1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 60 if (!PageUptodate(page)) { 61 void *kaddr = kmap(page); 62 u64 dsize = i_size_read(inode); 63 64 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 65 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 66 kunmap(page); 67 68 SetPageUptodate(page); 69 } 70 71 if (gfs2_is_jdata(ip)) { 72 struct buffer_head *bh; 73 74 if (!page_has_buffers(page)) 75 create_empty_buffers(page, BIT(inode->i_blkbits), 76 BIT(BH_Uptodate)); 77 78 bh = page_buffers(page); 79 if (!buffer_mapped(bh)) 80 map_bh(bh, inode->i_sb, block); 81 82 set_buffer_uptodate(bh); 83 gfs2_trans_add_data(ip->i_gl, bh); 84 } else { 85 set_page_dirty(page); 86 gfs2_ordered_add_inode(ip); 87 } 88 89 return 0; 90 } 91 92 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page) 93 { 94 struct buffer_head *bh, *dibh; 95 struct gfs2_dinode *di; 96 u64 block = 0; 97 int isdir = gfs2_is_dir(ip); 98 int error; 99 100 error = gfs2_meta_inode_buffer(ip, &dibh); 101 if (error) 102 return error; 103 104 if (i_size_read(&ip->i_inode)) { 105 /* Get a free block, fill it with the stuffed data, 106 and write it out to disk */ 107 108 unsigned int n = 1; 109 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 110 if (error) 111 goto out_brelse; 112 if (isdir) { 113 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 114 error = gfs2_dir_get_new_buffer(ip, block, &bh); 115 if (error) 116 goto out_brelse; 117 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 118 dibh, sizeof(struct gfs2_dinode)); 119 brelse(bh); 120 } else { 121 error = gfs2_unstuffer_page(ip, dibh, block, page); 122 if (error) 123 goto out_brelse; 124 } 125 } 126 127 /* Set up the pointer to the new block */ 128 129 gfs2_trans_add_meta(ip->i_gl, dibh); 130 di = (struct gfs2_dinode *)dibh->b_data; 131 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 132 133 if (i_size_read(&ip->i_inode)) { 134 *(__be64 *)(di + 1) = cpu_to_be64(block); 135 gfs2_add_inode_blocks(&ip->i_inode, 1); 136 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 137 } 138 139 ip->i_height = 1; 140 di->di_height = cpu_to_be16(1); 141 142 out_brelse: 143 brelse(dibh); 144 return error; 145 } 146 147 /** 148 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 149 * @ip: The GFS2 inode to unstuff 150 * 151 * This routine unstuffs a dinode and returns it to a "normal" state such 152 * that the height can be grown in the traditional way. 153 * 154 * Returns: errno 155 */ 156 157 int gfs2_unstuff_dinode(struct gfs2_inode *ip) 158 { 159 struct inode *inode = &ip->i_inode; 160 struct page *page; 161 int error; 162 163 down_write(&ip->i_rw_mutex); 164 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 165 error = -ENOMEM; 166 if (!page) 167 goto out; 168 error = __gfs2_unstuff_inode(ip, page); 169 unlock_page(page); 170 put_page(page); 171 out: 172 up_write(&ip->i_rw_mutex); 173 return error; 174 } 175 176 /** 177 * find_metapath - Find path through the metadata tree 178 * @sdp: The superblock 179 * @block: The disk block to look up 180 * @mp: The metapath to return the result in 181 * @height: The pre-calculated height of the metadata tree 182 * 183 * This routine returns a struct metapath structure that defines a path 184 * through the metadata of inode "ip" to get to block "block". 185 * 186 * Example: 187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 188 * filesystem with a blocksize of 4096. 189 * 190 * find_metapath() would return a struct metapath structure set to: 191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 192 * 193 * That means that in order to get to the block containing the byte at 194 * offset 101342453, we would load the indirect block pointed to by pointer 195 * 0 in the dinode. We would then load the indirect block pointed to by 196 * pointer 48 in that indirect block. We would then load the data block 197 * pointed to by pointer 165 in that indirect block. 198 * 199 * ---------------------------------------- 200 * | Dinode | | 201 * | | 4| 202 * | |0 1 2 3 4 5 9| 203 * | | 6| 204 * ---------------------------------------- 205 * | 206 * | 207 * V 208 * ---------------------------------------- 209 * | Indirect Block | 210 * | 5| 211 * | 4 4 4 4 4 5 5 1| 212 * |0 5 6 7 8 9 0 1 2| 213 * ---------------------------------------- 214 * | 215 * | 216 * V 217 * ---------------------------------------- 218 * | Indirect Block | 219 * | 1 1 1 1 1 5| 220 * | 6 6 6 6 6 1| 221 * |0 3 4 5 6 7 2| 222 * ---------------------------------------- 223 * | 224 * | 225 * V 226 * ---------------------------------------- 227 * | Data block containing offset | 228 * | 101342453 | 229 * | | 230 * | | 231 * ---------------------------------------- 232 * 233 */ 234 235 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 236 struct metapath *mp, unsigned int height) 237 { 238 unsigned int i; 239 240 mp->mp_fheight = height; 241 for (i = height; i--;) 242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 243 } 244 245 static inline unsigned int metapath_branch_start(const struct metapath *mp) 246 { 247 if (mp->mp_list[0] == 0) 248 return 2; 249 return 1; 250 } 251 252 /** 253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 254 * @height: The metadata height (0 = dinode) 255 * @mp: The metapath 256 */ 257 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 258 { 259 struct buffer_head *bh = mp->mp_bh[height]; 260 if (height == 0) 261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 263 } 264 265 /** 266 * metapointer - Return pointer to start of metadata in a buffer 267 * @height: The metadata height (0 = dinode) 268 * @mp: The metapath 269 * 270 * Return a pointer to the block number of the next height of the metadata 271 * tree given a buffer containing the pointer to the current height of the 272 * metadata tree. 273 */ 274 275 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 276 { 277 __be64 *p = metaptr1(height, mp); 278 return p + mp->mp_list[height]; 279 } 280 281 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 282 { 283 const struct buffer_head *bh = mp->mp_bh[height]; 284 return (const __be64 *)(bh->b_data + bh->b_size); 285 } 286 287 static void clone_metapath(struct metapath *clone, struct metapath *mp) 288 { 289 unsigned int hgt; 290 291 *clone = *mp; 292 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 293 get_bh(clone->mp_bh[hgt]); 294 } 295 296 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 297 { 298 const __be64 *t; 299 300 for (t = start; t < end; t++) { 301 struct buffer_head *rabh; 302 303 if (!*t) 304 continue; 305 306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 307 if (trylock_buffer(rabh)) { 308 if (!buffer_uptodate(rabh)) { 309 rabh->b_end_io = end_buffer_read_sync; 310 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META | 311 REQ_PRIO, rabh); 312 continue; 313 } 314 unlock_buffer(rabh); 315 } 316 brelse(rabh); 317 } 318 } 319 320 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 321 unsigned int x, unsigned int h) 322 { 323 for (; x < h; x++) { 324 __be64 *ptr = metapointer(x, mp); 325 u64 dblock = be64_to_cpu(*ptr); 326 int ret; 327 328 if (!dblock) 329 break; 330 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]); 331 if (ret) 332 return ret; 333 } 334 mp->mp_aheight = x + 1; 335 return 0; 336 } 337 338 /** 339 * lookup_metapath - Walk the metadata tree to a specific point 340 * @ip: The inode 341 * @mp: The metapath 342 * 343 * Assumes that the inode's buffer has already been looked up and 344 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 345 * by find_metapath(). 346 * 347 * If this function encounters part of the tree which has not been 348 * allocated, it returns the current height of the tree at the point 349 * at which it found the unallocated block. Blocks which are found are 350 * added to the mp->mp_bh[] list. 351 * 352 * Returns: error 353 */ 354 355 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 356 { 357 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 358 } 359 360 /** 361 * fillup_metapath - fill up buffers for the metadata path to a specific height 362 * @ip: The inode 363 * @mp: The metapath 364 * @h: The height to which it should be mapped 365 * 366 * Similar to lookup_metapath, but does lookups for a range of heights 367 * 368 * Returns: error or the number of buffers filled 369 */ 370 371 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 372 { 373 unsigned int x = 0; 374 int ret; 375 376 if (h) { 377 /* find the first buffer we need to look up. */ 378 for (x = h - 1; x > 0; x--) { 379 if (mp->mp_bh[x]) 380 break; 381 } 382 } 383 ret = __fillup_metapath(ip, mp, x, h); 384 if (ret) 385 return ret; 386 return mp->mp_aheight - x - 1; 387 } 388 389 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 390 { 391 sector_t factor = 1, block = 0; 392 int hgt; 393 394 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 395 if (hgt < mp->mp_aheight) 396 block += mp->mp_list[hgt] * factor; 397 factor *= sdp->sd_inptrs; 398 } 399 return block; 400 } 401 402 static void release_metapath(struct metapath *mp) 403 { 404 int i; 405 406 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 407 if (mp->mp_bh[i] == NULL) 408 break; 409 brelse(mp->mp_bh[i]); 410 mp->mp_bh[i] = NULL; 411 } 412 } 413 414 /** 415 * gfs2_extent_length - Returns length of an extent of blocks 416 * @bh: The metadata block 417 * @ptr: Current position in @bh 418 * @limit: Max extent length to return 419 * @eob: Set to 1 if we hit "end of block" 420 * 421 * Returns: The length of the extent (minimum of one block) 422 */ 423 424 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 425 { 426 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 427 const __be64 *first = ptr; 428 u64 d = be64_to_cpu(*ptr); 429 430 *eob = 0; 431 do { 432 ptr++; 433 if (ptr >= end) 434 break; 435 d++; 436 } while(be64_to_cpu(*ptr) == d); 437 if (ptr >= end) 438 *eob = 1; 439 return ptr - first; 440 } 441 442 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 443 444 /* 445 * gfs2_metadata_walker - walk an indirect block 446 * @mp: Metapath to indirect block 447 * @ptrs: Number of pointers to look at 448 * 449 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 450 * indirect block to follow. 451 */ 452 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 453 unsigned int ptrs); 454 455 /* 456 * gfs2_walk_metadata - walk a tree of indirect blocks 457 * @inode: The inode 458 * @mp: Starting point of walk 459 * @max_len: Maximum number of blocks to walk 460 * @walker: Called during the walk 461 * 462 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 463 * past the end of metadata, and a negative error code otherwise. 464 */ 465 466 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 467 u64 max_len, gfs2_metadata_walker walker) 468 { 469 struct gfs2_inode *ip = GFS2_I(inode); 470 struct gfs2_sbd *sdp = GFS2_SB(inode); 471 u64 factor = 1; 472 unsigned int hgt; 473 int ret; 474 475 /* 476 * The walk starts in the lowest allocated indirect block, which may be 477 * before the position indicated by @mp. Adjust @max_len accordingly 478 * to avoid a short walk. 479 */ 480 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 481 max_len += mp->mp_list[hgt] * factor; 482 mp->mp_list[hgt] = 0; 483 factor *= sdp->sd_inptrs; 484 } 485 486 for (;;) { 487 u16 start = mp->mp_list[hgt]; 488 enum walker_status status; 489 unsigned int ptrs; 490 u64 len; 491 492 /* Walk indirect block. */ 493 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 494 len = ptrs * factor; 495 if (len > max_len) 496 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 497 status = walker(mp, ptrs); 498 switch (status) { 499 case WALK_STOP: 500 return 1; 501 case WALK_FOLLOW: 502 BUG_ON(mp->mp_aheight == mp->mp_fheight); 503 ptrs = mp->mp_list[hgt] - start; 504 len = ptrs * factor; 505 break; 506 case WALK_CONTINUE: 507 break; 508 } 509 if (len >= max_len) 510 break; 511 max_len -= len; 512 if (status == WALK_FOLLOW) 513 goto fill_up_metapath; 514 515 lower_metapath: 516 /* Decrease height of metapath. */ 517 brelse(mp->mp_bh[hgt]); 518 mp->mp_bh[hgt] = NULL; 519 mp->mp_list[hgt] = 0; 520 if (!hgt) 521 break; 522 hgt--; 523 factor *= sdp->sd_inptrs; 524 525 /* Advance in metadata tree. */ 526 (mp->mp_list[hgt])++; 527 if (hgt) { 528 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 529 goto lower_metapath; 530 } else { 531 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 532 break; 533 } 534 535 fill_up_metapath: 536 /* Increase height of metapath. */ 537 ret = fillup_metapath(ip, mp, ip->i_height - 1); 538 if (ret < 0) 539 return ret; 540 hgt += ret; 541 for (; ret; ret--) 542 do_div(factor, sdp->sd_inptrs); 543 mp->mp_aheight = hgt + 1; 544 } 545 return 0; 546 } 547 548 static enum walker_status gfs2_hole_walker(struct metapath *mp, 549 unsigned int ptrs) 550 { 551 const __be64 *start, *ptr, *end; 552 unsigned int hgt; 553 554 hgt = mp->mp_aheight - 1; 555 start = metapointer(hgt, mp); 556 end = start + ptrs; 557 558 for (ptr = start; ptr < end; ptr++) { 559 if (*ptr) { 560 mp->mp_list[hgt] += ptr - start; 561 if (mp->mp_aheight == mp->mp_fheight) 562 return WALK_STOP; 563 return WALK_FOLLOW; 564 } 565 } 566 return WALK_CONTINUE; 567 } 568 569 /** 570 * gfs2_hole_size - figure out the size of a hole 571 * @inode: The inode 572 * @lblock: The logical starting block number 573 * @len: How far to look (in blocks) 574 * @mp: The metapath at lblock 575 * @iomap: The iomap to store the hole size in 576 * 577 * This function modifies @mp. 578 * 579 * Returns: errno on error 580 */ 581 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 582 struct metapath *mp, struct iomap *iomap) 583 { 584 struct metapath clone; 585 u64 hole_size; 586 int ret; 587 588 clone_metapath(&clone, mp); 589 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 590 if (ret < 0) 591 goto out; 592 593 if (ret == 1) 594 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 595 else 596 hole_size = len; 597 iomap->length = hole_size << inode->i_blkbits; 598 ret = 0; 599 600 out: 601 release_metapath(&clone); 602 return ret; 603 } 604 605 static inline void gfs2_indirect_init(struct metapath *mp, 606 struct gfs2_glock *gl, unsigned int i, 607 unsigned offset, u64 bn) 608 { 609 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 610 ((i > 1) ? sizeof(struct gfs2_meta_header) : 611 sizeof(struct gfs2_dinode))); 612 BUG_ON(i < 1); 613 BUG_ON(mp->mp_bh[i] != NULL); 614 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 615 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 616 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 617 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 618 ptr += offset; 619 *ptr = cpu_to_be64(bn); 620 } 621 622 enum alloc_state { 623 ALLOC_DATA = 0, 624 ALLOC_GROW_DEPTH = 1, 625 ALLOC_GROW_HEIGHT = 2, 626 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 627 }; 628 629 /** 630 * __gfs2_iomap_alloc - Build a metadata tree of the requested height 631 * @inode: The GFS2 inode 632 * @iomap: The iomap structure 633 * @mp: The metapath, with proper height information calculated 634 * 635 * In this routine we may have to alloc: 636 * i) Indirect blocks to grow the metadata tree height 637 * ii) Indirect blocks to fill in lower part of the metadata tree 638 * iii) Data blocks 639 * 640 * This function is called after __gfs2_iomap_get, which works out the 641 * total number of blocks which we need via gfs2_alloc_size. 642 * 643 * We then do the actual allocation asking for an extent at a time (if 644 * enough contiguous free blocks are available, there will only be one 645 * allocation request per call) and uses the state machine to initialise 646 * the blocks in order. 647 * 648 * Right now, this function will allocate at most one indirect block 649 * worth of data -- with a default block size of 4K, that's slightly 650 * less than 2M. If this limitation is ever removed to allow huge 651 * allocations, we would probably still want to limit the iomap size we 652 * return to avoid stalling other tasks during huge writes; the next 653 * iomap iteration would then find the blocks already allocated. 654 * 655 * Returns: errno on error 656 */ 657 658 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 659 struct metapath *mp) 660 { 661 struct gfs2_inode *ip = GFS2_I(inode); 662 struct gfs2_sbd *sdp = GFS2_SB(inode); 663 struct buffer_head *dibh = mp->mp_bh[0]; 664 u64 bn; 665 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 666 size_t dblks = iomap->length >> inode->i_blkbits; 667 const unsigned end_of_metadata = mp->mp_fheight - 1; 668 int ret; 669 enum alloc_state state; 670 __be64 *ptr; 671 __be64 zero_bn = 0; 672 673 BUG_ON(mp->mp_aheight < 1); 674 BUG_ON(dibh == NULL); 675 BUG_ON(dblks < 1); 676 677 gfs2_trans_add_meta(ip->i_gl, dibh); 678 679 down_write(&ip->i_rw_mutex); 680 681 if (mp->mp_fheight == mp->mp_aheight) { 682 /* Bottom indirect block exists */ 683 state = ALLOC_DATA; 684 } else { 685 /* Need to allocate indirect blocks */ 686 if (mp->mp_fheight == ip->i_height) { 687 /* Writing into existing tree, extend tree down */ 688 iblks = mp->mp_fheight - mp->mp_aheight; 689 state = ALLOC_GROW_DEPTH; 690 } else { 691 /* Building up tree height */ 692 state = ALLOC_GROW_HEIGHT; 693 iblks = mp->mp_fheight - ip->i_height; 694 branch_start = metapath_branch_start(mp); 695 iblks += (mp->mp_fheight - branch_start); 696 } 697 } 698 699 /* start of the second part of the function (state machine) */ 700 701 blks = dblks + iblks; 702 i = mp->mp_aheight; 703 do { 704 n = blks - alloced; 705 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 706 if (ret) 707 goto out; 708 alloced += n; 709 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 710 gfs2_trans_remove_revoke(sdp, bn, n); 711 switch (state) { 712 /* Growing height of tree */ 713 case ALLOC_GROW_HEIGHT: 714 if (i == 1) { 715 ptr = (__be64 *)(dibh->b_data + 716 sizeof(struct gfs2_dinode)); 717 zero_bn = *ptr; 718 } 719 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 720 i++, n--) 721 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 722 if (i - 1 == mp->mp_fheight - ip->i_height) { 723 i--; 724 gfs2_buffer_copy_tail(mp->mp_bh[i], 725 sizeof(struct gfs2_meta_header), 726 dibh, sizeof(struct gfs2_dinode)); 727 gfs2_buffer_clear_tail(dibh, 728 sizeof(struct gfs2_dinode) + 729 sizeof(__be64)); 730 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 731 sizeof(struct gfs2_meta_header)); 732 *ptr = zero_bn; 733 state = ALLOC_GROW_DEPTH; 734 for(i = branch_start; i < mp->mp_fheight; i++) { 735 if (mp->mp_bh[i] == NULL) 736 break; 737 brelse(mp->mp_bh[i]); 738 mp->mp_bh[i] = NULL; 739 } 740 i = branch_start; 741 } 742 if (n == 0) 743 break; 744 fallthrough; /* To branching from existing tree */ 745 case ALLOC_GROW_DEPTH: 746 if (i > 1 && i < mp->mp_fheight) 747 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 748 for (; i < mp->mp_fheight && n > 0; i++, n--) 749 gfs2_indirect_init(mp, ip->i_gl, i, 750 mp->mp_list[i-1], bn++); 751 if (i == mp->mp_fheight) 752 state = ALLOC_DATA; 753 if (n == 0) 754 break; 755 fallthrough; /* To tree complete, adding data blocks */ 756 case ALLOC_DATA: 757 BUG_ON(n > dblks); 758 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 759 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 760 dblks = n; 761 ptr = metapointer(end_of_metadata, mp); 762 iomap->addr = bn << inode->i_blkbits; 763 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 764 while (n-- > 0) 765 *ptr++ = cpu_to_be64(bn++); 766 break; 767 } 768 } while (iomap->addr == IOMAP_NULL_ADDR); 769 770 iomap->type = IOMAP_MAPPED; 771 iomap->length = (u64)dblks << inode->i_blkbits; 772 ip->i_height = mp->mp_fheight; 773 gfs2_add_inode_blocks(&ip->i_inode, alloced); 774 gfs2_dinode_out(ip, dibh->b_data); 775 out: 776 up_write(&ip->i_rw_mutex); 777 return ret; 778 } 779 780 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 781 782 /** 783 * gfs2_alloc_size - Compute the maximum allocation size 784 * @inode: The inode 785 * @mp: The metapath 786 * @size: Requested size in blocks 787 * 788 * Compute the maximum size of the next allocation at @mp. 789 * 790 * Returns: size in blocks 791 */ 792 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 793 { 794 struct gfs2_inode *ip = GFS2_I(inode); 795 struct gfs2_sbd *sdp = GFS2_SB(inode); 796 const __be64 *first, *ptr, *end; 797 798 /* 799 * For writes to stuffed files, this function is called twice via 800 * __gfs2_iomap_get, before and after unstuffing. The size we return the 801 * first time needs to be large enough to get the reservation and 802 * allocation sizes right. The size we return the second time must 803 * be exact or else __gfs2_iomap_alloc won't do the right thing. 804 */ 805 806 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 807 unsigned int maxsize = mp->mp_fheight > 1 ? 808 sdp->sd_inptrs : sdp->sd_diptrs; 809 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 810 if (size > maxsize) 811 size = maxsize; 812 return size; 813 } 814 815 first = metapointer(ip->i_height - 1, mp); 816 end = metaend(ip->i_height - 1, mp); 817 if (end - first > size) 818 end = first + size; 819 for (ptr = first; ptr < end; ptr++) { 820 if (*ptr) 821 break; 822 } 823 return ptr - first; 824 } 825 826 /** 827 * __gfs2_iomap_get - Map blocks from an inode to disk blocks 828 * @inode: The inode 829 * @pos: Starting position in bytes 830 * @length: Length to map, in bytes 831 * @flags: iomap flags 832 * @iomap: The iomap structure 833 * @mp: The metapath 834 * 835 * Returns: errno 836 */ 837 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 838 unsigned flags, struct iomap *iomap, 839 struct metapath *mp) 840 { 841 struct gfs2_inode *ip = GFS2_I(inode); 842 struct gfs2_sbd *sdp = GFS2_SB(inode); 843 loff_t size = i_size_read(inode); 844 __be64 *ptr; 845 sector_t lblock; 846 sector_t lblock_stop; 847 int ret; 848 int eob; 849 u64 len; 850 struct buffer_head *dibh = NULL, *bh; 851 u8 height; 852 853 if (!length) 854 return -EINVAL; 855 856 down_read(&ip->i_rw_mutex); 857 858 ret = gfs2_meta_inode_buffer(ip, &dibh); 859 if (ret) 860 goto unlock; 861 mp->mp_bh[0] = dibh; 862 863 if (gfs2_is_stuffed(ip)) { 864 if (flags & IOMAP_WRITE) { 865 loff_t max_size = gfs2_max_stuffed_size(ip); 866 867 if (pos + length > max_size) 868 goto unstuff; 869 iomap->length = max_size; 870 } else { 871 if (pos >= size) { 872 if (flags & IOMAP_REPORT) { 873 ret = -ENOENT; 874 goto unlock; 875 } else { 876 iomap->offset = pos; 877 iomap->length = length; 878 goto hole_found; 879 } 880 } 881 iomap->length = size; 882 } 883 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 884 sizeof(struct gfs2_dinode); 885 iomap->type = IOMAP_INLINE; 886 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 887 goto out; 888 } 889 890 unstuff: 891 lblock = pos >> inode->i_blkbits; 892 iomap->offset = lblock << inode->i_blkbits; 893 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 894 len = lblock_stop - lblock + 1; 895 iomap->length = len << inode->i_blkbits; 896 897 height = ip->i_height; 898 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 899 height++; 900 find_metapath(sdp, lblock, mp, height); 901 if (height > ip->i_height || gfs2_is_stuffed(ip)) 902 goto do_alloc; 903 904 ret = lookup_metapath(ip, mp); 905 if (ret) 906 goto unlock; 907 908 if (mp->mp_aheight != ip->i_height) 909 goto do_alloc; 910 911 ptr = metapointer(ip->i_height - 1, mp); 912 if (*ptr == 0) 913 goto do_alloc; 914 915 bh = mp->mp_bh[ip->i_height - 1]; 916 len = gfs2_extent_length(bh, ptr, len, &eob); 917 918 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 919 iomap->length = len << inode->i_blkbits; 920 iomap->type = IOMAP_MAPPED; 921 iomap->flags |= IOMAP_F_MERGED; 922 if (eob) 923 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 924 925 out: 926 iomap->bdev = inode->i_sb->s_bdev; 927 unlock: 928 up_read(&ip->i_rw_mutex); 929 return ret; 930 931 do_alloc: 932 if (flags & IOMAP_REPORT) { 933 if (pos >= size) 934 ret = -ENOENT; 935 else if (height == ip->i_height) 936 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 937 else 938 iomap->length = size - iomap->offset; 939 } else if (flags & IOMAP_WRITE) { 940 u64 alloc_size; 941 942 if (flags & IOMAP_DIRECT) 943 goto out; /* (see gfs2_file_direct_write) */ 944 945 len = gfs2_alloc_size(inode, mp, len); 946 alloc_size = len << inode->i_blkbits; 947 if (alloc_size < iomap->length) 948 iomap->length = alloc_size; 949 } else { 950 if (pos < size && height == ip->i_height) 951 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 952 } 953 hole_found: 954 iomap->addr = IOMAP_NULL_ADDR; 955 iomap->type = IOMAP_HOLE; 956 goto out; 957 } 958 959 static struct folio * 960 gfs2_iomap_get_folio(struct iomap_iter *iter, loff_t pos, unsigned len) 961 { 962 struct inode *inode = iter->inode; 963 unsigned int blockmask = i_blocksize(inode) - 1; 964 struct gfs2_sbd *sdp = GFS2_SB(inode); 965 unsigned int blocks; 966 struct folio *folio; 967 int status; 968 969 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 970 status = gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 971 if (status) 972 return ERR_PTR(status); 973 974 folio = iomap_get_folio(iter, pos); 975 if (IS_ERR(folio)) 976 gfs2_trans_end(sdp); 977 return folio; 978 } 979 980 static void gfs2_iomap_put_folio(struct inode *inode, loff_t pos, 981 unsigned copied, struct folio *folio) 982 { 983 struct gfs2_trans *tr = current->journal_info; 984 struct gfs2_inode *ip = GFS2_I(inode); 985 struct gfs2_sbd *sdp = GFS2_SB(inode); 986 987 if (!gfs2_is_stuffed(ip)) 988 gfs2_trans_add_databufs(ip, folio, offset_in_folio(folio, pos), 989 copied); 990 991 folio_unlock(folio); 992 folio_put(folio); 993 994 if (tr->tr_num_buf_new) 995 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 996 997 gfs2_trans_end(sdp); 998 } 999 1000 static const struct iomap_folio_ops gfs2_iomap_folio_ops = { 1001 .get_folio = gfs2_iomap_get_folio, 1002 .put_folio = gfs2_iomap_put_folio, 1003 }; 1004 1005 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1006 loff_t length, unsigned flags, 1007 struct iomap *iomap, 1008 struct metapath *mp) 1009 { 1010 struct gfs2_inode *ip = GFS2_I(inode); 1011 struct gfs2_sbd *sdp = GFS2_SB(inode); 1012 bool unstuff; 1013 int ret; 1014 1015 unstuff = gfs2_is_stuffed(ip) && 1016 pos + length > gfs2_max_stuffed_size(ip); 1017 1018 if (unstuff || iomap->type == IOMAP_HOLE) { 1019 unsigned int data_blocks, ind_blocks; 1020 struct gfs2_alloc_parms ap = {}; 1021 unsigned int rblocks; 1022 struct gfs2_trans *tr; 1023 1024 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1025 &ind_blocks); 1026 ap.target = data_blocks + ind_blocks; 1027 ret = gfs2_quota_lock_check(ip, &ap); 1028 if (ret) 1029 return ret; 1030 1031 ret = gfs2_inplace_reserve(ip, &ap); 1032 if (ret) 1033 goto out_qunlock; 1034 1035 rblocks = RES_DINODE + ind_blocks; 1036 if (gfs2_is_jdata(ip)) 1037 rblocks += data_blocks; 1038 if (ind_blocks || data_blocks) 1039 rblocks += RES_STATFS + RES_QUOTA; 1040 if (inode == sdp->sd_rindex) 1041 rblocks += 2 * RES_STATFS; 1042 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1043 1044 ret = gfs2_trans_begin(sdp, rblocks, 1045 iomap->length >> inode->i_blkbits); 1046 if (ret) 1047 goto out_trans_fail; 1048 1049 if (unstuff) { 1050 ret = gfs2_unstuff_dinode(ip); 1051 if (ret) 1052 goto out_trans_end; 1053 release_metapath(mp); 1054 ret = __gfs2_iomap_get(inode, iomap->offset, 1055 iomap->length, flags, iomap, mp); 1056 if (ret) 1057 goto out_trans_end; 1058 } 1059 1060 if (iomap->type == IOMAP_HOLE) { 1061 ret = __gfs2_iomap_alloc(inode, iomap, mp); 1062 if (ret) { 1063 gfs2_trans_end(sdp); 1064 gfs2_inplace_release(ip); 1065 punch_hole(ip, iomap->offset, iomap->length); 1066 goto out_qunlock; 1067 } 1068 } 1069 1070 tr = current->journal_info; 1071 if (tr->tr_num_buf_new) 1072 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1073 1074 gfs2_trans_end(sdp); 1075 } 1076 1077 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1078 iomap->folio_ops = &gfs2_iomap_folio_ops; 1079 return 0; 1080 1081 out_trans_end: 1082 gfs2_trans_end(sdp); 1083 out_trans_fail: 1084 gfs2_inplace_release(ip); 1085 out_qunlock: 1086 gfs2_quota_unlock(ip); 1087 return ret; 1088 } 1089 1090 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1091 unsigned flags, struct iomap *iomap, 1092 struct iomap *srcmap) 1093 { 1094 struct gfs2_inode *ip = GFS2_I(inode); 1095 struct metapath mp = { .mp_aheight = 1, }; 1096 int ret; 1097 1098 if (gfs2_is_jdata(ip)) 1099 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1100 1101 trace_gfs2_iomap_start(ip, pos, length, flags); 1102 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1103 if (ret) 1104 goto out_unlock; 1105 1106 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1107 case IOMAP_WRITE: 1108 if (flags & IOMAP_DIRECT) { 1109 /* 1110 * Silently fall back to buffered I/O for stuffed files 1111 * or if we've got a hole (see gfs2_file_direct_write). 1112 */ 1113 if (iomap->type != IOMAP_MAPPED) 1114 ret = -ENOTBLK; 1115 goto out_unlock; 1116 } 1117 break; 1118 case IOMAP_ZERO: 1119 if (iomap->type == IOMAP_HOLE) 1120 goto out_unlock; 1121 break; 1122 default: 1123 goto out_unlock; 1124 } 1125 1126 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1127 1128 out_unlock: 1129 release_metapath(&mp); 1130 trace_gfs2_iomap_end(ip, iomap, ret); 1131 return ret; 1132 } 1133 1134 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1135 ssize_t written, unsigned flags, struct iomap *iomap) 1136 { 1137 struct gfs2_inode *ip = GFS2_I(inode); 1138 struct gfs2_sbd *sdp = GFS2_SB(inode); 1139 1140 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1141 case IOMAP_WRITE: 1142 if (flags & IOMAP_DIRECT) 1143 return 0; 1144 break; 1145 case IOMAP_ZERO: 1146 if (iomap->type == IOMAP_HOLE) 1147 return 0; 1148 break; 1149 default: 1150 return 0; 1151 } 1152 1153 if (!gfs2_is_stuffed(ip)) 1154 gfs2_ordered_add_inode(ip); 1155 1156 if (inode == sdp->sd_rindex) 1157 adjust_fs_space(inode); 1158 1159 gfs2_inplace_release(ip); 1160 1161 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1162 gfs2_quota_unlock(ip); 1163 1164 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1165 /* Deallocate blocks that were just allocated. */ 1166 loff_t hstart = round_up(pos + written, i_blocksize(inode)); 1167 loff_t hend = iomap->offset + iomap->length; 1168 1169 if (hstart < hend) { 1170 truncate_pagecache_range(inode, hstart, hend - 1); 1171 punch_hole(ip, hstart, hend - hstart); 1172 } 1173 } 1174 1175 if (unlikely(!written)) 1176 return 0; 1177 1178 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1179 mark_inode_dirty(inode); 1180 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1181 return 0; 1182 } 1183 1184 const struct iomap_ops gfs2_iomap_ops = { 1185 .iomap_begin = gfs2_iomap_begin, 1186 .iomap_end = gfs2_iomap_end, 1187 }; 1188 1189 /** 1190 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1191 * @inode: The inode 1192 * @lblock: The logical block number 1193 * @bh_map: The bh to be mapped 1194 * @create: True if its ok to alloc blocks to satify the request 1195 * 1196 * The size of the requested mapping is defined in bh_map->b_size. 1197 * 1198 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1199 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1200 * bh_map->b_size to indicate the size of the mapping when @lblock and 1201 * successive blocks are mapped, up to the requested size. 1202 * 1203 * Sets buffer_boundary() if a read of metadata will be required 1204 * before the next block can be mapped. Sets buffer_new() if new 1205 * blocks were allocated. 1206 * 1207 * Returns: errno 1208 */ 1209 1210 int gfs2_block_map(struct inode *inode, sector_t lblock, 1211 struct buffer_head *bh_map, int create) 1212 { 1213 struct gfs2_inode *ip = GFS2_I(inode); 1214 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1215 loff_t length = bh_map->b_size; 1216 struct iomap iomap = { }; 1217 int ret; 1218 1219 clear_buffer_mapped(bh_map); 1220 clear_buffer_new(bh_map); 1221 clear_buffer_boundary(bh_map); 1222 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1223 1224 if (!create) 1225 ret = gfs2_iomap_get(inode, pos, length, &iomap); 1226 else 1227 ret = gfs2_iomap_alloc(inode, pos, length, &iomap); 1228 if (ret) 1229 goto out; 1230 1231 if (iomap.length > bh_map->b_size) { 1232 iomap.length = bh_map->b_size; 1233 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1234 } 1235 if (iomap.addr != IOMAP_NULL_ADDR) 1236 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1237 bh_map->b_size = iomap.length; 1238 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1239 set_buffer_boundary(bh_map); 1240 if (iomap.flags & IOMAP_F_NEW) 1241 set_buffer_new(bh_map); 1242 1243 out: 1244 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1245 return ret; 1246 } 1247 1248 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock, 1249 unsigned int *extlen) 1250 { 1251 unsigned int blkbits = inode->i_blkbits; 1252 struct iomap iomap = { }; 1253 unsigned int len; 1254 int ret; 1255 1256 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits, 1257 &iomap); 1258 if (ret) 1259 return ret; 1260 if (iomap.type != IOMAP_MAPPED) 1261 return -EIO; 1262 *dblock = iomap.addr >> blkbits; 1263 len = iomap.length >> blkbits; 1264 if (len < *extlen) 1265 *extlen = len; 1266 return 0; 1267 } 1268 1269 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock, 1270 unsigned int *extlen, bool *new) 1271 { 1272 unsigned int blkbits = inode->i_blkbits; 1273 struct iomap iomap = { }; 1274 unsigned int len; 1275 int ret; 1276 1277 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits, 1278 &iomap); 1279 if (ret) 1280 return ret; 1281 if (iomap.type != IOMAP_MAPPED) 1282 return -EIO; 1283 *dblock = iomap.addr >> blkbits; 1284 len = iomap.length >> blkbits; 1285 if (len < *extlen) 1286 *extlen = len; 1287 *new = iomap.flags & IOMAP_F_NEW; 1288 return 0; 1289 } 1290 1291 /* 1292 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1293 * uses iomap write to perform its actions, which begin their own transactions 1294 * (iomap_begin, get_folio, etc.) 1295 */ 1296 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1297 unsigned int length) 1298 { 1299 BUG_ON(current->journal_info); 1300 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1301 } 1302 1303 #define GFS2_JTRUNC_REVOKES 8192 1304 1305 /** 1306 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1307 * @inode: The inode being truncated 1308 * @oldsize: The original (larger) size 1309 * @newsize: The new smaller size 1310 * 1311 * With jdata files, we have to journal a revoke for each block which is 1312 * truncated. As a result, we need to split this into separate transactions 1313 * if the number of pages being truncated gets too large. 1314 */ 1315 1316 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1317 { 1318 struct gfs2_sbd *sdp = GFS2_SB(inode); 1319 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1320 u64 chunk; 1321 int error; 1322 1323 while (oldsize != newsize) { 1324 struct gfs2_trans *tr; 1325 unsigned int offs; 1326 1327 chunk = oldsize - newsize; 1328 if (chunk > max_chunk) 1329 chunk = max_chunk; 1330 1331 offs = oldsize & ~PAGE_MASK; 1332 if (offs && chunk > PAGE_SIZE) 1333 chunk = offs + ((chunk - offs) & PAGE_MASK); 1334 1335 truncate_pagecache(inode, oldsize - chunk); 1336 oldsize -= chunk; 1337 1338 tr = current->journal_info; 1339 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1340 continue; 1341 1342 gfs2_trans_end(sdp); 1343 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1344 if (error) 1345 return error; 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int trunc_start(struct inode *inode, u64 newsize) 1352 { 1353 struct gfs2_inode *ip = GFS2_I(inode); 1354 struct gfs2_sbd *sdp = GFS2_SB(inode); 1355 struct buffer_head *dibh = NULL; 1356 int journaled = gfs2_is_jdata(ip); 1357 u64 oldsize = inode->i_size; 1358 int error; 1359 1360 if (!gfs2_is_stuffed(ip)) { 1361 unsigned int blocksize = i_blocksize(inode); 1362 unsigned int offs = newsize & (blocksize - 1); 1363 if (offs) { 1364 error = gfs2_block_zero_range(inode, newsize, 1365 blocksize - offs); 1366 if (error) 1367 return error; 1368 } 1369 } 1370 if (journaled) 1371 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1372 else 1373 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1374 if (error) 1375 return error; 1376 1377 error = gfs2_meta_inode_buffer(ip, &dibh); 1378 if (error) 1379 goto out; 1380 1381 gfs2_trans_add_meta(ip->i_gl, dibh); 1382 1383 if (gfs2_is_stuffed(ip)) 1384 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1385 else 1386 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1387 1388 i_size_write(inode, newsize); 1389 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1390 gfs2_dinode_out(ip, dibh->b_data); 1391 1392 if (journaled) 1393 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1394 else 1395 truncate_pagecache(inode, newsize); 1396 1397 out: 1398 brelse(dibh); 1399 if (current->journal_info) 1400 gfs2_trans_end(sdp); 1401 return error; 1402 } 1403 1404 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 1405 struct iomap *iomap) 1406 { 1407 struct metapath mp = { .mp_aheight = 1, }; 1408 int ret; 1409 1410 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp); 1411 release_metapath(&mp); 1412 return ret; 1413 } 1414 1415 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length, 1416 struct iomap *iomap) 1417 { 1418 struct metapath mp = { .mp_aheight = 1, }; 1419 int ret; 1420 1421 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1422 if (!ret && iomap->type == IOMAP_HOLE) 1423 ret = __gfs2_iomap_alloc(inode, iomap, &mp); 1424 release_metapath(&mp); 1425 return ret; 1426 } 1427 1428 /** 1429 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1430 * @ip: inode 1431 * @rd_gh: holder of resource group glock 1432 * @bh: buffer head to sweep 1433 * @start: starting point in bh 1434 * @end: end point in bh 1435 * @meta: true if bh points to metadata (rather than data) 1436 * @btotal: place to keep count of total blocks freed 1437 * 1438 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1439 * free, and free them all. However, we do it one rgrp at a time. If this 1440 * block has references to multiple rgrps, we break it into individual 1441 * transactions. This allows other processes to use the rgrps while we're 1442 * focused on a single one, for better concurrency / performance. 1443 * At every transaction boundary, we rewrite the inode into the journal. 1444 * That way the bitmaps are kept consistent with the inode and we can recover 1445 * if we're interrupted by power-outages. 1446 * 1447 * Returns: 0, or return code if an error occurred. 1448 * *btotal has the total number of blocks freed 1449 */ 1450 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1451 struct buffer_head *bh, __be64 *start, __be64 *end, 1452 bool meta, u32 *btotal) 1453 { 1454 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1455 struct gfs2_rgrpd *rgd; 1456 struct gfs2_trans *tr; 1457 __be64 *p; 1458 int blks_outside_rgrp; 1459 u64 bn, bstart, isize_blks; 1460 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1461 int ret = 0; 1462 bool buf_in_tr = false; /* buffer was added to transaction */ 1463 1464 more_rgrps: 1465 rgd = NULL; 1466 if (gfs2_holder_initialized(rd_gh)) { 1467 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1468 gfs2_assert_withdraw(sdp, 1469 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1470 } 1471 blks_outside_rgrp = 0; 1472 bstart = 0; 1473 blen = 0; 1474 1475 for (p = start; p < end; p++) { 1476 if (!*p) 1477 continue; 1478 bn = be64_to_cpu(*p); 1479 1480 if (rgd) { 1481 if (!rgrp_contains_block(rgd, bn)) { 1482 blks_outside_rgrp++; 1483 continue; 1484 } 1485 } else { 1486 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1487 if (unlikely(!rgd)) { 1488 ret = -EIO; 1489 goto out; 1490 } 1491 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1492 LM_FLAG_NODE_SCOPE, rd_gh); 1493 if (ret) 1494 goto out; 1495 1496 /* Must be done with the rgrp glock held: */ 1497 if (gfs2_rs_active(&ip->i_res) && 1498 rgd == ip->i_res.rs_rgd) 1499 gfs2_rs_deltree(&ip->i_res); 1500 } 1501 1502 /* The size of our transactions will be unknown until we 1503 actually process all the metadata blocks that relate to 1504 the rgrp. So we estimate. We know it can't be more than 1505 the dinode's i_blocks and we don't want to exceed the 1506 journal flush threshold, sd_log_thresh2. */ 1507 if (current->journal_info == NULL) { 1508 unsigned int jblocks_rqsted, revokes; 1509 1510 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1511 RES_INDIRECT; 1512 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1513 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1514 jblocks_rqsted += 1515 atomic_read(&sdp->sd_log_thresh2); 1516 else 1517 jblocks_rqsted += isize_blks; 1518 revokes = jblocks_rqsted; 1519 if (meta) 1520 revokes += end - start; 1521 else if (ip->i_depth) 1522 revokes += sdp->sd_inptrs; 1523 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1524 if (ret) 1525 goto out_unlock; 1526 down_write(&ip->i_rw_mutex); 1527 } 1528 /* check if we will exceed the transaction blocks requested */ 1529 tr = current->journal_info; 1530 if (tr->tr_num_buf_new + RES_STATFS + 1531 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1532 /* We set blks_outside_rgrp to ensure the loop will 1533 be repeated for the same rgrp, but with a new 1534 transaction. */ 1535 blks_outside_rgrp++; 1536 /* This next part is tricky. If the buffer was added 1537 to the transaction, we've already set some block 1538 pointers to 0, so we better follow through and free 1539 them, or we will introduce corruption (so break). 1540 This may be impossible, or at least rare, but I 1541 decided to cover the case regardless. 1542 1543 If the buffer was not added to the transaction 1544 (this call), doing so would exceed our transaction 1545 size, so we need to end the transaction and start a 1546 new one (so goto). */ 1547 1548 if (buf_in_tr) 1549 break; 1550 goto out_unlock; 1551 } 1552 1553 gfs2_trans_add_meta(ip->i_gl, bh); 1554 buf_in_tr = true; 1555 *p = 0; 1556 if (bstart + blen == bn) { 1557 blen++; 1558 continue; 1559 } 1560 if (bstart) { 1561 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1562 (*btotal) += blen; 1563 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1564 } 1565 bstart = bn; 1566 blen = 1; 1567 } 1568 if (bstart) { 1569 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1570 (*btotal) += blen; 1571 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1572 } 1573 out_unlock: 1574 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1575 outside the rgrp we just processed, 1576 do it all over again. */ 1577 if (current->journal_info) { 1578 struct buffer_head *dibh; 1579 1580 ret = gfs2_meta_inode_buffer(ip, &dibh); 1581 if (ret) 1582 goto out; 1583 1584 /* Every transaction boundary, we rewrite the dinode 1585 to keep its di_blocks current in case of failure. */ 1586 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1587 current_time(&ip->i_inode); 1588 gfs2_trans_add_meta(ip->i_gl, dibh); 1589 gfs2_dinode_out(ip, dibh->b_data); 1590 brelse(dibh); 1591 up_write(&ip->i_rw_mutex); 1592 gfs2_trans_end(sdp); 1593 buf_in_tr = false; 1594 } 1595 gfs2_glock_dq_uninit(rd_gh); 1596 cond_resched(); 1597 goto more_rgrps; 1598 } 1599 out: 1600 return ret; 1601 } 1602 1603 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1604 { 1605 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1606 return false; 1607 return true; 1608 } 1609 1610 /** 1611 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1612 * @sdp: The superblock 1613 * @mp: starting metapath 1614 * @h: desired height to search 1615 * @end_list: See punch_hole(). 1616 * @end_aligned: See punch_hole(). 1617 * 1618 * Assumes the metapath is valid (with buffers) out to height h. 1619 * Returns: true if a non-null pointer was found in the metapath buffer 1620 * false if all remaining pointers are NULL in the buffer 1621 */ 1622 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1623 unsigned int h, 1624 __u16 *end_list, unsigned int end_aligned) 1625 { 1626 struct buffer_head *bh = mp->mp_bh[h]; 1627 __be64 *first, *ptr, *end; 1628 1629 first = metaptr1(h, mp); 1630 ptr = first + mp->mp_list[h]; 1631 end = (__be64 *)(bh->b_data + bh->b_size); 1632 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1633 bool keep_end = h < end_aligned; 1634 end = first + end_list[h] + keep_end; 1635 } 1636 1637 while (ptr < end) { 1638 if (*ptr) { /* if we have a non-null pointer */ 1639 mp->mp_list[h] = ptr - first; 1640 h++; 1641 if (h < GFS2_MAX_META_HEIGHT) 1642 mp->mp_list[h] = 0; 1643 return true; 1644 } 1645 ptr++; 1646 } 1647 return false; 1648 } 1649 1650 enum dealloc_states { 1651 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1652 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1653 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1654 DEALLOC_DONE = 3, /* process complete */ 1655 }; 1656 1657 static inline void 1658 metapointer_range(struct metapath *mp, int height, 1659 __u16 *start_list, unsigned int start_aligned, 1660 __u16 *end_list, unsigned int end_aligned, 1661 __be64 **start, __be64 **end) 1662 { 1663 struct buffer_head *bh = mp->mp_bh[height]; 1664 __be64 *first; 1665 1666 first = metaptr1(height, mp); 1667 *start = first; 1668 if (mp_eq_to_hgt(mp, start_list, height)) { 1669 bool keep_start = height < start_aligned; 1670 *start = first + start_list[height] + keep_start; 1671 } 1672 *end = (__be64 *)(bh->b_data + bh->b_size); 1673 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1674 bool keep_end = height < end_aligned; 1675 *end = first + end_list[height] + keep_end; 1676 } 1677 } 1678 1679 static inline bool walk_done(struct gfs2_sbd *sdp, 1680 struct metapath *mp, int height, 1681 __u16 *end_list, unsigned int end_aligned) 1682 { 1683 __u16 end; 1684 1685 if (end_list) { 1686 bool keep_end = height < end_aligned; 1687 if (!mp_eq_to_hgt(mp, end_list, height)) 1688 return false; 1689 end = end_list[height] + keep_end; 1690 } else 1691 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1692 return mp->mp_list[height] >= end; 1693 } 1694 1695 /** 1696 * punch_hole - deallocate blocks in a file 1697 * @ip: inode to truncate 1698 * @offset: the start of the hole 1699 * @length: the size of the hole (or 0 for truncate) 1700 * 1701 * Punch a hole into a file or truncate a file at a given position. This 1702 * function operates in whole blocks (@offset and @length are rounded 1703 * accordingly); partially filled blocks must be cleared otherwise. 1704 * 1705 * This function works from the bottom up, and from the right to the left. In 1706 * other words, it strips off the highest layer (data) before stripping any of 1707 * the metadata. Doing it this way is best in case the operation is interrupted 1708 * by power failure, etc. The dinode is rewritten in every transaction to 1709 * guarantee integrity. 1710 */ 1711 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1712 { 1713 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1714 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1715 struct metapath mp = {}; 1716 struct buffer_head *dibh, *bh; 1717 struct gfs2_holder rd_gh; 1718 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1719 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1720 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1721 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1722 unsigned int start_aligned, end_aligned; 1723 unsigned int strip_h = ip->i_height - 1; 1724 u32 btotal = 0; 1725 int ret, state; 1726 int mp_h; /* metapath buffers are read in to this height */ 1727 u64 prev_bnr = 0; 1728 __be64 *start, *end; 1729 1730 if (offset >= maxsize) { 1731 /* 1732 * The starting point lies beyond the allocated metadata; 1733 * there are no blocks to deallocate. 1734 */ 1735 return 0; 1736 } 1737 1738 /* 1739 * The start position of the hole is defined by lblock, start_list, and 1740 * start_aligned. The end position of the hole is defined by lend, 1741 * end_list, and end_aligned. 1742 * 1743 * start_aligned and end_aligned define down to which height the start 1744 * and end positions are aligned to the metadata tree (i.e., the 1745 * position is a multiple of the metadata granularity at the height 1746 * above). This determines at which heights additional meta pointers 1747 * needs to be preserved for the remaining data. 1748 */ 1749 1750 if (length) { 1751 u64 end_offset = offset + length; 1752 u64 lend; 1753 1754 /* 1755 * Clip the end at the maximum file size for the given height: 1756 * that's how far the metadata goes; files bigger than that 1757 * will have additional layers of indirection. 1758 */ 1759 if (end_offset > maxsize) 1760 end_offset = maxsize; 1761 lend = end_offset >> bsize_shift; 1762 1763 if (lblock >= lend) 1764 return 0; 1765 1766 find_metapath(sdp, lend, &mp, ip->i_height); 1767 end_list = __end_list; 1768 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1769 1770 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1771 if (end_list[mp_h]) 1772 break; 1773 } 1774 end_aligned = mp_h; 1775 } 1776 1777 find_metapath(sdp, lblock, &mp, ip->i_height); 1778 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1779 1780 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1781 if (start_list[mp_h]) 1782 break; 1783 } 1784 start_aligned = mp_h; 1785 1786 ret = gfs2_meta_inode_buffer(ip, &dibh); 1787 if (ret) 1788 return ret; 1789 1790 mp.mp_bh[0] = dibh; 1791 ret = lookup_metapath(ip, &mp); 1792 if (ret) 1793 goto out_metapath; 1794 1795 /* issue read-ahead on metadata */ 1796 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1797 metapointer_range(&mp, mp_h, start_list, start_aligned, 1798 end_list, end_aligned, &start, &end); 1799 gfs2_metapath_ra(ip->i_gl, start, end); 1800 } 1801 1802 if (mp.mp_aheight == ip->i_height) 1803 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1804 else 1805 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1806 1807 ret = gfs2_rindex_update(sdp); 1808 if (ret) 1809 goto out_metapath; 1810 1811 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1812 if (ret) 1813 goto out_metapath; 1814 gfs2_holder_mark_uninitialized(&rd_gh); 1815 1816 mp_h = strip_h; 1817 1818 while (state != DEALLOC_DONE) { 1819 switch (state) { 1820 /* Truncate a full metapath at the given strip height. 1821 * Note that strip_h == mp_h in order to be in this state. */ 1822 case DEALLOC_MP_FULL: 1823 bh = mp.mp_bh[mp_h]; 1824 gfs2_assert_withdraw(sdp, bh); 1825 if (gfs2_assert_withdraw(sdp, 1826 prev_bnr != bh->b_blocknr)) { 1827 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1828 "s_h:%u, mp_h:%u\n", 1829 (unsigned long long)ip->i_no_addr, 1830 prev_bnr, ip->i_height, strip_h, mp_h); 1831 } 1832 prev_bnr = bh->b_blocknr; 1833 1834 if (gfs2_metatype_check(sdp, bh, 1835 (mp_h ? GFS2_METATYPE_IN : 1836 GFS2_METATYPE_DI))) { 1837 ret = -EIO; 1838 goto out; 1839 } 1840 1841 /* 1842 * Below, passing end_aligned as 0 gives us the 1843 * metapointer range excluding the end point: the end 1844 * point is the first metapath we must not deallocate! 1845 */ 1846 1847 metapointer_range(&mp, mp_h, start_list, start_aligned, 1848 end_list, 0 /* end_aligned */, 1849 &start, &end); 1850 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1851 start, end, 1852 mp_h != ip->i_height - 1, 1853 &btotal); 1854 1855 /* If we hit an error or just swept dinode buffer, 1856 just exit. */ 1857 if (ret || !mp_h) { 1858 state = DEALLOC_DONE; 1859 break; 1860 } 1861 state = DEALLOC_MP_LOWER; 1862 break; 1863 1864 /* lower the metapath strip height */ 1865 case DEALLOC_MP_LOWER: 1866 /* We're done with the current buffer, so release it, 1867 unless it's the dinode buffer. Then back up to the 1868 previous pointer. */ 1869 if (mp_h) { 1870 brelse(mp.mp_bh[mp_h]); 1871 mp.mp_bh[mp_h] = NULL; 1872 } 1873 /* If we can't get any lower in height, we've stripped 1874 off all we can. Next step is to back up and start 1875 stripping the previous level of metadata. */ 1876 if (mp_h == 0) { 1877 strip_h--; 1878 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1879 mp_h = strip_h; 1880 state = DEALLOC_FILL_MP; 1881 break; 1882 } 1883 mp.mp_list[mp_h] = 0; 1884 mp_h--; /* search one metadata height down */ 1885 mp.mp_list[mp_h]++; 1886 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1887 break; 1888 /* Here we've found a part of the metapath that is not 1889 * allocated. We need to search at that height for the 1890 * next non-null pointer. */ 1891 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1892 state = DEALLOC_FILL_MP; 1893 mp_h++; 1894 } 1895 /* No more non-null pointers at this height. Back up 1896 to the previous height and try again. */ 1897 break; /* loop around in the same state */ 1898 1899 /* Fill the metapath with buffers to the given height. */ 1900 case DEALLOC_FILL_MP: 1901 /* Fill the buffers out to the current height. */ 1902 ret = fillup_metapath(ip, &mp, mp_h); 1903 if (ret < 0) 1904 goto out; 1905 1906 /* On the first pass, issue read-ahead on metadata. */ 1907 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1908 unsigned int height = mp.mp_aheight - 1; 1909 1910 /* No read-ahead for data blocks. */ 1911 if (mp.mp_aheight - 1 == strip_h) 1912 height--; 1913 1914 for (; height >= mp.mp_aheight - ret; height--) { 1915 metapointer_range(&mp, height, 1916 start_list, start_aligned, 1917 end_list, end_aligned, 1918 &start, &end); 1919 gfs2_metapath_ra(ip->i_gl, start, end); 1920 } 1921 } 1922 1923 /* If buffers found for the entire strip height */ 1924 if (mp.mp_aheight - 1 == strip_h) { 1925 state = DEALLOC_MP_FULL; 1926 break; 1927 } 1928 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1929 mp_h = mp.mp_aheight - 1; 1930 1931 /* If we find a non-null block pointer, crawl a bit 1932 higher up in the metapath and try again, otherwise 1933 we need to look lower for a new starting point. */ 1934 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1935 mp_h++; 1936 else 1937 state = DEALLOC_MP_LOWER; 1938 break; 1939 } 1940 } 1941 1942 if (btotal) { 1943 if (current->journal_info == NULL) { 1944 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1945 RES_QUOTA, 0); 1946 if (ret) 1947 goto out; 1948 down_write(&ip->i_rw_mutex); 1949 } 1950 gfs2_statfs_change(sdp, 0, +btotal, 0); 1951 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1952 ip->i_inode.i_gid); 1953 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1954 gfs2_trans_add_meta(ip->i_gl, dibh); 1955 gfs2_dinode_out(ip, dibh->b_data); 1956 up_write(&ip->i_rw_mutex); 1957 gfs2_trans_end(sdp); 1958 } 1959 1960 out: 1961 if (gfs2_holder_initialized(&rd_gh)) 1962 gfs2_glock_dq_uninit(&rd_gh); 1963 if (current->journal_info) { 1964 up_write(&ip->i_rw_mutex); 1965 gfs2_trans_end(sdp); 1966 cond_resched(); 1967 } 1968 gfs2_quota_unhold(ip); 1969 out_metapath: 1970 release_metapath(&mp); 1971 return ret; 1972 } 1973 1974 static int trunc_end(struct gfs2_inode *ip) 1975 { 1976 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1977 struct buffer_head *dibh; 1978 int error; 1979 1980 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1981 if (error) 1982 return error; 1983 1984 down_write(&ip->i_rw_mutex); 1985 1986 error = gfs2_meta_inode_buffer(ip, &dibh); 1987 if (error) 1988 goto out; 1989 1990 if (!i_size_read(&ip->i_inode)) { 1991 ip->i_height = 0; 1992 ip->i_goal = ip->i_no_addr; 1993 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1994 gfs2_ordered_del_inode(ip); 1995 } 1996 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1997 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1998 1999 gfs2_trans_add_meta(ip->i_gl, dibh); 2000 gfs2_dinode_out(ip, dibh->b_data); 2001 brelse(dibh); 2002 2003 out: 2004 up_write(&ip->i_rw_mutex); 2005 gfs2_trans_end(sdp); 2006 return error; 2007 } 2008 2009 /** 2010 * do_shrink - make a file smaller 2011 * @inode: the inode 2012 * @newsize: the size to make the file 2013 * 2014 * Called with an exclusive lock on @inode. The @size must 2015 * be equal to or smaller than the current inode size. 2016 * 2017 * Returns: errno 2018 */ 2019 2020 static int do_shrink(struct inode *inode, u64 newsize) 2021 { 2022 struct gfs2_inode *ip = GFS2_I(inode); 2023 int error; 2024 2025 error = trunc_start(inode, newsize); 2026 if (error < 0) 2027 return error; 2028 if (gfs2_is_stuffed(ip)) 2029 return 0; 2030 2031 error = punch_hole(ip, newsize, 0); 2032 if (error == 0) 2033 error = trunc_end(ip); 2034 2035 return error; 2036 } 2037 2038 /** 2039 * do_grow - Touch and update inode size 2040 * @inode: The inode 2041 * @size: The new size 2042 * 2043 * This function updates the timestamps on the inode and 2044 * may also increase the size of the inode. This function 2045 * must not be called with @size any smaller than the current 2046 * inode size. 2047 * 2048 * Although it is not strictly required to unstuff files here, 2049 * earlier versions of GFS2 have a bug in the stuffed file reading 2050 * code which will result in a buffer overrun if the size is larger 2051 * than the max stuffed file size. In order to prevent this from 2052 * occurring, such files are unstuffed, but in other cases we can 2053 * just update the inode size directly. 2054 * 2055 * Returns: 0 on success, or -ve on error 2056 */ 2057 2058 static int do_grow(struct inode *inode, u64 size) 2059 { 2060 struct gfs2_inode *ip = GFS2_I(inode); 2061 struct gfs2_sbd *sdp = GFS2_SB(inode); 2062 struct gfs2_alloc_parms ap = { .target = 1, }; 2063 struct buffer_head *dibh; 2064 int error; 2065 int unstuff = 0; 2066 2067 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2068 error = gfs2_quota_lock_check(ip, &ap); 2069 if (error) 2070 return error; 2071 2072 error = gfs2_inplace_reserve(ip, &ap); 2073 if (error) 2074 goto do_grow_qunlock; 2075 unstuff = 1; 2076 } 2077 2078 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2079 (unstuff && 2080 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2081 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2082 0 : RES_QUOTA), 0); 2083 if (error) 2084 goto do_grow_release; 2085 2086 if (unstuff) { 2087 error = gfs2_unstuff_dinode(ip); 2088 if (error) 2089 goto do_end_trans; 2090 } 2091 2092 error = gfs2_meta_inode_buffer(ip, &dibh); 2093 if (error) 2094 goto do_end_trans; 2095 2096 truncate_setsize(inode, size); 2097 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2098 gfs2_trans_add_meta(ip->i_gl, dibh); 2099 gfs2_dinode_out(ip, dibh->b_data); 2100 brelse(dibh); 2101 2102 do_end_trans: 2103 gfs2_trans_end(sdp); 2104 do_grow_release: 2105 if (unstuff) { 2106 gfs2_inplace_release(ip); 2107 do_grow_qunlock: 2108 gfs2_quota_unlock(ip); 2109 } 2110 return error; 2111 } 2112 2113 /** 2114 * gfs2_setattr_size - make a file a given size 2115 * @inode: the inode 2116 * @newsize: the size to make the file 2117 * 2118 * The file size can grow, shrink, or stay the same size. This 2119 * is called holding i_rwsem and an exclusive glock on the inode 2120 * in question. 2121 * 2122 * Returns: errno 2123 */ 2124 2125 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2126 { 2127 struct gfs2_inode *ip = GFS2_I(inode); 2128 int ret; 2129 2130 BUG_ON(!S_ISREG(inode->i_mode)); 2131 2132 ret = inode_newsize_ok(inode, newsize); 2133 if (ret) 2134 return ret; 2135 2136 inode_dio_wait(inode); 2137 2138 ret = gfs2_qa_get(ip); 2139 if (ret) 2140 goto out; 2141 2142 if (newsize >= inode->i_size) { 2143 ret = do_grow(inode, newsize); 2144 goto out; 2145 } 2146 2147 ret = do_shrink(inode, newsize); 2148 out: 2149 gfs2_rs_delete(ip); 2150 gfs2_qa_put(ip); 2151 return ret; 2152 } 2153 2154 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2155 { 2156 int error; 2157 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2158 if (!error) 2159 error = trunc_end(ip); 2160 return error; 2161 } 2162 2163 int gfs2_file_dealloc(struct gfs2_inode *ip) 2164 { 2165 return punch_hole(ip, 0, 0); 2166 } 2167 2168 /** 2169 * gfs2_free_journal_extents - Free cached journal bmap info 2170 * @jd: The journal 2171 * 2172 */ 2173 2174 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2175 { 2176 struct gfs2_journal_extent *jext; 2177 2178 while(!list_empty(&jd->extent_list)) { 2179 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2180 list_del(&jext->list); 2181 kfree(jext); 2182 } 2183 } 2184 2185 /** 2186 * gfs2_add_jextent - Add or merge a new extent to extent cache 2187 * @jd: The journal descriptor 2188 * @lblock: The logical block at start of new extent 2189 * @dblock: The physical block at start of new extent 2190 * @blocks: Size of extent in fs blocks 2191 * 2192 * Returns: 0 on success or -ENOMEM 2193 */ 2194 2195 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2196 { 2197 struct gfs2_journal_extent *jext; 2198 2199 if (!list_empty(&jd->extent_list)) { 2200 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2201 if ((jext->dblock + jext->blocks) == dblock) { 2202 jext->blocks += blocks; 2203 return 0; 2204 } 2205 } 2206 2207 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2208 if (jext == NULL) 2209 return -ENOMEM; 2210 jext->dblock = dblock; 2211 jext->lblock = lblock; 2212 jext->blocks = blocks; 2213 list_add_tail(&jext->list, &jd->extent_list); 2214 jd->nr_extents++; 2215 return 0; 2216 } 2217 2218 /** 2219 * gfs2_map_journal_extents - Cache journal bmap info 2220 * @sdp: The super block 2221 * @jd: The journal to map 2222 * 2223 * Create a reusable "extent" mapping from all logical 2224 * blocks to all physical blocks for the given journal. This will save 2225 * us time when writing journal blocks. Most journals will have only one 2226 * extent that maps all their logical blocks. That's because gfs2.mkfs 2227 * arranges the journal blocks sequentially to maximize performance. 2228 * So the extent would map the first block for the entire file length. 2229 * However, gfs2_jadd can happen while file activity is happening, so 2230 * those journals may not be sequential. Less likely is the case where 2231 * the users created their own journals by mounting the metafs and 2232 * laying it out. But it's still possible. These journals might have 2233 * several extents. 2234 * 2235 * Returns: 0 on success, or error on failure 2236 */ 2237 2238 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2239 { 2240 u64 lblock = 0; 2241 u64 lblock_stop; 2242 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2243 struct buffer_head bh; 2244 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2245 u64 size; 2246 int rc; 2247 ktime_t start, end; 2248 2249 start = ktime_get(); 2250 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2251 size = (lblock_stop - lblock) << shift; 2252 jd->nr_extents = 0; 2253 WARN_ON(!list_empty(&jd->extent_list)); 2254 2255 do { 2256 bh.b_state = 0; 2257 bh.b_blocknr = 0; 2258 bh.b_size = size; 2259 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2260 if (rc || !buffer_mapped(&bh)) 2261 goto fail; 2262 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2263 if (rc) 2264 goto fail; 2265 size -= bh.b_size; 2266 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2267 } while(size > 0); 2268 2269 end = ktime_get(); 2270 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2271 jd->nr_extents, ktime_ms_delta(end, start)); 2272 return 0; 2273 2274 fail: 2275 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2276 rc, jd->jd_jid, 2277 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2278 jd->nr_extents); 2279 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2280 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2281 bh.b_state, (unsigned long long)bh.b_size); 2282 gfs2_free_journal_extents(jd); 2283 return rc; 2284 } 2285 2286 /** 2287 * gfs2_write_alloc_required - figure out if a write will require an allocation 2288 * @ip: the file being written to 2289 * @offset: the offset to write to 2290 * @len: the number of bytes being written 2291 * 2292 * Returns: 1 if an alloc is required, 0 otherwise 2293 */ 2294 2295 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2296 unsigned int len) 2297 { 2298 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2299 struct buffer_head bh; 2300 unsigned int shift; 2301 u64 lblock, lblock_stop, size; 2302 u64 end_of_file; 2303 2304 if (!len) 2305 return 0; 2306 2307 if (gfs2_is_stuffed(ip)) { 2308 if (offset + len > gfs2_max_stuffed_size(ip)) 2309 return 1; 2310 return 0; 2311 } 2312 2313 shift = sdp->sd_sb.sb_bsize_shift; 2314 BUG_ON(gfs2_is_dir(ip)); 2315 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2316 lblock = offset >> shift; 2317 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2318 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2319 return 1; 2320 2321 size = (lblock_stop - lblock) << shift; 2322 do { 2323 bh.b_state = 0; 2324 bh.b_size = size; 2325 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2326 if (!buffer_mapped(&bh)) 2327 return 1; 2328 size -= bh.b_size; 2329 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2330 } while(size > 0); 2331 2332 return 0; 2333 } 2334 2335 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2336 { 2337 struct gfs2_inode *ip = GFS2_I(inode); 2338 struct buffer_head *dibh; 2339 int error; 2340 2341 if (offset >= inode->i_size) 2342 return 0; 2343 if (offset + length > inode->i_size) 2344 length = inode->i_size - offset; 2345 2346 error = gfs2_meta_inode_buffer(ip, &dibh); 2347 if (error) 2348 return error; 2349 gfs2_trans_add_meta(ip->i_gl, dibh); 2350 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2351 length); 2352 brelse(dibh); 2353 return 0; 2354 } 2355 2356 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2357 loff_t length) 2358 { 2359 struct gfs2_sbd *sdp = GFS2_SB(inode); 2360 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2361 int error; 2362 2363 while (length) { 2364 struct gfs2_trans *tr; 2365 loff_t chunk; 2366 unsigned int offs; 2367 2368 chunk = length; 2369 if (chunk > max_chunk) 2370 chunk = max_chunk; 2371 2372 offs = offset & ~PAGE_MASK; 2373 if (offs && chunk > PAGE_SIZE) 2374 chunk = offs + ((chunk - offs) & PAGE_MASK); 2375 2376 truncate_pagecache_range(inode, offset, chunk); 2377 offset += chunk; 2378 length -= chunk; 2379 2380 tr = current->journal_info; 2381 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2382 continue; 2383 2384 gfs2_trans_end(sdp); 2385 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2386 if (error) 2387 return error; 2388 } 2389 return 0; 2390 } 2391 2392 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2393 { 2394 struct inode *inode = file_inode(file); 2395 struct gfs2_inode *ip = GFS2_I(inode); 2396 struct gfs2_sbd *sdp = GFS2_SB(inode); 2397 unsigned int blocksize = i_blocksize(inode); 2398 loff_t start, end; 2399 int error; 2400 2401 if (!gfs2_is_stuffed(ip)) { 2402 unsigned int start_off, end_len; 2403 2404 start_off = offset & (blocksize - 1); 2405 end_len = (offset + length) & (blocksize - 1); 2406 if (start_off) { 2407 unsigned int len = length; 2408 if (length > blocksize - start_off) 2409 len = blocksize - start_off; 2410 error = gfs2_block_zero_range(inode, offset, len); 2411 if (error) 2412 goto out; 2413 if (start_off + length < blocksize) 2414 end_len = 0; 2415 } 2416 if (end_len) { 2417 error = gfs2_block_zero_range(inode, 2418 offset + length - end_len, end_len); 2419 if (error) 2420 goto out; 2421 } 2422 } 2423 2424 start = round_down(offset, blocksize); 2425 end = round_up(offset + length, blocksize) - 1; 2426 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2427 if (error) 2428 return error; 2429 2430 if (gfs2_is_jdata(ip)) 2431 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2432 GFS2_JTRUNC_REVOKES); 2433 else 2434 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2435 if (error) 2436 return error; 2437 2438 if (gfs2_is_stuffed(ip)) { 2439 error = stuffed_zero_range(inode, offset, length); 2440 if (error) 2441 goto out; 2442 } 2443 2444 if (gfs2_is_jdata(ip)) { 2445 BUG_ON(!current->journal_info); 2446 gfs2_journaled_truncate_range(inode, offset, length); 2447 } else 2448 truncate_pagecache_range(inode, offset, offset + length - 1); 2449 2450 file_update_time(file); 2451 mark_inode_dirty(inode); 2452 2453 if (current->journal_info) 2454 gfs2_trans_end(sdp); 2455 2456 if (!gfs2_is_stuffed(ip)) 2457 error = punch_hole(ip, offset, length); 2458 2459 out: 2460 if (current->journal_info) 2461 gfs2_trans_end(sdp); 2462 return error; 2463 } 2464 2465 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2466 loff_t offset) 2467 { 2468 int ret; 2469 2470 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2471 return -EIO; 2472 2473 if (offset >= wpc->iomap.offset && 2474 offset < wpc->iomap.offset + wpc->iomap.length) 2475 return 0; 2476 2477 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2478 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap); 2479 return ret; 2480 } 2481 2482 const struct iomap_writeback_ops gfs2_writeback_ops = { 2483 .map_blocks = gfs2_map_blocks, 2484 }; 2485