xref: /linux/fs/gfs2/aops.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/aio.h>
24 
25 #include "gfs2.h"
26 #include "incore.h"
27 #include "bmap.h"
28 #include "glock.h"
29 #include "inode.h"
30 #include "log.h"
31 #include "meta_io.h"
32 #include "quota.h"
33 #include "trans.h"
34 #include "rgrp.h"
35 #include "super.h"
36 #include "util.h"
37 #include "glops.h"
38 
39 
40 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 				   unsigned int from, unsigned int to)
42 {
43 	struct buffer_head *head = page_buffers(page);
44 	unsigned int bsize = head->b_size;
45 	struct buffer_head *bh;
46 	unsigned int start, end;
47 
48 	for (bh = head, start = 0; bh != head || !start;
49 	     bh = bh->b_this_page, start = end) {
50 		end = start + bsize;
51 		if (end <= from || start >= to)
52 			continue;
53 		if (gfs2_is_jdata(ip))
54 			set_buffer_uptodate(bh);
55 		gfs2_trans_add_data(ip->i_gl, bh);
56 	}
57 }
58 
59 /**
60  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
61  * @inode: The inode
62  * @lblock: The block number to look up
63  * @bh_result: The buffer head to return the result in
64  * @create: Non-zero if we may add block to the file
65  *
66  * Returns: errno
67  */
68 
69 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
70 				  struct buffer_head *bh_result, int create)
71 {
72 	int error;
73 
74 	error = gfs2_block_map(inode, lblock, bh_result, 0);
75 	if (error)
76 		return error;
77 	if (!buffer_mapped(bh_result))
78 		return -EIO;
79 	return 0;
80 }
81 
82 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
83 				 struct buffer_head *bh_result, int create)
84 {
85 	return gfs2_block_map(inode, lblock, bh_result, 0);
86 }
87 
88 /**
89  * gfs2_writepage_common - Common bits of writepage
90  * @page: The page to be written
91  * @wbc: The writeback control
92  *
93  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
94  */
95 
96 static int gfs2_writepage_common(struct page *page,
97 				 struct writeback_control *wbc)
98 {
99 	struct inode *inode = page->mapping->host;
100 	struct gfs2_inode *ip = GFS2_I(inode);
101 	struct gfs2_sbd *sdp = GFS2_SB(inode);
102 	loff_t i_size = i_size_read(inode);
103 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
104 	unsigned offset;
105 
106 	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
107 		goto out;
108 	if (current->journal_info)
109 		goto redirty;
110 	/* Is the page fully outside i_size? (truncate in progress) */
111 	offset = i_size & (PAGE_CACHE_SIZE-1);
112 	if (page->index > end_index || (page->index == end_index && !offset)) {
113 		page->mapping->a_ops->invalidatepage(page, 0);
114 		goto out;
115 	}
116 	return 1;
117 redirty:
118 	redirty_page_for_writepage(wbc, page);
119 out:
120 	unlock_page(page);
121 	return 0;
122 }
123 
124 /**
125  * gfs2_writeback_writepage - Write page for writeback mappings
126  * @page: The page
127  * @wbc: The writeback control
128  *
129  */
130 
131 static int gfs2_writeback_writepage(struct page *page,
132 				    struct writeback_control *wbc)
133 {
134 	int ret;
135 
136 	ret = gfs2_writepage_common(page, wbc);
137 	if (ret <= 0)
138 		return ret;
139 
140 	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142 
143 /**
144  * gfs2_ordered_writepage - Write page for ordered data files
145  * @page: The page to write
146  * @wbc: The writeback control
147  *
148  */
149 
150 static int gfs2_ordered_writepage(struct page *page,
151 				  struct writeback_control *wbc)
152 {
153 	struct inode *inode = page->mapping->host;
154 	struct gfs2_inode *ip = GFS2_I(inode);
155 	int ret;
156 
157 	ret = gfs2_writepage_common(page, wbc);
158 	if (ret <= 0)
159 		return ret;
160 
161 	if (!page_has_buffers(page)) {
162 		create_empty_buffers(page, inode->i_sb->s_blocksize,
163 				     (1 << BH_Dirty)|(1 << BH_Uptodate));
164 	}
165 	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
166 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
167 }
168 
169 /**
170  * __gfs2_jdata_writepage - The core of jdata writepage
171  * @page: The page to write
172  * @wbc: The writeback control
173  *
174  * This is shared between writepage and writepages and implements the
175  * core of the writepage operation. If a transaction is required then
176  * PageChecked will have been set and the transaction will have
177  * already been started before this is called.
178  */
179 
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct inode *inode = page->mapping->host;
183 	struct gfs2_inode *ip = GFS2_I(inode);
184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
185 
186 	if (PageChecked(page)) {
187 		ClearPageChecked(page);
188 		if (!page_has_buffers(page)) {
189 			create_empty_buffers(page, inode->i_sb->s_blocksize,
190 					     (1 << BH_Dirty)|(1 << BH_Uptodate));
191 		}
192 		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 	}
194 	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
195 }
196 
197 /**
198  * gfs2_jdata_writepage - Write complete page
199  * @page: Page to write
200  *
201  * Returns: errno
202  *
203  */
204 
205 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
206 {
207 	struct inode *inode = page->mapping->host;
208 	struct gfs2_sbd *sdp = GFS2_SB(inode);
209 	int ret;
210 	int done_trans = 0;
211 
212 	if (PageChecked(page)) {
213 		if (wbc->sync_mode != WB_SYNC_ALL)
214 			goto out_ignore;
215 		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
216 		if (ret)
217 			goto out_ignore;
218 		done_trans = 1;
219 	}
220 	ret = gfs2_writepage_common(page, wbc);
221 	if (ret > 0)
222 		ret = __gfs2_jdata_writepage(page, wbc);
223 	if (done_trans)
224 		gfs2_trans_end(sdp);
225 	return ret;
226 
227 out_ignore:
228 	redirty_page_for_writepage(wbc, page);
229 	unlock_page(page);
230 	return 0;
231 }
232 
233 /**
234  * gfs2_writepages - Write a bunch of dirty pages back to disk
235  * @mapping: The mapping to write
236  * @wbc: Write-back control
237  *
238  * Used for both ordered and writeback modes.
239  */
240 static int gfs2_writepages(struct address_space *mapping,
241 			   struct writeback_control *wbc)
242 {
243 	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
244 }
245 
246 /**
247  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
248  * @mapping: The mapping
249  * @wbc: The writeback control
250  * @writepage: The writepage function to call for each page
251  * @pvec: The vector of pages
252  * @nr_pages: The number of pages to write
253  *
254  * Returns: non-zero if loop should terminate, zero otherwise
255  */
256 
257 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
258 				    struct writeback_control *wbc,
259 				    struct pagevec *pvec,
260 				    int nr_pages, pgoff_t end)
261 {
262 	struct inode *inode = mapping->host;
263 	struct gfs2_sbd *sdp = GFS2_SB(inode);
264 	loff_t i_size = i_size_read(inode);
265 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
266 	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
267 	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
268 	int i;
269 	int ret;
270 
271 	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
272 	if (ret < 0)
273 		return ret;
274 
275 	for(i = 0; i < nr_pages; i++) {
276 		struct page *page = pvec->pages[i];
277 
278 		lock_page(page);
279 
280 		if (unlikely(page->mapping != mapping)) {
281 			unlock_page(page);
282 			continue;
283 		}
284 
285 		if (!wbc->range_cyclic && page->index > end) {
286 			ret = 1;
287 			unlock_page(page);
288 			continue;
289 		}
290 
291 		if (wbc->sync_mode != WB_SYNC_NONE)
292 			wait_on_page_writeback(page);
293 
294 		if (PageWriteback(page) ||
295 		    !clear_page_dirty_for_io(page)) {
296 			unlock_page(page);
297 			continue;
298 		}
299 
300 		/* Is the page fully outside i_size? (truncate in progress) */
301 		if (page->index > end_index || (page->index == end_index && !offset)) {
302 			page->mapping->a_ops->invalidatepage(page, 0);
303 			unlock_page(page);
304 			continue;
305 		}
306 
307 		ret = __gfs2_jdata_writepage(page, wbc);
308 
309 		if (ret || (--(wbc->nr_to_write) <= 0))
310 			ret = 1;
311 	}
312 	gfs2_trans_end(sdp);
313 	return ret;
314 }
315 
316 /**
317  * gfs2_write_cache_jdata - Like write_cache_pages but different
318  * @mapping: The mapping to write
319  * @wbc: The writeback control
320  * @writepage: The writepage function to call
321  * @data: The data to pass to writepage
322  *
323  * The reason that we use our own function here is that we need to
324  * start transactions before we grab page locks. This allows us
325  * to get the ordering right.
326  */
327 
328 static int gfs2_write_cache_jdata(struct address_space *mapping,
329 				  struct writeback_control *wbc)
330 {
331 	int ret = 0;
332 	int done = 0;
333 	struct pagevec pvec;
334 	int nr_pages;
335 	pgoff_t index;
336 	pgoff_t end;
337 	int scanned = 0;
338 	int range_whole = 0;
339 
340 	pagevec_init(&pvec, 0);
341 	if (wbc->range_cyclic) {
342 		index = mapping->writeback_index; /* Start from prev offset */
343 		end = -1;
344 	} else {
345 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
346 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
347 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
348 			range_whole = 1;
349 		scanned = 1;
350 	}
351 
352 retry:
353 	 while (!done && (index <= end) &&
354 		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
355 					       PAGECACHE_TAG_DIRTY,
356 					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
357 		scanned = 1;
358 		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
359 		if (ret)
360 			done = 1;
361 		if (ret > 0)
362 			ret = 0;
363 
364 		pagevec_release(&pvec);
365 		cond_resched();
366 	}
367 
368 	if (!scanned && !done) {
369 		/*
370 		 * We hit the last page and there is more work to be done: wrap
371 		 * back to the start of the file
372 		 */
373 		scanned = 1;
374 		index = 0;
375 		goto retry;
376 	}
377 
378 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
379 		mapping->writeback_index = index;
380 	return ret;
381 }
382 
383 
384 /**
385  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
386  * @mapping: The mapping to write
387  * @wbc: The writeback control
388  *
389  */
390 
391 static int gfs2_jdata_writepages(struct address_space *mapping,
392 				 struct writeback_control *wbc)
393 {
394 	struct gfs2_inode *ip = GFS2_I(mapping->host);
395 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
396 	int ret;
397 
398 	ret = gfs2_write_cache_jdata(mapping, wbc);
399 	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
400 		gfs2_log_flush(sdp, ip->i_gl);
401 		ret = gfs2_write_cache_jdata(mapping, wbc);
402 	}
403 	return ret;
404 }
405 
406 /**
407  * stuffed_readpage - Fill in a Linux page with stuffed file data
408  * @ip: the inode
409  * @page: the page
410  *
411  * Returns: errno
412  */
413 
414 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
415 {
416 	struct buffer_head *dibh;
417 	u64 dsize = i_size_read(&ip->i_inode);
418 	void *kaddr;
419 	int error;
420 
421 	/*
422 	 * Due to the order of unstuffing files and ->fault(), we can be
423 	 * asked for a zero page in the case of a stuffed file being extended,
424 	 * so we need to supply one here. It doesn't happen often.
425 	 */
426 	if (unlikely(page->index)) {
427 		zero_user(page, 0, PAGE_CACHE_SIZE);
428 		SetPageUptodate(page);
429 		return 0;
430 	}
431 
432 	error = gfs2_meta_inode_buffer(ip, &dibh);
433 	if (error)
434 		return error;
435 
436 	kaddr = kmap_atomic(page);
437 	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
438 		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
439 	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
440 	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
441 	kunmap_atomic(kaddr);
442 	flush_dcache_page(page);
443 	brelse(dibh);
444 	SetPageUptodate(page);
445 
446 	return 0;
447 }
448 
449 
450 /**
451  * __gfs2_readpage - readpage
452  * @file: The file to read a page for
453  * @page: The page to read
454  *
455  * This is the core of gfs2's readpage. Its used by the internal file
456  * reading code as in that case we already hold the glock. Also its
457  * called by gfs2_readpage() once the required lock has been granted.
458  *
459  */
460 
461 static int __gfs2_readpage(void *file, struct page *page)
462 {
463 	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
464 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
465 	int error;
466 
467 	if (gfs2_is_stuffed(ip)) {
468 		error = stuffed_readpage(ip, page);
469 		unlock_page(page);
470 	} else {
471 		error = mpage_readpage(page, gfs2_block_map);
472 	}
473 
474 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
475 		return -EIO;
476 
477 	return error;
478 }
479 
480 /**
481  * gfs2_readpage - read a page of a file
482  * @file: The file to read
483  * @page: The page of the file
484  *
485  * This deals with the locking required. We have to unlock and
486  * relock the page in order to get the locking in the right
487  * order.
488  */
489 
490 static int gfs2_readpage(struct file *file, struct page *page)
491 {
492 	struct address_space *mapping = page->mapping;
493 	struct gfs2_inode *ip = GFS2_I(mapping->host);
494 	struct gfs2_holder gh;
495 	int error;
496 
497 	unlock_page(page);
498 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
499 	error = gfs2_glock_nq(&gh);
500 	if (unlikely(error))
501 		goto out;
502 	error = AOP_TRUNCATED_PAGE;
503 	lock_page(page);
504 	if (page->mapping == mapping && !PageUptodate(page))
505 		error = __gfs2_readpage(file, page);
506 	else
507 		unlock_page(page);
508 	gfs2_glock_dq(&gh);
509 out:
510 	gfs2_holder_uninit(&gh);
511 	if (error && error != AOP_TRUNCATED_PAGE)
512 		lock_page(page);
513 	return error;
514 }
515 
516 /**
517  * gfs2_internal_read - read an internal file
518  * @ip: The gfs2 inode
519  * @buf: The buffer to fill
520  * @pos: The file position
521  * @size: The amount to read
522  *
523  */
524 
525 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
526                        unsigned size)
527 {
528 	struct address_space *mapping = ip->i_inode.i_mapping;
529 	unsigned long index = *pos / PAGE_CACHE_SIZE;
530 	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
531 	unsigned copied = 0;
532 	unsigned amt;
533 	struct page *page;
534 	void *p;
535 
536 	do {
537 		amt = size - copied;
538 		if (offset + size > PAGE_CACHE_SIZE)
539 			amt = PAGE_CACHE_SIZE - offset;
540 		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
541 		if (IS_ERR(page))
542 			return PTR_ERR(page);
543 		p = kmap_atomic(page);
544 		memcpy(buf + copied, p + offset, amt);
545 		kunmap_atomic(p);
546 		mark_page_accessed(page);
547 		page_cache_release(page);
548 		copied += amt;
549 		index++;
550 		offset = 0;
551 	} while(copied < size);
552 	(*pos) += size;
553 	return size;
554 }
555 
556 /**
557  * gfs2_readpages - Read a bunch of pages at once
558  *
559  * Some notes:
560  * 1. This is only for readahead, so we can simply ignore any things
561  *    which are slightly inconvenient (such as locking conflicts between
562  *    the page lock and the glock) and return having done no I/O. Its
563  *    obviously not something we'd want to do on too regular a basis.
564  *    Any I/O we ignore at this time will be done via readpage later.
565  * 2. We don't handle stuffed files here we let readpage do the honours.
566  * 3. mpage_readpages() does most of the heavy lifting in the common case.
567  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
568  */
569 
570 static int gfs2_readpages(struct file *file, struct address_space *mapping,
571 			  struct list_head *pages, unsigned nr_pages)
572 {
573 	struct inode *inode = mapping->host;
574 	struct gfs2_inode *ip = GFS2_I(inode);
575 	struct gfs2_sbd *sdp = GFS2_SB(inode);
576 	struct gfs2_holder gh;
577 	int ret;
578 
579 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
580 	ret = gfs2_glock_nq(&gh);
581 	if (unlikely(ret))
582 		goto out_uninit;
583 	if (!gfs2_is_stuffed(ip))
584 		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
585 	gfs2_glock_dq(&gh);
586 out_uninit:
587 	gfs2_holder_uninit(&gh);
588 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
589 		ret = -EIO;
590 	return ret;
591 }
592 
593 /**
594  * gfs2_write_begin - Begin to write to a file
595  * @file: The file to write to
596  * @mapping: The mapping in which to write
597  * @pos: The file offset at which to start writing
598  * @len: Length of the write
599  * @flags: Various flags
600  * @pagep: Pointer to return the page
601  * @fsdata: Pointer to return fs data (unused by GFS2)
602  *
603  * Returns: errno
604  */
605 
606 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
607 			    loff_t pos, unsigned len, unsigned flags,
608 			    struct page **pagep, void **fsdata)
609 {
610 	struct gfs2_inode *ip = GFS2_I(mapping->host);
611 	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
612 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
613 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
614 	unsigned requested = 0;
615 	int alloc_required;
616 	int error = 0;
617 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
618 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
619 	struct page *page;
620 
621 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
622 	error = gfs2_glock_nq(&ip->i_gh);
623 	if (unlikely(error))
624 		goto out_uninit;
625 	if (&ip->i_inode == sdp->sd_rindex) {
626 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
627 					   GL_NOCACHE, &m_ip->i_gh);
628 		if (unlikely(error)) {
629 			gfs2_glock_dq(&ip->i_gh);
630 			goto out_uninit;
631 		}
632 	}
633 
634 	alloc_required = gfs2_write_alloc_required(ip, pos, len);
635 
636 	if (alloc_required || gfs2_is_jdata(ip))
637 		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
638 
639 	if (alloc_required) {
640 		error = gfs2_quota_lock_check(ip);
641 		if (error)
642 			goto out_unlock;
643 
644 		requested = data_blocks + ind_blocks;
645 		error = gfs2_inplace_reserve(ip, requested, 0);
646 		if (error)
647 			goto out_qunlock;
648 	}
649 
650 	rblocks = RES_DINODE + ind_blocks;
651 	if (gfs2_is_jdata(ip))
652 		rblocks += data_blocks ? data_blocks : 1;
653 	if (ind_blocks || data_blocks)
654 		rblocks += RES_STATFS + RES_QUOTA;
655 	if (&ip->i_inode == sdp->sd_rindex)
656 		rblocks += 2 * RES_STATFS;
657 	if (alloc_required)
658 		rblocks += gfs2_rg_blocks(ip, requested);
659 
660 	error = gfs2_trans_begin(sdp, rblocks,
661 				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
662 	if (error)
663 		goto out_trans_fail;
664 
665 	error = -ENOMEM;
666 	flags |= AOP_FLAG_NOFS;
667 	page = grab_cache_page_write_begin(mapping, index, flags);
668 	*pagep = page;
669 	if (unlikely(!page))
670 		goto out_endtrans;
671 
672 	if (gfs2_is_stuffed(ip)) {
673 		error = 0;
674 		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
675 			error = gfs2_unstuff_dinode(ip, page);
676 			if (error == 0)
677 				goto prepare_write;
678 		} else if (!PageUptodate(page)) {
679 			error = stuffed_readpage(ip, page);
680 		}
681 		goto out;
682 	}
683 
684 prepare_write:
685 	error = __block_write_begin(page, from, len, gfs2_block_map);
686 out:
687 	if (error == 0)
688 		return 0;
689 
690 	unlock_page(page);
691 	page_cache_release(page);
692 
693 	gfs2_trans_end(sdp);
694 	if (pos + len > ip->i_inode.i_size)
695 		gfs2_trim_blocks(&ip->i_inode);
696 	goto out_trans_fail;
697 
698 out_endtrans:
699 	gfs2_trans_end(sdp);
700 out_trans_fail:
701 	if (alloc_required) {
702 		gfs2_inplace_release(ip);
703 out_qunlock:
704 		gfs2_quota_unlock(ip);
705 	}
706 out_unlock:
707 	if (&ip->i_inode == sdp->sd_rindex) {
708 		gfs2_glock_dq(&m_ip->i_gh);
709 		gfs2_holder_uninit(&m_ip->i_gh);
710 	}
711 	gfs2_glock_dq(&ip->i_gh);
712 out_uninit:
713 	gfs2_holder_uninit(&ip->i_gh);
714 	return error;
715 }
716 
717 /**
718  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
719  * @inode: the rindex inode
720  */
721 static void adjust_fs_space(struct inode *inode)
722 {
723 	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
724 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
725 	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
726 	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
727 	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
728 	struct buffer_head *m_bh, *l_bh;
729 	u64 fs_total, new_free;
730 
731 	/* Total up the file system space, according to the latest rindex. */
732 	fs_total = gfs2_ri_total(sdp);
733 	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
734 		return;
735 
736 	spin_lock(&sdp->sd_statfs_spin);
737 	gfs2_statfs_change_in(m_sc, m_bh->b_data +
738 			      sizeof(struct gfs2_dinode));
739 	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
740 		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
741 	else
742 		new_free = 0;
743 	spin_unlock(&sdp->sd_statfs_spin);
744 	fs_warn(sdp, "File system extended by %llu blocks.\n",
745 		(unsigned long long)new_free);
746 	gfs2_statfs_change(sdp, new_free, new_free, 0);
747 
748 	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
749 		goto out;
750 	update_statfs(sdp, m_bh, l_bh);
751 	brelse(l_bh);
752 out:
753 	brelse(m_bh);
754 }
755 
756 /**
757  * gfs2_stuffed_write_end - Write end for stuffed files
758  * @inode: The inode
759  * @dibh: The buffer_head containing the on-disk inode
760  * @pos: The file position
761  * @len: The length of the write
762  * @copied: How much was actually copied by the VFS
763  * @page: The page
764  *
765  * This copies the data from the page into the inode block after
766  * the inode data structure itself.
767  *
768  * Returns: errno
769  */
770 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
771 				  loff_t pos, unsigned len, unsigned copied,
772 				  struct page *page)
773 {
774 	struct gfs2_inode *ip = GFS2_I(inode);
775 	struct gfs2_sbd *sdp = GFS2_SB(inode);
776 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
777 	u64 to = pos + copied;
778 	void *kaddr;
779 	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
780 
781 	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
782 	kaddr = kmap_atomic(page);
783 	memcpy(buf + pos, kaddr + pos, copied);
784 	memset(kaddr + pos + copied, 0, len - copied);
785 	flush_dcache_page(page);
786 	kunmap_atomic(kaddr);
787 
788 	if (!PageUptodate(page))
789 		SetPageUptodate(page);
790 	unlock_page(page);
791 	page_cache_release(page);
792 
793 	if (copied) {
794 		if (inode->i_size < to)
795 			i_size_write(inode, to);
796 		mark_inode_dirty(inode);
797 	}
798 
799 	if (inode == sdp->sd_rindex) {
800 		adjust_fs_space(inode);
801 		sdp->sd_rindex_uptodate = 0;
802 	}
803 
804 	brelse(dibh);
805 	gfs2_trans_end(sdp);
806 	if (inode == sdp->sd_rindex) {
807 		gfs2_glock_dq(&m_ip->i_gh);
808 		gfs2_holder_uninit(&m_ip->i_gh);
809 	}
810 	gfs2_glock_dq(&ip->i_gh);
811 	gfs2_holder_uninit(&ip->i_gh);
812 	return copied;
813 }
814 
815 /**
816  * gfs2_write_end
817  * @file: The file to write to
818  * @mapping: The address space to write to
819  * @pos: The file position
820  * @len: The length of the data
821  * @copied:
822  * @page: The page that has been written
823  * @fsdata: The fsdata (unused in GFS2)
824  *
825  * The main write_end function for GFS2. We have a separate one for
826  * stuffed files as they are slightly different, otherwise we just
827  * put our locking around the VFS provided functions.
828  *
829  * Returns: errno
830  */
831 
832 static int gfs2_write_end(struct file *file, struct address_space *mapping,
833 			  loff_t pos, unsigned len, unsigned copied,
834 			  struct page *page, void *fsdata)
835 {
836 	struct inode *inode = page->mapping->host;
837 	struct gfs2_inode *ip = GFS2_I(inode);
838 	struct gfs2_sbd *sdp = GFS2_SB(inode);
839 	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
840 	struct buffer_head *dibh;
841 	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
842 	unsigned int to = from + len;
843 	int ret;
844 
845 	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
846 
847 	ret = gfs2_meta_inode_buffer(ip, &dibh);
848 	if (unlikely(ret)) {
849 		unlock_page(page);
850 		page_cache_release(page);
851 		goto failed;
852 	}
853 
854 	gfs2_trans_add_meta(ip->i_gl, dibh);
855 
856 	if (gfs2_is_stuffed(ip))
857 		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
858 
859 	if (!gfs2_is_writeback(ip))
860 		gfs2_page_add_databufs(ip, page, from, to);
861 
862 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
863 
864 	if (inode == sdp->sd_rindex) {
865 		adjust_fs_space(inode);
866 		sdp->sd_rindex_uptodate = 0;
867 	}
868 
869 	brelse(dibh);
870 failed:
871 	gfs2_trans_end(sdp);
872 	gfs2_inplace_release(ip);
873 	if (ip->i_res->rs_qa_qd_num)
874 		gfs2_quota_unlock(ip);
875 	if (inode == sdp->sd_rindex) {
876 		gfs2_glock_dq(&m_ip->i_gh);
877 		gfs2_holder_uninit(&m_ip->i_gh);
878 	}
879 	gfs2_glock_dq(&ip->i_gh);
880 	gfs2_holder_uninit(&ip->i_gh);
881 	return ret;
882 }
883 
884 /**
885  * gfs2_set_page_dirty - Page dirtying function
886  * @page: The page to dirty
887  *
888  * Returns: 1 if it dirtyed the page, or 0 otherwise
889  */
890 
891 static int gfs2_set_page_dirty(struct page *page)
892 {
893 	SetPageChecked(page);
894 	return __set_page_dirty_buffers(page);
895 }
896 
897 /**
898  * gfs2_bmap - Block map function
899  * @mapping: Address space info
900  * @lblock: The block to map
901  *
902  * Returns: The disk address for the block or 0 on hole or error
903  */
904 
905 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
906 {
907 	struct gfs2_inode *ip = GFS2_I(mapping->host);
908 	struct gfs2_holder i_gh;
909 	sector_t dblock = 0;
910 	int error;
911 
912 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
913 	if (error)
914 		return 0;
915 
916 	if (!gfs2_is_stuffed(ip))
917 		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
918 
919 	gfs2_glock_dq_uninit(&i_gh);
920 
921 	return dblock;
922 }
923 
924 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
925 {
926 	struct gfs2_bufdata *bd;
927 
928 	lock_buffer(bh);
929 	gfs2_log_lock(sdp);
930 	clear_buffer_dirty(bh);
931 	bd = bh->b_private;
932 	if (bd) {
933 		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
934 			list_del_init(&bd->bd_list);
935 		else
936 			gfs2_remove_from_journal(bh, current->journal_info, 0);
937 	}
938 	bh->b_bdev = NULL;
939 	clear_buffer_mapped(bh);
940 	clear_buffer_req(bh);
941 	clear_buffer_new(bh);
942 	gfs2_log_unlock(sdp);
943 	unlock_buffer(bh);
944 }
945 
946 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
947 {
948 	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
949 	struct buffer_head *bh, *head;
950 	unsigned long pos = 0;
951 
952 	BUG_ON(!PageLocked(page));
953 	if (offset == 0)
954 		ClearPageChecked(page);
955 	if (!page_has_buffers(page))
956 		goto out;
957 
958 	bh = head = page_buffers(page);
959 	do {
960 		if (offset <= pos)
961 			gfs2_discard(sdp, bh);
962 		pos += bh->b_size;
963 		bh = bh->b_this_page;
964 	} while (bh != head);
965 out:
966 	if (offset == 0)
967 		try_to_release_page(page, 0);
968 }
969 
970 /**
971  * gfs2_ok_for_dio - check that dio is valid on this file
972  * @ip: The inode
973  * @rw: READ or WRITE
974  * @offset: The offset at which we are reading or writing
975  *
976  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
977  *          1 (to accept the i/o request)
978  */
979 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
980 {
981 	/*
982 	 * Should we return an error here? I can't see that O_DIRECT for
983 	 * a stuffed file makes any sense. For now we'll silently fall
984 	 * back to buffered I/O
985 	 */
986 	if (gfs2_is_stuffed(ip))
987 		return 0;
988 
989 	if (offset >= i_size_read(&ip->i_inode))
990 		return 0;
991 	return 1;
992 }
993 
994 
995 
996 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
997 			      const struct iovec *iov, loff_t offset,
998 			      unsigned long nr_segs)
999 {
1000 	struct file *file = iocb->ki_filp;
1001 	struct inode *inode = file->f_mapping->host;
1002 	struct gfs2_inode *ip = GFS2_I(inode);
1003 	struct gfs2_holder gh;
1004 	int rv;
1005 
1006 	/*
1007 	 * Deferred lock, even if its a write, since we do no allocation
1008 	 * on this path. All we need change is atime, and this lock mode
1009 	 * ensures that other nodes have flushed their buffered read caches
1010 	 * (i.e. their page cache entries for this inode). We do not,
1011 	 * unfortunately have the option of only flushing a range like
1012 	 * the VFS does.
1013 	 */
1014 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1015 	rv = gfs2_glock_nq(&gh);
1016 	if (rv)
1017 		return rv;
1018 	rv = gfs2_ok_for_dio(ip, rw, offset);
1019 	if (rv != 1)
1020 		goto out; /* dio not valid, fall back to buffered i/o */
1021 
1022 	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1023 				  offset, nr_segs, gfs2_get_block_direct,
1024 				  NULL, NULL, 0);
1025 out:
1026 	gfs2_glock_dq(&gh);
1027 	gfs2_holder_uninit(&gh);
1028 	return rv;
1029 }
1030 
1031 /**
1032  * gfs2_releasepage - free the metadata associated with a page
1033  * @page: the page that's being released
1034  * @gfp_mask: passed from Linux VFS, ignored by us
1035  *
1036  * Call try_to_free_buffers() if the buffers in this page can be
1037  * released.
1038  *
1039  * Returns: 0
1040  */
1041 
1042 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1043 {
1044 	struct address_space *mapping = page->mapping;
1045 	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1046 	struct buffer_head *bh, *head;
1047 	struct gfs2_bufdata *bd;
1048 
1049 	if (!page_has_buffers(page))
1050 		return 0;
1051 
1052 	gfs2_log_lock(sdp);
1053 	spin_lock(&sdp->sd_ail_lock);
1054 	head = bh = page_buffers(page);
1055 	do {
1056 		if (atomic_read(&bh->b_count))
1057 			goto cannot_release;
1058 		bd = bh->b_private;
1059 		if (bd && bd->bd_tr)
1060 			goto cannot_release;
1061 		if (buffer_pinned(bh) || buffer_dirty(bh))
1062 			goto not_possible;
1063 		bh = bh->b_this_page;
1064 	} while(bh != head);
1065 	spin_unlock(&sdp->sd_ail_lock);
1066 	gfs2_log_unlock(sdp);
1067 
1068 	head = bh = page_buffers(page);
1069 	do {
1070 		gfs2_log_lock(sdp);
1071 		bd = bh->b_private;
1072 		if (bd) {
1073 			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1074 			if (!list_empty(&bd->bd_list)) {
1075 				if (!buffer_pinned(bh))
1076 					list_del_init(&bd->bd_list);
1077 				else
1078 					bd = NULL;
1079 			}
1080 			if (bd)
1081 				bd->bd_bh = NULL;
1082 			bh->b_private = NULL;
1083 		}
1084 		gfs2_log_unlock(sdp);
1085 		if (bd)
1086 			kmem_cache_free(gfs2_bufdata_cachep, bd);
1087 
1088 		bh = bh->b_this_page;
1089 	} while (bh != head);
1090 
1091 	return try_to_free_buffers(page);
1092 
1093 not_possible: /* Should never happen */
1094 	WARN_ON(buffer_dirty(bh));
1095 	WARN_ON(buffer_pinned(bh));
1096 cannot_release:
1097 	spin_unlock(&sdp->sd_ail_lock);
1098 	gfs2_log_unlock(sdp);
1099 	return 0;
1100 }
1101 
1102 static const struct address_space_operations gfs2_writeback_aops = {
1103 	.writepage = gfs2_writeback_writepage,
1104 	.writepages = gfs2_writepages,
1105 	.readpage = gfs2_readpage,
1106 	.readpages = gfs2_readpages,
1107 	.write_begin = gfs2_write_begin,
1108 	.write_end = gfs2_write_end,
1109 	.bmap = gfs2_bmap,
1110 	.invalidatepage = gfs2_invalidatepage,
1111 	.releasepage = gfs2_releasepage,
1112 	.direct_IO = gfs2_direct_IO,
1113 	.migratepage = buffer_migrate_page,
1114 	.is_partially_uptodate = block_is_partially_uptodate,
1115 	.error_remove_page = generic_error_remove_page,
1116 };
1117 
1118 static const struct address_space_operations gfs2_ordered_aops = {
1119 	.writepage = gfs2_ordered_writepage,
1120 	.writepages = gfs2_writepages,
1121 	.readpage = gfs2_readpage,
1122 	.readpages = gfs2_readpages,
1123 	.write_begin = gfs2_write_begin,
1124 	.write_end = gfs2_write_end,
1125 	.set_page_dirty = gfs2_set_page_dirty,
1126 	.bmap = gfs2_bmap,
1127 	.invalidatepage = gfs2_invalidatepage,
1128 	.releasepage = gfs2_releasepage,
1129 	.direct_IO = gfs2_direct_IO,
1130 	.migratepage = buffer_migrate_page,
1131 	.is_partially_uptodate = block_is_partially_uptodate,
1132 	.error_remove_page = generic_error_remove_page,
1133 };
1134 
1135 static const struct address_space_operations gfs2_jdata_aops = {
1136 	.writepage = gfs2_jdata_writepage,
1137 	.writepages = gfs2_jdata_writepages,
1138 	.readpage = gfs2_readpage,
1139 	.readpages = gfs2_readpages,
1140 	.write_begin = gfs2_write_begin,
1141 	.write_end = gfs2_write_end,
1142 	.set_page_dirty = gfs2_set_page_dirty,
1143 	.bmap = gfs2_bmap,
1144 	.invalidatepage = gfs2_invalidatepage,
1145 	.releasepage = gfs2_releasepage,
1146 	.is_partially_uptodate = block_is_partially_uptodate,
1147 	.error_remove_page = generic_error_remove_page,
1148 };
1149 
1150 void gfs2_set_aops(struct inode *inode)
1151 {
1152 	struct gfs2_inode *ip = GFS2_I(inode);
1153 
1154 	if (gfs2_is_writeback(ip))
1155 		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1156 	else if (gfs2_is_ordered(ip))
1157 		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1158 	else if (gfs2_is_jdata(ip))
1159 		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1160 	else
1161 		BUG();
1162 }
1163 
1164