1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/spinlock.h> 13 #include <linux/completion.h> 14 #include <linux/buffer_head.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mpage.h> 18 #include <linux/fs.h> 19 #include <linux/writeback.h> 20 #include <linux/swap.h> 21 #include <linux/gfs2_ondisk.h> 22 #include <linux/backing-dev.h> 23 #include <linux/uio.h> 24 #include <trace/events/writeback.h> 25 26 #include "gfs2.h" 27 #include "incore.h" 28 #include "bmap.h" 29 #include "glock.h" 30 #include "inode.h" 31 #include "log.h" 32 #include "meta_io.h" 33 #include "quota.h" 34 #include "trans.h" 35 #include "rgrp.h" 36 #include "super.h" 37 #include "util.h" 38 #include "glops.h" 39 40 41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 42 unsigned int from, unsigned int to) 43 { 44 struct buffer_head *head = page_buffers(page); 45 unsigned int bsize = head->b_size; 46 struct buffer_head *bh; 47 unsigned int start, end; 48 49 for (bh = head, start = 0; bh != head || !start; 50 bh = bh->b_this_page, start = end) { 51 end = start + bsize; 52 if (end <= from || start >= to) 53 continue; 54 if (gfs2_is_jdata(ip)) 55 set_buffer_uptodate(bh); 56 gfs2_trans_add_data(ip->i_gl, bh); 57 } 58 } 59 60 /** 61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 62 * @inode: The inode 63 * @lblock: The block number to look up 64 * @bh_result: The buffer head to return the result in 65 * @create: Non-zero if we may add block to the file 66 * 67 * Returns: errno 68 */ 69 70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 71 struct buffer_head *bh_result, int create) 72 { 73 int error; 74 75 error = gfs2_block_map(inode, lblock, bh_result, 0); 76 if (error) 77 return error; 78 if (!buffer_mapped(bh_result)) 79 return -EIO; 80 return 0; 81 } 82 83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock, 84 struct buffer_head *bh_result, int create) 85 { 86 return gfs2_block_map(inode, lblock, bh_result, 0); 87 } 88 89 /** 90 * gfs2_writepage_common - Common bits of writepage 91 * @page: The page to be written 92 * @wbc: The writeback control 93 * 94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error. 95 */ 96 97 static int gfs2_writepage_common(struct page *page, 98 struct writeback_control *wbc) 99 { 100 struct inode *inode = page->mapping->host; 101 struct gfs2_inode *ip = GFS2_I(inode); 102 struct gfs2_sbd *sdp = GFS2_SB(inode); 103 loff_t i_size = i_size_read(inode); 104 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 105 unsigned offset; 106 107 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 108 goto out; 109 if (current->journal_info) 110 goto redirty; 111 /* Is the page fully outside i_size? (truncate in progress) */ 112 offset = i_size & (PAGE_CACHE_SIZE-1); 113 if (page->index > end_index || (page->index == end_index && !offset)) { 114 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 115 goto out; 116 } 117 return 1; 118 redirty: 119 redirty_page_for_writepage(wbc, page); 120 out: 121 unlock_page(page); 122 return 0; 123 } 124 125 /** 126 * gfs2_writepage - Write page for writeback mappings 127 * @page: The page 128 * @wbc: The writeback control 129 * 130 */ 131 132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 133 { 134 int ret; 135 136 ret = gfs2_writepage_common(page, wbc); 137 if (ret <= 0) 138 return ret; 139 140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 141 } 142 143 /** 144 * __gfs2_jdata_writepage - The core of jdata writepage 145 * @page: The page to write 146 * @wbc: The writeback control 147 * 148 * This is shared between writepage and writepages and implements the 149 * core of the writepage operation. If a transaction is required then 150 * PageChecked will have been set and the transaction will have 151 * already been started before this is called. 152 */ 153 154 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 155 { 156 struct inode *inode = page->mapping->host; 157 struct gfs2_inode *ip = GFS2_I(inode); 158 struct gfs2_sbd *sdp = GFS2_SB(inode); 159 160 if (PageChecked(page)) { 161 ClearPageChecked(page); 162 if (!page_has_buffers(page)) { 163 create_empty_buffers(page, inode->i_sb->s_blocksize, 164 (1 << BH_Dirty)|(1 << BH_Uptodate)); 165 } 166 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1); 167 } 168 return block_write_full_page(page, gfs2_get_block_noalloc, wbc); 169 } 170 171 /** 172 * gfs2_jdata_writepage - Write complete page 173 * @page: Page to write 174 * 175 * Returns: errno 176 * 177 */ 178 179 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 180 { 181 struct inode *inode = page->mapping->host; 182 struct gfs2_sbd *sdp = GFS2_SB(inode); 183 int ret; 184 int done_trans = 0; 185 186 if (PageChecked(page)) { 187 if (wbc->sync_mode != WB_SYNC_ALL) 188 goto out_ignore; 189 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0); 190 if (ret) 191 goto out_ignore; 192 done_trans = 1; 193 } 194 ret = gfs2_writepage_common(page, wbc); 195 if (ret > 0) 196 ret = __gfs2_jdata_writepage(page, wbc); 197 if (done_trans) 198 gfs2_trans_end(sdp); 199 return ret; 200 201 out_ignore: 202 redirty_page_for_writepage(wbc, page); 203 unlock_page(page); 204 return 0; 205 } 206 207 /** 208 * gfs2_writepages - Write a bunch of dirty pages back to disk 209 * @mapping: The mapping to write 210 * @wbc: Write-back control 211 * 212 * Used for both ordered and writeback modes. 213 */ 214 static int gfs2_writepages(struct address_space *mapping, 215 struct writeback_control *wbc) 216 { 217 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 218 } 219 220 /** 221 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 222 * @mapping: The mapping 223 * @wbc: The writeback control 224 * @writepage: The writepage function to call for each page 225 * @pvec: The vector of pages 226 * @nr_pages: The number of pages to write 227 * 228 * Returns: non-zero if loop should terminate, zero otherwise 229 */ 230 231 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 232 struct writeback_control *wbc, 233 struct pagevec *pvec, 234 int nr_pages, pgoff_t end, 235 pgoff_t *done_index) 236 { 237 struct inode *inode = mapping->host; 238 struct gfs2_sbd *sdp = GFS2_SB(inode); 239 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize); 240 int i; 241 int ret; 242 243 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 244 if (ret < 0) 245 return ret; 246 247 for(i = 0; i < nr_pages; i++) { 248 struct page *page = pvec->pages[i]; 249 250 /* 251 * At this point, the page may be truncated or 252 * invalidated (changing page->mapping to NULL), or 253 * even swizzled back from swapper_space to tmpfs file 254 * mapping. However, page->index will not change 255 * because we have a reference on the page. 256 */ 257 if (page->index > end) { 258 /* 259 * can't be range_cyclic (1st pass) because 260 * end == -1 in that case. 261 */ 262 ret = 1; 263 break; 264 } 265 266 *done_index = page->index; 267 268 lock_page(page); 269 270 if (unlikely(page->mapping != mapping)) { 271 continue_unlock: 272 unlock_page(page); 273 continue; 274 } 275 276 if (!PageDirty(page)) { 277 /* someone wrote it for us */ 278 goto continue_unlock; 279 } 280 281 if (PageWriteback(page)) { 282 if (wbc->sync_mode != WB_SYNC_NONE) 283 wait_on_page_writeback(page); 284 else 285 goto continue_unlock; 286 } 287 288 BUG_ON(PageWriteback(page)); 289 if (!clear_page_dirty_for_io(page)) 290 goto continue_unlock; 291 292 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 293 294 ret = __gfs2_jdata_writepage(page, wbc); 295 if (unlikely(ret)) { 296 if (ret == AOP_WRITEPAGE_ACTIVATE) { 297 unlock_page(page); 298 ret = 0; 299 } else { 300 301 /* 302 * done_index is set past this page, 303 * so media errors will not choke 304 * background writeout for the entire 305 * file. This has consequences for 306 * range_cyclic semantics (ie. it may 307 * not be suitable for data integrity 308 * writeout). 309 */ 310 *done_index = page->index + 1; 311 ret = 1; 312 break; 313 } 314 } 315 316 /* 317 * We stop writing back only if we are not doing 318 * integrity sync. In case of integrity sync we have to 319 * keep going until we have written all the pages 320 * we tagged for writeback prior to entering this loop. 321 */ 322 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 323 ret = 1; 324 break; 325 } 326 327 } 328 gfs2_trans_end(sdp); 329 return ret; 330 } 331 332 /** 333 * gfs2_write_cache_jdata - Like write_cache_pages but different 334 * @mapping: The mapping to write 335 * @wbc: The writeback control 336 * @writepage: The writepage function to call 337 * @data: The data to pass to writepage 338 * 339 * The reason that we use our own function here is that we need to 340 * start transactions before we grab page locks. This allows us 341 * to get the ordering right. 342 */ 343 344 static int gfs2_write_cache_jdata(struct address_space *mapping, 345 struct writeback_control *wbc) 346 { 347 int ret = 0; 348 int done = 0; 349 struct pagevec pvec; 350 int nr_pages; 351 pgoff_t uninitialized_var(writeback_index); 352 pgoff_t index; 353 pgoff_t end; 354 pgoff_t done_index; 355 int cycled; 356 int range_whole = 0; 357 int tag; 358 359 pagevec_init(&pvec, 0); 360 if (wbc->range_cyclic) { 361 writeback_index = mapping->writeback_index; /* prev offset */ 362 index = writeback_index; 363 if (index == 0) 364 cycled = 1; 365 else 366 cycled = 0; 367 end = -1; 368 } else { 369 index = wbc->range_start >> PAGE_CACHE_SHIFT; 370 end = wbc->range_end >> PAGE_CACHE_SHIFT; 371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 372 range_whole = 1; 373 cycled = 1; /* ignore range_cyclic tests */ 374 } 375 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 376 tag = PAGECACHE_TAG_TOWRITE; 377 else 378 tag = PAGECACHE_TAG_DIRTY; 379 380 retry: 381 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 382 tag_pages_for_writeback(mapping, index, end); 383 done_index = index; 384 while (!done && (index <= end)) { 385 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 386 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 387 if (nr_pages == 0) 388 break; 389 390 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index); 391 if (ret) 392 done = 1; 393 if (ret > 0) 394 ret = 0; 395 pagevec_release(&pvec); 396 cond_resched(); 397 } 398 399 if (!cycled && !done) { 400 /* 401 * range_cyclic: 402 * We hit the last page and there is more work to be done: wrap 403 * back to the start of the file 404 */ 405 cycled = 1; 406 index = 0; 407 end = writeback_index - 1; 408 goto retry; 409 } 410 411 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 412 mapping->writeback_index = done_index; 413 414 return ret; 415 } 416 417 418 /** 419 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 420 * @mapping: The mapping to write 421 * @wbc: The writeback control 422 * 423 */ 424 425 static int gfs2_jdata_writepages(struct address_space *mapping, 426 struct writeback_control *wbc) 427 { 428 struct gfs2_inode *ip = GFS2_I(mapping->host); 429 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 430 int ret; 431 432 ret = gfs2_write_cache_jdata(mapping, wbc); 433 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 434 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH); 435 ret = gfs2_write_cache_jdata(mapping, wbc); 436 } 437 return ret; 438 } 439 440 /** 441 * stuffed_readpage - Fill in a Linux page with stuffed file data 442 * @ip: the inode 443 * @page: the page 444 * 445 * Returns: errno 446 */ 447 448 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 449 { 450 struct buffer_head *dibh; 451 u64 dsize = i_size_read(&ip->i_inode); 452 void *kaddr; 453 int error; 454 455 /* 456 * Due to the order of unstuffing files and ->fault(), we can be 457 * asked for a zero page in the case of a stuffed file being extended, 458 * so we need to supply one here. It doesn't happen often. 459 */ 460 if (unlikely(page->index)) { 461 zero_user(page, 0, PAGE_CACHE_SIZE); 462 SetPageUptodate(page); 463 return 0; 464 } 465 466 error = gfs2_meta_inode_buffer(ip, &dibh); 467 if (error) 468 return error; 469 470 kaddr = kmap_atomic(page); 471 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode))) 472 dsize = (dibh->b_size - sizeof(struct gfs2_dinode)); 473 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 474 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize); 475 kunmap_atomic(kaddr); 476 flush_dcache_page(page); 477 brelse(dibh); 478 SetPageUptodate(page); 479 480 return 0; 481 } 482 483 484 /** 485 * __gfs2_readpage - readpage 486 * @file: The file to read a page for 487 * @page: The page to read 488 * 489 * This is the core of gfs2's readpage. Its used by the internal file 490 * reading code as in that case we already hold the glock. Also its 491 * called by gfs2_readpage() once the required lock has been granted. 492 * 493 */ 494 495 static int __gfs2_readpage(void *file, struct page *page) 496 { 497 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 498 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 499 int error; 500 501 if (gfs2_is_stuffed(ip)) { 502 error = stuffed_readpage(ip, page); 503 unlock_page(page); 504 } else { 505 error = mpage_readpage(page, gfs2_block_map); 506 } 507 508 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 509 return -EIO; 510 511 return error; 512 } 513 514 /** 515 * gfs2_readpage - read a page of a file 516 * @file: The file to read 517 * @page: The page of the file 518 * 519 * This deals with the locking required. We have to unlock and 520 * relock the page in order to get the locking in the right 521 * order. 522 */ 523 524 static int gfs2_readpage(struct file *file, struct page *page) 525 { 526 struct address_space *mapping = page->mapping; 527 struct gfs2_inode *ip = GFS2_I(mapping->host); 528 struct gfs2_holder gh; 529 int error; 530 531 unlock_page(page); 532 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 533 error = gfs2_glock_nq(&gh); 534 if (unlikely(error)) 535 goto out; 536 error = AOP_TRUNCATED_PAGE; 537 lock_page(page); 538 if (page->mapping == mapping && !PageUptodate(page)) 539 error = __gfs2_readpage(file, page); 540 else 541 unlock_page(page); 542 gfs2_glock_dq(&gh); 543 out: 544 gfs2_holder_uninit(&gh); 545 if (error && error != AOP_TRUNCATED_PAGE) 546 lock_page(page); 547 return error; 548 } 549 550 /** 551 * gfs2_internal_read - read an internal file 552 * @ip: The gfs2 inode 553 * @buf: The buffer to fill 554 * @pos: The file position 555 * @size: The amount to read 556 * 557 */ 558 559 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 560 unsigned size) 561 { 562 struct address_space *mapping = ip->i_inode.i_mapping; 563 unsigned long index = *pos / PAGE_CACHE_SIZE; 564 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1); 565 unsigned copied = 0; 566 unsigned amt; 567 struct page *page; 568 void *p; 569 570 do { 571 amt = size - copied; 572 if (offset + size > PAGE_CACHE_SIZE) 573 amt = PAGE_CACHE_SIZE - offset; 574 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 575 if (IS_ERR(page)) 576 return PTR_ERR(page); 577 p = kmap_atomic(page); 578 memcpy(buf + copied, p + offset, amt); 579 kunmap_atomic(p); 580 page_cache_release(page); 581 copied += amt; 582 index++; 583 offset = 0; 584 } while(copied < size); 585 (*pos) += size; 586 return size; 587 } 588 589 /** 590 * gfs2_readpages - Read a bunch of pages at once 591 * 592 * Some notes: 593 * 1. This is only for readahead, so we can simply ignore any things 594 * which are slightly inconvenient (such as locking conflicts between 595 * the page lock and the glock) and return having done no I/O. Its 596 * obviously not something we'd want to do on too regular a basis. 597 * Any I/O we ignore at this time will be done via readpage later. 598 * 2. We don't handle stuffed files here we let readpage do the honours. 599 * 3. mpage_readpages() does most of the heavy lifting in the common case. 600 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 601 */ 602 603 static int gfs2_readpages(struct file *file, struct address_space *mapping, 604 struct list_head *pages, unsigned nr_pages) 605 { 606 struct inode *inode = mapping->host; 607 struct gfs2_inode *ip = GFS2_I(inode); 608 struct gfs2_sbd *sdp = GFS2_SB(inode); 609 struct gfs2_holder gh; 610 int ret; 611 612 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 613 ret = gfs2_glock_nq(&gh); 614 if (unlikely(ret)) 615 goto out_uninit; 616 if (!gfs2_is_stuffed(ip)) 617 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 618 gfs2_glock_dq(&gh); 619 out_uninit: 620 gfs2_holder_uninit(&gh); 621 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) 622 ret = -EIO; 623 return ret; 624 } 625 626 /** 627 * gfs2_write_begin - Begin to write to a file 628 * @file: The file to write to 629 * @mapping: The mapping in which to write 630 * @pos: The file offset at which to start writing 631 * @len: Length of the write 632 * @flags: Various flags 633 * @pagep: Pointer to return the page 634 * @fsdata: Pointer to return fs data (unused by GFS2) 635 * 636 * Returns: errno 637 */ 638 639 static int gfs2_write_begin(struct file *file, struct address_space *mapping, 640 loff_t pos, unsigned len, unsigned flags, 641 struct page **pagep, void **fsdata) 642 { 643 struct gfs2_inode *ip = GFS2_I(mapping->host); 644 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 645 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 646 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 647 unsigned requested = 0; 648 int alloc_required; 649 int error = 0; 650 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 651 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 652 struct page *page; 653 654 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 655 error = gfs2_glock_nq(&ip->i_gh); 656 if (unlikely(error)) 657 goto out_uninit; 658 if (&ip->i_inode == sdp->sd_rindex) { 659 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 660 GL_NOCACHE, &m_ip->i_gh); 661 if (unlikely(error)) { 662 gfs2_glock_dq(&ip->i_gh); 663 goto out_uninit; 664 } 665 } 666 667 alloc_required = gfs2_write_alloc_required(ip, pos, len); 668 669 if (alloc_required || gfs2_is_jdata(ip)) 670 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks); 671 672 if (alloc_required) { 673 struct gfs2_alloc_parms ap = { .aflags = 0, }; 674 requested = data_blocks + ind_blocks; 675 ap.target = requested; 676 error = gfs2_quota_lock_check(ip, &ap); 677 if (error) 678 goto out_unlock; 679 680 error = gfs2_inplace_reserve(ip, &ap); 681 if (error) 682 goto out_qunlock; 683 } 684 685 rblocks = RES_DINODE + ind_blocks; 686 if (gfs2_is_jdata(ip)) 687 rblocks += data_blocks ? data_blocks : 1; 688 if (ind_blocks || data_blocks) 689 rblocks += RES_STATFS + RES_QUOTA; 690 if (&ip->i_inode == sdp->sd_rindex) 691 rblocks += 2 * RES_STATFS; 692 if (alloc_required) 693 rblocks += gfs2_rg_blocks(ip, requested); 694 695 error = gfs2_trans_begin(sdp, rblocks, 696 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize); 697 if (error) 698 goto out_trans_fail; 699 700 error = -ENOMEM; 701 flags |= AOP_FLAG_NOFS; 702 page = grab_cache_page_write_begin(mapping, index, flags); 703 *pagep = page; 704 if (unlikely(!page)) 705 goto out_endtrans; 706 707 if (gfs2_is_stuffed(ip)) { 708 error = 0; 709 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) { 710 error = gfs2_unstuff_dinode(ip, page); 711 if (error == 0) 712 goto prepare_write; 713 } else if (!PageUptodate(page)) { 714 error = stuffed_readpage(ip, page); 715 } 716 goto out; 717 } 718 719 prepare_write: 720 error = __block_write_begin(page, from, len, gfs2_block_map); 721 out: 722 if (error == 0) 723 return 0; 724 725 unlock_page(page); 726 page_cache_release(page); 727 728 gfs2_trans_end(sdp); 729 if (pos + len > ip->i_inode.i_size) 730 gfs2_trim_blocks(&ip->i_inode); 731 goto out_trans_fail; 732 733 out_endtrans: 734 gfs2_trans_end(sdp); 735 out_trans_fail: 736 if (alloc_required) { 737 gfs2_inplace_release(ip); 738 out_qunlock: 739 gfs2_quota_unlock(ip); 740 } 741 out_unlock: 742 if (&ip->i_inode == sdp->sd_rindex) { 743 gfs2_glock_dq(&m_ip->i_gh); 744 gfs2_holder_uninit(&m_ip->i_gh); 745 } 746 gfs2_glock_dq(&ip->i_gh); 747 out_uninit: 748 gfs2_holder_uninit(&ip->i_gh); 749 return error; 750 } 751 752 /** 753 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 754 * @inode: the rindex inode 755 */ 756 static void adjust_fs_space(struct inode *inode) 757 { 758 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info; 759 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 760 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 761 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 762 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 763 struct buffer_head *m_bh, *l_bh; 764 u64 fs_total, new_free; 765 766 /* Total up the file system space, according to the latest rindex. */ 767 fs_total = gfs2_ri_total(sdp); 768 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 769 return; 770 771 spin_lock(&sdp->sd_statfs_spin); 772 gfs2_statfs_change_in(m_sc, m_bh->b_data + 773 sizeof(struct gfs2_dinode)); 774 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 775 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 776 else 777 new_free = 0; 778 spin_unlock(&sdp->sd_statfs_spin); 779 fs_warn(sdp, "File system extended by %llu blocks.\n", 780 (unsigned long long)new_free); 781 gfs2_statfs_change(sdp, new_free, new_free, 0); 782 783 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 784 goto out; 785 update_statfs(sdp, m_bh, l_bh); 786 brelse(l_bh); 787 out: 788 brelse(m_bh); 789 } 790 791 /** 792 * gfs2_stuffed_write_end - Write end for stuffed files 793 * @inode: The inode 794 * @dibh: The buffer_head containing the on-disk inode 795 * @pos: The file position 796 * @len: The length of the write 797 * @copied: How much was actually copied by the VFS 798 * @page: The page 799 * 800 * This copies the data from the page into the inode block after 801 * the inode data structure itself. 802 * 803 * Returns: errno 804 */ 805 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh, 806 loff_t pos, unsigned len, unsigned copied, 807 struct page *page) 808 { 809 struct gfs2_inode *ip = GFS2_I(inode); 810 struct gfs2_sbd *sdp = GFS2_SB(inode); 811 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 812 u64 to = pos + copied; 813 void *kaddr; 814 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode); 815 816 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode))); 817 kaddr = kmap_atomic(page); 818 memcpy(buf + pos, kaddr + pos, copied); 819 memset(kaddr + pos + copied, 0, len - copied); 820 flush_dcache_page(page); 821 kunmap_atomic(kaddr); 822 823 if (!PageUptodate(page)) 824 SetPageUptodate(page); 825 unlock_page(page); 826 page_cache_release(page); 827 828 if (copied) { 829 if (inode->i_size < to) 830 i_size_write(inode, to); 831 mark_inode_dirty(inode); 832 } 833 834 if (inode == sdp->sd_rindex) { 835 adjust_fs_space(inode); 836 sdp->sd_rindex_uptodate = 0; 837 } 838 839 brelse(dibh); 840 gfs2_trans_end(sdp); 841 if (inode == sdp->sd_rindex) { 842 gfs2_glock_dq(&m_ip->i_gh); 843 gfs2_holder_uninit(&m_ip->i_gh); 844 } 845 gfs2_glock_dq(&ip->i_gh); 846 gfs2_holder_uninit(&ip->i_gh); 847 return copied; 848 } 849 850 /** 851 * gfs2_write_end 852 * @file: The file to write to 853 * @mapping: The address space to write to 854 * @pos: The file position 855 * @len: The length of the data 856 * @copied: 857 * @page: The page that has been written 858 * @fsdata: The fsdata (unused in GFS2) 859 * 860 * The main write_end function for GFS2. We have a separate one for 861 * stuffed files as they are slightly different, otherwise we just 862 * put our locking around the VFS provided functions. 863 * 864 * Returns: errno 865 */ 866 867 static int gfs2_write_end(struct file *file, struct address_space *mapping, 868 loff_t pos, unsigned len, unsigned copied, 869 struct page *page, void *fsdata) 870 { 871 struct inode *inode = page->mapping->host; 872 struct gfs2_inode *ip = GFS2_I(inode); 873 struct gfs2_sbd *sdp = GFS2_SB(inode); 874 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 875 struct buffer_head *dibh; 876 unsigned int from = pos & (PAGE_CACHE_SIZE - 1); 877 unsigned int to = from + len; 878 int ret; 879 struct gfs2_trans *tr = current->journal_info; 880 BUG_ON(!tr); 881 882 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL); 883 884 ret = gfs2_meta_inode_buffer(ip, &dibh); 885 if (unlikely(ret)) { 886 unlock_page(page); 887 page_cache_release(page); 888 goto failed; 889 } 890 891 if (gfs2_is_stuffed(ip)) 892 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page); 893 894 if (!gfs2_is_writeback(ip)) 895 gfs2_page_add_databufs(ip, page, from, to); 896 897 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 898 if (tr->tr_num_buf_new) 899 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 900 else 901 gfs2_trans_add_meta(ip->i_gl, dibh); 902 903 904 if (inode == sdp->sd_rindex) { 905 adjust_fs_space(inode); 906 sdp->sd_rindex_uptodate = 0; 907 } 908 909 brelse(dibh); 910 failed: 911 gfs2_trans_end(sdp); 912 gfs2_inplace_release(ip); 913 if (ip->i_res->rs_qa_qd_num) 914 gfs2_quota_unlock(ip); 915 if (inode == sdp->sd_rindex) { 916 gfs2_glock_dq(&m_ip->i_gh); 917 gfs2_holder_uninit(&m_ip->i_gh); 918 } 919 gfs2_glock_dq(&ip->i_gh); 920 gfs2_holder_uninit(&ip->i_gh); 921 return ret; 922 } 923 924 /** 925 * gfs2_set_page_dirty - Page dirtying function 926 * @page: The page to dirty 927 * 928 * Returns: 1 if it dirtyed the page, or 0 otherwise 929 */ 930 931 static int gfs2_set_page_dirty(struct page *page) 932 { 933 SetPageChecked(page); 934 return __set_page_dirty_buffers(page); 935 } 936 937 /** 938 * gfs2_bmap - Block map function 939 * @mapping: Address space info 940 * @lblock: The block to map 941 * 942 * Returns: The disk address for the block or 0 on hole or error 943 */ 944 945 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 946 { 947 struct gfs2_inode *ip = GFS2_I(mapping->host); 948 struct gfs2_holder i_gh; 949 sector_t dblock = 0; 950 int error; 951 952 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 953 if (error) 954 return 0; 955 956 if (!gfs2_is_stuffed(ip)) 957 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map); 958 959 gfs2_glock_dq_uninit(&i_gh); 960 961 return dblock; 962 } 963 964 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 965 { 966 struct gfs2_bufdata *bd; 967 968 lock_buffer(bh); 969 gfs2_log_lock(sdp); 970 clear_buffer_dirty(bh); 971 bd = bh->b_private; 972 if (bd) { 973 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 974 list_del_init(&bd->bd_list); 975 else 976 gfs2_remove_from_journal(bh, current->journal_info, 0); 977 } 978 bh->b_bdev = NULL; 979 clear_buffer_mapped(bh); 980 clear_buffer_req(bh); 981 clear_buffer_new(bh); 982 gfs2_log_unlock(sdp); 983 unlock_buffer(bh); 984 } 985 986 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 987 unsigned int length) 988 { 989 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 990 unsigned int stop = offset + length; 991 int partial_page = (offset || length < PAGE_CACHE_SIZE); 992 struct buffer_head *bh, *head; 993 unsigned long pos = 0; 994 995 BUG_ON(!PageLocked(page)); 996 if (!partial_page) 997 ClearPageChecked(page); 998 if (!page_has_buffers(page)) 999 goto out; 1000 1001 bh = head = page_buffers(page); 1002 do { 1003 if (pos + bh->b_size > stop) 1004 return; 1005 1006 if (offset <= pos) 1007 gfs2_discard(sdp, bh); 1008 pos += bh->b_size; 1009 bh = bh->b_this_page; 1010 } while (bh != head); 1011 out: 1012 if (!partial_page) 1013 try_to_release_page(page, 0); 1014 } 1015 1016 /** 1017 * gfs2_ok_for_dio - check that dio is valid on this file 1018 * @ip: The inode 1019 * @offset: The offset at which we are reading or writing 1020 * 1021 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o) 1022 * 1 (to accept the i/o request) 1023 */ 1024 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset) 1025 { 1026 /* 1027 * Should we return an error here? I can't see that O_DIRECT for 1028 * a stuffed file makes any sense. For now we'll silently fall 1029 * back to buffered I/O 1030 */ 1031 if (gfs2_is_stuffed(ip)) 1032 return 0; 1033 1034 if (offset >= i_size_read(&ip->i_inode)) 1035 return 0; 1036 return 1; 1037 } 1038 1039 1040 1041 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 1042 loff_t offset) 1043 { 1044 struct file *file = iocb->ki_filp; 1045 struct inode *inode = file->f_mapping->host; 1046 struct address_space *mapping = inode->i_mapping; 1047 struct gfs2_inode *ip = GFS2_I(inode); 1048 struct gfs2_holder gh; 1049 int rv; 1050 1051 /* 1052 * Deferred lock, even if its a write, since we do no allocation 1053 * on this path. All we need change is atime, and this lock mode 1054 * ensures that other nodes have flushed their buffered read caches 1055 * (i.e. their page cache entries for this inode). We do not, 1056 * unfortunately have the option of only flushing a range like 1057 * the VFS does. 1058 */ 1059 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 1060 rv = gfs2_glock_nq(&gh); 1061 if (rv) 1062 return rv; 1063 rv = gfs2_ok_for_dio(ip, offset); 1064 if (rv != 1) 1065 goto out; /* dio not valid, fall back to buffered i/o */ 1066 1067 /* 1068 * Now since we are holding a deferred (CW) lock at this point, you 1069 * might be wondering why this is ever needed. There is a case however 1070 * where we've granted a deferred local lock against a cached exclusive 1071 * glock. That is ok provided all granted local locks are deferred, but 1072 * it also means that it is possible to encounter pages which are 1073 * cached and possibly also mapped. So here we check for that and sort 1074 * them out ahead of the dio. The glock state machine will take care of 1075 * everything else. 1076 * 1077 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in 1078 * the first place, mapping->nr_pages will always be zero. 1079 */ 1080 if (mapping->nrpages) { 1081 loff_t lstart = offset & (PAGE_CACHE_SIZE - 1); 1082 loff_t len = iov_iter_count(iter); 1083 loff_t end = PAGE_ALIGN(offset + len) - 1; 1084 1085 rv = 0; 1086 if (len == 0) 1087 goto out; 1088 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags)) 1089 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len); 1090 rv = filemap_write_and_wait_range(mapping, lstart, end); 1091 if (rv) 1092 goto out; 1093 if (iov_iter_rw(iter) == WRITE) 1094 truncate_inode_pages_range(mapping, lstart, end); 1095 } 1096 1097 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 1098 offset, gfs2_get_block_direct, NULL, NULL, 0); 1099 out: 1100 gfs2_glock_dq(&gh); 1101 gfs2_holder_uninit(&gh); 1102 return rv; 1103 } 1104 1105 /** 1106 * gfs2_releasepage - free the metadata associated with a page 1107 * @page: the page that's being released 1108 * @gfp_mask: passed from Linux VFS, ignored by us 1109 * 1110 * Call try_to_free_buffers() if the buffers in this page can be 1111 * released. 1112 * 1113 * Returns: 0 1114 */ 1115 1116 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 1117 { 1118 struct address_space *mapping = page->mapping; 1119 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 1120 struct buffer_head *bh, *head; 1121 struct gfs2_bufdata *bd; 1122 1123 if (!page_has_buffers(page)) 1124 return 0; 1125 1126 gfs2_log_lock(sdp); 1127 spin_lock(&sdp->sd_ail_lock); 1128 head = bh = page_buffers(page); 1129 do { 1130 if (atomic_read(&bh->b_count)) 1131 goto cannot_release; 1132 bd = bh->b_private; 1133 if (bd && bd->bd_tr) 1134 goto cannot_release; 1135 if (buffer_pinned(bh) || buffer_dirty(bh)) 1136 goto not_possible; 1137 bh = bh->b_this_page; 1138 } while(bh != head); 1139 spin_unlock(&sdp->sd_ail_lock); 1140 1141 head = bh = page_buffers(page); 1142 do { 1143 bd = bh->b_private; 1144 if (bd) { 1145 gfs2_assert_warn(sdp, bd->bd_bh == bh); 1146 if (!list_empty(&bd->bd_list)) 1147 list_del_init(&bd->bd_list); 1148 bd->bd_bh = NULL; 1149 bh->b_private = NULL; 1150 kmem_cache_free(gfs2_bufdata_cachep, bd); 1151 } 1152 1153 bh = bh->b_this_page; 1154 } while (bh != head); 1155 gfs2_log_unlock(sdp); 1156 1157 return try_to_free_buffers(page); 1158 1159 not_possible: /* Should never happen */ 1160 WARN_ON(buffer_dirty(bh)); 1161 WARN_ON(buffer_pinned(bh)); 1162 cannot_release: 1163 spin_unlock(&sdp->sd_ail_lock); 1164 gfs2_log_unlock(sdp); 1165 return 0; 1166 } 1167 1168 static const struct address_space_operations gfs2_writeback_aops = { 1169 .writepage = gfs2_writepage, 1170 .writepages = gfs2_writepages, 1171 .readpage = gfs2_readpage, 1172 .readpages = gfs2_readpages, 1173 .write_begin = gfs2_write_begin, 1174 .write_end = gfs2_write_end, 1175 .bmap = gfs2_bmap, 1176 .invalidatepage = gfs2_invalidatepage, 1177 .releasepage = gfs2_releasepage, 1178 .direct_IO = gfs2_direct_IO, 1179 .migratepage = buffer_migrate_page, 1180 .is_partially_uptodate = block_is_partially_uptodate, 1181 .error_remove_page = generic_error_remove_page, 1182 }; 1183 1184 static const struct address_space_operations gfs2_ordered_aops = { 1185 .writepage = gfs2_writepage, 1186 .writepages = gfs2_writepages, 1187 .readpage = gfs2_readpage, 1188 .readpages = gfs2_readpages, 1189 .write_begin = gfs2_write_begin, 1190 .write_end = gfs2_write_end, 1191 .set_page_dirty = gfs2_set_page_dirty, 1192 .bmap = gfs2_bmap, 1193 .invalidatepage = gfs2_invalidatepage, 1194 .releasepage = gfs2_releasepage, 1195 .direct_IO = gfs2_direct_IO, 1196 .migratepage = buffer_migrate_page, 1197 .is_partially_uptodate = block_is_partially_uptodate, 1198 .error_remove_page = generic_error_remove_page, 1199 }; 1200 1201 static const struct address_space_operations gfs2_jdata_aops = { 1202 .writepage = gfs2_jdata_writepage, 1203 .writepages = gfs2_jdata_writepages, 1204 .readpage = gfs2_readpage, 1205 .readpages = gfs2_readpages, 1206 .write_begin = gfs2_write_begin, 1207 .write_end = gfs2_write_end, 1208 .set_page_dirty = gfs2_set_page_dirty, 1209 .bmap = gfs2_bmap, 1210 .invalidatepage = gfs2_invalidatepage, 1211 .releasepage = gfs2_releasepage, 1212 .is_partially_uptodate = block_is_partially_uptodate, 1213 .error_remove_page = generic_error_remove_page, 1214 }; 1215 1216 void gfs2_set_aops(struct inode *inode) 1217 { 1218 struct gfs2_inode *ip = GFS2_I(inode); 1219 1220 if (gfs2_is_writeback(ip)) 1221 inode->i_mapping->a_ops = &gfs2_writeback_aops; 1222 else if (gfs2_is_ordered(ip)) 1223 inode->i_mapping->a_ops = &gfs2_ordered_aops; 1224 else if (gfs2_is_jdata(ip)) 1225 inode->i_mapping->a_ops = &gfs2_jdata_aops; 1226 else 1227 BUG(); 1228 } 1229 1230