Block | 212 * | 5| 213 * | 4 4 4 4 4 5 5 1| 214 * |0 5 6 7 8 9 0 1 2| 215 * ---------------------------------------- 216 * | 217 * | 218 * V 219 * ---------------------------------------- 220 * | Indirect Block | 221 * | 1 1 1 1 1 5| 222 * | 6 6 6 6 6 1| 223 * |0 3 4 5 6 7 2| 224 * ---------------------------------------- 225 * | 226 * | 227 * V 228 * ---------------------------------------- 229 * | Data block containing offset | 230 * | 101342453 | 231 * | | 232 * | | 233 * ---------------------------------------- 234 * 235 */ 236 237 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 238 struct metapath *mp, unsigned int height) 239 { 240 unsigned int i; 241 242 mp->mp_fheight = height; 243 for (i = height; i--;) 244 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 245 } 246 247 static inline unsigned int metapath_branch_start(const struct metapath *mp) 248 { 249 if (mp->mp_list[0] == 0) 250 return 2; 251 return 1; 252 } 253 254 /** 255 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 256 * @height: The metadata height (0 = dinode) 257 * @mp: The metapath 258 */ 259 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 260 { 261 struct buffer_head *bh = mp->mp_bh[height]; 262 if (height == 0) 263 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 265 } 266 267 /** 268 * metapointer - Return pointer to start of metadata in a buffer 269 * @height: The metadata height (0 = dinode) 270 * @mp: The metapath 271 * 272 * Return a pointer to the block number of the next height of the metadata 273 * tree given a buffer containing the pointer to the current height of the 274 * metadata tree. 275 */ 276 277 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 278 { 279 __be64 *p = metaptr1(height, mp); 280 return p + mp->mp_list[height]; 281 } 282 283 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 284 { 285 const struct buffer_head *bh = mp->mp_bh[height]; 286 return (const __be64 *)(bh->b_data + bh->b_size); 287 } 288 289 static void clone_metapath(struct metapath *clone, struct metapath *mp) 290 { 291 unsigned int hgt; 292 293 *clone = *mp; 294 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 295 get_bh(clone->mp_bh[hgt]); 296 } 297 298 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 299 { 300 const __be64 *t; 301 302 for (t = start; t < end; t++) { 303 struct buffer_head *rabh; 304 305 if (!*t) 306 continue; 307 308 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 309 if (trylock_buffer(rabh)) { 310 if (!buffer_uptodate(rabh)) { 311 rabh->b_end_io = end_buffer_read_sync; 312 submit_bh(REQ_OP_READ, 313 REQ_RAHEAD | REQ_META | REQ_PRIO, 314 rabh); 315 continue; 316 } 317 unlock_buffer(rabh); 318 } 319 brelse(rabh); 320 } 321 } 322 323 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 324 unsigned int x, unsigned int h) 325 { 326 for (; x < h; x++) { 327 __be64 *ptr = metapointer(x, mp); 328 u64 dblock = be64_to_cpu(*ptr); 329 int ret; 330 331 if (!dblock) 332 break; 333 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 334 if (ret) 335 return ret; 336 } 337 mp->mp_aheight = x + 1; 338 return 0; 339 } 340 341 /** 342 * lookup_metapath - Walk the metadata tree to a specific point 343 * @ip: The inode 344 * @mp: The metapath 345 * 346 * Assumes that the inode's buffer has already been looked up and 347 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 348 * by find_metapath(). 349 * 350 * If this function encounters part of the tree which has not been 351 * allocated, it returns the current height of the tree at the point 352 * at which it found the unallocated block. Blocks which are found are 353 * added to the mp->mp_bh[] list. 354 * 355 * Returns: error 356 */ 357 358 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 359 { 360 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 361 } 362 363 /** 364 * fillup_metapath - fill up buffers for the metadata path to a specific height 365 * @ip: The inode 366 * @mp: The metapath 367 * @h: The height to which it should be mapped 368 * 369 * Similar to lookup_metapath, but does lookups for a range of heights 370 * 371 * Returns: error or the number of buffers filled 372 */ 373 374 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 375 { 376 unsigned int x = 0; 377 int ret; 378 379 if (h) { 380 /* find the first buffer we need to look up. */ 381 for (x = h - 1; x > 0; x--) { 382 if (mp->mp_bh[x]) 383 break; 384 } 385 } 386 ret = __fillup_metapath(ip, mp, x, h); 387 if (ret) 388 return ret; 389 return mp->mp_aheight - x - 1; 390 } 391 392 static inline void release_metapath(struct metapath *mp) 393 { 394 int i; 395 396 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 397 if (mp->mp_bh[i] == NULL) 398 break; 399 brelse(mp->mp_bh[i]); 400 } 401 } 402 403 /** 404 * gfs2_extent_length - Returns length of an extent of blocks 405 * @start: Start of the buffer 406 * @len: Length of the buffer in bytes 407 * @ptr: Current position in the buffer 408 * @limit: Max extent length to return (0 = unlimited) 409 * @eob: Set to 1 if we hit "end of block" 410 * 411 * If the first block is zero (unallocated) it will return the number of 412 * unallocated blocks in the extent, otherwise it will return the number 413 * of contiguous blocks in the extent. 414 * 415 * Returns: The length of the extent (minimum of one block) 416 */ 417 418 static inline unsigned int gfs2_extent_length(void *start, unsigned int len, __be64 *ptr, size_t limit, int *eob) 419 { 420 const __be64 *end = (start + len); 421 const __be64 *first = ptr; 422 u64 d = be64_to_cpu(*ptr); 423 424 *eob = 0; 425 do { 426 ptr++; 427 if (ptr >= end) 428 break; 429 if (limit && --limit == 0) 430 break; 431 if (d) 432 d++; 433 } while(be64_to_cpu(*ptr) == d); 434 if (ptr >= end) 435 *eob = 1; 436 return (ptr - first); 437 } 438 439 typedef const __be64 *(*gfs2_metadata_walker)( 440 struct metapath *mp, 441 const __be64 *start, const __be64 *end, 442 u64 factor, void *data); 443 444 #define WALK_STOP ((__be64 *)0) 445 #define WALK_NEXT ((__be64 *)1) 446 447 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 448 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 449 void *data) 450 { 451 struct metapath clone; 452 struct gfs2_inode *ip = GFS2_I(inode); 453 struct gfs2_sbd *sdp = GFS2_SB(inode); 454 const __be64 *start, *end, *ptr; 455 u64 factor = 1; 456 unsigned int hgt; 457 int ret = 0; 458 459 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 460 factor *= sdp->sd_inptrs; 461 462 for (;;) { 463 u64 step; 464 465 /* Walk indirect block. */ 466 start = metapointer(hgt, mp); 467 end = metaend(hgt, mp); 468 469 step = (end - start) * factor; 470 if (step > len) 471 end = start + DIV_ROUND_UP_ULL(len, factor); 472 473 ptr = walker(mp, start, end, factor, data); 474 if (ptr == WALK_STOP) 475 break; 476 if (step >= len) 477 break; 478 len -= step; 479 if (ptr != WALK_NEXT) { 480 BUG_ON(!*ptr); 481 mp->mp_list[hgt] += ptr - start; 482 goto fill_up_metapath; 483 } 484 485 lower_metapath: 486 /* Decrease height of metapath. */ 487 if (mp != &clone) { 488 clone_metapath(&clone, mp); 489 mp = &clone; 490 } 491 brelse(mp->mp_bh[hgt]); 492 mp->mp_bh[hgt] = NULL; 493 if (!hgt) 494 break; 495 hgt--; 496 factor *= sdp->sd_inptrs; 497 498 /* Advance in metadata tree. */ 499 (mp->mp_list[hgt])++; 500 start = metapointer(hgt, mp); 501 end = metaend(hgt, mp); 502 if (start >= end) { 503 mp->mp_list[hgt] = 0; 504 if (!hgt) 505 break; 506 goto lower_metapath; 507 } 508 509 fill_up_metapath: 510 /* Increase height of metapath. */ 511 if (mp != &clone) { 512 clone_metapath(&clone, mp); 513 mp = &clone; 514 } 515 ret = fillup_metapath(ip, mp, ip->i_height - 1); 516 if (ret < 0) 517 break; 518 hgt += ret; 519 for (; ret; ret--) 520 do_div(factor, sdp->sd_inptrs); 521 mp->mp_aheight = hgt + 1; 522 } 523 if (mp == &clone) 524 release_metapath(mp); 525 return ret; 526 } 527 528 struct gfs2_hole_walker_args { 529 u64 blocks; 530 }; 531 532 static const __be64 *gfs2_hole_walker(struct metapath *mp, 533 const __be64 *start, const __be64 *end, 534 u64 factor, void *data) 535 { 536 struct gfs2_hole_walker_args *args = data; 537 const __be64 *ptr; 538 539 for (ptr = start; ptr < end; ptr++) { 540 if (*ptr) { 541 args->blocks += (ptr - start) * factor; 542 if (mp->mp_aheight == mp->mp_fheight) 543 return WALK_STOP; 544 return ptr; /* increase height */ 545 } 546 } 547 args->blocks += (end - start) * factor; 548 return WALK_NEXT; 549 } 550 551 /** 552 * gfs2_hole_size - figure out the size of a hole 553 * @inode: The inode 554 * @lblock: The logical starting block number 555 * @len: How far to look (in blocks) 556 * @mp: The metapath at lblock 557 * @iomap: The iomap to store the hole size in 558 * 559 * This function modifies @mp. 560 * 561 * Returns: errno on error 562 */ 563 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 564 struct metapath *mp, struct iomap *iomap) 565 { 566 struct gfs2_hole_walker_args args = { }; 567 int ret = 0; 568 569 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 570 if (!ret) 571 iomap->length = args.blocks << inode->i_blkbits; 572 return ret; 573 } 574 575 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 576 struct gfs2_glock *gl, unsigned int i, 577 unsigned offset, u64 bn) 578 { 579 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 580 ((i > 1) ? sizeof(struct gfs2_meta_header) : 581 sizeof(struct gfs2_dinode))); 582 BUG_ON(i < 1); 583 BUG_ON(mp->mp_bh[i] != NULL); 584 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 585 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 586 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 587 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 588 ptr += offset; 589 *ptr = cpu_to_be64(bn); 590 return ptr; 591 } 592 593 enum alloc_state { 594 ALLOC_DATA = 0, 595 ALLOC_GROW_DEPTH = 1, 596 ALLOC_GROW_HEIGHT = 2, 597 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 598 }; 599 600 /** 601 * gfs2_iomap_alloc - Build a metadata tree of the requested height 602 * @inode: The GFS2 inode 603 * @iomap: The iomap structure 604 * @flags: iomap flags 605 * @mp: The metapath, with proper height information calculated 606 * 607 * In this routine we may have to alloc: 608 * i) Indirect blocks to grow the metadata tree height 609 * ii) Indirect blocks to fill in lower part of the metadata tree 610 * iii) Data blocks 611 * 612 * The function is in two parts. The first part works out the total 613 * number of blocks which we need. The second part does the actual 614 * allocation asking for an extent at a time (if enough contiguous free 615 * blocks are available, there will only be one request per bmap call) 616 * and uses the state machine to initialise the blocks in order. 617 * 618 * Right now, this function will allocate at most one indirect block 619 * worth of data -- with a default block size of 4K, that's slightly 620 * less than 2M. If this limitation is ever removed to allow huge 621 * allocations, we would probably still want to limit the iomap size we 622 * return to avoid stalling other tasks during huge writes; the next 623 * iomap iteration would then find the blocks already allocated. 624 * 625 * Returns: errno on error 626 */ 627 628 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 629 unsigned flags, struct metapath *mp) 630 { 631 struct gfs2_inode *ip = GFS2_I(inode); 632 struct gfs2_sbd *sdp = GFS2_SB(inode); 633 struct buffer_head *dibh = mp->mp_bh[0]; 634 u64 bn; 635 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 636 unsigned dblks = 0; 637 unsigned ptrs_per_blk; 638 const unsigned end_of_metadata = mp->mp_fheight - 1; 639 int ret; 640 enum alloc_state state; 641 __be64 *ptr; 642 __be64 zero_bn = 0; 643 size_t maxlen = iomap->length >> inode->i_blkbits; 644 645 BUG_ON(mp->mp_aheight < 1); 646 BUG_ON(dibh == NULL); 647 648 gfs2_trans_add_meta(ip->i_gl, dibh); 649 650 down_write(&ip->i_rw_mutex); 651 652 if (mp->mp_fheight == mp->mp_aheight) { 653 struct buffer_head *bh; 654 int eob; 655 656 /* Bottom indirect block exists, find unalloced extent size */ 657 ptr = metapointer(end_of_metadata, mp); 658 bh = mp->mp_bh[end_of_metadata]; 659 dblks = gfs2_extent_length(bh->b_data, bh->b_size, ptr, 660 maxlen, &eob); 661 BUG_ON(dblks < 1); 662 state = ALLOC_DATA; 663 } else { 664 /* Need to allocate indirect blocks */ 665 ptrs_per_blk = mp->mp_fheight > 1 ? sdp->sd_inptrs : 666 sdp->sd_diptrs; 667 dblks = min(maxlen, (size_t)(ptrs_per_blk - 668 mp->mp_list[end_of_metadata])); 669 if (mp->mp_fheight == ip->i_height) { 670 /* Writing into existing tree, extend tree down */ 671 iblks = mp->mp_fheight - mp->mp_aheight; 672 state = ALLOC_GROW_DEPTH; 673 } else { 674 /* Building up tree height */ 675 state = ALLOC_GROW_HEIGHT; 676 iblks = mp->mp_fheight - ip->i_height; 677 branch_start = metapath_branch_start(mp); 678 iblks += (mp->mp_fheight - branch_start); 679 } 680 } 681 682 /* start of the second part of the function (state machine) */ 683 684 blks = dblks + iblks; 685 i = mp->mp_aheight; 686 do { 687 n = blks - alloced; 688 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 689 if (ret) 690 goto out; 691 alloced += n; 692 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 693 gfs2_trans_add_unrevoke(sdp, bn, n); 694 switch (state) { 695 /* Growing height of tree */ 696 case ALLOC_GROW_HEIGHT: 697 if (i == 1) { 698 ptr = (__be64 *)(dibh->b_data + 699 sizeof(struct gfs2_dinode)); 700 zero_bn = *ptr; 701 } 702 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 703 i++, n--) 704 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 705 if (i - 1 == mp->mp_fheight - ip->i_height) { 706 i--; 707 gfs2_buffer_copy_tail(mp->mp_bh[i], 708 sizeof(struct gfs2_meta_header), 709 dibh, sizeof(struct gfs2_dinode)); 710 gfs2_buffer_clear_tail(dibh, 711 sizeof(struct gfs2_dinode) + 712 sizeof(__be64)); 713 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 714 sizeof(struct gfs2_meta_header)); 715 *ptr = zero_bn; 716 state = ALLOC_GROW_DEPTH; 717 for(i = branch_start; i < mp->mp_fheight; i++) { 718 if (mp->mp_bh[i] == NULL) 719 break; 720 brelse(mp->mp_bh[i]); 721 mp->mp_bh[i] = NULL; 722 } 723 i = branch_start; 724 } 725 if (n == 0) 726 break; 727 /* Branching from existing tree */ 728 case ALLOC_GROW_DEPTH: 729 if (i > 1 && i < mp->mp_fheight) 730 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 731 for (; i < mp->mp_fheight && n > 0; i++, n--) 732 gfs2_indirect_init(mp, ip->i_gl, i, 733 mp->mp_list[i-1], bn++); 734 if (i == mp->mp_fheight) 735 state = ALLOC_DATA; 736 if (n == 0) 737 break; 738 /* Tree complete, adding data blocks */ 739 case ALLOC_DATA: 740 BUG_ON(n > dblks); 741 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 742 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 743 dblks = n; 744 ptr = metapointer(end_of_metadata, mp); 745 iomap->addr = bn << inode->i_blkbits; 746 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 747 while (n-- > 0) 748 *ptr++ = cpu_to_be64(bn++); 749 break; 750 } 751 } while (iomap->addr == IOMAP_NULL_ADDR); 752 753 iomap->length = (u64)dblks << inode->i_blkbits; 754 ip->i_height = mp->mp_fheight; 755 gfs2_add_inode_blocks(&ip->i_inode, alloced); 756 gfs2_dinode_out(ip, dibh->b_data); 757 out: 758 up_write(&ip->i_rw_mutex); 759 return ret; 760 } 761 762 static void gfs2_stuffed_iomap(struct inode *inode, struct iomap *iomap) 763 { 764 struct gfs2_inode *ip = GFS2_I(inode); 765 766 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 767 sizeof(struct gfs2_dinode); 768 iomap->offset = 0; 769 iomap->length = i_size_read(inode); 770 iomap->type = IOMAP_INLINE; 771 } 772 773 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 774 775 /** 776 * gfs2_iomap_get - Map blocks from an inode to disk blocks 777 * @inode: The inode 778 * @pos: Starting position in bytes 779 * @length: Length to map, in bytes 780 * @flags: iomap flags 781 * @iomap: The iomap structure 782 * @mp: The metapath 783 * 784 * Returns: errno 785 */ 786 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 787 unsigned flags, struct iomap *iomap, 788 struct metapath *mp) 789 { 790 struct gfs2_inode *ip = GFS2_I(inode); 791 struct gfs2_sbd *sdp = GFS2_SB(inode); 792 __be64 *ptr; 793 sector_t lblock; 794 sector_t lblock_stop; 795 int ret; 796 int eob; 797 u64 len; 798 struct buffer_head *bh; 799 u8 height; 800 801 if (!length) 802 return -EINVAL; 803 804 if (gfs2_is_stuffed(ip)) { 805 if (flags & IOMAP_REPORT) { 806 if (pos >= i_size_read(inode)) 807 return -ENOENT; 808 gfs2_stuffed_iomap(inode, iomap); 809 return 0; 810 } 811 BUG_ON(!(flags & IOMAP_WRITE)); 812 } 813 lblock = pos >> inode->i_blkbits; 814 iomap->offset = lblock << inode->i_blkbits; 815 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 816 len = lblock_stop - lblock + 1; 817 818 down_read(&ip->i_rw_mutex); 819 820 ret = gfs2_meta_inode_buffer(ip, &mp->mp_bh[0]); 821 if (ret) 822 goto unlock; 823 824 height = ip->i_height; 825 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 826 height++; 827 find_metapath(sdp, lblock, mp, height); 828 if (height > ip->i_height || gfs2_is_stuffed(ip)) 829 goto do_alloc; 830 831 ret = lookup_metapath(ip, mp); 832 if (ret) 833 goto unlock; 834 835 if (mp->mp_aheight != ip->i_height) 836 goto do_alloc; 837 838 ptr = metapointer(ip->i_height - 1, mp); 839 if (*ptr == 0) 840 goto do_alloc; 841 842 bh = mp->mp_bh[ip->i_height - 1]; 843 len = gfs2_extent_length(bh->b_data, bh->b_size, ptr, len, &eob); 844 845 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 846 iomap->length = len << inode->i_blkbits; 847 iomap->type = IOMAP_MAPPED; 848 iomap->flags = IOMAP_F_MERGED; 849 if (eob) 850 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 851 852 out: 853 iomap->bdev = inode->i_sb->s_bdev; 854 unlock: 855 up_read(&ip->i_rw_mutex); 856 return ret; 857 858 do_alloc: 859 iomap->addr = IOMAP_NULL_ADDR; 860 iomap->length = len << inode->i_blkbits; 861 iomap->type = IOMAP_HOLE; 862 iomap->flags = 0; 863 if (flags & IOMAP_REPORT) { 864 loff_t size = i_size_read(inode); 865 if (pos >= size) 866 ret = -ENOENT; 867 else if (height == ip->i_height) 868 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 869 else 870 iomap->length = size - pos; 871 } 872 goto out; 873 } 874 875 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 876 unsigned flags, struct iomap *iomap) 877 { 878 struct gfs2_inode *ip = GFS2_I(inode); 879 struct metapath mp = { .mp_aheight = 1, }; 880 int ret; 881 882 trace_gfs2_iomap_start(ip, pos, length, flags); 883 if (flags & IOMAP_WRITE) { 884 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 885 if (!ret && iomap->type == IOMAP_HOLE) 886 ret = gfs2_iomap_alloc(inode, iomap, flags, &mp); 887 release_metapath(&mp); 888 } else { 889 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 890 release_metapath(&mp); 891 } 892 trace_gfs2_iomap_end(ip, iomap, ret); 893 return ret; 894 } 895 896 const struct iomap_ops gfs2_iomap_ops = { 897 .iomap_begin = gfs2_iomap_begin, 898 }; 899 900 /** 901 * gfs2_block_map - Map one or more blocks of an inode to a disk block 902 * @inode: The inode 903 * @lblock: The logical block number 904 * @bh_map: The bh to be mapped 905 * @create: True if its ok to alloc blocks to satify the request 906 * 907 * The size of the requested mapping is defined in bh_map->b_size. 908 * 909 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 910 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 911 * bh_map->b_size to indicate the size of the mapping when @lblock and 912 * successive blocks are mapped, up to the requested size. 913 * 914 * Sets buffer_boundary() if a read of metadata will be required 915 * before the next block can be mapped. Sets buffer_new() if new 916 * blocks were allocated. 917 * 918 * Returns: errno 919 */ 920 921 int gfs2_block_map(struct inode *inode, sector_t lblock, 922 struct buffer_head *bh_map, int create) 923 { 924 struct gfs2_inode *ip = GFS2_I(inode); 925 loff_t pos = (loff_t)lblock << inode->i_blkbits; 926 loff_t length = bh_map->b_size; 927 struct metapath mp = { .mp_aheight = 1, }; 928 struct iomap iomap = { }; 929 int ret; 930 931 clear_buffer_mapped(bh_map); 932 clear_buffer_new(bh_map); 933 clear_buffer_boundary(bh_map); 934 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 935 936 if (create) { 937 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 938 if (!ret && iomap.type == IOMAP_HOLE) 939 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 940 release_metapath(&mp); 941 } else { 942 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 943 release_metapath(&mp); 944 945 /* Return unmapped buffer beyond the end of file. */ 946 if (ret == -ENOENT) { 947 ret = 0; 948 goto out; 949 } 950 } 951 if (ret) 952 goto out; 953 954 if (iomap.length > bh_map->b_size) { 955 iomap.length = bh_map->b_size; 956 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 957 } 958 if (iomap.addr != IOMAP_NULL_ADDR) 959 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 960 bh_map->b_size = iomap.length; 961 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 962 set_buffer_boundary(bh_map); 963 if (iomap.flags & IOMAP_F_NEW) 964 set_buffer_new(bh_map); 965 966 out: 967 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 968 return ret; 969 } 970 971 /* 972 * Deprecated: do not use in new code 973 */ 974 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 975 { 976 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 977 int ret; 978 int create = *new; 979 980 BUG_ON(!extlen); 981 BUG_ON(!dblock); 982 BUG_ON(!new); 983 984 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 985 ret = gfs2_block_map(inode, lblock, &bh, create); 986 *extlen = bh.b_size >> inode->i_blkbits; 987 *dblock = bh.b_blocknr; 988 if (buffer_new(&bh)) 989 *new = 1; 990 else 991 *new = 0; 992 return ret; 993 } 994 995 /** 996 * gfs2_block_zero_range - Deal with zeroing out data 997 * 998 * This is partly borrowed from ext3. 999 */ 1000 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1001 unsigned int length) 1002 { 1003 struct address_space *mapping = inode->i_mapping; 1004 struct gfs2_inode *ip = GFS2_I(inode); 1005 unsigned long index = from >> PAGE_SHIFT; 1006 unsigned offset = from & (PAGE_SIZE-1); 1007 unsigned blocksize, iblock, pos; 1008 struct buffer_head *bh; 1009 struct page *page; 1010 int err; 1011 1012 page = find_or_create_page(mapping, index, GFP_NOFS); 1013 if (!page) 1014 return 0; 1015 1016 blocksize = inode->i_sb->s_blocksize; 1017 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1018 1019 if (!page_has_buffers(page)) 1020 create_empty_buffers(page, blocksize, 0); 1021 1022 /* Find the buffer that contains "offset" */ 1023 bh = page_buffers(page); 1024 pos = blocksize; 1025 while (offset >= pos) { 1026 bh = bh->b_this_page; 1027 iblock++; 1028 pos += blocksize; 1029 } 1030 1031 err = 0; 1032 1033 if (!buffer_mapped(bh)) { 1034 gfs2_block_map(inode, iblock, bh, 0); 1035 /* unmapped? It's a hole - nothing to do */ 1036 if (!buffer_mapped(bh)) 1037 goto unlock; 1038 } 1039 1040 /* Ok, it's mapped. Make sure it's up-to-date */ 1041 if (PageUptodate(page)) 1042 set_buffer_uptodate(bh); 1043 1044 if (!buffer_uptodate(bh)) { 1045 err = -EIO; 1046 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1047 wait_on_buffer(bh); 1048 /* Uhhuh. Read error. Complain and punt. */ 1049 if (!buffer_uptodate(bh)) 1050 goto unlock; 1051 err = 0; 1052 } 1053 1054 if (gfs2_is_jdata(ip)) 1055 gfs2_trans_add_data(ip->i_gl, bh); 1056 else 1057 gfs2_ordered_add_inode(ip); 1058 1059 zero_user(page, offset, length); 1060 mark_buffer_dirty(bh); 1061 unlock: 1062 unlock_page(page); 1063 put_page(page); 1064 return err; 1065 } 1066 1067 #define GFS2_JTRUNC_REVOKES 8192 1068 1069 /** 1070 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1071 * @inode: The inode being truncated 1072 * @oldsize: The original (larger) size 1073 * @newsize: The new smaller size 1074 * 1075 * With jdata files, we have to journal a revoke for each block which is 1076 * truncated. As a result, we need to split this into separate transactions 1077 * if the number of pages being truncated gets too large. 1078 */ 1079 1080 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1081 { 1082 struct gfs2_sbd *sdp = GFS2_SB(inode); 1083 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1084 u64 chunk; 1085 int error; 1086 1087 while (oldsize != newsize) { 1088 struct gfs2_trans *tr; 1089 unsigned int offs; 1090 1091 chunk = oldsize - newsize; 1092 if (chunk > max_chunk) 1093 chunk = max_chunk; 1094 1095 offs = oldsize & ~PAGE_MASK; 1096 if (offs && chunk > PAGE_SIZE) 1097 chunk = offs + ((chunk - offs) & PAGE_MASK); 1098 1099 truncate_pagecache(inode, oldsize - chunk); 1100 oldsize -= chunk; 1101 1102 tr = current->journal_info; 1103 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1104 continue; 1105 1106 gfs2_trans_end(sdp); 1107 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1108 if (error) 1109 return error; 1110 } 1111 1112 return 0; 1113 } 1114 1115 static int trunc_start(struct inode *inode, u64 newsize) 1116 { 1117 struct gfs2_inode *ip = GFS2_I(inode); 1118 struct gfs2_sbd *sdp = GFS2_SB(inode); 1119 struct buffer_head *dibh = NULL; 1120 int journaled = gfs2_is_jdata(ip); 1121 u64 oldsize = inode->i_size; 1122 int error; 1123 1124 if (journaled) 1125 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1126 else 1127 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1128 if (error) 1129 return error; 1130 1131 error = gfs2_meta_inode_buffer(ip, &dibh); 1132 if (error) 1133 goto out; 1134 1135 gfs2_trans_add_meta(ip->i_gl, dibh); 1136 1137 if (gfs2_is_stuffed(ip)) { 1138 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1139 } else { 1140 unsigned int blocksize = i_blocksize(inode); 1141 unsigned int offs = newsize & (blocksize - 1); 1142 if (offs) { 1143 error = gfs2_block_zero_range(inode, newsize, 1144 blocksize - offs); 1145 if (error) 1146 goto out; 1147 } 1148 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1149 } 1150 1151 i_size_write(inode, newsize); 1152 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1153 gfs2_dinode_out(ip, dibh->b_data); 1154 1155 if (journaled) 1156 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1157 else 1158 truncate_pagecache(inode, newsize); 1159 1160 out: 1161 brelse(dibh); 1162 if (current->journal_info) 1163 gfs2_trans_end(sdp); 1164 return error; 1165 } 1166 1167 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1168 struct iomap *iomap) 1169 { 1170 struct metapath mp = { .mp_aheight = 1, }; 1171 int ret; 1172 1173 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1174 if (!ret && iomap->type == IOMAP_HOLE) 1175 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1176 release_metapath(&mp); 1177 return ret; 1178 } 1179 1180 /** 1181 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1182 * @ip: inode 1183 * @rg_gh: holder of resource group glock 1184 * @bh: buffer head to sweep 1185 * @start: starting point in bh 1186 * @end: end point in bh 1187 * @meta: true if bh points to metadata (rather than data) 1188 * @btotal: place to keep count of total blocks freed 1189 * 1190 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1191 * free, and free them all. However, we do it one rgrp at a time. If this 1192 * block has references to multiple rgrps, we break it into individual 1193 * transactions. This allows other processes to use the rgrps while we're 1194 * focused on a single one, for better concurrency / performance. 1195 * At every transaction boundary, we rewrite the inode into the journal. 1196 * That way the bitmaps are kept consistent with the inode and we can recover 1197 * if we're interrupted by power-outages. 1198 * 1199 * Returns: 0, or return code if an error occurred. 1200 * *btotal has the total number of blocks freed 1201 */ 1202 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1203 struct buffer_head *bh, __be64 *start, __be64 *end, 1204 bool meta, u32 *btotal) 1205 { 1206 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1207 struct gfs2_rgrpd *rgd; 1208 struct gfs2_trans *tr; 1209 __be64 *p; 1210 int blks_outside_rgrp; 1211 u64 bn, bstart, isize_blks; 1212 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1213 int ret = 0; 1214 bool buf_in_tr = false; /* buffer was added to transaction */ 1215 1216 more_rgrps: 1217 rgd = NULL; 1218 if (gfs2_holder_initialized(rd_gh)) { 1219 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1220 gfs2_assert_withdraw(sdp, 1221 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1222 } 1223 blks_outside_rgrp = 0; 1224 bstart = 0; 1225 blen = 0; 1226 1227 for (p = start; p < end; p++) { 1228 if (!*p) 1229 continue; 1230 bn = be64_to_cpu(*p); 1231 1232 if (rgd) { 1233 if (!rgrp_contains_block(rgd, bn)) { 1234 blks_outside_rgrp++; 1235 continue; 1236 } 1237 } else { 1238 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1239 if (unlikely(!rgd)) { 1240 ret = -EIO; 1241 goto out; 1242 } 1243 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1244 0, rd_gh); 1245 if (ret) 1246 goto out; 1247 1248 /* Must be done with the rgrp glock held: */ 1249 if (gfs2_rs_active(&ip->i_res) && 1250 rgd == ip->i_res.rs_rbm.rgd) 1251 gfs2_rs_deltree(&ip->i_res); 1252 } 1253 1254 /* The size of our transactions will be unknown until we 1255 actually process all the metadata blocks that relate to 1256 the rgrp. So we estimate. We know it can't be more than 1257 the dinode's i_blocks and we don't want to exceed the 1258 journal flush threshold, sd_log_thresh2. */ 1259 if (current->journal_info == NULL) { 1260 unsigned int jblocks_rqsted, revokes; 1261 1262 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1263 RES_INDIRECT; 1264 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1265 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1266 jblocks_rqsted += 1267 atomic_read(&sdp->sd_log_thresh2); 1268 else 1269 jblocks_rqsted += isize_blks; 1270 revokes = jblocks_rqsted; 1271 if (meta) 1272 revokes += end - start; 1273 else if (ip->i_depth) 1274 revokes += sdp->sd_inptrs; 1275 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1276 if (ret) 1277 goto out_unlock; 1278 down_write(&ip->i_rw_mutex); 1279 } 1280 /* check if we will exceed the transaction blocks requested */ 1281 tr = current->journal_info; 1282 if (tr->tr_num_buf_new + RES_STATFS + 1283 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1284 /* We set blks_outside_rgrp to ensure the loop will 1285 be repeated for the same rgrp, but with a new 1286 transaction. */ 1287 blks_outside_rgrp++; 1288 /* This next part is tricky. If the buffer was added 1289 to the transaction, we've already set some block 1290 pointers to 0, so we better follow through and free 1291 them, or we will introduce corruption (so break). 1292 This may be impossible, or at least rare, but I 1293 decided to cover the case regardless. 1294 1295 If the buffer was not added to the transaction 1296 (this call), doing so would exceed our transaction 1297 size, so we need to end the transaction and start a 1298 new one (so goto). */ 1299 1300 if (buf_in_tr) 1301 break; 1302 goto out_unlock; 1303 } 1304 1305 gfs2_trans_add_meta(ip->i_gl, bh); 1306 buf_in_tr = true; 1307 *p = 0; 1308 if (bstart + blen == bn) { 1309 blen++; 1310 continue; 1311 } 1312 if (bstart) { 1313 __gfs2_free_blocks(ip, bstart, (u32)blen, meta); 1314 (*btotal) += blen; 1315 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1316 } 1317 bstart = bn; 1318 blen = 1; 1319 } 1320 if (bstart) { 1321 __gfs2_free_blocks(ip, bstart, (u32)blen, meta); 1322 (*btotal) += blen; 1323 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1324 } 1325 out_unlock: 1326 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1327 outside the rgrp we just processed, 1328 do it all over again. */ 1329 if (current->journal_info) { 1330 struct buffer_head *dibh; 1331 1332 ret = gfs2_meta_inode_buffer(ip, &dibh); 1333 if (ret) 1334 goto out; 1335 1336 /* Every transaction boundary, we rewrite the dinode 1337 to keep its di_blocks current in case of failure. */ 1338 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1339 current_time(&ip->i_inode); 1340 gfs2_trans_add_meta(ip->i_gl, dibh); 1341 gfs2_dinode_out(ip, dibh->b_data); 1342 brelse(dibh); 1343 up_write(&ip->i_rw_mutex); 1344 gfs2_trans_end(sdp); 1345 } 1346 gfs2_glock_dq_uninit(rd_gh); 1347 cond_resched(); 1348 goto more_rgrps; 1349 } 1350 out: 1351 return ret; 1352 } 1353 1354 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1355 { 1356 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1357 return false; 1358 return true; 1359 } 1360 1361 /** 1362 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1363 * @mp: starting metapath 1364 * @h: desired height to search 1365 * 1366 * Assumes the metapath is valid (with buffers) out to height h. 1367 * Returns: true if a non-null pointer was found in the metapath buffer 1368 * false if all remaining pointers are NULL in the buffer 1369 */ 1370 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1371 unsigned int h, 1372 __u16 *end_list, unsigned int end_aligned) 1373 { 1374 struct buffer_head *bh = mp->mp_bh[h]; 1375 __be64 *first, *ptr, *end; 1376 1377 first = metaptr1(h, mp); 1378 ptr = first + mp->mp_list[h]; 1379 end = (__be64 *)(bh->b_data + bh->b_size); 1380 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1381 bool keep_end = h < end_aligned; 1382 end = first + end_list[h] + keep_end; 1383 } 1384 1385 while (ptr < end) { 1386 if (*ptr) { /* if we have a non-null pointer */ 1387 mp->mp_list[h] = ptr - first; 1388 h++; 1389 if (h < GFS2_MAX_META_HEIGHT) 1390 mp->mp_list[h] = 0; 1391 return true; 1392 } 1393 ptr++; 1394 } 1395 return false; 1396 } 1397 1398 enum dealloc_states { 1399 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1400 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1401 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1402 DEALLOC_DONE = 3, /* process complete */ 1403 }; 1404 1405 static inline void 1406 metapointer_range(struct metapath *mp, int height, 1407 __u16 *start_list, unsigned int start_aligned, 1408 __u16 *end_list, unsigned int end_aligned, 1409 __be64 **start, __be64 **end) 1410 { 1411 struct buffer_head *bh = mp->mp_bh[height]; 1412 __be64 *first; 1413 1414 first = metaptr1(height, mp); 1415 *start = first; 1416 if (mp_eq_to_hgt(mp, start_list, height)) { 1417 bool keep_start = height < start_aligned; 1418 *start = first + start_list[height] + keep_start; 1419 } 1420 *end = (__be64 *)(bh->b_data + bh->b_size); 1421 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1422 bool keep_end = height < end_aligned; 1423 *end = first + end_list[height] + keep_end; 1424 } 1425 } 1426 1427 static inline bool walk_done(struct gfs2_sbd *sdp, 1428 struct metapath *mp, int height, 1429 __u16 *end_list, unsigned int end_aligned) 1430 { 1431 __u16 end; 1432 1433 if (end_list) { 1434 bool keep_end = height < end_aligned; 1435 if (!mp_eq_to_hgt(mp, end_list, height)) 1436 return false; 1437 end = end_list[height] + keep_end; 1438 } else 1439 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1440 return mp->mp_list[height] >= end; 1441 } 1442 1443 /** 1444 * punch_hole - deallocate blocks in a file 1445 * @ip: inode to truncate 1446 * @offset: the start of the hole 1447 * @length: the size of the hole (or 0 for truncate) 1448 * 1449 * Punch a hole into a file or truncate a file at a given position. This 1450 * function operates in whole blocks (@offset and @length are rounded 1451 * accordingly); partially filled blocks must be cleared otherwise. 1452 * 1453 * This function works from the bottom up, and from the right to the left. In 1454 * other words, it strips off the highest layer (data) before stripping any of 1455 * the metadata. Doing it this way is best in case the operation is interrupted 1456 * by power failure, etc. The dinode is rewritten in every transaction to 1457 * guarantee integrity. 1458 */ 1459 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1460 { 1461 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1462 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1463 struct metapath mp = {}; 1464 struct buffer_head *dibh, *bh; 1465 struct gfs2_holder rd_gh; 1466 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1467 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1468 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1469 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1470 unsigned int start_aligned, uninitialized_var(end_aligned); 1471 unsigned int strip_h = ip->i_height - 1; 1472 u32 btotal = 0; 1473 int ret, state; 1474 int mp_h; /* metapath buffers are read in to this height */ 1475 u64 prev_bnr = 0; 1476 __be64 *start, *end; 1477 1478 if (offset >= maxsize) { 1479 /* 1480 * The starting point lies beyond the allocated meta-data; 1481 * there are no blocks do deallocate. 1482 */ 1483 return 0; 1484 } 1485 1486 /* 1487 * The start position of the hole is defined by lblock, start_list, and 1488 * start_aligned. The end position of the hole is defined by lend, 1489 * end_list, and end_aligned. 1490 * 1491 * start_aligned and end_aligned define down to which height the start 1492 * and end positions are aligned to the metadata tree (i.e., the 1493 * position is a multiple of the metadata granularity at the height 1494 * above). This determines at which heights additional meta pointers 1495 * needs to be preserved for the remaining data. 1496 */ 1497 1498 if (length) { 1499 u64 end_offset = offset + length; 1500 u64 lend; 1501 1502 /* 1503 * Clip the end at the maximum file size for the given height: 1504 * that's how far the metadata goes; files bigger than that 1505 * will have additional layers of indirection. 1506 */ 1507 if (end_offset > maxsize) 1508 end_offset = maxsize; 1509 lend = end_offset >> bsize_shift; 1510 1511 if (lblock >= lend) 1512 return 0; 1513 1514 find_metapath(sdp, lend, &mp, ip->i_height); 1515 end_list = __end_list; 1516 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1517 1518 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1519 if (end_list[mp_h]) 1520 break; 1521 } 1522 end_aligned = mp_h; 1523 } 1524 1525 find_metapath(sdp, lblock, &mp, ip->i_height); 1526 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1527 1528 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1529 if (start_list[mp_h]) 1530 break; 1531 } 1532 start_aligned = mp_h; 1533 1534 ret = gfs2_meta_inode_buffer(ip, &dibh); 1535 if (ret) 1536 return ret; 1537 1538 mp.mp_bh[0] = dibh; 1539 ret = lookup_metapath(ip, &mp); 1540 if (ret) 1541 goto out_metapath; 1542 1543 /* issue read-ahead on metadata */ 1544 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1545 metapointer_range(&mp, mp_h, start_list, start_aligned, 1546 end_list, end_aligned, &start, &end); 1547 gfs2_metapath_ra(ip->i_gl, start, end); 1548 } 1549 1550 if (mp.mp_aheight == ip->i_height) 1551 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1552 else 1553 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1554 1555 ret = gfs2_rindex_update(sdp); 1556 if (ret) 1557 goto out_metapath; 1558 1559 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1560 if (ret) 1561 goto out_metapath; 1562 gfs2_holder_mark_uninitialized(&rd_gh); 1563 1564 mp_h = strip_h; 1565 1566 while (state != DEALLOC_DONE) { 1567 switch (state) { 1568 /* Truncate a full metapath at the given strip height. 1569 * Note that strip_h == mp_h in order to be in this state. */ 1570 case DEALLOC_MP_FULL: 1571 bh = mp.mp_bh[mp_h]; 1572 gfs2_assert_withdraw(sdp, bh); 1573 if (gfs2_assert_withdraw(sdp, 1574 prev_bnr != bh->b_blocknr)) { 1575 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1576 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1577 sdp->sd_fsname, 1578 (unsigned long long)ip->i_no_addr, 1579 prev_bnr, ip->i_height, strip_h, mp_h); 1580 } 1581 prev_bnr = bh->b_blocknr; 1582 1583 if (gfs2_metatype_check(sdp, bh, 1584 (mp_h ? GFS2_METATYPE_IN : 1585 GFS2_METATYPE_DI))) { 1586 ret = -EIO; 1587 goto out; 1588 } 1589 1590 /* 1591 * Below, passing end_aligned as 0 gives us the 1592 * metapointer range excluding the end point: the end 1593 * point is the first metapath we must not deallocate! 1594 */ 1595 1596 metapointer_range(&mp, mp_h, start_list, start_aligned, 1597 end_list, 0 /* end_aligned */, 1598 &start, &end); 1599 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1600 start, end, 1601 mp_h != ip->i_height - 1, 1602 &btotal); 1603 1604 /* If we hit an error or just swept dinode buffer, 1605 just exit. */ 1606 if (ret || !mp_h) { 1607 state = DEALLOC_DONE; 1608 break; 1609 } 1610 state = DEALLOC_MP_LOWER; 1611 break; 1612 1613 /* lower the metapath strip height */ 1614 case DEALLOC_MP_LOWER: 1615 /* We're done with the current buffer, so release it, 1616 unless it's the dinode buffer. Then back up to the 1617 previous pointer. */ 1618 if (mp_h) { 1619 brelse(mp.mp_bh[mp_h]); 1620 mp.mp_bh[mp_h] = NULL; 1621 } 1622 /* If we can't get any lower in height, we've stripped 1623 off all we can. Next step is to back up and start 1624 stripping the previous level of metadata. */ 1625 if (mp_h == 0) { 1626 strip_h--; 1627 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1628 mp_h = strip_h; 1629 state = DEALLOC_FILL_MP; 1630 break; 1631 } 1632 mp.mp_list[mp_h] = 0; 1633 mp_h--; /* search one metadata height down */ 1634 mp.mp_list[mp_h]++; 1635 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1636 break; 1637 /* Here we've found a part of the metapath that is not 1638 * allocated. We need to search at that height for the 1639 * next non-null pointer. */ 1640 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1641 state = DEALLOC_FILL_MP; 1642 mp_h++; 1643 } 1644 /* No more non-null pointers at this height. Back up 1645 to the previous height and try again. */ 1646 break; /* loop around in the same state */ 1647 1648 /* Fill the metapath with buffers to the given height. */ 1649 case DEALLOC_FILL_MP: 1650 /* Fill the buffers out to the current height. */ 1651 ret = fillup_metapath(ip, &mp, mp_h); 1652 if (ret < 0) 1653 goto out; 1654 1655 /* issue read-ahead on metadata */ 1656 if (mp.mp_aheight > 1) { 1657 for (; ret > 1; ret--) { 1658 metapointer_range(&mp, mp.mp_aheight - ret, 1659 start_list, start_aligned, 1660 end_list, end_aligned, 1661 &start, &end); 1662 gfs2_metapath_ra(ip->i_gl, start, end); 1663 } 1664 } 1665 1666 /* If buffers found for the entire strip height */ 1667 if (mp.mp_aheight - 1 == strip_h) { 1668 state = DEALLOC_MP_FULL; 1669 break; 1670 } 1671 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1672 mp_h = mp.mp_aheight - 1; 1673 1674 /* If we find a non-null block pointer, crawl a bit 1675 higher up in the metapath and try again, otherwise 1676 we need to look lower for a new starting point. */ 1677 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1678 mp_h++; 1679 else 1680 state = DEALLOC_MP_LOWER; 1681 break; 1682 } 1683 } 1684 1685 if (btotal) { 1686 if (current->journal_info == NULL) { 1687 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1688 RES_QUOTA, 0); 1689 if (ret) 1690 goto out; 1691 down_write(&ip->i_rw_mutex); 1692 } 1693 gfs2_statfs_change(sdp, 0, +btotal, 0); 1694 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1695 ip->i_inode.i_gid); 1696 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1697 gfs2_trans_add_meta(ip->i_gl, dibh); 1698 gfs2_dinode_out(ip, dibh->b_data); 1699 up_write(&ip->i_rw_mutex); 1700 gfs2_trans_end(sdp); 1701 } 1702 1703 out: 1704 if (gfs2_holder_initialized(&rd_gh)) 1705 gfs2_glock_dq_uninit(&rd_gh); 1706 if (current->journal_info) { 1707 up_write(&ip->i_rw_mutex); 1708 gfs2_trans_end(sdp); 1709 cond_resched(); 1710 } 1711 gfs2_quota_unhold(ip); 1712 out_metapath: 1713 release_metapath(&mp); 1714 return ret; 1715 } 1716 1717 static int trunc_end(struct gfs2_inode *ip) 1718 { 1719 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1720 struct buffer_head *dibh; 1721 int error; 1722 1723 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1724 if (error) 1725 return error; 1726 1727 down_write(&ip->i_rw_mutex); 1728 1729 error = gfs2_meta_inode_buffer(ip, &dibh); 1730 if (error) 1731 goto out; 1732 1733 if (!i_size_read(&ip->i_inode)) { 1734 ip->i_height = 0; 1735 ip->i_goal = ip->i_no_addr; 1736 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1737 gfs2_ordered_del_inode(ip); 1738 } 1739 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1740 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1741 1742 gfs2_trans_add_meta(ip->i_gl, dibh); 1743 gfs2_dinode_out(ip, dibh->b_data); 1744 brelse(dibh); 1745 1746 out: 1747 up_write(&ip->i_rw_mutex); 1748 gfs2_trans_end(sdp); 1749 return error; 1750 } 1751 1752 /** 1753 * do_shrink - make a file smaller 1754 * @inode: the inode 1755 * @newsize: the size to make the file 1756 * 1757 * Called with an exclusive lock on @inode. The @size must 1758 * be equal to or smaller than the current inode size. 1759 * 1760 * Returns: errno 1761 */ 1762 1763 static int do_shrink(struct inode *inode, u64 newsize) 1764 { 1765 struct gfs2_inode *ip = GFS2_I(inode); 1766 int error; 1767 1768 error = trunc_start(inode, newsize); 1769 if (error < 0) 1770 return error; 1771 if (gfs2_is_stuffed(ip)) 1772 return 0; 1773 1774 error = punch_hole(ip, newsize, 0); 1775 if (error == 0) 1776 error = trunc_end(ip); 1777 1778 return error; 1779 } 1780 1781 void gfs2_trim_blocks(struct inode *inode) 1782 { 1783 int ret; 1784 1785 ret = do_shrink(inode, inode->i_size); 1786 WARN_ON(ret != 0); 1787 } 1788 1789 /** 1790 * do_grow - Touch and update inode size 1791 * @inode: The inode 1792 * @size: The new size 1793 * 1794 * This function updates the timestamps on the inode and 1795 * may also increase the size of the inode. This function 1796 * must not be called with @size any smaller than the current 1797 * inode size. 1798 * 1799 * Although it is not strictly required to unstuff files here, 1800 * earlier versions of GFS2 have a bug in the stuffed file reading 1801 * code which will result in a buffer overrun if the size is larger 1802 * than the max stuffed file size. In order to prevent this from 1803 * occurring, such files are unstuffed, but in other cases we can 1804 * just update the inode size directly. 1805 * 1806 * Returns: 0 on success, or -ve on error 1807 */ 1808 1809 static int do_grow(struct inode *inode, u64 size) 1810 { 1811 struct gfs2_inode *ip = GFS2_I(inode); 1812 struct gfs2_sbd *sdp = GFS2_SB(inode); 1813 struct gfs2_alloc_parms ap = { .target = 1, }; 1814 struct buffer_head *dibh; 1815 int error; 1816 int unstuff = 0; 1817 1818 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 1819 error = gfs2_quota_lock_check(ip, &ap); 1820 if (error) 1821 return error; 1822 1823 error = gfs2_inplace_reserve(ip, &ap); 1824 if (error) 1825 goto do_grow_qunlock; 1826 unstuff = 1; 1827 } 1828 1829 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 1830 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 1831 0 : RES_QUOTA), 0); 1832 if (error) 1833 goto do_grow_release; 1834 1835 if (unstuff) { 1836 error = gfs2_unstuff_dinode(ip, NULL); 1837 if (error) 1838 goto do_end_trans; 1839 } 1840 1841 error = gfs2_meta_inode_buffer(ip, &dibh); 1842 if (error) 1843 goto do_end_trans; 1844 1845 i_size_write(inode, size); 1846 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1847 gfs2_trans_add_meta(ip->i_gl, dibh); 1848 gfs2_dinode_out(ip, dibh->b_data); 1849 brelse(dibh); 1850 1851 do_end_trans: 1852 gfs2_trans_end(sdp); 1853 do_grow_release: 1854 if (unstuff) { 1855 gfs2_inplace_release(ip); 1856 do_grow_qunlock: 1857 gfs2_quota_unlock(ip); 1858 } 1859 return error; 1860 } 1861 1862 /** 1863 * gfs2_setattr_size - make a file a given size 1864 * @inode: the inode 1865 * @newsize: the size to make the file 1866 * 1867 * The file size can grow, shrink, or stay the same size. This 1868 * is called holding i_rwsem and an exclusive glock on the inode 1869 * in question. 1870 * 1871 * Returns: errno 1872 */ 1873 1874 int gfs2_setattr_size(struct inode *inode, u64 newsize) 1875 { 1876 struct gfs2_inode *ip = GFS2_I(inode); 1877 int ret; 1878 1879 BUG_ON(!S_ISREG(inode->i_mode)); 1880 1881 ret = inode_newsize_ok(inode, newsize); 1882 if (ret) 1883 return ret; 1884 1885 inode_dio_wait(inode); 1886 1887 ret = gfs2_rsqa_alloc(ip); 1888 if (ret) 1889 goto out; 1890 1891 if (newsize >= inode->i_size) { 1892 ret = do_grow(inode, newsize); 1893 goto out; 1894 } 1895 1896 ret = do_shrink(inode, newsize); 1897 out: 1898 gfs2_rsqa_delete(ip, NULL); 1899 return ret; 1900 } 1901 1902 int gfs2_truncatei_resume(struct gfs2_inode *ip) 1903 { 1904 int error; 1905 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 1906 if (!error) 1907 error = trunc_end(ip); 1908 return error; 1909 } 1910 1911 int gfs2_file_dealloc(struct gfs2_inode *ip) 1912 { 1913 return punch_hole(ip, 0, 0); 1914 } 1915 1916 /** 1917 * gfs2_free_journal_extents - Free cached journal bmap info 1918 * @jd: The journal 1919 * 1920 */ 1921 1922 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 1923 { 1924 struct gfs2_journal_extent *jext; 1925 1926 while(!list_empty(&jd->extent_list)) { 1927 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 1928 list_del(&jext->list); 1929 kfree(jext); 1930 } 1931 } 1932 1933 /** 1934 * gfs2_add_jextent - Add or merge a new extent to extent cache 1935 * @jd: The journal descriptor 1936 * @lblock: The logical block at start of new extent 1937 * @dblock: The physical block at start of new extent 1938 * @blocks: Size of extent in fs blocks 1939 * 1940 * Returns: 0 on success or -ENOMEM 1941 */ 1942 1943 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 1944 { 1945 struct gfs2_journal_extent *jext; 1946 1947 if (!list_empty(&jd->extent_list)) { 1948 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 1949 if ((jext->dblock + jext->blocks) == dblock) { 1950 jext->blocks += blocks; 1951 return 0; 1952 } 1953 } 1954 1955 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 1956 if (jext == NULL) 1957 return -ENOMEM; 1958 jext->dblock = dblock; 1959 jext->lblock = lblock; 1960 jext->blocks = blocks; 1961 list_add_tail(&jext->list, &jd->extent_list); 1962 jd->nr_extents++; 1963 return 0; 1964 } 1965 1966 /** 1967 * gfs2_map_journal_extents - Cache journal bmap info 1968 * @sdp: The super block 1969 * @jd: The journal to map 1970 * 1971 * Create a reusable "extent" mapping from all logical 1972 * blocks to all physical blocks for the given journal. This will save 1973 * us time when writing journal blocks. Most journals will have only one 1974 * extent that maps all their logical blocks. That's because gfs2.mkfs 1975 * arranges the journal blocks sequentially to maximize performance. 1976 * So the extent would map the first block for the entire file length. 1977 * However, gfs2_jadd can happen while file activity is happening, so 1978 * those journals may not be sequential. Less likely is the case where 1979 * the users created their own journals by mounting the metafs and 1980 * laying it out. But it's still possible. These journals might have 1981 * several extents. 1982 * 1983 * Returns: 0 on success, or error on failure 1984 */ 1985 1986 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 1987 { 1988 u64 lblock = 0; 1989 u64 lblock_stop; 1990 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 1991 struct buffer_head bh; 1992 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 1993 u64 size; 1994 int rc; 1995 1996 lblock_stop = i_size_read(jd->jd_inode) >> shift; 1997 size = (lblock_stop - lblock) << shift; 1998 jd->nr_extents = 0; 1999 WARN_ON(!list_empty(&jd->extent_list)); 2000 2001 do { 2002 bh.b_state = 0; 2003 bh.b_blocknr = 0; 2004 bh.b_size = size; 2005 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2006 if (rc || !buffer_mapped(&bh)) 2007 goto fail; 2008 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2009 if (rc) 2010 goto fail; 2011 size -= bh.b_size; 2012 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2013 } while(size > 0); 2014 2015 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid, 2016 jd->nr_extents); 2017 return 0; 2018 2019 fail: 2020 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2021 rc, jd->jd_jid, 2022 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2023 jd->nr_extents); 2024 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2025 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2026 bh.b_state, (unsigned long long)bh.b_size); 2027 gfs2_free_journal_extents(jd); 2028 return rc; 2029 } 2030 2031 /** 2032 * gfs2_write_alloc_required - figure out if a write will require an allocation 2033 * @ip: the file being written to 2034 * @offset: the offset to write to 2035 * @len: the number of bytes being written 2036 * 2037 * Returns: 1 if an alloc is required, 0 otherwise 2038 */ 2039 2040 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2041 unsigned int len) 2042 { 2043 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2044 struct buffer_head bh; 2045 unsigned int shift; 2046 u64 lblock, lblock_stop, size; 2047 u64 end_of_file; 2048 2049 if (!len) 2050 return 0; 2051 2052 if (gfs2_is_stuffed(ip)) { 2053 if (offset + len > gfs2_max_stuffed_size(ip)) 2054 return 1; 2055 return 0; 2056 } 2057 2058 shift = sdp->sd_sb.sb_bsize_shift; 2059 BUG_ON(gfs2_is_dir(ip)); 2060 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2061 lblock = offset >> shift; 2062 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2063 if (lblock_stop > end_of_file) 2064 return 1; 2065 2066 size = (lblock_stop - lblock) << shift; 2067 do { 2068 bh.b_state = 0; 2069 bh.b_size = size; 2070 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2071 if (!buffer_mapped(&bh)) 2072 return 1; 2073 size -= bh.b_size; 2074 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2075 } while(size > 0); 2076 2077 return 0; 2078 } 2079 2080 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2081 { 2082 struct gfs2_inode *ip = GFS2_I(inode); 2083 struct buffer_head *dibh; 2084 int error; 2085 2086 if (offset >= inode->i_size) 2087 return 0; 2088 if (offset + length > inode->i_size) 2089 length = inode->i_size - offset; 2090 2091 error = gfs2_meta_inode_buffer(ip, &dibh); 2092 if (error) 2093 return error; 2094 gfs2_trans_add_meta(ip->i_gl, dibh); 2095 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2096 length); 2097 brelse(dibh); 2098 return 0; 2099 } 2100 2101 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2102 loff_t length) 2103 { 2104 struct gfs2_sbd *sdp = GFS2_SB(inode); 2105 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2106 int error; 2107 2108 while (length) { 2109 struct gfs2_trans *tr; 2110 loff_t chunk; 2111 unsigned int offs; 2112 2113 chunk = length; 2114 if (chunk > max_chunk) 2115 chunk = max_chunk; 2116 2117 offs = offset & ~PAGE_MASK; 2118 if (offs && chunk > PAGE_SIZE) 2119 chunk = offs + ((chunk - offs) & PAGE_MASK); 2120 2121 truncate_pagecache_range(inode, offset, chunk); 2122 offset += chunk; 2123 length -= chunk; 2124 2125 tr = current->journal_info; 2126 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2127 continue; 2128 2129 gfs2_trans_end(sdp); 2130 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2131 if (error) 2132 return error; 2133 } 2134 return 0; 2135 } 2136 2137 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2138 { 2139 struct inode *inode = file_inode(file); 2140 struct gfs2_inode *ip = GFS2_I(inode); 2141 struct gfs2_sbd *sdp = GFS2_SB(inode); 2142 int error; 2143 2144 if (gfs2_is_jdata(ip)) 2145 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2146 GFS2_JTRUNC_REVOKES); 2147 else 2148 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2149 if (error) 2150 return error; 2151 2152 if (gfs2_is_stuffed(ip)) { 2153 error = stuffed_zero_range(inode, offset, length); 2154 if (error) 2155 goto out; 2156 } else { 2157 unsigned int start_off, end_off, blocksize; 2158 2159 blocksize = i_blocksize(inode); 2160 start_off = offset & (blocksize - 1); 2161 end_off = (offset + length) & (blocksize - 1); 2162 if (start_off) { 2163 unsigned int len = length; 2164 if (length > blocksize - start_off) 2165 len = blocksize - start_off; 2166 error = gfs2_block_zero_range(inode, offset, len); 2167 if (error) 2168 goto out; 2169 if (start_off + length < blocksize) 2170 end_off = 0; 2171 } 2172 if (end_off) { 2173 error = gfs2_block_zero_range(inode, 2174 offset + length - end_off, end_off); 2175 if (error) 2176 goto out; 2177 } 2178 } 2179 2180 if (gfs2_is_jdata(ip)) { 2181 BUG_ON(!current->journal_info); 2182 gfs2_journaled_truncate_range(inode, offset, length); 2183 } else 2184 truncate_pagecache_range(inode, offset, offset + length - 1); 2185 2186 file_update_time(file); 2187 mark_inode_dirty(inode); 2188 2189 if (current->journal_info) 2190 gfs2_trans_end(sdp); 2191 2192 if (!gfs2_is_stuffed(ip)) 2193 error = punch_hole(ip, offset, length); 2194 2195 out: 2196 if (current->journal_info) 2197 gfs2_trans_end(sdp); 2198 return error; 2199 } 2200