xref: /linux/fs/gfs2/bmap.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 
60 	if (!PageUptodate(page)) {
61 		void *kaddr = kmap(page);
62 		u64 dsize = i_size_read(inode);
63 
64 		if (dsize > gfs2_max_stuffed_size(ip))
65 			dsize = gfs2_max_stuffed_size(ip);
66 
67 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
68 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
69 		kunmap(page);
70 
71 		SetPageUptodate(page);
72 	}
73 
74 	if (gfs2_is_jdata(ip)) {
75 		struct buffer_head *bh;
76 
77 		if (!page_has_buffers(page))
78 			create_empty_buffers(page, BIT(inode->i_blkbits),
79 					     BIT(BH_Uptodate));
80 
81 		bh = page_buffers(page);
82 		if (!buffer_mapped(bh))
83 			map_bh(bh, inode->i_sb, block);
84 
85 		set_buffer_uptodate(bh);
86 		gfs2_trans_add_data(ip->i_gl, bh);
87 	} else {
88 		set_page_dirty(page);
89 		gfs2_ordered_add_inode(ip);
90 	}
91 
92 	return 0;
93 }
94 
95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
96 {
97 	struct buffer_head *bh, *dibh;
98 	struct gfs2_dinode *di;
99 	u64 block = 0;
100 	int isdir = gfs2_is_dir(ip);
101 	int error;
102 
103 	error = gfs2_meta_inode_buffer(ip, &dibh);
104 	if (error)
105 		return error;
106 
107 	if (i_size_read(&ip->i_inode)) {
108 		/* Get a free block, fill it with the stuffed data,
109 		   and write it out to disk */
110 
111 		unsigned int n = 1;
112 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
113 		if (error)
114 			goto out_brelse;
115 		if (isdir) {
116 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
117 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
118 			if (error)
119 				goto out_brelse;
120 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
121 					      dibh, sizeof(struct gfs2_dinode));
122 			brelse(bh);
123 		} else {
124 			error = gfs2_unstuffer_page(ip, dibh, block, page);
125 			if (error)
126 				goto out_brelse;
127 		}
128 	}
129 
130 	/*  Set up the pointer to the new block  */
131 
132 	gfs2_trans_add_meta(ip->i_gl, dibh);
133 	di = (struct gfs2_dinode *)dibh->b_data;
134 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
135 
136 	if (i_size_read(&ip->i_inode)) {
137 		*(__be64 *)(di + 1) = cpu_to_be64(block);
138 		gfs2_add_inode_blocks(&ip->i_inode, 1);
139 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
140 	}
141 
142 	ip->i_height = 1;
143 	di->di_height = cpu_to_be16(1);
144 
145 out_brelse:
146 	brelse(dibh);
147 	return error;
148 }
149 
150 /**
151  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
152  * @ip: The GFS2 inode to unstuff
153  *
154  * This routine unstuffs a dinode and returns it to a "normal" state such
155  * that the height can be grown in the traditional way.
156  *
157  * Returns: errno
158  */
159 
160 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
161 {
162 	struct inode *inode = &ip->i_inode;
163 	struct page *page;
164 	int error;
165 
166 	down_write(&ip->i_rw_mutex);
167 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
168 	error = -ENOMEM;
169 	if (!page)
170 		goto out;
171 	error = __gfs2_unstuff_inode(ip, page);
172 	unlock_page(page);
173 	put_page(page);
174 out:
175 	up_write(&ip->i_rw_mutex);
176 	return error;
177 }
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline void gfs2_indirect_init(struct metapath *mp,
610 				      struct gfs2_glock *gl, unsigned int i,
611 				      unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 }
625 
626 enum alloc_state {
627 	ALLOC_DATA = 0,
628 	ALLOC_GROW_DEPTH = 1,
629 	ALLOC_GROW_HEIGHT = 2,
630 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
631 };
632 
633 /**
634  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
635  * @inode: The GFS2 inode
636  * @iomap: The iomap structure
637  * @mp: The metapath, with proper height information calculated
638  *
639  * In this routine we may have to alloc:
640  *   i) Indirect blocks to grow the metadata tree height
641  *  ii) Indirect blocks to fill in lower part of the metadata tree
642  * iii) Data blocks
643  *
644  * This function is called after __gfs2_iomap_get, which works out the
645  * total number of blocks which we need via gfs2_alloc_size.
646  *
647  * We then do the actual allocation asking for an extent at a time (if
648  * enough contiguous free blocks are available, there will only be one
649  * allocation request per call) and uses the state machine to initialise
650  * the blocks in order.
651  *
652  * Right now, this function will allocate at most one indirect block
653  * worth of data -- with a default block size of 4K, that's slightly
654  * less than 2M.  If this limitation is ever removed to allow huge
655  * allocations, we would probably still want to limit the iomap size we
656  * return to avoid stalling other tasks during huge writes; the next
657  * iomap iteration would then find the blocks already allocated.
658  *
659  * Returns: errno on error
660  */
661 
662 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
663 			      struct metapath *mp)
664 {
665 	struct gfs2_inode *ip = GFS2_I(inode);
666 	struct gfs2_sbd *sdp = GFS2_SB(inode);
667 	struct buffer_head *dibh = mp->mp_bh[0];
668 	u64 bn;
669 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
670 	size_t dblks = iomap->length >> inode->i_blkbits;
671 	const unsigned end_of_metadata = mp->mp_fheight - 1;
672 	int ret;
673 	enum alloc_state state;
674 	__be64 *ptr;
675 	__be64 zero_bn = 0;
676 
677 	BUG_ON(mp->mp_aheight < 1);
678 	BUG_ON(dibh == NULL);
679 	BUG_ON(dblks < 1);
680 
681 	gfs2_trans_add_meta(ip->i_gl, dibh);
682 
683 	down_write(&ip->i_rw_mutex);
684 
685 	if (mp->mp_fheight == mp->mp_aheight) {
686 		/* Bottom indirect block exists */
687 		state = ALLOC_DATA;
688 	} else {
689 		/* Need to allocate indirect blocks */
690 		if (mp->mp_fheight == ip->i_height) {
691 			/* Writing into existing tree, extend tree down */
692 			iblks = mp->mp_fheight - mp->mp_aheight;
693 			state = ALLOC_GROW_DEPTH;
694 		} else {
695 			/* Building up tree height */
696 			state = ALLOC_GROW_HEIGHT;
697 			iblks = mp->mp_fheight - ip->i_height;
698 			branch_start = metapath_branch_start(mp);
699 			iblks += (mp->mp_fheight - branch_start);
700 		}
701 	}
702 
703 	/* start of the second part of the function (state machine) */
704 
705 	blks = dblks + iblks;
706 	i = mp->mp_aheight;
707 	do {
708 		n = blks - alloced;
709 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
710 		if (ret)
711 			goto out;
712 		alloced += n;
713 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
714 			gfs2_trans_remove_revoke(sdp, bn, n);
715 		switch (state) {
716 		/* Growing height of tree */
717 		case ALLOC_GROW_HEIGHT:
718 			if (i == 1) {
719 				ptr = (__be64 *)(dibh->b_data +
720 						 sizeof(struct gfs2_dinode));
721 				zero_bn = *ptr;
722 			}
723 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
724 			     i++, n--)
725 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
726 			if (i - 1 == mp->mp_fheight - ip->i_height) {
727 				i--;
728 				gfs2_buffer_copy_tail(mp->mp_bh[i],
729 						sizeof(struct gfs2_meta_header),
730 						dibh, sizeof(struct gfs2_dinode));
731 				gfs2_buffer_clear_tail(dibh,
732 						sizeof(struct gfs2_dinode) +
733 						sizeof(__be64));
734 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
735 					sizeof(struct gfs2_meta_header));
736 				*ptr = zero_bn;
737 				state = ALLOC_GROW_DEPTH;
738 				for(i = branch_start; i < mp->mp_fheight; i++) {
739 					if (mp->mp_bh[i] == NULL)
740 						break;
741 					brelse(mp->mp_bh[i]);
742 					mp->mp_bh[i] = NULL;
743 				}
744 				i = branch_start;
745 			}
746 			if (n == 0)
747 				break;
748 			fallthrough;	/* To branching from existing tree */
749 		case ALLOC_GROW_DEPTH:
750 			if (i > 1 && i < mp->mp_fheight)
751 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
752 			for (; i < mp->mp_fheight && n > 0; i++, n--)
753 				gfs2_indirect_init(mp, ip->i_gl, i,
754 						   mp->mp_list[i-1], bn++);
755 			if (i == mp->mp_fheight)
756 				state = ALLOC_DATA;
757 			if (n == 0)
758 				break;
759 			fallthrough;	/* To tree complete, adding data blocks */
760 		case ALLOC_DATA:
761 			BUG_ON(n > dblks);
762 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
763 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
764 			dblks = n;
765 			ptr = metapointer(end_of_metadata, mp);
766 			iomap->addr = bn << inode->i_blkbits;
767 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
768 			while (n-- > 0)
769 				*ptr++ = cpu_to_be64(bn++);
770 			break;
771 		}
772 	} while (iomap->addr == IOMAP_NULL_ADDR);
773 
774 	iomap->type = IOMAP_MAPPED;
775 	iomap->length = (u64)dblks << inode->i_blkbits;
776 	ip->i_height = mp->mp_fheight;
777 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
778 	gfs2_dinode_out(ip, dibh->b_data);
779 out:
780 	up_write(&ip->i_rw_mutex);
781 	return ret;
782 }
783 
784 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
785 
786 /**
787  * gfs2_alloc_size - Compute the maximum allocation size
788  * @inode: The inode
789  * @mp: The metapath
790  * @size: Requested size in blocks
791  *
792  * Compute the maximum size of the next allocation at @mp.
793  *
794  * Returns: size in blocks
795  */
796 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
797 {
798 	struct gfs2_inode *ip = GFS2_I(inode);
799 	struct gfs2_sbd *sdp = GFS2_SB(inode);
800 	const __be64 *first, *ptr, *end;
801 
802 	/*
803 	 * For writes to stuffed files, this function is called twice via
804 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
805 	 * first time needs to be large enough to get the reservation and
806 	 * allocation sizes right.  The size we return the second time must
807 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
808 	 */
809 
810 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
811 		unsigned int maxsize = mp->mp_fheight > 1 ?
812 			sdp->sd_inptrs : sdp->sd_diptrs;
813 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
814 		if (size > maxsize)
815 			size = maxsize;
816 		return size;
817 	}
818 
819 	first = metapointer(ip->i_height - 1, mp);
820 	end = metaend(ip->i_height - 1, mp);
821 	if (end - first > size)
822 		end = first + size;
823 	for (ptr = first; ptr < end; ptr++) {
824 		if (*ptr)
825 			break;
826 	}
827 	return ptr - first;
828 }
829 
830 /**
831  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
832  * @inode: The inode
833  * @pos: Starting position in bytes
834  * @length: Length to map, in bytes
835  * @flags: iomap flags
836  * @iomap: The iomap structure
837  * @mp: The metapath
838  *
839  * Returns: errno
840  */
841 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
842 			    unsigned flags, struct iomap *iomap,
843 			    struct metapath *mp)
844 {
845 	struct gfs2_inode *ip = GFS2_I(inode);
846 	struct gfs2_sbd *sdp = GFS2_SB(inode);
847 	loff_t size = i_size_read(inode);
848 	__be64 *ptr;
849 	sector_t lblock;
850 	sector_t lblock_stop;
851 	int ret;
852 	int eob;
853 	u64 len;
854 	struct buffer_head *dibh = NULL, *bh;
855 	u8 height;
856 
857 	if (!length)
858 		return -EINVAL;
859 
860 	down_read(&ip->i_rw_mutex);
861 
862 	ret = gfs2_meta_inode_buffer(ip, &dibh);
863 	if (ret)
864 		goto unlock;
865 	mp->mp_bh[0] = dibh;
866 
867 	if (gfs2_is_stuffed(ip)) {
868 		if (flags & IOMAP_WRITE) {
869 			loff_t max_size = gfs2_max_stuffed_size(ip);
870 
871 			if (pos + length > max_size)
872 				goto unstuff;
873 			iomap->length = max_size;
874 		} else {
875 			if (pos >= size) {
876 				if (flags & IOMAP_REPORT) {
877 					ret = -ENOENT;
878 					goto unlock;
879 				} else {
880 					iomap->offset = pos;
881 					iomap->length = length;
882 					goto hole_found;
883 				}
884 			}
885 			iomap->length = size;
886 		}
887 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
888 			      sizeof(struct gfs2_dinode);
889 		iomap->type = IOMAP_INLINE;
890 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
891 		goto out;
892 	}
893 
894 unstuff:
895 	lblock = pos >> inode->i_blkbits;
896 	iomap->offset = lblock << inode->i_blkbits;
897 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
898 	len = lblock_stop - lblock + 1;
899 	iomap->length = len << inode->i_blkbits;
900 
901 	height = ip->i_height;
902 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
903 		height++;
904 	find_metapath(sdp, lblock, mp, height);
905 	if (height > ip->i_height || gfs2_is_stuffed(ip))
906 		goto do_alloc;
907 
908 	ret = lookup_metapath(ip, mp);
909 	if (ret)
910 		goto unlock;
911 
912 	if (mp->mp_aheight != ip->i_height)
913 		goto do_alloc;
914 
915 	ptr = metapointer(ip->i_height - 1, mp);
916 	if (*ptr == 0)
917 		goto do_alloc;
918 
919 	bh = mp->mp_bh[ip->i_height - 1];
920 	len = gfs2_extent_length(bh, ptr, len, &eob);
921 
922 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
923 	iomap->length = len << inode->i_blkbits;
924 	iomap->type = IOMAP_MAPPED;
925 	iomap->flags |= IOMAP_F_MERGED;
926 	if (eob)
927 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
928 
929 out:
930 	iomap->bdev = inode->i_sb->s_bdev;
931 unlock:
932 	up_read(&ip->i_rw_mutex);
933 	return ret;
934 
935 do_alloc:
936 	if (flags & IOMAP_REPORT) {
937 		if (pos >= size)
938 			ret = -ENOENT;
939 		else if (height == ip->i_height)
940 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
941 		else
942 			iomap->length = size - iomap->offset;
943 	} else if (flags & IOMAP_WRITE) {
944 		u64 alloc_size;
945 
946 		if (flags & IOMAP_DIRECT)
947 			goto out;  /* (see gfs2_file_direct_write) */
948 
949 		len = gfs2_alloc_size(inode, mp, len);
950 		alloc_size = len << inode->i_blkbits;
951 		if (alloc_size < iomap->length)
952 			iomap->length = alloc_size;
953 	} else {
954 		if (pos < size && height == ip->i_height)
955 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
956 	}
957 hole_found:
958 	iomap->addr = IOMAP_NULL_ADDR;
959 	iomap->type = IOMAP_HOLE;
960 	goto out;
961 }
962 
963 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
964 				   unsigned len)
965 {
966 	unsigned int blockmask = i_blocksize(inode) - 1;
967 	struct gfs2_sbd *sdp = GFS2_SB(inode);
968 	unsigned int blocks;
969 
970 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
971 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
972 }
973 
974 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
975 				 unsigned copied, struct page *page)
976 {
977 	struct gfs2_trans *tr = current->journal_info;
978 	struct gfs2_inode *ip = GFS2_I(inode);
979 	struct gfs2_sbd *sdp = GFS2_SB(inode);
980 
981 	if (page && !gfs2_is_stuffed(ip))
982 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
983 
984 	if (tr->tr_num_buf_new)
985 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
986 
987 	gfs2_trans_end(sdp);
988 }
989 
990 static const struct iomap_page_ops gfs2_iomap_page_ops = {
991 	.page_prepare = gfs2_iomap_page_prepare,
992 	.page_done = gfs2_iomap_page_done,
993 };
994 
995 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
996 				  loff_t length, unsigned flags,
997 				  struct iomap *iomap,
998 				  struct metapath *mp)
999 {
1000 	struct gfs2_inode *ip = GFS2_I(inode);
1001 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1002 	bool unstuff;
1003 	int ret;
1004 
1005 	unstuff = gfs2_is_stuffed(ip) &&
1006 		  pos + length > gfs2_max_stuffed_size(ip);
1007 
1008 	if (unstuff || iomap->type == IOMAP_HOLE) {
1009 		unsigned int data_blocks, ind_blocks;
1010 		struct gfs2_alloc_parms ap = {};
1011 		unsigned int rblocks;
1012 		struct gfs2_trans *tr;
1013 
1014 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1015 				       &ind_blocks);
1016 		ap.target = data_blocks + ind_blocks;
1017 		ret = gfs2_quota_lock_check(ip, &ap);
1018 		if (ret)
1019 			return ret;
1020 
1021 		ret = gfs2_inplace_reserve(ip, &ap);
1022 		if (ret)
1023 			goto out_qunlock;
1024 
1025 		rblocks = RES_DINODE + ind_blocks;
1026 		if (gfs2_is_jdata(ip))
1027 			rblocks += data_blocks;
1028 		if (ind_blocks || data_blocks)
1029 			rblocks += RES_STATFS + RES_QUOTA;
1030 		if (inode == sdp->sd_rindex)
1031 			rblocks += 2 * RES_STATFS;
1032 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1033 
1034 		ret = gfs2_trans_begin(sdp, rblocks,
1035 				       iomap->length >> inode->i_blkbits);
1036 		if (ret)
1037 			goto out_trans_fail;
1038 
1039 		if (unstuff) {
1040 			ret = gfs2_unstuff_dinode(ip);
1041 			if (ret)
1042 				goto out_trans_end;
1043 			release_metapath(mp);
1044 			ret = __gfs2_iomap_get(inode, iomap->offset,
1045 					       iomap->length, flags, iomap, mp);
1046 			if (ret)
1047 				goto out_trans_end;
1048 		}
1049 
1050 		if (iomap->type == IOMAP_HOLE) {
1051 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1052 			if (ret) {
1053 				gfs2_trans_end(sdp);
1054 				gfs2_inplace_release(ip);
1055 				punch_hole(ip, iomap->offset, iomap->length);
1056 				goto out_qunlock;
1057 			}
1058 		}
1059 
1060 		tr = current->journal_info;
1061 		if (tr->tr_num_buf_new)
1062 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1063 
1064 		gfs2_trans_end(sdp);
1065 	}
1066 
1067 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1068 		iomap->page_ops = &gfs2_iomap_page_ops;
1069 	return 0;
1070 
1071 out_trans_end:
1072 	gfs2_trans_end(sdp);
1073 out_trans_fail:
1074 	gfs2_inplace_release(ip);
1075 out_qunlock:
1076 	gfs2_quota_unlock(ip);
1077 	return ret;
1078 }
1079 
1080 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1081 			    unsigned flags, struct iomap *iomap,
1082 			    struct iomap *srcmap)
1083 {
1084 	struct gfs2_inode *ip = GFS2_I(inode);
1085 	struct metapath mp = { .mp_aheight = 1, };
1086 	int ret;
1087 
1088 	if (gfs2_is_jdata(ip))
1089 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1090 
1091 	trace_gfs2_iomap_start(ip, pos, length, flags);
1092 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1093 	if (ret)
1094 		goto out_unlock;
1095 
1096 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1097 	case IOMAP_WRITE:
1098 		if (flags & IOMAP_DIRECT) {
1099 			/*
1100 			 * Silently fall back to buffered I/O for stuffed files
1101 			 * or if we've got a hole (see gfs2_file_direct_write).
1102 			 */
1103 			if (iomap->type != IOMAP_MAPPED)
1104 				ret = -ENOTBLK;
1105 			goto out_unlock;
1106 		}
1107 		break;
1108 	case IOMAP_ZERO:
1109 		if (iomap->type == IOMAP_HOLE)
1110 			goto out_unlock;
1111 		break;
1112 	default:
1113 		goto out_unlock;
1114 	}
1115 
1116 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1117 
1118 out_unlock:
1119 	release_metapath(&mp);
1120 	trace_gfs2_iomap_end(ip, iomap, ret);
1121 	return ret;
1122 }
1123 
1124 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1125 			  ssize_t written, unsigned flags, struct iomap *iomap)
1126 {
1127 	struct gfs2_inode *ip = GFS2_I(inode);
1128 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1129 
1130 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1131 	case IOMAP_WRITE:
1132 		if (flags & IOMAP_DIRECT)
1133 			return 0;
1134 		break;
1135 	case IOMAP_ZERO:
1136 		 if (iomap->type == IOMAP_HOLE)
1137 			 return 0;
1138 		 break;
1139 	default:
1140 		 return 0;
1141 	}
1142 
1143 	if (!gfs2_is_stuffed(ip))
1144 		gfs2_ordered_add_inode(ip);
1145 
1146 	if (inode == sdp->sd_rindex)
1147 		adjust_fs_space(inode);
1148 
1149 	gfs2_inplace_release(ip);
1150 
1151 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1152 		gfs2_quota_unlock(ip);
1153 
1154 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1155 		/* Deallocate blocks that were just allocated. */
1156 		loff_t hstart = round_up(pos + written, i_blocksize(inode));
1157 		loff_t hend = iomap->offset + iomap->length;
1158 
1159 		if (hstart < hend) {
1160 			truncate_pagecache_range(inode, hstart, hend - 1);
1161 			punch_hole(ip, hstart, hend - hstart);
1162 		}
1163 	}
1164 
1165 	if (unlikely(!written))
1166 		return 0;
1167 
1168 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1169 		mark_inode_dirty(inode);
1170 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1171 	return 0;
1172 }
1173 
1174 const struct iomap_ops gfs2_iomap_ops = {
1175 	.iomap_begin = gfs2_iomap_begin,
1176 	.iomap_end = gfs2_iomap_end,
1177 };
1178 
1179 /**
1180  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1181  * @inode: The inode
1182  * @lblock: The logical block number
1183  * @bh_map: The bh to be mapped
1184  * @create: True if its ok to alloc blocks to satify the request
1185  *
1186  * The size of the requested mapping is defined in bh_map->b_size.
1187  *
1188  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1189  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1190  * bh_map->b_size to indicate the size of the mapping when @lblock and
1191  * successive blocks are mapped, up to the requested size.
1192  *
1193  * Sets buffer_boundary() if a read of metadata will be required
1194  * before the next block can be mapped. Sets buffer_new() if new
1195  * blocks were allocated.
1196  *
1197  * Returns: errno
1198  */
1199 
1200 int gfs2_block_map(struct inode *inode, sector_t lblock,
1201 		   struct buffer_head *bh_map, int create)
1202 {
1203 	struct gfs2_inode *ip = GFS2_I(inode);
1204 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1205 	loff_t length = bh_map->b_size;
1206 	struct iomap iomap = { };
1207 	int ret;
1208 
1209 	clear_buffer_mapped(bh_map);
1210 	clear_buffer_new(bh_map);
1211 	clear_buffer_boundary(bh_map);
1212 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1213 
1214 	if (!create)
1215 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1216 	else
1217 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1218 	if (ret)
1219 		goto out;
1220 
1221 	if (iomap.length > bh_map->b_size) {
1222 		iomap.length = bh_map->b_size;
1223 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1224 	}
1225 	if (iomap.addr != IOMAP_NULL_ADDR)
1226 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1227 	bh_map->b_size = iomap.length;
1228 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1229 		set_buffer_boundary(bh_map);
1230 	if (iomap.flags & IOMAP_F_NEW)
1231 		set_buffer_new(bh_map);
1232 
1233 out:
1234 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1235 	return ret;
1236 }
1237 
1238 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1239 		    unsigned int *extlen)
1240 {
1241 	unsigned int blkbits = inode->i_blkbits;
1242 	struct iomap iomap = { };
1243 	unsigned int len;
1244 	int ret;
1245 
1246 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1247 			     &iomap);
1248 	if (ret)
1249 		return ret;
1250 	if (iomap.type != IOMAP_MAPPED)
1251 		return -EIO;
1252 	*dblock = iomap.addr >> blkbits;
1253 	len = iomap.length >> blkbits;
1254 	if (len < *extlen)
1255 		*extlen = len;
1256 	return 0;
1257 }
1258 
1259 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1260 		      unsigned int *extlen, bool *new)
1261 {
1262 	unsigned int blkbits = inode->i_blkbits;
1263 	struct iomap iomap = { };
1264 	unsigned int len;
1265 	int ret;
1266 
1267 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1268 			       &iomap);
1269 	if (ret)
1270 		return ret;
1271 	if (iomap.type != IOMAP_MAPPED)
1272 		return -EIO;
1273 	*dblock = iomap.addr >> blkbits;
1274 	len = iomap.length >> blkbits;
1275 	if (len < *extlen)
1276 		*extlen = len;
1277 	*new = iomap.flags & IOMAP_F_NEW;
1278 	return 0;
1279 }
1280 
1281 /*
1282  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1283  * uses iomap write to perform its actions, which begin their own transactions
1284  * (iomap_begin, page_prepare, etc.)
1285  */
1286 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1287 				 unsigned int length)
1288 {
1289 	BUG_ON(current->journal_info);
1290 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1291 }
1292 
1293 #define GFS2_JTRUNC_REVOKES 8192
1294 
1295 /**
1296  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1297  * @inode: The inode being truncated
1298  * @oldsize: The original (larger) size
1299  * @newsize: The new smaller size
1300  *
1301  * With jdata files, we have to journal a revoke for each block which is
1302  * truncated. As a result, we need to split this into separate transactions
1303  * if the number of pages being truncated gets too large.
1304  */
1305 
1306 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1307 {
1308 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1309 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1310 	u64 chunk;
1311 	int error;
1312 
1313 	while (oldsize != newsize) {
1314 		struct gfs2_trans *tr;
1315 		unsigned int offs;
1316 
1317 		chunk = oldsize - newsize;
1318 		if (chunk > max_chunk)
1319 			chunk = max_chunk;
1320 
1321 		offs = oldsize & ~PAGE_MASK;
1322 		if (offs && chunk > PAGE_SIZE)
1323 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1324 
1325 		truncate_pagecache(inode, oldsize - chunk);
1326 		oldsize -= chunk;
1327 
1328 		tr = current->journal_info;
1329 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1330 			continue;
1331 
1332 		gfs2_trans_end(sdp);
1333 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1334 		if (error)
1335 			return error;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static int trunc_start(struct inode *inode, u64 newsize)
1342 {
1343 	struct gfs2_inode *ip = GFS2_I(inode);
1344 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1345 	struct buffer_head *dibh = NULL;
1346 	int journaled = gfs2_is_jdata(ip);
1347 	u64 oldsize = inode->i_size;
1348 	int error;
1349 
1350 	if (!gfs2_is_stuffed(ip)) {
1351 		unsigned int blocksize = i_blocksize(inode);
1352 		unsigned int offs = newsize & (blocksize - 1);
1353 		if (offs) {
1354 			error = gfs2_block_zero_range(inode, newsize,
1355 						      blocksize - offs);
1356 			if (error)
1357 				return error;
1358 		}
1359 	}
1360 	if (journaled)
1361 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1362 	else
1363 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1364 	if (error)
1365 		return error;
1366 
1367 	error = gfs2_meta_inode_buffer(ip, &dibh);
1368 	if (error)
1369 		goto out;
1370 
1371 	gfs2_trans_add_meta(ip->i_gl, dibh);
1372 
1373 	if (gfs2_is_stuffed(ip))
1374 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1375 	else
1376 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1377 
1378 	i_size_write(inode, newsize);
1379 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1380 	gfs2_dinode_out(ip, dibh->b_data);
1381 
1382 	if (journaled)
1383 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1384 	else
1385 		truncate_pagecache(inode, newsize);
1386 
1387 out:
1388 	brelse(dibh);
1389 	if (current->journal_info)
1390 		gfs2_trans_end(sdp);
1391 	return error;
1392 }
1393 
1394 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1395 		   struct iomap *iomap)
1396 {
1397 	struct metapath mp = { .mp_aheight = 1, };
1398 	int ret;
1399 
1400 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1401 	release_metapath(&mp);
1402 	return ret;
1403 }
1404 
1405 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1406 		     struct iomap *iomap)
1407 {
1408 	struct metapath mp = { .mp_aheight = 1, };
1409 	int ret;
1410 
1411 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1412 	if (!ret && iomap->type == IOMAP_HOLE)
1413 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1414 	release_metapath(&mp);
1415 	return ret;
1416 }
1417 
1418 /**
1419  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1420  * @ip: inode
1421  * @rd_gh: holder of resource group glock
1422  * @bh: buffer head to sweep
1423  * @start: starting point in bh
1424  * @end: end point in bh
1425  * @meta: true if bh points to metadata (rather than data)
1426  * @btotal: place to keep count of total blocks freed
1427  *
1428  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1429  * free, and free them all. However, we do it one rgrp at a time. If this
1430  * block has references to multiple rgrps, we break it into individual
1431  * transactions. This allows other processes to use the rgrps while we're
1432  * focused on a single one, for better concurrency / performance.
1433  * At every transaction boundary, we rewrite the inode into the journal.
1434  * That way the bitmaps are kept consistent with the inode and we can recover
1435  * if we're interrupted by power-outages.
1436  *
1437  * Returns: 0, or return code if an error occurred.
1438  *          *btotal has the total number of blocks freed
1439  */
1440 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1441 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1442 			      bool meta, u32 *btotal)
1443 {
1444 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1445 	struct gfs2_rgrpd *rgd;
1446 	struct gfs2_trans *tr;
1447 	__be64 *p;
1448 	int blks_outside_rgrp;
1449 	u64 bn, bstart, isize_blks;
1450 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1451 	int ret = 0;
1452 	bool buf_in_tr = false; /* buffer was added to transaction */
1453 
1454 more_rgrps:
1455 	rgd = NULL;
1456 	if (gfs2_holder_initialized(rd_gh)) {
1457 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1458 		gfs2_assert_withdraw(sdp,
1459 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1460 	}
1461 	blks_outside_rgrp = 0;
1462 	bstart = 0;
1463 	blen = 0;
1464 
1465 	for (p = start; p < end; p++) {
1466 		if (!*p)
1467 			continue;
1468 		bn = be64_to_cpu(*p);
1469 
1470 		if (rgd) {
1471 			if (!rgrp_contains_block(rgd, bn)) {
1472 				blks_outside_rgrp++;
1473 				continue;
1474 			}
1475 		} else {
1476 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1477 			if (unlikely(!rgd)) {
1478 				ret = -EIO;
1479 				goto out;
1480 			}
1481 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1482 						 LM_FLAG_NODE_SCOPE, rd_gh);
1483 			if (ret)
1484 				goto out;
1485 
1486 			/* Must be done with the rgrp glock held: */
1487 			if (gfs2_rs_active(&ip->i_res) &&
1488 			    rgd == ip->i_res.rs_rgd)
1489 				gfs2_rs_deltree(&ip->i_res);
1490 		}
1491 
1492 		/* The size of our transactions will be unknown until we
1493 		   actually process all the metadata blocks that relate to
1494 		   the rgrp. So we estimate. We know it can't be more than
1495 		   the dinode's i_blocks and we don't want to exceed the
1496 		   journal flush threshold, sd_log_thresh2. */
1497 		if (current->journal_info == NULL) {
1498 			unsigned int jblocks_rqsted, revokes;
1499 
1500 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1501 				RES_INDIRECT;
1502 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1503 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1504 				jblocks_rqsted +=
1505 					atomic_read(&sdp->sd_log_thresh2);
1506 			else
1507 				jblocks_rqsted += isize_blks;
1508 			revokes = jblocks_rqsted;
1509 			if (meta)
1510 				revokes += end - start;
1511 			else if (ip->i_depth)
1512 				revokes += sdp->sd_inptrs;
1513 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1514 			if (ret)
1515 				goto out_unlock;
1516 			down_write(&ip->i_rw_mutex);
1517 		}
1518 		/* check if we will exceed the transaction blocks requested */
1519 		tr = current->journal_info;
1520 		if (tr->tr_num_buf_new + RES_STATFS +
1521 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1522 			/* We set blks_outside_rgrp to ensure the loop will
1523 			   be repeated for the same rgrp, but with a new
1524 			   transaction. */
1525 			blks_outside_rgrp++;
1526 			/* This next part is tricky. If the buffer was added
1527 			   to the transaction, we've already set some block
1528 			   pointers to 0, so we better follow through and free
1529 			   them, or we will introduce corruption (so break).
1530 			   This may be impossible, or at least rare, but I
1531 			   decided to cover the case regardless.
1532 
1533 			   If the buffer was not added to the transaction
1534 			   (this call), doing so would exceed our transaction
1535 			   size, so we need to end the transaction and start a
1536 			   new one (so goto). */
1537 
1538 			if (buf_in_tr)
1539 				break;
1540 			goto out_unlock;
1541 		}
1542 
1543 		gfs2_trans_add_meta(ip->i_gl, bh);
1544 		buf_in_tr = true;
1545 		*p = 0;
1546 		if (bstart + blen == bn) {
1547 			blen++;
1548 			continue;
1549 		}
1550 		if (bstart) {
1551 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1552 			(*btotal) += blen;
1553 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1554 		}
1555 		bstart = bn;
1556 		blen = 1;
1557 	}
1558 	if (bstart) {
1559 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1560 		(*btotal) += blen;
1561 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1562 	}
1563 out_unlock:
1564 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1565 					    outside the rgrp we just processed,
1566 					    do it all over again. */
1567 		if (current->journal_info) {
1568 			struct buffer_head *dibh;
1569 
1570 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1571 			if (ret)
1572 				goto out;
1573 
1574 			/* Every transaction boundary, we rewrite the dinode
1575 			   to keep its di_blocks current in case of failure. */
1576 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1577 				current_time(&ip->i_inode);
1578 			gfs2_trans_add_meta(ip->i_gl, dibh);
1579 			gfs2_dinode_out(ip, dibh->b_data);
1580 			brelse(dibh);
1581 			up_write(&ip->i_rw_mutex);
1582 			gfs2_trans_end(sdp);
1583 			buf_in_tr = false;
1584 		}
1585 		gfs2_glock_dq_uninit(rd_gh);
1586 		cond_resched();
1587 		goto more_rgrps;
1588 	}
1589 out:
1590 	return ret;
1591 }
1592 
1593 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1594 {
1595 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1596 		return false;
1597 	return true;
1598 }
1599 
1600 /**
1601  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1602  * @sdp: The superblock
1603  * @mp: starting metapath
1604  * @h: desired height to search
1605  * @end_list: See punch_hole().
1606  * @end_aligned: See punch_hole().
1607  *
1608  * Assumes the metapath is valid (with buffers) out to height h.
1609  * Returns: true if a non-null pointer was found in the metapath buffer
1610  *          false if all remaining pointers are NULL in the buffer
1611  */
1612 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1613 			     unsigned int h,
1614 			     __u16 *end_list, unsigned int end_aligned)
1615 {
1616 	struct buffer_head *bh = mp->mp_bh[h];
1617 	__be64 *first, *ptr, *end;
1618 
1619 	first = metaptr1(h, mp);
1620 	ptr = first + mp->mp_list[h];
1621 	end = (__be64 *)(bh->b_data + bh->b_size);
1622 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1623 		bool keep_end = h < end_aligned;
1624 		end = first + end_list[h] + keep_end;
1625 	}
1626 
1627 	while (ptr < end) {
1628 		if (*ptr) { /* if we have a non-null pointer */
1629 			mp->mp_list[h] = ptr - first;
1630 			h++;
1631 			if (h < GFS2_MAX_META_HEIGHT)
1632 				mp->mp_list[h] = 0;
1633 			return true;
1634 		}
1635 		ptr++;
1636 	}
1637 	return false;
1638 }
1639 
1640 enum dealloc_states {
1641 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1642 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1643 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1644 	DEALLOC_DONE = 3,       /* process complete */
1645 };
1646 
1647 static inline void
1648 metapointer_range(struct metapath *mp, int height,
1649 		  __u16 *start_list, unsigned int start_aligned,
1650 		  __u16 *end_list, unsigned int end_aligned,
1651 		  __be64 **start, __be64 **end)
1652 {
1653 	struct buffer_head *bh = mp->mp_bh[height];
1654 	__be64 *first;
1655 
1656 	first = metaptr1(height, mp);
1657 	*start = first;
1658 	if (mp_eq_to_hgt(mp, start_list, height)) {
1659 		bool keep_start = height < start_aligned;
1660 		*start = first + start_list[height] + keep_start;
1661 	}
1662 	*end = (__be64 *)(bh->b_data + bh->b_size);
1663 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1664 		bool keep_end = height < end_aligned;
1665 		*end = first + end_list[height] + keep_end;
1666 	}
1667 }
1668 
1669 static inline bool walk_done(struct gfs2_sbd *sdp,
1670 			     struct metapath *mp, int height,
1671 			     __u16 *end_list, unsigned int end_aligned)
1672 {
1673 	__u16 end;
1674 
1675 	if (end_list) {
1676 		bool keep_end = height < end_aligned;
1677 		if (!mp_eq_to_hgt(mp, end_list, height))
1678 			return false;
1679 		end = end_list[height] + keep_end;
1680 	} else
1681 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1682 	return mp->mp_list[height] >= end;
1683 }
1684 
1685 /**
1686  * punch_hole - deallocate blocks in a file
1687  * @ip: inode to truncate
1688  * @offset: the start of the hole
1689  * @length: the size of the hole (or 0 for truncate)
1690  *
1691  * Punch a hole into a file or truncate a file at a given position.  This
1692  * function operates in whole blocks (@offset and @length are rounded
1693  * accordingly); partially filled blocks must be cleared otherwise.
1694  *
1695  * This function works from the bottom up, and from the right to the left. In
1696  * other words, it strips off the highest layer (data) before stripping any of
1697  * the metadata. Doing it this way is best in case the operation is interrupted
1698  * by power failure, etc.  The dinode is rewritten in every transaction to
1699  * guarantee integrity.
1700  */
1701 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1702 {
1703 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1704 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1705 	struct metapath mp = {};
1706 	struct buffer_head *dibh, *bh;
1707 	struct gfs2_holder rd_gh;
1708 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1709 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1710 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1711 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1712 	unsigned int start_aligned, end_aligned;
1713 	unsigned int strip_h = ip->i_height - 1;
1714 	u32 btotal = 0;
1715 	int ret, state;
1716 	int mp_h; /* metapath buffers are read in to this height */
1717 	u64 prev_bnr = 0;
1718 	__be64 *start, *end;
1719 
1720 	if (offset >= maxsize) {
1721 		/*
1722 		 * The starting point lies beyond the allocated meta-data;
1723 		 * there are no blocks do deallocate.
1724 		 */
1725 		return 0;
1726 	}
1727 
1728 	/*
1729 	 * The start position of the hole is defined by lblock, start_list, and
1730 	 * start_aligned.  The end position of the hole is defined by lend,
1731 	 * end_list, and end_aligned.
1732 	 *
1733 	 * start_aligned and end_aligned define down to which height the start
1734 	 * and end positions are aligned to the metadata tree (i.e., the
1735 	 * position is a multiple of the metadata granularity at the height
1736 	 * above).  This determines at which heights additional meta pointers
1737 	 * needs to be preserved for the remaining data.
1738 	 */
1739 
1740 	if (length) {
1741 		u64 end_offset = offset + length;
1742 		u64 lend;
1743 
1744 		/*
1745 		 * Clip the end at the maximum file size for the given height:
1746 		 * that's how far the metadata goes; files bigger than that
1747 		 * will have additional layers of indirection.
1748 		 */
1749 		if (end_offset > maxsize)
1750 			end_offset = maxsize;
1751 		lend = end_offset >> bsize_shift;
1752 
1753 		if (lblock >= lend)
1754 			return 0;
1755 
1756 		find_metapath(sdp, lend, &mp, ip->i_height);
1757 		end_list = __end_list;
1758 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1759 
1760 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1761 			if (end_list[mp_h])
1762 				break;
1763 		}
1764 		end_aligned = mp_h;
1765 	}
1766 
1767 	find_metapath(sdp, lblock, &mp, ip->i_height);
1768 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1769 
1770 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1771 		if (start_list[mp_h])
1772 			break;
1773 	}
1774 	start_aligned = mp_h;
1775 
1776 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1777 	if (ret)
1778 		return ret;
1779 
1780 	mp.mp_bh[0] = dibh;
1781 	ret = lookup_metapath(ip, &mp);
1782 	if (ret)
1783 		goto out_metapath;
1784 
1785 	/* issue read-ahead on metadata */
1786 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1787 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1788 				  end_list, end_aligned, &start, &end);
1789 		gfs2_metapath_ra(ip->i_gl, start, end);
1790 	}
1791 
1792 	if (mp.mp_aheight == ip->i_height)
1793 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1794 	else
1795 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1796 
1797 	ret = gfs2_rindex_update(sdp);
1798 	if (ret)
1799 		goto out_metapath;
1800 
1801 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1802 	if (ret)
1803 		goto out_metapath;
1804 	gfs2_holder_mark_uninitialized(&rd_gh);
1805 
1806 	mp_h = strip_h;
1807 
1808 	while (state != DEALLOC_DONE) {
1809 		switch (state) {
1810 		/* Truncate a full metapath at the given strip height.
1811 		 * Note that strip_h == mp_h in order to be in this state. */
1812 		case DEALLOC_MP_FULL:
1813 			bh = mp.mp_bh[mp_h];
1814 			gfs2_assert_withdraw(sdp, bh);
1815 			if (gfs2_assert_withdraw(sdp,
1816 						 prev_bnr != bh->b_blocknr)) {
1817 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1818 					 "s_h:%u, mp_h:%u\n",
1819 				       (unsigned long long)ip->i_no_addr,
1820 				       prev_bnr, ip->i_height, strip_h, mp_h);
1821 			}
1822 			prev_bnr = bh->b_blocknr;
1823 
1824 			if (gfs2_metatype_check(sdp, bh,
1825 						(mp_h ? GFS2_METATYPE_IN :
1826 							GFS2_METATYPE_DI))) {
1827 				ret = -EIO;
1828 				goto out;
1829 			}
1830 
1831 			/*
1832 			 * Below, passing end_aligned as 0 gives us the
1833 			 * metapointer range excluding the end point: the end
1834 			 * point is the first metapath we must not deallocate!
1835 			 */
1836 
1837 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1838 					  end_list, 0 /* end_aligned */,
1839 					  &start, &end);
1840 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1841 						 start, end,
1842 						 mp_h != ip->i_height - 1,
1843 						 &btotal);
1844 
1845 			/* If we hit an error or just swept dinode buffer,
1846 			   just exit. */
1847 			if (ret || !mp_h) {
1848 				state = DEALLOC_DONE;
1849 				break;
1850 			}
1851 			state = DEALLOC_MP_LOWER;
1852 			break;
1853 
1854 		/* lower the metapath strip height */
1855 		case DEALLOC_MP_LOWER:
1856 			/* We're done with the current buffer, so release it,
1857 			   unless it's the dinode buffer. Then back up to the
1858 			   previous pointer. */
1859 			if (mp_h) {
1860 				brelse(mp.mp_bh[mp_h]);
1861 				mp.mp_bh[mp_h] = NULL;
1862 			}
1863 			/* If we can't get any lower in height, we've stripped
1864 			   off all we can. Next step is to back up and start
1865 			   stripping the previous level of metadata. */
1866 			if (mp_h == 0) {
1867 				strip_h--;
1868 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1869 				mp_h = strip_h;
1870 				state = DEALLOC_FILL_MP;
1871 				break;
1872 			}
1873 			mp.mp_list[mp_h] = 0;
1874 			mp_h--; /* search one metadata height down */
1875 			mp.mp_list[mp_h]++;
1876 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1877 				break;
1878 			/* Here we've found a part of the metapath that is not
1879 			 * allocated. We need to search at that height for the
1880 			 * next non-null pointer. */
1881 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1882 				state = DEALLOC_FILL_MP;
1883 				mp_h++;
1884 			}
1885 			/* No more non-null pointers at this height. Back up
1886 			   to the previous height and try again. */
1887 			break; /* loop around in the same state */
1888 
1889 		/* Fill the metapath with buffers to the given height. */
1890 		case DEALLOC_FILL_MP:
1891 			/* Fill the buffers out to the current height. */
1892 			ret = fillup_metapath(ip, &mp, mp_h);
1893 			if (ret < 0)
1894 				goto out;
1895 
1896 			/* On the first pass, issue read-ahead on metadata. */
1897 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1898 				unsigned int height = mp.mp_aheight - 1;
1899 
1900 				/* No read-ahead for data blocks. */
1901 				if (mp.mp_aheight - 1 == strip_h)
1902 					height--;
1903 
1904 				for (; height >= mp.mp_aheight - ret; height--) {
1905 					metapointer_range(&mp, height,
1906 							  start_list, start_aligned,
1907 							  end_list, end_aligned,
1908 							  &start, &end);
1909 					gfs2_metapath_ra(ip->i_gl, start, end);
1910 				}
1911 			}
1912 
1913 			/* If buffers found for the entire strip height */
1914 			if (mp.mp_aheight - 1 == strip_h) {
1915 				state = DEALLOC_MP_FULL;
1916 				break;
1917 			}
1918 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1919 				mp_h = mp.mp_aheight - 1;
1920 
1921 			/* If we find a non-null block pointer, crawl a bit
1922 			   higher up in the metapath and try again, otherwise
1923 			   we need to look lower for a new starting point. */
1924 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1925 				mp_h++;
1926 			else
1927 				state = DEALLOC_MP_LOWER;
1928 			break;
1929 		}
1930 	}
1931 
1932 	if (btotal) {
1933 		if (current->journal_info == NULL) {
1934 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1935 					       RES_QUOTA, 0);
1936 			if (ret)
1937 				goto out;
1938 			down_write(&ip->i_rw_mutex);
1939 		}
1940 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1941 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1942 				  ip->i_inode.i_gid);
1943 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1944 		gfs2_trans_add_meta(ip->i_gl, dibh);
1945 		gfs2_dinode_out(ip, dibh->b_data);
1946 		up_write(&ip->i_rw_mutex);
1947 		gfs2_trans_end(sdp);
1948 	}
1949 
1950 out:
1951 	if (gfs2_holder_initialized(&rd_gh))
1952 		gfs2_glock_dq_uninit(&rd_gh);
1953 	if (current->journal_info) {
1954 		up_write(&ip->i_rw_mutex);
1955 		gfs2_trans_end(sdp);
1956 		cond_resched();
1957 	}
1958 	gfs2_quota_unhold(ip);
1959 out_metapath:
1960 	release_metapath(&mp);
1961 	return ret;
1962 }
1963 
1964 static int trunc_end(struct gfs2_inode *ip)
1965 {
1966 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1967 	struct buffer_head *dibh;
1968 	int error;
1969 
1970 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1971 	if (error)
1972 		return error;
1973 
1974 	down_write(&ip->i_rw_mutex);
1975 
1976 	error = gfs2_meta_inode_buffer(ip, &dibh);
1977 	if (error)
1978 		goto out;
1979 
1980 	if (!i_size_read(&ip->i_inode)) {
1981 		ip->i_height = 0;
1982 		ip->i_goal = ip->i_no_addr;
1983 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1984 		gfs2_ordered_del_inode(ip);
1985 	}
1986 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1987 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1988 
1989 	gfs2_trans_add_meta(ip->i_gl, dibh);
1990 	gfs2_dinode_out(ip, dibh->b_data);
1991 	brelse(dibh);
1992 
1993 out:
1994 	up_write(&ip->i_rw_mutex);
1995 	gfs2_trans_end(sdp);
1996 	return error;
1997 }
1998 
1999 /**
2000  * do_shrink - make a file smaller
2001  * @inode: the inode
2002  * @newsize: the size to make the file
2003  *
2004  * Called with an exclusive lock on @inode. The @size must
2005  * be equal to or smaller than the current inode size.
2006  *
2007  * Returns: errno
2008  */
2009 
2010 static int do_shrink(struct inode *inode, u64 newsize)
2011 {
2012 	struct gfs2_inode *ip = GFS2_I(inode);
2013 	int error;
2014 
2015 	error = trunc_start(inode, newsize);
2016 	if (error < 0)
2017 		return error;
2018 	if (gfs2_is_stuffed(ip))
2019 		return 0;
2020 
2021 	error = punch_hole(ip, newsize, 0);
2022 	if (error == 0)
2023 		error = trunc_end(ip);
2024 
2025 	return error;
2026 }
2027 
2028 void gfs2_trim_blocks(struct inode *inode)
2029 {
2030 	int ret;
2031 
2032 	ret = do_shrink(inode, inode->i_size);
2033 	WARN_ON(ret != 0);
2034 }
2035 
2036 /**
2037  * do_grow - Touch and update inode size
2038  * @inode: The inode
2039  * @size: The new size
2040  *
2041  * This function updates the timestamps on the inode and
2042  * may also increase the size of the inode. This function
2043  * must not be called with @size any smaller than the current
2044  * inode size.
2045  *
2046  * Although it is not strictly required to unstuff files here,
2047  * earlier versions of GFS2 have a bug in the stuffed file reading
2048  * code which will result in a buffer overrun if the size is larger
2049  * than the max stuffed file size. In order to prevent this from
2050  * occurring, such files are unstuffed, but in other cases we can
2051  * just update the inode size directly.
2052  *
2053  * Returns: 0 on success, or -ve on error
2054  */
2055 
2056 static int do_grow(struct inode *inode, u64 size)
2057 {
2058 	struct gfs2_inode *ip = GFS2_I(inode);
2059 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2060 	struct gfs2_alloc_parms ap = { .target = 1, };
2061 	struct buffer_head *dibh;
2062 	int error;
2063 	int unstuff = 0;
2064 
2065 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2066 		error = gfs2_quota_lock_check(ip, &ap);
2067 		if (error)
2068 			return error;
2069 
2070 		error = gfs2_inplace_reserve(ip, &ap);
2071 		if (error)
2072 			goto do_grow_qunlock;
2073 		unstuff = 1;
2074 	}
2075 
2076 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2077 				 (unstuff &&
2078 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2079 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2080 				  0 : RES_QUOTA), 0);
2081 	if (error)
2082 		goto do_grow_release;
2083 
2084 	if (unstuff) {
2085 		error = gfs2_unstuff_dinode(ip);
2086 		if (error)
2087 			goto do_end_trans;
2088 	}
2089 
2090 	error = gfs2_meta_inode_buffer(ip, &dibh);
2091 	if (error)
2092 		goto do_end_trans;
2093 
2094 	truncate_setsize(inode, size);
2095 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2096 	gfs2_trans_add_meta(ip->i_gl, dibh);
2097 	gfs2_dinode_out(ip, dibh->b_data);
2098 	brelse(dibh);
2099 
2100 do_end_trans:
2101 	gfs2_trans_end(sdp);
2102 do_grow_release:
2103 	if (unstuff) {
2104 		gfs2_inplace_release(ip);
2105 do_grow_qunlock:
2106 		gfs2_quota_unlock(ip);
2107 	}
2108 	return error;
2109 }
2110 
2111 /**
2112  * gfs2_setattr_size - make a file a given size
2113  * @inode: the inode
2114  * @newsize: the size to make the file
2115  *
2116  * The file size can grow, shrink, or stay the same size. This
2117  * is called holding i_rwsem and an exclusive glock on the inode
2118  * in question.
2119  *
2120  * Returns: errno
2121  */
2122 
2123 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2124 {
2125 	struct gfs2_inode *ip = GFS2_I(inode);
2126 	int ret;
2127 
2128 	BUG_ON(!S_ISREG(inode->i_mode));
2129 
2130 	ret = inode_newsize_ok(inode, newsize);
2131 	if (ret)
2132 		return ret;
2133 
2134 	inode_dio_wait(inode);
2135 
2136 	ret = gfs2_qa_get(ip);
2137 	if (ret)
2138 		goto out;
2139 
2140 	if (newsize >= inode->i_size) {
2141 		ret = do_grow(inode, newsize);
2142 		goto out;
2143 	}
2144 
2145 	ret = do_shrink(inode, newsize);
2146 out:
2147 	gfs2_rs_delete(ip);
2148 	gfs2_qa_put(ip);
2149 	return ret;
2150 }
2151 
2152 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2153 {
2154 	int error;
2155 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2156 	if (!error)
2157 		error = trunc_end(ip);
2158 	return error;
2159 }
2160 
2161 int gfs2_file_dealloc(struct gfs2_inode *ip)
2162 {
2163 	return punch_hole(ip, 0, 0);
2164 }
2165 
2166 /**
2167  * gfs2_free_journal_extents - Free cached journal bmap info
2168  * @jd: The journal
2169  *
2170  */
2171 
2172 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2173 {
2174 	struct gfs2_journal_extent *jext;
2175 
2176 	while(!list_empty(&jd->extent_list)) {
2177 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2178 		list_del(&jext->list);
2179 		kfree(jext);
2180 	}
2181 }
2182 
2183 /**
2184  * gfs2_add_jextent - Add or merge a new extent to extent cache
2185  * @jd: The journal descriptor
2186  * @lblock: The logical block at start of new extent
2187  * @dblock: The physical block at start of new extent
2188  * @blocks: Size of extent in fs blocks
2189  *
2190  * Returns: 0 on success or -ENOMEM
2191  */
2192 
2193 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2194 {
2195 	struct gfs2_journal_extent *jext;
2196 
2197 	if (!list_empty(&jd->extent_list)) {
2198 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2199 		if ((jext->dblock + jext->blocks) == dblock) {
2200 			jext->blocks += blocks;
2201 			return 0;
2202 		}
2203 	}
2204 
2205 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2206 	if (jext == NULL)
2207 		return -ENOMEM;
2208 	jext->dblock = dblock;
2209 	jext->lblock = lblock;
2210 	jext->blocks = blocks;
2211 	list_add_tail(&jext->list, &jd->extent_list);
2212 	jd->nr_extents++;
2213 	return 0;
2214 }
2215 
2216 /**
2217  * gfs2_map_journal_extents - Cache journal bmap info
2218  * @sdp: The super block
2219  * @jd: The journal to map
2220  *
2221  * Create a reusable "extent" mapping from all logical
2222  * blocks to all physical blocks for the given journal.  This will save
2223  * us time when writing journal blocks.  Most journals will have only one
2224  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2225  * arranges the journal blocks sequentially to maximize performance.
2226  * So the extent would map the first block for the entire file length.
2227  * However, gfs2_jadd can happen while file activity is happening, so
2228  * those journals may not be sequential.  Less likely is the case where
2229  * the users created their own journals by mounting the metafs and
2230  * laying it out.  But it's still possible.  These journals might have
2231  * several extents.
2232  *
2233  * Returns: 0 on success, or error on failure
2234  */
2235 
2236 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2237 {
2238 	u64 lblock = 0;
2239 	u64 lblock_stop;
2240 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2241 	struct buffer_head bh;
2242 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2243 	u64 size;
2244 	int rc;
2245 	ktime_t start, end;
2246 
2247 	start = ktime_get();
2248 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2249 	size = (lblock_stop - lblock) << shift;
2250 	jd->nr_extents = 0;
2251 	WARN_ON(!list_empty(&jd->extent_list));
2252 
2253 	do {
2254 		bh.b_state = 0;
2255 		bh.b_blocknr = 0;
2256 		bh.b_size = size;
2257 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2258 		if (rc || !buffer_mapped(&bh))
2259 			goto fail;
2260 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2261 		if (rc)
2262 			goto fail;
2263 		size -= bh.b_size;
2264 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2265 	} while(size > 0);
2266 
2267 	end = ktime_get();
2268 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2269 		jd->nr_extents, ktime_ms_delta(end, start));
2270 	return 0;
2271 
2272 fail:
2273 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2274 		rc, jd->jd_jid,
2275 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2276 		jd->nr_extents);
2277 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2278 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2279 		bh.b_state, (unsigned long long)bh.b_size);
2280 	gfs2_free_journal_extents(jd);
2281 	return rc;
2282 }
2283 
2284 /**
2285  * gfs2_write_alloc_required - figure out if a write will require an allocation
2286  * @ip: the file being written to
2287  * @offset: the offset to write to
2288  * @len: the number of bytes being written
2289  *
2290  * Returns: 1 if an alloc is required, 0 otherwise
2291  */
2292 
2293 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2294 			      unsigned int len)
2295 {
2296 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2297 	struct buffer_head bh;
2298 	unsigned int shift;
2299 	u64 lblock, lblock_stop, size;
2300 	u64 end_of_file;
2301 
2302 	if (!len)
2303 		return 0;
2304 
2305 	if (gfs2_is_stuffed(ip)) {
2306 		if (offset + len > gfs2_max_stuffed_size(ip))
2307 			return 1;
2308 		return 0;
2309 	}
2310 
2311 	shift = sdp->sd_sb.sb_bsize_shift;
2312 	BUG_ON(gfs2_is_dir(ip));
2313 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2314 	lblock = offset >> shift;
2315 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2316 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2317 		return 1;
2318 
2319 	size = (lblock_stop - lblock) << shift;
2320 	do {
2321 		bh.b_state = 0;
2322 		bh.b_size = size;
2323 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2324 		if (!buffer_mapped(&bh))
2325 			return 1;
2326 		size -= bh.b_size;
2327 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2328 	} while(size > 0);
2329 
2330 	return 0;
2331 }
2332 
2333 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2334 {
2335 	struct gfs2_inode *ip = GFS2_I(inode);
2336 	struct buffer_head *dibh;
2337 	int error;
2338 
2339 	if (offset >= inode->i_size)
2340 		return 0;
2341 	if (offset + length > inode->i_size)
2342 		length = inode->i_size - offset;
2343 
2344 	error = gfs2_meta_inode_buffer(ip, &dibh);
2345 	if (error)
2346 		return error;
2347 	gfs2_trans_add_meta(ip->i_gl, dibh);
2348 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2349 	       length);
2350 	brelse(dibh);
2351 	return 0;
2352 }
2353 
2354 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2355 					 loff_t length)
2356 {
2357 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2358 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2359 	int error;
2360 
2361 	while (length) {
2362 		struct gfs2_trans *tr;
2363 		loff_t chunk;
2364 		unsigned int offs;
2365 
2366 		chunk = length;
2367 		if (chunk > max_chunk)
2368 			chunk = max_chunk;
2369 
2370 		offs = offset & ~PAGE_MASK;
2371 		if (offs && chunk > PAGE_SIZE)
2372 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2373 
2374 		truncate_pagecache_range(inode, offset, chunk);
2375 		offset += chunk;
2376 		length -= chunk;
2377 
2378 		tr = current->journal_info;
2379 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2380 			continue;
2381 
2382 		gfs2_trans_end(sdp);
2383 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2384 		if (error)
2385 			return error;
2386 	}
2387 	return 0;
2388 }
2389 
2390 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2391 {
2392 	struct inode *inode = file_inode(file);
2393 	struct gfs2_inode *ip = GFS2_I(inode);
2394 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2395 	unsigned int blocksize = i_blocksize(inode);
2396 	loff_t start, end;
2397 	int error;
2398 
2399 	if (!gfs2_is_stuffed(ip)) {
2400 		unsigned int start_off, end_len;
2401 
2402 		start_off = offset & (blocksize - 1);
2403 		end_len = (offset + length) & (blocksize - 1);
2404 		if (start_off) {
2405 			unsigned int len = length;
2406 			if (length > blocksize - start_off)
2407 				len = blocksize - start_off;
2408 			error = gfs2_block_zero_range(inode, offset, len);
2409 			if (error)
2410 				goto out;
2411 			if (start_off + length < blocksize)
2412 				end_len = 0;
2413 		}
2414 		if (end_len) {
2415 			error = gfs2_block_zero_range(inode,
2416 				offset + length - end_len, end_len);
2417 			if (error)
2418 				goto out;
2419 		}
2420 	}
2421 
2422 	start = round_down(offset, blocksize);
2423 	end = round_up(offset + length, blocksize) - 1;
2424 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2425 	if (error)
2426 		return error;
2427 
2428 	if (gfs2_is_jdata(ip))
2429 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2430 					 GFS2_JTRUNC_REVOKES);
2431 	else
2432 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2433 	if (error)
2434 		return error;
2435 
2436 	if (gfs2_is_stuffed(ip)) {
2437 		error = stuffed_zero_range(inode, offset, length);
2438 		if (error)
2439 			goto out;
2440 	}
2441 
2442 	if (gfs2_is_jdata(ip)) {
2443 		BUG_ON(!current->journal_info);
2444 		gfs2_journaled_truncate_range(inode, offset, length);
2445 	} else
2446 		truncate_pagecache_range(inode, offset, offset + length - 1);
2447 
2448 	file_update_time(file);
2449 	mark_inode_dirty(inode);
2450 
2451 	if (current->journal_info)
2452 		gfs2_trans_end(sdp);
2453 
2454 	if (!gfs2_is_stuffed(ip))
2455 		error = punch_hole(ip, offset, length);
2456 
2457 out:
2458 	if (current->journal_info)
2459 		gfs2_trans_end(sdp);
2460 	return error;
2461 }
2462 
2463 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2464 		loff_t offset)
2465 {
2466 	int ret;
2467 
2468 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2469 		return -EIO;
2470 
2471 	if (offset >= wpc->iomap.offset &&
2472 	    offset < wpc->iomap.offset + wpc->iomap.length)
2473 		return 0;
2474 
2475 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2476 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2477 	return ret;
2478 }
2479 
2480 const struct iomap_writeback_ops gfs2_writeback_ops = {
2481 	.map_blocks		= gfs2_map_blocks,
2482 };
2483