xref: /linux/fs/gfs2/bmap.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 
60 	if (!PageUptodate(page)) {
61 		void *kaddr = kmap(page);
62 		u64 dsize = i_size_read(inode);
63 
64 		if (dsize > gfs2_max_stuffed_size(ip))
65 			dsize = gfs2_max_stuffed_size(ip);
66 
67 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
68 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
69 		kunmap(page);
70 
71 		SetPageUptodate(page);
72 	}
73 
74 	if (gfs2_is_jdata(ip)) {
75 		struct buffer_head *bh;
76 
77 		if (!page_has_buffers(page))
78 			create_empty_buffers(page, BIT(inode->i_blkbits),
79 					     BIT(BH_Uptodate));
80 
81 		bh = page_buffers(page);
82 		if (!buffer_mapped(bh))
83 			map_bh(bh, inode->i_sb, block);
84 
85 		set_buffer_uptodate(bh);
86 		gfs2_trans_add_data(ip->i_gl, bh);
87 	} else {
88 		set_page_dirty(page);
89 		gfs2_ordered_add_inode(ip);
90 	}
91 
92 	return 0;
93 }
94 
95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
96 {
97 	struct buffer_head *bh, *dibh;
98 	struct gfs2_dinode *di;
99 	u64 block = 0;
100 	int isdir = gfs2_is_dir(ip);
101 	int error;
102 
103 	error = gfs2_meta_inode_buffer(ip, &dibh);
104 	if (error)
105 		return error;
106 
107 	if (i_size_read(&ip->i_inode)) {
108 		/* Get a free block, fill it with the stuffed data,
109 		   and write it out to disk */
110 
111 		unsigned int n = 1;
112 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
113 		if (error)
114 			goto out_brelse;
115 		if (isdir) {
116 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
117 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
118 			if (error)
119 				goto out_brelse;
120 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
121 					      dibh, sizeof(struct gfs2_dinode));
122 			brelse(bh);
123 		} else {
124 			error = gfs2_unstuffer_page(ip, dibh, block, page);
125 			if (error)
126 				goto out_brelse;
127 		}
128 	}
129 
130 	/*  Set up the pointer to the new block  */
131 
132 	gfs2_trans_add_meta(ip->i_gl, dibh);
133 	di = (struct gfs2_dinode *)dibh->b_data;
134 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
135 
136 	if (i_size_read(&ip->i_inode)) {
137 		*(__be64 *)(di + 1) = cpu_to_be64(block);
138 		gfs2_add_inode_blocks(&ip->i_inode, 1);
139 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
140 	}
141 
142 	ip->i_height = 1;
143 	di->di_height = cpu_to_be16(1);
144 
145 out_brelse:
146 	brelse(dibh);
147 	return error;
148 }
149 
150 /**
151  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
152  * @ip: The GFS2 inode to unstuff
153  *
154  * This routine unstuffs a dinode and returns it to a "normal" state such
155  * that the height can be grown in the traditional way.
156  *
157  * Returns: errno
158  */
159 
160 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
161 {
162 	struct inode *inode = &ip->i_inode;
163 	struct page *page;
164 	int error;
165 
166 	down_write(&ip->i_rw_mutex);
167 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
168 	error = -ENOMEM;
169 	if (!page)
170 		goto out;
171 	error = __gfs2_unstuff_inode(ip, page);
172 	unlock_page(page);
173 	put_page(page);
174 out:
175 	up_write(&ip->i_rw_mutex);
176 	return error;
177 }
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
314 					  REQ_PRIO, rabh);
315 				continue;
316 			}
317 			unlock_buffer(rabh);
318 		}
319 		brelse(rabh);
320 	}
321 }
322 
323 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
324 			     unsigned int x, unsigned int h)
325 {
326 	for (; x < h; x++) {
327 		__be64 *ptr = metapointer(x, mp);
328 		u64 dblock = be64_to_cpu(*ptr);
329 		int ret;
330 
331 		if (!dblock)
332 			break;
333 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
334 		if (ret)
335 			return ret;
336 	}
337 	mp->mp_aheight = x + 1;
338 	return 0;
339 }
340 
341 /**
342  * lookup_metapath - Walk the metadata tree to a specific point
343  * @ip: The inode
344  * @mp: The metapath
345  *
346  * Assumes that the inode's buffer has already been looked up and
347  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
348  * by find_metapath().
349  *
350  * If this function encounters part of the tree which has not been
351  * allocated, it returns the current height of the tree at the point
352  * at which it found the unallocated block. Blocks which are found are
353  * added to the mp->mp_bh[] list.
354  *
355  * Returns: error
356  */
357 
358 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
359 {
360 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
361 }
362 
363 /**
364  * fillup_metapath - fill up buffers for the metadata path to a specific height
365  * @ip: The inode
366  * @mp: The metapath
367  * @h: The height to which it should be mapped
368  *
369  * Similar to lookup_metapath, but does lookups for a range of heights
370  *
371  * Returns: error or the number of buffers filled
372  */
373 
374 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
375 {
376 	unsigned int x = 0;
377 	int ret;
378 
379 	if (h) {
380 		/* find the first buffer we need to look up. */
381 		for (x = h - 1; x > 0; x--) {
382 			if (mp->mp_bh[x])
383 				break;
384 		}
385 	}
386 	ret = __fillup_metapath(ip, mp, x, h);
387 	if (ret)
388 		return ret;
389 	return mp->mp_aheight - x - 1;
390 }
391 
392 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
393 {
394 	sector_t factor = 1, block = 0;
395 	int hgt;
396 
397 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
398 		if (hgt < mp->mp_aheight)
399 			block += mp->mp_list[hgt] * factor;
400 		factor *= sdp->sd_inptrs;
401 	}
402 	return block;
403 }
404 
405 static void release_metapath(struct metapath *mp)
406 {
407 	int i;
408 
409 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
410 		if (mp->mp_bh[i] == NULL)
411 			break;
412 		brelse(mp->mp_bh[i]);
413 		mp->mp_bh[i] = NULL;
414 	}
415 }
416 
417 /**
418  * gfs2_extent_length - Returns length of an extent of blocks
419  * @bh: The metadata block
420  * @ptr: Current position in @bh
421  * @limit: Max extent length to return
422  * @eob: Set to 1 if we hit "end of block"
423  *
424  * Returns: The length of the extent (minimum of one block)
425  */
426 
427 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
428 {
429 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
430 	const __be64 *first = ptr;
431 	u64 d = be64_to_cpu(*ptr);
432 
433 	*eob = 0;
434 	do {
435 		ptr++;
436 		if (ptr >= end)
437 			break;
438 		d++;
439 	} while(be64_to_cpu(*ptr) == d);
440 	if (ptr >= end)
441 		*eob = 1;
442 	return ptr - first;
443 }
444 
445 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
446 
447 /*
448  * gfs2_metadata_walker - walk an indirect block
449  * @mp: Metapath to indirect block
450  * @ptrs: Number of pointers to look at
451  *
452  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
453  * indirect block to follow.
454  */
455 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
456 						   unsigned int ptrs);
457 
458 /*
459  * gfs2_walk_metadata - walk a tree of indirect blocks
460  * @inode: The inode
461  * @mp: Starting point of walk
462  * @max_len: Maximum number of blocks to walk
463  * @walker: Called during the walk
464  *
465  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
466  * past the end of metadata, and a negative error code otherwise.
467  */
468 
469 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
470 		u64 max_len, gfs2_metadata_walker walker)
471 {
472 	struct gfs2_inode *ip = GFS2_I(inode);
473 	struct gfs2_sbd *sdp = GFS2_SB(inode);
474 	u64 factor = 1;
475 	unsigned int hgt;
476 	int ret;
477 
478 	/*
479 	 * The walk starts in the lowest allocated indirect block, which may be
480 	 * before the position indicated by @mp.  Adjust @max_len accordingly
481 	 * to avoid a short walk.
482 	 */
483 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
484 		max_len += mp->mp_list[hgt] * factor;
485 		mp->mp_list[hgt] = 0;
486 		factor *= sdp->sd_inptrs;
487 	}
488 
489 	for (;;) {
490 		u16 start = mp->mp_list[hgt];
491 		enum walker_status status;
492 		unsigned int ptrs;
493 		u64 len;
494 
495 		/* Walk indirect block. */
496 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
497 		len = ptrs * factor;
498 		if (len > max_len)
499 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
500 		status = walker(mp, ptrs);
501 		switch (status) {
502 		case WALK_STOP:
503 			return 1;
504 		case WALK_FOLLOW:
505 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
506 			ptrs = mp->mp_list[hgt] - start;
507 			len = ptrs * factor;
508 			break;
509 		case WALK_CONTINUE:
510 			break;
511 		}
512 		if (len >= max_len)
513 			break;
514 		max_len -= len;
515 		if (status == WALK_FOLLOW)
516 			goto fill_up_metapath;
517 
518 lower_metapath:
519 		/* Decrease height of metapath. */
520 		brelse(mp->mp_bh[hgt]);
521 		mp->mp_bh[hgt] = NULL;
522 		mp->mp_list[hgt] = 0;
523 		if (!hgt)
524 			break;
525 		hgt--;
526 		factor *= sdp->sd_inptrs;
527 
528 		/* Advance in metadata tree. */
529 		(mp->mp_list[hgt])++;
530 		if (hgt) {
531 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
532 				goto lower_metapath;
533 		} else {
534 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
535 				break;
536 		}
537 
538 fill_up_metapath:
539 		/* Increase height of metapath. */
540 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
541 		if (ret < 0)
542 			return ret;
543 		hgt += ret;
544 		for (; ret; ret--)
545 			do_div(factor, sdp->sd_inptrs);
546 		mp->mp_aheight = hgt + 1;
547 	}
548 	return 0;
549 }
550 
551 static enum walker_status gfs2_hole_walker(struct metapath *mp,
552 					   unsigned int ptrs)
553 {
554 	const __be64 *start, *ptr, *end;
555 	unsigned int hgt;
556 
557 	hgt = mp->mp_aheight - 1;
558 	start = metapointer(hgt, mp);
559 	end = start + ptrs;
560 
561 	for (ptr = start; ptr < end; ptr++) {
562 		if (*ptr) {
563 			mp->mp_list[hgt] += ptr - start;
564 			if (mp->mp_aheight == mp->mp_fheight)
565 				return WALK_STOP;
566 			return WALK_FOLLOW;
567 		}
568 	}
569 	return WALK_CONTINUE;
570 }
571 
572 /**
573  * gfs2_hole_size - figure out the size of a hole
574  * @inode: The inode
575  * @lblock: The logical starting block number
576  * @len: How far to look (in blocks)
577  * @mp: The metapath at lblock
578  * @iomap: The iomap to store the hole size in
579  *
580  * This function modifies @mp.
581  *
582  * Returns: errno on error
583  */
584 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
585 			  struct metapath *mp, struct iomap *iomap)
586 {
587 	struct metapath clone;
588 	u64 hole_size;
589 	int ret;
590 
591 	clone_metapath(&clone, mp);
592 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
593 	if (ret < 0)
594 		goto out;
595 
596 	if (ret == 1)
597 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
598 	else
599 		hole_size = len;
600 	iomap->length = hole_size << inode->i_blkbits;
601 	ret = 0;
602 
603 out:
604 	release_metapath(&clone);
605 	return ret;
606 }
607 
608 static inline void gfs2_indirect_init(struct metapath *mp,
609 				      struct gfs2_glock *gl, unsigned int i,
610 				      unsigned offset, u64 bn)
611 {
612 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
613 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
614 				 sizeof(struct gfs2_dinode)));
615 	BUG_ON(i < 1);
616 	BUG_ON(mp->mp_bh[i] != NULL);
617 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
618 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
619 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
620 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
621 	ptr += offset;
622 	*ptr = cpu_to_be64(bn);
623 }
624 
625 enum alloc_state {
626 	ALLOC_DATA = 0,
627 	ALLOC_GROW_DEPTH = 1,
628 	ALLOC_GROW_HEIGHT = 2,
629 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
630 };
631 
632 /**
633  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
634  * @inode: The GFS2 inode
635  * @iomap: The iomap structure
636  * @mp: The metapath, with proper height information calculated
637  *
638  * In this routine we may have to alloc:
639  *   i) Indirect blocks to grow the metadata tree height
640  *  ii) Indirect blocks to fill in lower part of the metadata tree
641  * iii) Data blocks
642  *
643  * This function is called after __gfs2_iomap_get, which works out the
644  * total number of blocks which we need via gfs2_alloc_size.
645  *
646  * We then do the actual allocation asking for an extent at a time (if
647  * enough contiguous free blocks are available, there will only be one
648  * allocation request per call) and uses the state machine to initialise
649  * the blocks in order.
650  *
651  * Right now, this function will allocate at most one indirect block
652  * worth of data -- with a default block size of 4K, that's slightly
653  * less than 2M.  If this limitation is ever removed to allow huge
654  * allocations, we would probably still want to limit the iomap size we
655  * return to avoid stalling other tasks during huge writes; the next
656  * iomap iteration would then find the blocks already allocated.
657  *
658  * Returns: errno on error
659  */
660 
661 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 			      struct metapath *mp)
663 {
664 	struct gfs2_inode *ip = GFS2_I(inode);
665 	struct gfs2_sbd *sdp = GFS2_SB(inode);
666 	struct buffer_head *dibh = mp->mp_bh[0];
667 	u64 bn;
668 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 	size_t dblks = iomap->length >> inode->i_blkbits;
670 	const unsigned end_of_metadata = mp->mp_fheight - 1;
671 	int ret;
672 	enum alloc_state state;
673 	__be64 *ptr;
674 	__be64 zero_bn = 0;
675 
676 	BUG_ON(mp->mp_aheight < 1);
677 	BUG_ON(dibh == NULL);
678 	BUG_ON(dblks < 1);
679 
680 	gfs2_trans_add_meta(ip->i_gl, dibh);
681 
682 	down_write(&ip->i_rw_mutex);
683 
684 	if (mp->mp_fheight == mp->mp_aheight) {
685 		/* Bottom indirect block exists */
686 		state = ALLOC_DATA;
687 	} else {
688 		/* Need to allocate indirect blocks */
689 		if (mp->mp_fheight == ip->i_height) {
690 			/* Writing into existing tree, extend tree down */
691 			iblks = mp->mp_fheight - mp->mp_aheight;
692 			state = ALLOC_GROW_DEPTH;
693 		} else {
694 			/* Building up tree height */
695 			state = ALLOC_GROW_HEIGHT;
696 			iblks = mp->mp_fheight - ip->i_height;
697 			branch_start = metapath_branch_start(mp);
698 			iblks += (mp->mp_fheight - branch_start);
699 		}
700 	}
701 
702 	/* start of the second part of the function (state machine) */
703 
704 	blks = dblks + iblks;
705 	i = mp->mp_aheight;
706 	do {
707 		n = blks - alloced;
708 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
709 		if (ret)
710 			goto out;
711 		alloced += n;
712 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 			gfs2_trans_remove_revoke(sdp, bn, n);
714 		switch (state) {
715 		/* Growing height of tree */
716 		case ALLOC_GROW_HEIGHT:
717 			if (i == 1) {
718 				ptr = (__be64 *)(dibh->b_data +
719 						 sizeof(struct gfs2_dinode));
720 				zero_bn = *ptr;
721 			}
722 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 			     i++, n--)
724 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 			if (i - 1 == mp->mp_fheight - ip->i_height) {
726 				i--;
727 				gfs2_buffer_copy_tail(mp->mp_bh[i],
728 						sizeof(struct gfs2_meta_header),
729 						dibh, sizeof(struct gfs2_dinode));
730 				gfs2_buffer_clear_tail(dibh,
731 						sizeof(struct gfs2_dinode) +
732 						sizeof(__be64));
733 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 					sizeof(struct gfs2_meta_header));
735 				*ptr = zero_bn;
736 				state = ALLOC_GROW_DEPTH;
737 				for(i = branch_start; i < mp->mp_fheight; i++) {
738 					if (mp->mp_bh[i] == NULL)
739 						break;
740 					brelse(mp->mp_bh[i]);
741 					mp->mp_bh[i] = NULL;
742 				}
743 				i = branch_start;
744 			}
745 			if (n == 0)
746 				break;
747 			fallthrough;	/* To branching from existing tree */
748 		case ALLOC_GROW_DEPTH:
749 			if (i > 1 && i < mp->mp_fheight)
750 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 			for (; i < mp->mp_fheight && n > 0; i++, n--)
752 				gfs2_indirect_init(mp, ip->i_gl, i,
753 						   mp->mp_list[i-1], bn++);
754 			if (i == mp->mp_fheight)
755 				state = ALLOC_DATA;
756 			if (n == 0)
757 				break;
758 			fallthrough;	/* To tree complete, adding data blocks */
759 		case ALLOC_DATA:
760 			BUG_ON(n > dblks);
761 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 			dblks = n;
764 			ptr = metapointer(end_of_metadata, mp);
765 			iomap->addr = bn << inode->i_blkbits;
766 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 			while (n-- > 0)
768 				*ptr++ = cpu_to_be64(bn++);
769 			break;
770 		}
771 	} while (iomap->addr == IOMAP_NULL_ADDR);
772 
773 	iomap->type = IOMAP_MAPPED;
774 	iomap->length = (u64)dblks << inode->i_blkbits;
775 	ip->i_height = mp->mp_fheight;
776 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 	gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 	up_write(&ip->i_rw_mutex);
780 	return ret;
781 }
782 
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784 
785 /**
786  * gfs2_alloc_size - Compute the maximum allocation size
787  * @inode: The inode
788  * @mp: The metapath
789  * @size: Requested size in blocks
790  *
791  * Compute the maximum size of the next allocation at @mp.
792  *
793  * Returns: size in blocks
794  */
795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 	struct gfs2_inode *ip = GFS2_I(inode);
798 	struct gfs2_sbd *sdp = GFS2_SB(inode);
799 	const __be64 *first, *ptr, *end;
800 
801 	/*
802 	 * For writes to stuffed files, this function is called twice via
803 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
804 	 * first time needs to be large enough to get the reservation and
805 	 * allocation sizes right.  The size we return the second time must
806 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
807 	 */
808 
809 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 		unsigned int maxsize = mp->mp_fheight > 1 ?
811 			sdp->sd_inptrs : sdp->sd_diptrs;
812 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 		if (size > maxsize)
814 			size = maxsize;
815 		return size;
816 	}
817 
818 	first = metapointer(ip->i_height - 1, mp);
819 	end = metaend(ip->i_height - 1, mp);
820 	if (end - first > size)
821 		end = first + size;
822 	for (ptr = first; ptr < end; ptr++) {
823 		if (*ptr)
824 			break;
825 	}
826 	return ptr - first;
827 }
828 
829 /**
830  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
831  * @inode: The inode
832  * @pos: Starting position in bytes
833  * @length: Length to map, in bytes
834  * @flags: iomap flags
835  * @iomap: The iomap structure
836  * @mp: The metapath
837  *
838  * Returns: errno
839  */
840 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 			    unsigned flags, struct iomap *iomap,
842 			    struct metapath *mp)
843 {
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	struct gfs2_sbd *sdp = GFS2_SB(inode);
846 	loff_t size = i_size_read(inode);
847 	__be64 *ptr;
848 	sector_t lblock;
849 	sector_t lblock_stop;
850 	int ret;
851 	int eob;
852 	u64 len;
853 	struct buffer_head *dibh = NULL, *bh;
854 	u8 height;
855 
856 	if (!length)
857 		return -EINVAL;
858 
859 	down_read(&ip->i_rw_mutex);
860 
861 	ret = gfs2_meta_inode_buffer(ip, &dibh);
862 	if (ret)
863 		goto unlock;
864 	mp->mp_bh[0] = dibh;
865 
866 	if (gfs2_is_stuffed(ip)) {
867 		if (flags & IOMAP_WRITE) {
868 			loff_t max_size = gfs2_max_stuffed_size(ip);
869 
870 			if (pos + length > max_size)
871 				goto unstuff;
872 			iomap->length = max_size;
873 		} else {
874 			if (pos >= size) {
875 				if (flags & IOMAP_REPORT) {
876 					ret = -ENOENT;
877 					goto unlock;
878 				} else {
879 					iomap->offset = pos;
880 					iomap->length = length;
881 					goto hole_found;
882 				}
883 			}
884 			iomap->length = size;
885 		}
886 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
887 			      sizeof(struct gfs2_dinode);
888 		iomap->type = IOMAP_INLINE;
889 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
890 		goto out;
891 	}
892 
893 unstuff:
894 	lblock = pos >> inode->i_blkbits;
895 	iomap->offset = lblock << inode->i_blkbits;
896 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
897 	len = lblock_stop - lblock + 1;
898 	iomap->length = len << inode->i_blkbits;
899 
900 	height = ip->i_height;
901 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
902 		height++;
903 	find_metapath(sdp, lblock, mp, height);
904 	if (height > ip->i_height || gfs2_is_stuffed(ip))
905 		goto do_alloc;
906 
907 	ret = lookup_metapath(ip, mp);
908 	if (ret)
909 		goto unlock;
910 
911 	if (mp->mp_aheight != ip->i_height)
912 		goto do_alloc;
913 
914 	ptr = metapointer(ip->i_height - 1, mp);
915 	if (*ptr == 0)
916 		goto do_alloc;
917 
918 	bh = mp->mp_bh[ip->i_height - 1];
919 	len = gfs2_extent_length(bh, ptr, len, &eob);
920 
921 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
922 	iomap->length = len << inode->i_blkbits;
923 	iomap->type = IOMAP_MAPPED;
924 	iomap->flags |= IOMAP_F_MERGED;
925 	if (eob)
926 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
927 
928 out:
929 	iomap->bdev = inode->i_sb->s_bdev;
930 unlock:
931 	up_read(&ip->i_rw_mutex);
932 	return ret;
933 
934 do_alloc:
935 	if (flags & IOMAP_REPORT) {
936 		if (pos >= size)
937 			ret = -ENOENT;
938 		else if (height == ip->i_height)
939 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
940 		else
941 			iomap->length = size - iomap->offset;
942 	} else if (flags & IOMAP_WRITE) {
943 		u64 alloc_size;
944 
945 		if (flags & IOMAP_DIRECT)
946 			goto out;  /* (see gfs2_file_direct_write) */
947 
948 		len = gfs2_alloc_size(inode, mp, len);
949 		alloc_size = len << inode->i_blkbits;
950 		if (alloc_size < iomap->length)
951 			iomap->length = alloc_size;
952 	} else {
953 		if (pos < size && height == ip->i_height)
954 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
955 	}
956 hole_found:
957 	iomap->addr = IOMAP_NULL_ADDR;
958 	iomap->type = IOMAP_HOLE;
959 	goto out;
960 }
961 
962 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
963 				   unsigned len)
964 {
965 	unsigned int blockmask = i_blocksize(inode) - 1;
966 	struct gfs2_sbd *sdp = GFS2_SB(inode);
967 	unsigned int blocks;
968 
969 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
970 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
971 }
972 
973 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
974 				 unsigned copied, struct page *page)
975 {
976 	struct gfs2_trans *tr = current->journal_info;
977 	struct gfs2_inode *ip = GFS2_I(inode);
978 	struct gfs2_sbd *sdp = GFS2_SB(inode);
979 
980 	if (page && !gfs2_is_stuffed(ip))
981 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
982 
983 	if (tr->tr_num_buf_new)
984 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
985 
986 	gfs2_trans_end(sdp);
987 }
988 
989 static const struct iomap_page_ops gfs2_iomap_page_ops = {
990 	.page_prepare = gfs2_iomap_page_prepare,
991 	.page_done = gfs2_iomap_page_done,
992 };
993 
994 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
995 				  loff_t length, unsigned flags,
996 				  struct iomap *iomap,
997 				  struct metapath *mp)
998 {
999 	struct gfs2_inode *ip = GFS2_I(inode);
1000 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1001 	bool unstuff;
1002 	int ret;
1003 
1004 	unstuff = gfs2_is_stuffed(ip) &&
1005 		  pos + length > gfs2_max_stuffed_size(ip);
1006 
1007 	if (unstuff || iomap->type == IOMAP_HOLE) {
1008 		unsigned int data_blocks, ind_blocks;
1009 		struct gfs2_alloc_parms ap = {};
1010 		unsigned int rblocks;
1011 		struct gfs2_trans *tr;
1012 
1013 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1014 				       &ind_blocks);
1015 		ap.target = data_blocks + ind_blocks;
1016 		ret = gfs2_quota_lock_check(ip, &ap);
1017 		if (ret)
1018 			return ret;
1019 
1020 		ret = gfs2_inplace_reserve(ip, &ap);
1021 		if (ret)
1022 			goto out_qunlock;
1023 
1024 		rblocks = RES_DINODE + ind_blocks;
1025 		if (gfs2_is_jdata(ip))
1026 			rblocks += data_blocks;
1027 		if (ind_blocks || data_blocks)
1028 			rblocks += RES_STATFS + RES_QUOTA;
1029 		if (inode == sdp->sd_rindex)
1030 			rblocks += 2 * RES_STATFS;
1031 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1032 
1033 		ret = gfs2_trans_begin(sdp, rblocks,
1034 				       iomap->length >> inode->i_blkbits);
1035 		if (ret)
1036 			goto out_trans_fail;
1037 
1038 		if (unstuff) {
1039 			ret = gfs2_unstuff_dinode(ip);
1040 			if (ret)
1041 				goto out_trans_end;
1042 			release_metapath(mp);
1043 			ret = __gfs2_iomap_get(inode, iomap->offset,
1044 					       iomap->length, flags, iomap, mp);
1045 			if (ret)
1046 				goto out_trans_end;
1047 		}
1048 
1049 		if (iomap->type == IOMAP_HOLE) {
1050 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1051 			if (ret) {
1052 				gfs2_trans_end(sdp);
1053 				gfs2_inplace_release(ip);
1054 				punch_hole(ip, iomap->offset, iomap->length);
1055 				goto out_qunlock;
1056 			}
1057 		}
1058 
1059 		tr = current->journal_info;
1060 		if (tr->tr_num_buf_new)
1061 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1062 
1063 		gfs2_trans_end(sdp);
1064 	}
1065 
1066 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1067 		iomap->page_ops = &gfs2_iomap_page_ops;
1068 	return 0;
1069 
1070 out_trans_end:
1071 	gfs2_trans_end(sdp);
1072 out_trans_fail:
1073 	gfs2_inplace_release(ip);
1074 out_qunlock:
1075 	gfs2_quota_unlock(ip);
1076 	return ret;
1077 }
1078 
1079 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1080 			    unsigned flags, struct iomap *iomap,
1081 			    struct iomap *srcmap)
1082 {
1083 	struct gfs2_inode *ip = GFS2_I(inode);
1084 	struct metapath mp = { .mp_aheight = 1, };
1085 	int ret;
1086 
1087 	if (gfs2_is_jdata(ip))
1088 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1089 
1090 	trace_gfs2_iomap_start(ip, pos, length, flags);
1091 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1092 	if (ret)
1093 		goto out_unlock;
1094 
1095 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1096 	case IOMAP_WRITE:
1097 		if (flags & IOMAP_DIRECT) {
1098 			/*
1099 			 * Silently fall back to buffered I/O for stuffed files
1100 			 * or if we've got a hole (see gfs2_file_direct_write).
1101 			 */
1102 			if (iomap->type != IOMAP_MAPPED)
1103 				ret = -ENOTBLK;
1104 			goto out_unlock;
1105 		}
1106 		break;
1107 	case IOMAP_ZERO:
1108 		if (iomap->type == IOMAP_HOLE)
1109 			goto out_unlock;
1110 		break;
1111 	default:
1112 		goto out_unlock;
1113 	}
1114 
1115 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1116 
1117 out_unlock:
1118 	release_metapath(&mp);
1119 	trace_gfs2_iomap_end(ip, iomap, ret);
1120 	return ret;
1121 }
1122 
1123 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1124 			  ssize_t written, unsigned flags, struct iomap *iomap)
1125 {
1126 	struct gfs2_inode *ip = GFS2_I(inode);
1127 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1128 
1129 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1130 	case IOMAP_WRITE:
1131 		if (flags & IOMAP_DIRECT)
1132 			return 0;
1133 		break;
1134 	case IOMAP_ZERO:
1135 		 if (iomap->type == IOMAP_HOLE)
1136 			 return 0;
1137 		 break;
1138 	default:
1139 		 return 0;
1140 	}
1141 
1142 	if (!gfs2_is_stuffed(ip))
1143 		gfs2_ordered_add_inode(ip);
1144 
1145 	if (inode == sdp->sd_rindex)
1146 		adjust_fs_space(inode);
1147 
1148 	gfs2_inplace_release(ip);
1149 
1150 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1151 		gfs2_quota_unlock(ip);
1152 
1153 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1154 		/* Deallocate blocks that were just allocated. */
1155 		loff_t hstart = round_up(pos + written, i_blocksize(inode));
1156 		loff_t hend = iomap->offset + iomap->length;
1157 
1158 		if (hstart < hend) {
1159 			truncate_pagecache_range(inode, hstart, hend - 1);
1160 			punch_hole(ip, hstart, hend - hstart);
1161 		}
1162 	}
1163 
1164 	if (unlikely(!written))
1165 		return 0;
1166 
1167 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1168 		mark_inode_dirty(inode);
1169 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1170 	return 0;
1171 }
1172 
1173 const struct iomap_ops gfs2_iomap_ops = {
1174 	.iomap_begin = gfs2_iomap_begin,
1175 	.iomap_end = gfs2_iomap_end,
1176 };
1177 
1178 /**
1179  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1180  * @inode: The inode
1181  * @lblock: The logical block number
1182  * @bh_map: The bh to be mapped
1183  * @create: True if its ok to alloc blocks to satify the request
1184  *
1185  * The size of the requested mapping is defined in bh_map->b_size.
1186  *
1187  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1188  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1189  * bh_map->b_size to indicate the size of the mapping when @lblock and
1190  * successive blocks are mapped, up to the requested size.
1191  *
1192  * Sets buffer_boundary() if a read of metadata will be required
1193  * before the next block can be mapped. Sets buffer_new() if new
1194  * blocks were allocated.
1195  *
1196  * Returns: errno
1197  */
1198 
1199 int gfs2_block_map(struct inode *inode, sector_t lblock,
1200 		   struct buffer_head *bh_map, int create)
1201 {
1202 	struct gfs2_inode *ip = GFS2_I(inode);
1203 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1204 	loff_t length = bh_map->b_size;
1205 	struct iomap iomap = { };
1206 	int ret;
1207 
1208 	clear_buffer_mapped(bh_map);
1209 	clear_buffer_new(bh_map);
1210 	clear_buffer_boundary(bh_map);
1211 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1212 
1213 	if (!create)
1214 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1215 	else
1216 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1217 	if (ret)
1218 		goto out;
1219 
1220 	if (iomap.length > bh_map->b_size) {
1221 		iomap.length = bh_map->b_size;
1222 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1223 	}
1224 	if (iomap.addr != IOMAP_NULL_ADDR)
1225 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1226 	bh_map->b_size = iomap.length;
1227 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1228 		set_buffer_boundary(bh_map);
1229 	if (iomap.flags & IOMAP_F_NEW)
1230 		set_buffer_new(bh_map);
1231 
1232 out:
1233 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1234 	return ret;
1235 }
1236 
1237 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1238 		    unsigned int *extlen)
1239 {
1240 	unsigned int blkbits = inode->i_blkbits;
1241 	struct iomap iomap = { };
1242 	unsigned int len;
1243 	int ret;
1244 
1245 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1246 			     &iomap);
1247 	if (ret)
1248 		return ret;
1249 	if (iomap.type != IOMAP_MAPPED)
1250 		return -EIO;
1251 	*dblock = iomap.addr >> blkbits;
1252 	len = iomap.length >> blkbits;
1253 	if (len < *extlen)
1254 		*extlen = len;
1255 	return 0;
1256 }
1257 
1258 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1259 		      unsigned int *extlen, bool *new)
1260 {
1261 	unsigned int blkbits = inode->i_blkbits;
1262 	struct iomap iomap = { };
1263 	unsigned int len;
1264 	int ret;
1265 
1266 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1267 			       &iomap);
1268 	if (ret)
1269 		return ret;
1270 	if (iomap.type != IOMAP_MAPPED)
1271 		return -EIO;
1272 	*dblock = iomap.addr >> blkbits;
1273 	len = iomap.length >> blkbits;
1274 	if (len < *extlen)
1275 		*extlen = len;
1276 	*new = iomap.flags & IOMAP_F_NEW;
1277 	return 0;
1278 }
1279 
1280 /*
1281  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1282  * uses iomap write to perform its actions, which begin their own transactions
1283  * (iomap_begin, page_prepare, etc.)
1284  */
1285 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1286 				 unsigned int length)
1287 {
1288 	BUG_ON(current->journal_info);
1289 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1290 }
1291 
1292 #define GFS2_JTRUNC_REVOKES 8192
1293 
1294 /**
1295  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1296  * @inode: The inode being truncated
1297  * @oldsize: The original (larger) size
1298  * @newsize: The new smaller size
1299  *
1300  * With jdata files, we have to journal a revoke for each block which is
1301  * truncated. As a result, we need to split this into separate transactions
1302  * if the number of pages being truncated gets too large.
1303  */
1304 
1305 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1306 {
1307 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1308 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1309 	u64 chunk;
1310 	int error;
1311 
1312 	while (oldsize != newsize) {
1313 		struct gfs2_trans *tr;
1314 		unsigned int offs;
1315 
1316 		chunk = oldsize - newsize;
1317 		if (chunk > max_chunk)
1318 			chunk = max_chunk;
1319 
1320 		offs = oldsize & ~PAGE_MASK;
1321 		if (offs && chunk > PAGE_SIZE)
1322 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1323 
1324 		truncate_pagecache(inode, oldsize - chunk);
1325 		oldsize -= chunk;
1326 
1327 		tr = current->journal_info;
1328 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1329 			continue;
1330 
1331 		gfs2_trans_end(sdp);
1332 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1333 		if (error)
1334 			return error;
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static int trunc_start(struct inode *inode, u64 newsize)
1341 {
1342 	struct gfs2_inode *ip = GFS2_I(inode);
1343 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1344 	struct buffer_head *dibh = NULL;
1345 	int journaled = gfs2_is_jdata(ip);
1346 	u64 oldsize = inode->i_size;
1347 	int error;
1348 
1349 	if (!gfs2_is_stuffed(ip)) {
1350 		unsigned int blocksize = i_blocksize(inode);
1351 		unsigned int offs = newsize & (blocksize - 1);
1352 		if (offs) {
1353 			error = gfs2_block_zero_range(inode, newsize,
1354 						      blocksize - offs);
1355 			if (error)
1356 				return error;
1357 		}
1358 	}
1359 	if (journaled)
1360 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1361 	else
1362 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1363 	if (error)
1364 		return error;
1365 
1366 	error = gfs2_meta_inode_buffer(ip, &dibh);
1367 	if (error)
1368 		goto out;
1369 
1370 	gfs2_trans_add_meta(ip->i_gl, dibh);
1371 
1372 	if (gfs2_is_stuffed(ip))
1373 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1374 	else
1375 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1376 
1377 	i_size_write(inode, newsize);
1378 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1379 	gfs2_dinode_out(ip, dibh->b_data);
1380 
1381 	if (journaled)
1382 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1383 	else
1384 		truncate_pagecache(inode, newsize);
1385 
1386 out:
1387 	brelse(dibh);
1388 	if (current->journal_info)
1389 		gfs2_trans_end(sdp);
1390 	return error;
1391 }
1392 
1393 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1394 		   struct iomap *iomap)
1395 {
1396 	struct metapath mp = { .mp_aheight = 1, };
1397 	int ret;
1398 
1399 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1400 	release_metapath(&mp);
1401 	return ret;
1402 }
1403 
1404 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1405 		     struct iomap *iomap)
1406 {
1407 	struct metapath mp = { .mp_aheight = 1, };
1408 	int ret;
1409 
1410 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1411 	if (!ret && iomap->type == IOMAP_HOLE)
1412 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1413 	release_metapath(&mp);
1414 	return ret;
1415 }
1416 
1417 /**
1418  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1419  * @ip: inode
1420  * @rd_gh: holder of resource group glock
1421  * @bh: buffer head to sweep
1422  * @start: starting point in bh
1423  * @end: end point in bh
1424  * @meta: true if bh points to metadata (rather than data)
1425  * @btotal: place to keep count of total blocks freed
1426  *
1427  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1428  * free, and free them all. However, we do it one rgrp at a time. If this
1429  * block has references to multiple rgrps, we break it into individual
1430  * transactions. This allows other processes to use the rgrps while we're
1431  * focused on a single one, for better concurrency / performance.
1432  * At every transaction boundary, we rewrite the inode into the journal.
1433  * That way the bitmaps are kept consistent with the inode and we can recover
1434  * if we're interrupted by power-outages.
1435  *
1436  * Returns: 0, or return code if an error occurred.
1437  *          *btotal has the total number of blocks freed
1438  */
1439 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1440 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1441 			      bool meta, u32 *btotal)
1442 {
1443 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1444 	struct gfs2_rgrpd *rgd;
1445 	struct gfs2_trans *tr;
1446 	__be64 *p;
1447 	int blks_outside_rgrp;
1448 	u64 bn, bstart, isize_blks;
1449 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1450 	int ret = 0;
1451 	bool buf_in_tr = false; /* buffer was added to transaction */
1452 
1453 more_rgrps:
1454 	rgd = NULL;
1455 	if (gfs2_holder_initialized(rd_gh)) {
1456 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1457 		gfs2_assert_withdraw(sdp,
1458 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1459 	}
1460 	blks_outside_rgrp = 0;
1461 	bstart = 0;
1462 	blen = 0;
1463 
1464 	for (p = start; p < end; p++) {
1465 		if (!*p)
1466 			continue;
1467 		bn = be64_to_cpu(*p);
1468 
1469 		if (rgd) {
1470 			if (!rgrp_contains_block(rgd, bn)) {
1471 				blks_outside_rgrp++;
1472 				continue;
1473 			}
1474 		} else {
1475 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1476 			if (unlikely(!rgd)) {
1477 				ret = -EIO;
1478 				goto out;
1479 			}
1480 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1481 						 LM_FLAG_NODE_SCOPE, rd_gh);
1482 			if (ret)
1483 				goto out;
1484 
1485 			/* Must be done with the rgrp glock held: */
1486 			if (gfs2_rs_active(&ip->i_res) &&
1487 			    rgd == ip->i_res.rs_rgd)
1488 				gfs2_rs_deltree(&ip->i_res);
1489 		}
1490 
1491 		/* The size of our transactions will be unknown until we
1492 		   actually process all the metadata blocks that relate to
1493 		   the rgrp. So we estimate. We know it can't be more than
1494 		   the dinode's i_blocks and we don't want to exceed the
1495 		   journal flush threshold, sd_log_thresh2. */
1496 		if (current->journal_info == NULL) {
1497 			unsigned int jblocks_rqsted, revokes;
1498 
1499 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1500 				RES_INDIRECT;
1501 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1502 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1503 				jblocks_rqsted +=
1504 					atomic_read(&sdp->sd_log_thresh2);
1505 			else
1506 				jblocks_rqsted += isize_blks;
1507 			revokes = jblocks_rqsted;
1508 			if (meta)
1509 				revokes += end - start;
1510 			else if (ip->i_depth)
1511 				revokes += sdp->sd_inptrs;
1512 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1513 			if (ret)
1514 				goto out_unlock;
1515 			down_write(&ip->i_rw_mutex);
1516 		}
1517 		/* check if we will exceed the transaction blocks requested */
1518 		tr = current->journal_info;
1519 		if (tr->tr_num_buf_new + RES_STATFS +
1520 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1521 			/* We set blks_outside_rgrp to ensure the loop will
1522 			   be repeated for the same rgrp, but with a new
1523 			   transaction. */
1524 			blks_outside_rgrp++;
1525 			/* This next part is tricky. If the buffer was added
1526 			   to the transaction, we've already set some block
1527 			   pointers to 0, so we better follow through and free
1528 			   them, or we will introduce corruption (so break).
1529 			   This may be impossible, or at least rare, but I
1530 			   decided to cover the case regardless.
1531 
1532 			   If the buffer was not added to the transaction
1533 			   (this call), doing so would exceed our transaction
1534 			   size, so we need to end the transaction and start a
1535 			   new one (so goto). */
1536 
1537 			if (buf_in_tr)
1538 				break;
1539 			goto out_unlock;
1540 		}
1541 
1542 		gfs2_trans_add_meta(ip->i_gl, bh);
1543 		buf_in_tr = true;
1544 		*p = 0;
1545 		if (bstart + blen == bn) {
1546 			blen++;
1547 			continue;
1548 		}
1549 		if (bstart) {
1550 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1551 			(*btotal) += blen;
1552 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1553 		}
1554 		bstart = bn;
1555 		blen = 1;
1556 	}
1557 	if (bstart) {
1558 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1559 		(*btotal) += blen;
1560 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1561 	}
1562 out_unlock:
1563 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1564 					    outside the rgrp we just processed,
1565 					    do it all over again. */
1566 		if (current->journal_info) {
1567 			struct buffer_head *dibh;
1568 
1569 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1570 			if (ret)
1571 				goto out;
1572 
1573 			/* Every transaction boundary, we rewrite the dinode
1574 			   to keep its di_blocks current in case of failure. */
1575 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1576 				current_time(&ip->i_inode);
1577 			gfs2_trans_add_meta(ip->i_gl, dibh);
1578 			gfs2_dinode_out(ip, dibh->b_data);
1579 			brelse(dibh);
1580 			up_write(&ip->i_rw_mutex);
1581 			gfs2_trans_end(sdp);
1582 			buf_in_tr = false;
1583 		}
1584 		gfs2_glock_dq_uninit(rd_gh);
1585 		cond_resched();
1586 		goto more_rgrps;
1587 	}
1588 out:
1589 	return ret;
1590 }
1591 
1592 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1593 {
1594 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1595 		return false;
1596 	return true;
1597 }
1598 
1599 /**
1600  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1601  * @sdp: The superblock
1602  * @mp: starting metapath
1603  * @h: desired height to search
1604  * @end_list: See punch_hole().
1605  * @end_aligned: See punch_hole().
1606  *
1607  * Assumes the metapath is valid (with buffers) out to height h.
1608  * Returns: true if a non-null pointer was found in the metapath buffer
1609  *          false if all remaining pointers are NULL in the buffer
1610  */
1611 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1612 			     unsigned int h,
1613 			     __u16 *end_list, unsigned int end_aligned)
1614 {
1615 	struct buffer_head *bh = mp->mp_bh[h];
1616 	__be64 *first, *ptr, *end;
1617 
1618 	first = metaptr1(h, mp);
1619 	ptr = first + mp->mp_list[h];
1620 	end = (__be64 *)(bh->b_data + bh->b_size);
1621 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1622 		bool keep_end = h < end_aligned;
1623 		end = first + end_list[h] + keep_end;
1624 	}
1625 
1626 	while (ptr < end) {
1627 		if (*ptr) { /* if we have a non-null pointer */
1628 			mp->mp_list[h] = ptr - first;
1629 			h++;
1630 			if (h < GFS2_MAX_META_HEIGHT)
1631 				mp->mp_list[h] = 0;
1632 			return true;
1633 		}
1634 		ptr++;
1635 	}
1636 	return false;
1637 }
1638 
1639 enum dealloc_states {
1640 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1641 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1642 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1643 	DEALLOC_DONE = 3,       /* process complete */
1644 };
1645 
1646 static inline void
1647 metapointer_range(struct metapath *mp, int height,
1648 		  __u16 *start_list, unsigned int start_aligned,
1649 		  __u16 *end_list, unsigned int end_aligned,
1650 		  __be64 **start, __be64 **end)
1651 {
1652 	struct buffer_head *bh = mp->mp_bh[height];
1653 	__be64 *first;
1654 
1655 	first = metaptr1(height, mp);
1656 	*start = first;
1657 	if (mp_eq_to_hgt(mp, start_list, height)) {
1658 		bool keep_start = height < start_aligned;
1659 		*start = first + start_list[height] + keep_start;
1660 	}
1661 	*end = (__be64 *)(bh->b_data + bh->b_size);
1662 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1663 		bool keep_end = height < end_aligned;
1664 		*end = first + end_list[height] + keep_end;
1665 	}
1666 }
1667 
1668 static inline bool walk_done(struct gfs2_sbd *sdp,
1669 			     struct metapath *mp, int height,
1670 			     __u16 *end_list, unsigned int end_aligned)
1671 {
1672 	__u16 end;
1673 
1674 	if (end_list) {
1675 		bool keep_end = height < end_aligned;
1676 		if (!mp_eq_to_hgt(mp, end_list, height))
1677 			return false;
1678 		end = end_list[height] + keep_end;
1679 	} else
1680 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1681 	return mp->mp_list[height] >= end;
1682 }
1683 
1684 /**
1685  * punch_hole - deallocate blocks in a file
1686  * @ip: inode to truncate
1687  * @offset: the start of the hole
1688  * @length: the size of the hole (or 0 for truncate)
1689  *
1690  * Punch a hole into a file or truncate a file at a given position.  This
1691  * function operates in whole blocks (@offset and @length are rounded
1692  * accordingly); partially filled blocks must be cleared otherwise.
1693  *
1694  * This function works from the bottom up, and from the right to the left. In
1695  * other words, it strips off the highest layer (data) before stripping any of
1696  * the metadata. Doing it this way is best in case the operation is interrupted
1697  * by power failure, etc.  The dinode is rewritten in every transaction to
1698  * guarantee integrity.
1699  */
1700 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1701 {
1702 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1703 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1704 	struct metapath mp = {};
1705 	struct buffer_head *dibh, *bh;
1706 	struct gfs2_holder rd_gh;
1707 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1708 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1709 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1710 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1711 	unsigned int start_aligned, end_aligned;
1712 	unsigned int strip_h = ip->i_height - 1;
1713 	u32 btotal = 0;
1714 	int ret, state;
1715 	int mp_h; /* metapath buffers are read in to this height */
1716 	u64 prev_bnr = 0;
1717 	__be64 *start, *end;
1718 
1719 	if (offset >= maxsize) {
1720 		/*
1721 		 * The starting point lies beyond the allocated meta-data;
1722 		 * there are no blocks do deallocate.
1723 		 */
1724 		return 0;
1725 	}
1726 
1727 	/*
1728 	 * The start position of the hole is defined by lblock, start_list, and
1729 	 * start_aligned.  The end position of the hole is defined by lend,
1730 	 * end_list, and end_aligned.
1731 	 *
1732 	 * start_aligned and end_aligned define down to which height the start
1733 	 * and end positions are aligned to the metadata tree (i.e., the
1734 	 * position is a multiple of the metadata granularity at the height
1735 	 * above).  This determines at which heights additional meta pointers
1736 	 * needs to be preserved for the remaining data.
1737 	 */
1738 
1739 	if (length) {
1740 		u64 end_offset = offset + length;
1741 		u64 lend;
1742 
1743 		/*
1744 		 * Clip the end at the maximum file size for the given height:
1745 		 * that's how far the metadata goes; files bigger than that
1746 		 * will have additional layers of indirection.
1747 		 */
1748 		if (end_offset > maxsize)
1749 			end_offset = maxsize;
1750 		lend = end_offset >> bsize_shift;
1751 
1752 		if (lblock >= lend)
1753 			return 0;
1754 
1755 		find_metapath(sdp, lend, &mp, ip->i_height);
1756 		end_list = __end_list;
1757 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1758 
1759 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1760 			if (end_list[mp_h])
1761 				break;
1762 		}
1763 		end_aligned = mp_h;
1764 	}
1765 
1766 	find_metapath(sdp, lblock, &mp, ip->i_height);
1767 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1768 
1769 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1770 		if (start_list[mp_h])
1771 			break;
1772 	}
1773 	start_aligned = mp_h;
1774 
1775 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1776 	if (ret)
1777 		return ret;
1778 
1779 	mp.mp_bh[0] = dibh;
1780 	ret = lookup_metapath(ip, &mp);
1781 	if (ret)
1782 		goto out_metapath;
1783 
1784 	/* issue read-ahead on metadata */
1785 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1786 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1787 				  end_list, end_aligned, &start, &end);
1788 		gfs2_metapath_ra(ip->i_gl, start, end);
1789 	}
1790 
1791 	if (mp.mp_aheight == ip->i_height)
1792 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1793 	else
1794 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1795 
1796 	ret = gfs2_rindex_update(sdp);
1797 	if (ret)
1798 		goto out_metapath;
1799 
1800 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1801 	if (ret)
1802 		goto out_metapath;
1803 	gfs2_holder_mark_uninitialized(&rd_gh);
1804 
1805 	mp_h = strip_h;
1806 
1807 	while (state != DEALLOC_DONE) {
1808 		switch (state) {
1809 		/* Truncate a full metapath at the given strip height.
1810 		 * Note that strip_h == mp_h in order to be in this state. */
1811 		case DEALLOC_MP_FULL:
1812 			bh = mp.mp_bh[mp_h];
1813 			gfs2_assert_withdraw(sdp, bh);
1814 			if (gfs2_assert_withdraw(sdp,
1815 						 prev_bnr != bh->b_blocknr)) {
1816 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1817 					 "s_h:%u, mp_h:%u\n",
1818 				       (unsigned long long)ip->i_no_addr,
1819 				       prev_bnr, ip->i_height, strip_h, mp_h);
1820 			}
1821 			prev_bnr = bh->b_blocknr;
1822 
1823 			if (gfs2_metatype_check(sdp, bh,
1824 						(mp_h ? GFS2_METATYPE_IN :
1825 							GFS2_METATYPE_DI))) {
1826 				ret = -EIO;
1827 				goto out;
1828 			}
1829 
1830 			/*
1831 			 * Below, passing end_aligned as 0 gives us the
1832 			 * metapointer range excluding the end point: the end
1833 			 * point is the first metapath we must not deallocate!
1834 			 */
1835 
1836 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1837 					  end_list, 0 /* end_aligned */,
1838 					  &start, &end);
1839 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1840 						 start, end,
1841 						 mp_h != ip->i_height - 1,
1842 						 &btotal);
1843 
1844 			/* If we hit an error or just swept dinode buffer,
1845 			   just exit. */
1846 			if (ret || !mp_h) {
1847 				state = DEALLOC_DONE;
1848 				break;
1849 			}
1850 			state = DEALLOC_MP_LOWER;
1851 			break;
1852 
1853 		/* lower the metapath strip height */
1854 		case DEALLOC_MP_LOWER:
1855 			/* We're done with the current buffer, so release it,
1856 			   unless it's the dinode buffer. Then back up to the
1857 			   previous pointer. */
1858 			if (mp_h) {
1859 				brelse(mp.mp_bh[mp_h]);
1860 				mp.mp_bh[mp_h] = NULL;
1861 			}
1862 			/* If we can't get any lower in height, we've stripped
1863 			   off all we can. Next step is to back up and start
1864 			   stripping the previous level of metadata. */
1865 			if (mp_h == 0) {
1866 				strip_h--;
1867 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1868 				mp_h = strip_h;
1869 				state = DEALLOC_FILL_MP;
1870 				break;
1871 			}
1872 			mp.mp_list[mp_h] = 0;
1873 			mp_h--; /* search one metadata height down */
1874 			mp.mp_list[mp_h]++;
1875 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1876 				break;
1877 			/* Here we've found a part of the metapath that is not
1878 			 * allocated. We need to search at that height for the
1879 			 * next non-null pointer. */
1880 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1881 				state = DEALLOC_FILL_MP;
1882 				mp_h++;
1883 			}
1884 			/* No more non-null pointers at this height. Back up
1885 			   to the previous height and try again. */
1886 			break; /* loop around in the same state */
1887 
1888 		/* Fill the metapath with buffers to the given height. */
1889 		case DEALLOC_FILL_MP:
1890 			/* Fill the buffers out to the current height. */
1891 			ret = fillup_metapath(ip, &mp, mp_h);
1892 			if (ret < 0)
1893 				goto out;
1894 
1895 			/* On the first pass, issue read-ahead on metadata. */
1896 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1897 				unsigned int height = mp.mp_aheight - 1;
1898 
1899 				/* No read-ahead for data blocks. */
1900 				if (mp.mp_aheight - 1 == strip_h)
1901 					height--;
1902 
1903 				for (; height >= mp.mp_aheight - ret; height--) {
1904 					metapointer_range(&mp, height,
1905 							  start_list, start_aligned,
1906 							  end_list, end_aligned,
1907 							  &start, &end);
1908 					gfs2_metapath_ra(ip->i_gl, start, end);
1909 				}
1910 			}
1911 
1912 			/* If buffers found for the entire strip height */
1913 			if (mp.mp_aheight - 1 == strip_h) {
1914 				state = DEALLOC_MP_FULL;
1915 				break;
1916 			}
1917 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1918 				mp_h = mp.mp_aheight - 1;
1919 
1920 			/* If we find a non-null block pointer, crawl a bit
1921 			   higher up in the metapath and try again, otherwise
1922 			   we need to look lower for a new starting point. */
1923 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1924 				mp_h++;
1925 			else
1926 				state = DEALLOC_MP_LOWER;
1927 			break;
1928 		}
1929 	}
1930 
1931 	if (btotal) {
1932 		if (current->journal_info == NULL) {
1933 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1934 					       RES_QUOTA, 0);
1935 			if (ret)
1936 				goto out;
1937 			down_write(&ip->i_rw_mutex);
1938 		}
1939 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1940 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1941 				  ip->i_inode.i_gid);
1942 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1943 		gfs2_trans_add_meta(ip->i_gl, dibh);
1944 		gfs2_dinode_out(ip, dibh->b_data);
1945 		up_write(&ip->i_rw_mutex);
1946 		gfs2_trans_end(sdp);
1947 	}
1948 
1949 out:
1950 	if (gfs2_holder_initialized(&rd_gh))
1951 		gfs2_glock_dq_uninit(&rd_gh);
1952 	if (current->journal_info) {
1953 		up_write(&ip->i_rw_mutex);
1954 		gfs2_trans_end(sdp);
1955 		cond_resched();
1956 	}
1957 	gfs2_quota_unhold(ip);
1958 out_metapath:
1959 	release_metapath(&mp);
1960 	return ret;
1961 }
1962 
1963 static int trunc_end(struct gfs2_inode *ip)
1964 {
1965 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1966 	struct buffer_head *dibh;
1967 	int error;
1968 
1969 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1970 	if (error)
1971 		return error;
1972 
1973 	down_write(&ip->i_rw_mutex);
1974 
1975 	error = gfs2_meta_inode_buffer(ip, &dibh);
1976 	if (error)
1977 		goto out;
1978 
1979 	if (!i_size_read(&ip->i_inode)) {
1980 		ip->i_height = 0;
1981 		ip->i_goal = ip->i_no_addr;
1982 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1983 		gfs2_ordered_del_inode(ip);
1984 	}
1985 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1986 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1987 
1988 	gfs2_trans_add_meta(ip->i_gl, dibh);
1989 	gfs2_dinode_out(ip, dibh->b_data);
1990 	brelse(dibh);
1991 
1992 out:
1993 	up_write(&ip->i_rw_mutex);
1994 	gfs2_trans_end(sdp);
1995 	return error;
1996 }
1997 
1998 /**
1999  * do_shrink - make a file smaller
2000  * @inode: the inode
2001  * @newsize: the size to make the file
2002  *
2003  * Called with an exclusive lock on @inode. The @size must
2004  * be equal to or smaller than the current inode size.
2005  *
2006  * Returns: errno
2007  */
2008 
2009 static int do_shrink(struct inode *inode, u64 newsize)
2010 {
2011 	struct gfs2_inode *ip = GFS2_I(inode);
2012 	int error;
2013 
2014 	error = trunc_start(inode, newsize);
2015 	if (error < 0)
2016 		return error;
2017 	if (gfs2_is_stuffed(ip))
2018 		return 0;
2019 
2020 	error = punch_hole(ip, newsize, 0);
2021 	if (error == 0)
2022 		error = trunc_end(ip);
2023 
2024 	return error;
2025 }
2026 
2027 void gfs2_trim_blocks(struct inode *inode)
2028 {
2029 	int ret;
2030 
2031 	ret = do_shrink(inode, inode->i_size);
2032 	WARN_ON(ret != 0);
2033 }
2034 
2035 /**
2036  * do_grow - Touch and update inode size
2037  * @inode: The inode
2038  * @size: The new size
2039  *
2040  * This function updates the timestamps on the inode and
2041  * may also increase the size of the inode. This function
2042  * must not be called with @size any smaller than the current
2043  * inode size.
2044  *
2045  * Although it is not strictly required to unstuff files here,
2046  * earlier versions of GFS2 have a bug in the stuffed file reading
2047  * code which will result in a buffer overrun if the size is larger
2048  * than the max stuffed file size. In order to prevent this from
2049  * occurring, such files are unstuffed, but in other cases we can
2050  * just update the inode size directly.
2051  *
2052  * Returns: 0 on success, or -ve on error
2053  */
2054 
2055 static int do_grow(struct inode *inode, u64 size)
2056 {
2057 	struct gfs2_inode *ip = GFS2_I(inode);
2058 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2059 	struct gfs2_alloc_parms ap = { .target = 1, };
2060 	struct buffer_head *dibh;
2061 	int error;
2062 	int unstuff = 0;
2063 
2064 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2065 		error = gfs2_quota_lock_check(ip, &ap);
2066 		if (error)
2067 			return error;
2068 
2069 		error = gfs2_inplace_reserve(ip, &ap);
2070 		if (error)
2071 			goto do_grow_qunlock;
2072 		unstuff = 1;
2073 	}
2074 
2075 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2076 				 (unstuff &&
2077 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2078 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2079 				  0 : RES_QUOTA), 0);
2080 	if (error)
2081 		goto do_grow_release;
2082 
2083 	if (unstuff) {
2084 		error = gfs2_unstuff_dinode(ip);
2085 		if (error)
2086 			goto do_end_trans;
2087 	}
2088 
2089 	error = gfs2_meta_inode_buffer(ip, &dibh);
2090 	if (error)
2091 		goto do_end_trans;
2092 
2093 	truncate_setsize(inode, size);
2094 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2095 	gfs2_trans_add_meta(ip->i_gl, dibh);
2096 	gfs2_dinode_out(ip, dibh->b_data);
2097 	brelse(dibh);
2098 
2099 do_end_trans:
2100 	gfs2_trans_end(sdp);
2101 do_grow_release:
2102 	if (unstuff) {
2103 		gfs2_inplace_release(ip);
2104 do_grow_qunlock:
2105 		gfs2_quota_unlock(ip);
2106 	}
2107 	return error;
2108 }
2109 
2110 /**
2111  * gfs2_setattr_size - make a file a given size
2112  * @inode: the inode
2113  * @newsize: the size to make the file
2114  *
2115  * The file size can grow, shrink, or stay the same size. This
2116  * is called holding i_rwsem and an exclusive glock on the inode
2117  * in question.
2118  *
2119  * Returns: errno
2120  */
2121 
2122 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2123 {
2124 	struct gfs2_inode *ip = GFS2_I(inode);
2125 	int ret;
2126 
2127 	BUG_ON(!S_ISREG(inode->i_mode));
2128 
2129 	ret = inode_newsize_ok(inode, newsize);
2130 	if (ret)
2131 		return ret;
2132 
2133 	inode_dio_wait(inode);
2134 
2135 	ret = gfs2_qa_get(ip);
2136 	if (ret)
2137 		goto out;
2138 
2139 	if (newsize >= inode->i_size) {
2140 		ret = do_grow(inode, newsize);
2141 		goto out;
2142 	}
2143 
2144 	ret = do_shrink(inode, newsize);
2145 out:
2146 	gfs2_rs_delete(ip);
2147 	gfs2_qa_put(ip);
2148 	return ret;
2149 }
2150 
2151 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2152 {
2153 	int error;
2154 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2155 	if (!error)
2156 		error = trunc_end(ip);
2157 	return error;
2158 }
2159 
2160 int gfs2_file_dealloc(struct gfs2_inode *ip)
2161 {
2162 	return punch_hole(ip, 0, 0);
2163 }
2164 
2165 /**
2166  * gfs2_free_journal_extents - Free cached journal bmap info
2167  * @jd: The journal
2168  *
2169  */
2170 
2171 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2172 {
2173 	struct gfs2_journal_extent *jext;
2174 
2175 	while(!list_empty(&jd->extent_list)) {
2176 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2177 		list_del(&jext->list);
2178 		kfree(jext);
2179 	}
2180 }
2181 
2182 /**
2183  * gfs2_add_jextent - Add or merge a new extent to extent cache
2184  * @jd: The journal descriptor
2185  * @lblock: The logical block at start of new extent
2186  * @dblock: The physical block at start of new extent
2187  * @blocks: Size of extent in fs blocks
2188  *
2189  * Returns: 0 on success or -ENOMEM
2190  */
2191 
2192 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2193 {
2194 	struct gfs2_journal_extent *jext;
2195 
2196 	if (!list_empty(&jd->extent_list)) {
2197 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2198 		if ((jext->dblock + jext->blocks) == dblock) {
2199 			jext->blocks += blocks;
2200 			return 0;
2201 		}
2202 	}
2203 
2204 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2205 	if (jext == NULL)
2206 		return -ENOMEM;
2207 	jext->dblock = dblock;
2208 	jext->lblock = lblock;
2209 	jext->blocks = blocks;
2210 	list_add_tail(&jext->list, &jd->extent_list);
2211 	jd->nr_extents++;
2212 	return 0;
2213 }
2214 
2215 /**
2216  * gfs2_map_journal_extents - Cache journal bmap info
2217  * @sdp: The super block
2218  * @jd: The journal to map
2219  *
2220  * Create a reusable "extent" mapping from all logical
2221  * blocks to all physical blocks for the given journal.  This will save
2222  * us time when writing journal blocks.  Most journals will have only one
2223  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2224  * arranges the journal blocks sequentially to maximize performance.
2225  * So the extent would map the first block for the entire file length.
2226  * However, gfs2_jadd can happen while file activity is happening, so
2227  * those journals may not be sequential.  Less likely is the case where
2228  * the users created their own journals by mounting the metafs and
2229  * laying it out.  But it's still possible.  These journals might have
2230  * several extents.
2231  *
2232  * Returns: 0 on success, or error on failure
2233  */
2234 
2235 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2236 {
2237 	u64 lblock = 0;
2238 	u64 lblock_stop;
2239 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2240 	struct buffer_head bh;
2241 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2242 	u64 size;
2243 	int rc;
2244 	ktime_t start, end;
2245 
2246 	start = ktime_get();
2247 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2248 	size = (lblock_stop - lblock) << shift;
2249 	jd->nr_extents = 0;
2250 	WARN_ON(!list_empty(&jd->extent_list));
2251 
2252 	do {
2253 		bh.b_state = 0;
2254 		bh.b_blocknr = 0;
2255 		bh.b_size = size;
2256 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2257 		if (rc || !buffer_mapped(&bh))
2258 			goto fail;
2259 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2260 		if (rc)
2261 			goto fail;
2262 		size -= bh.b_size;
2263 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2264 	} while(size > 0);
2265 
2266 	end = ktime_get();
2267 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2268 		jd->nr_extents, ktime_ms_delta(end, start));
2269 	return 0;
2270 
2271 fail:
2272 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2273 		rc, jd->jd_jid,
2274 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2275 		jd->nr_extents);
2276 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2277 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2278 		bh.b_state, (unsigned long long)bh.b_size);
2279 	gfs2_free_journal_extents(jd);
2280 	return rc;
2281 }
2282 
2283 /**
2284  * gfs2_write_alloc_required - figure out if a write will require an allocation
2285  * @ip: the file being written to
2286  * @offset: the offset to write to
2287  * @len: the number of bytes being written
2288  *
2289  * Returns: 1 if an alloc is required, 0 otherwise
2290  */
2291 
2292 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2293 			      unsigned int len)
2294 {
2295 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2296 	struct buffer_head bh;
2297 	unsigned int shift;
2298 	u64 lblock, lblock_stop, size;
2299 	u64 end_of_file;
2300 
2301 	if (!len)
2302 		return 0;
2303 
2304 	if (gfs2_is_stuffed(ip)) {
2305 		if (offset + len > gfs2_max_stuffed_size(ip))
2306 			return 1;
2307 		return 0;
2308 	}
2309 
2310 	shift = sdp->sd_sb.sb_bsize_shift;
2311 	BUG_ON(gfs2_is_dir(ip));
2312 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2313 	lblock = offset >> shift;
2314 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2315 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2316 		return 1;
2317 
2318 	size = (lblock_stop - lblock) << shift;
2319 	do {
2320 		bh.b_state = 0;
2321 		bh.b_size = size;
2322 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2323 		if (!buffer_mapped(&bh))
2324 			return 1;
2325 		size -= bh.b_size;
2326 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2327 	} while(size > 0);
2328 
2329 	return 0;
2330 }
2331 
2332 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2333 {
2334 	struct gfs2_inode *ip = GFS2_I(inode);
2335 	struct buffer_head *dibh;
2336 	int error;
2337 
2338 	if (offset >= inode->i_size)
2339 		return 0;
2340 	if (offset + length > inode->i_size)
2341 		length = inode->i_size - offset;
2342 
2343 	error = gfs2_meta_inode_buffer(ip, &dibh);
2344 	if (error)
2345 		return error;
2346 	gfs2_trans_add_meta(ip->i_gl, dibh);
2347 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2348 	       length);
2349 	brelse(dibh);
2350 	return 0;
2351 }
2352 
2353 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2354 					 loff_t length)
2355 {
2356 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2357 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2358 	int error;
2359 
2360 	while (length) {
2361 		struct gfs2_trans *tr;
2362 		loff_t chunk;
2363 		unsigned int offs;
2364 
2365 		chunk = length;
2366 		if (chunk > max_chunk)
2367 			chunk = max_chunk;
2368 
2369 		offs = offset & ~PAGE_MASK;
2370 		if (offs && chunk > PAGE_SIZE)
2371 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2372 
2373 		truncate_pagecache_range(inode, offset, chunk);
2374 		offset += chunk;
2375 		length -= chunk;
2376 
2377 		tr = current->journal_info;
2378 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2379 			continue;
2380 
2381 		gfs2_trans_end(sdp);
2382 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2383 		if (error)
2384 			return error;
2385 	}
2386 	return 0;
2387 }
2388 
2389 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2390 {
2391 	struct inode *inode = file_inode(file);
2392 	struct gfs2_inode *ip = GFS2_I(inode);
2393 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2394 	unsigned int blocksize = i_blocksize(inode);
2395 	loff_t start, end;
2396 	int error;
2397 
2398 	if (!gfs2_is_stuffed(ip)) {
2399 		unsigned int start_off, end_len;
2400 
2401 		start_off = offset & (blocksize - 1);
2402 		end_len = (offset + length) & (blocksize - 1);
2403 		if (start_off) {
2404 			unsigned int len = length;
2405 			if (length > blocksize - start_off)
2406 				len = blocksize - start_off;
2407 			error = gfs2_block_zero_range(inode, offset, len);
2408 			if (error)
2409 				goto out;
2410 			if (start_off + length < blocksize)
2411 				end_len = 0;
2412 		}
2413 		if (end_len) {
2414 			error = gfs2_block_zero_range(inode,
2415 				offset + length - end_len, end_len);
2416 			if (error)
2417 				goto out;
2418 		}
2419 	}
2420 
2421 	start = round_down(offset, blocksize);
2422 	end = round_up(offset + length, blocksize) - 1;
2423 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2424 	if (error)
2425 		return error;
2426 
2427 	if (gfs2_is_jdata(ip))
2428 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2429 					 GFS2_JTRUNC_REVOKES);
2430 	else
2431 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2432 	if (error)
2433 		return error;
2434 
2435 	if (gfs2_is_stuffed(ip)) {
2436 		error = stuffed_zero_range(inode, offset, length);
2437 		if (error)
2438 			goto out;
2439 	}
2440 
2441 	if (gfs2_is_jdata(ip)) {
2442 		BUG_ON(!current->journal_info);
2443 		gfs2_journaled_truncate_range(inode, offset, length);
2444 	} else
2445 		truncate_pagecache_range(inode, offset, offset + length - 1);
2446 
2447 	file_update_time(file);
2448 	mark_inode_dirty(inode);
2449 
2450 	if (current->journal_info)
2451 		gfs2_trans_end(sdp);
2452 
2453 	if (!gfs2_is_stuffed(ip))
2454 		error = punch_hole(ip, offset, length);
2455 
2456 out:
2457 	if (current->journal_info)
2458 		gfs2_trans_end(sdp);
2459 	return error;
2460 }
2461 
2462 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2463 		loff_t offset)
2464 {
2465 	int ret;
2466 
2467 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2468 		return -EIO;
2469 
2470 	if (offset >= wpc->iomap.offset &&
2471 	    offset < wpc->iomap.offset + wpc->iomap.length)
2472 		return 0;
2473 
2474 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2475 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2476 	return ret;
2477 }
2478 
2479 const struct iomap_writeback_ops gfs2_writeback_ops = {
2480 	.map_blocks		= gfs2_map_blocks,
2481 };
2482