1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/slab.h> 9 #include <linux/spinlock.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/pagevec.h> 14 #include <linux/mpage.h> 15 #include <linux/fs.h> 16 #include <linux/writeback.h> 17 #include <linux/swap.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/backing-dev.h> 20 #include <linux/uio.h> 21 #include <trace/events/writeback.h> 22 #include <linux/sched/signal.h> 23 24 #include "gfs2.h" 25 #include "incore.h" 26 #include "bmap.h" 27 #include "glock.h" 28 #include "inode.h" 29 #include "log.h" 30 #include "meta_io.h" 31 #include "quota.h" 32 #include "trans.h" 33 #include "rgrp.h" 34 #include "super.h" 35 #include "util.h" 36 #include "glops.h" 37 #include "aops.h" 38 39 40 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page, 41 unsigned int from, unsigned int len) 42 { 43 struct buffer_head *head = page_buffers(page); 44 unsigned int bsize = head->b_size; 45 struct buffer_head *bh; 46 unsigned int to = from + len; 47 unsigned int start, end; 48 49 for (bh = head, start = 0; bh != head || !start; 50 bh = bh->b_this_page, start = end) { 51 end = start + bsize; 52 if (end <= from) 53 continue; 54 if (start >= to) 55 break; 56 set_buffer_uptodate(bh); 57 gfs2_trans_add_data(ip->i_gl, bh); 58 } 59 } 60 61 /** 62 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block 63 * @inode: The inode 64 * @lblock: The block number to look up 65 * @bh_result: The buffer head to return the result in 66 * @create: Non-zero if we may add block to the file 67 * 68 * Returns: errno 69 */ 70 71 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock, 72 struct buffer_head *bh_result, int create) 73 { 74 int error; 75 76 error = gfs2_block_map(inode, lblock, bh_result, 0); 77 if (error) 78 return error; 79 if (!buffer_mapped(bh_result)) 80 return -EIO; 81 return 0; 82 } 83 84 /** 85 * gfs2_writepage - Write page for writeback mappings 86 * @page: The page 87 * @wbc: The writeback control 88 */ 89 static int gfs2_writepage(struct page *page, struct writeback_control *wbc) 90 { 91 struct inode *inode = page->mapping->host; 92 struct gfs2_inode *ip = GFS2_I(inode); 93 struct gfs2_sbd *sdp = GFS2_SB(inode); 94 loff_t i_size = i_size_read(inode); 95 pgoff_t end_index = i_size >> PAGE_SHIFT; 96 unsigned offset; 97 98 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 99 goto out; 100 if (current->journal_info) 101 goto redirty; 102 /* Is the page fully outside i_size? (truncate in progress) */ 103 offset = i_size & (PAGE_SIZE-1); 104 if (page->index > end_index || (page->index == end_index && !offset)) { 105 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 106 goto out; 107 } 108 109 return nobh_writepage(page, gfs2_get_block_noalloc, wbc); 110 111 redirty: 112 redirty_page_for_writepage(wbc, page); 113 out: 114 unlock_page(page); 115 return 0; 116 } 117 118 /* This is the same as calling block_write_full_page, but it also 119 * writes pages outside of i_size 120 */ 121 static int gfs2_write_full_page(struct page *page, get_block_t *get_block, 122 struct writeback_control *wbc) 123 { 124 struct inode * const inode = page->mapping->host; 125 loff_t i_size = i_size_read(inode); 126 const pgoff_t end_index = i_size >> PAGE_SHIFT; 127 unsigned offset; 128 129 /* 130 * The page straddles i_size. It must be zeroed out on each and every 131 * writepage invocation because it may be mmapped. "A file is mapped 132 * in multiples of the page size. For a file that is not a multiple of 133 * the page size, the remaining memory is zeroed when mapped, and 134 * writes to that region are not written out to the file." 135 */ 136 offset = i_size & (PAGE_SIZE - 1); 137 if (page->index == end_index && offset) 138 zero_user_segment(page, offset, PAGE_SIZE); 139 140 return __block_write_full_page(inode, page, get_block, wbc, 141 end_buffer_async_write); 142 } 143 144 /** 145 * __gfs2_jdata_writepage - The core of jdata writepage 146 * @page: The page to write 147 * @wbc: The writeback control 148 * 149 * This is shared between writepage and writepages and implements the 150 * core of the writepage operation. If a transaction is required then 151 * PageChecked will have been set and the transaction will have 152 * already been started before this is called. 153 */ 154 155 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 156 { 157 struct inode *inode = page->mapping->host; 158 struct gfs2_inode *ip = GFS2_I(inode); 159 struct gfs2_sbd *sdp = GFS2_SB(inode); 160 161 if (PageChecked(page)) { 162 ClearPageChecked(page); 163 if (!page_has_buffers(page)) { 164 create_empty_buffers(page, inode->i_sb->s_blocksize, 165 BIT(BH_Dirty)|BIT(BH_Uptodate)); 166 } 167 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize); 168 } 169 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc); 170 } 171 172 /** 173 * gfs2_jdata_writepage - Write complete page 174 * @page: Page to write 175 * @wbc: The writeback control 176 * 177 * Returns: errno 178 * 179 */ 180 181 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc) 182 { 183 struct inode *inode = page->mapping->host; 184 struct gfs2_inode *ip = GFS2_I(inode); 185 struct gfs2_sbd *sdp = GFS2_SB(inode); 186 int ret; 187 188 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl))) 189 goto out; 190 if (PageChecked(page) || current->journal_info) 191 goto out_ignore; 192 ret = __gfs2_jdata_writepage(page, wbc); 193 return ret; 194 195 out_ignore: 196 redirty_page_for_writepage(wbc, page); 197 out: 198 unlock_page(page); 199 return 0; 200 } 201 202 /** 203 * gfs2_writepages - Write a bunch of dirty pages back to disk 204 * @mapping: The mapping to write 205 * @wbc: Write-back control 206 * 207 * Used for both ordered and writeback modes. 208 */ 209 static int gfs2_writepages(struct address_space *mapping, 210 struct writeback_control *wbc) 211 { 212 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 213 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc); 214 215 /* 216 * Even if we didn't write any pages here, we might still be holding 217 * dirty pages in the ail. We forcibly flush the ail because we don't 218 * want balance_dirty_pages() to loop indefinitely trying to write out 219 * pages held in the ail that it can't find. 220 */ 221 if (ret == 0) 222 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags); 223 224 return ret; 225 } 226 227 /** 228 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages 229 * @mapping: The mapping 230 * @wbc: The writeback control 231 * @pvec: The vector of pages 232 * @nr_pages: The number of pages to write 233 * @done_index: Page index 234 * 235 * Returns: non-zero if loop should terminate, zero otherwise 236 */ 237 238 static int gfs2_write_jdata_pagevec(struct address_space *mapping, 239 struct writeback_control *wbc, 240 struct pagevec *pvec, 241 int nr_pages, 242 pgoff_t *done_index) 243 { 244 struct inode *inode = mapping->host; 245 struct gfs2_sbd *sdp = GFS2_SB(inode); 246 unsigned nrblocks = nr_pages * (PAGE_SIZE >> inode->i_blkbits); 247 int i; 248 int ret; 249 250 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks); 251 if (ret < 0) 252 return ret; 253 254 for(i = 0; i < nr_pages; i++) { 255 struct page *page = pvec->pages[i]; 256 257 *done_index = page->index; 258 259 lock_page(page); 260 261 if (unlikely(page->mapping != mapping)) { 262 continue_unlock: 263 unlock_page(page); 264 continue; 265 } 266 267 if (!PageDirty(page)) { 268 /* someone wrote it for us */ 269 goto continue_unlock; 270 } 271 272 if (PageWriteback(page)) { 273 if (wbc->sync_mode != WB_SYNC_NONE) 274 wait_on_page_writeback(page); 275 else 276 goto continue_unlock; 277 } 278 279 BUG_ON(PageWriteback(page)); 280 if (!clear_page_dirty_for_io(page)) 281 goto continue_unlock; 282 283 trace_wbc_writepage(wbc, inode_to_bdi(inode)); 284 285 ret = __gfs2_jdata_writepage(page, wbc); 286 if (unlikely(ret)) { 287 if (ret == AOP_WRITEPAGE_ACTIVATE) { 288 unlock_page(page); 289 ret = 0; 290 } else { 291 292 /* 293 * done_index is set past this page, 294 * so media errors will not choke 295 * background writeout for the entire 296 * file. This has consequences for 297 * range_cyclic semantics (ie. it may 298 * not be suitable for data integrity 299 * writeout). 300 */ 301 *done_index = page->index + 1; 302 ret = 1; 303 break; 304 } 305 } 306 307 /* 308 * We stop writing back only if we are not doing 309 * integrity sync. In case of integrity sync we have to 310 * keep going until we have written all the pages 311 * we tagged for writeback prior to entering this loop. 312 */ 313 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { 314 ret = 1; 315 break; 316 } 317 318 } 319 gfs2_trans_end(sdp); 320 return ret; 321 } 322 323 /** 324 * gfs2_write_cache_jdata - Like write_cache_pages but different 325 * @mapping: The mapping to write 326 * @wbc: The writeback control 327 * 328 * The reason that we use our own function here is that we need to 329 * start transactions before we grab page locks. This allows us 330 * to get the ordering right. 331 */ 332 333 static int gfs2_write_cache_jdata(struct address_space *mapping, 334 struct writeback_control *wbc) 335 { 336 int ret = 0; 337 int done = 0; 338 struct pagevec pvec; 339 int nr_pages; 340 pgoff_t uninitialized_var(writeback_index); 341 pgoff_t index; 342 pgoff_t end; 343 pgoff_t done_index; 344 int cycled; 345 int range_whole = 0; 346 xa_mark_t tag; 347 348 pagevec_init(&pvec); 349 if (wbc->range_cyclic) { 350 writeback_index = mapping->writeback_index; /* prev offset */ 351 index = writeback_index; 352 if (index == 0) 353 cycled = 1; 354 else 355 cycled = 0; 356 end = -1; 357 } else { 358 index = wbc->range_start >> PAGE_SHIFT; 359 end = wbc->range_end >> PAGE_SHIFT; 360 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 361 range_whole = 1; 362 cycled = 1; /* ignore range_cyclic tests */ 363 } 364 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 365 tag = PAGECACHE_TAG_TOWRITE; 366 else 367 tag = PAGECACHE_TAG_DIRTY; 368 369 retry: 370 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 371 tag_pages_for_writeback(mapping, index, end); 372 done_index = index; 373 while (!done && (index <= end)) { 374 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 375 tag); 376 if (nr_pages == 0) 377 break; 378 379 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index); 380 if (ret) 381 done = 1; 382 if (ret > 0) 383 ret = 0; 384 pagevec_release(&pvec); 385 cond_resched(); 386 } 387 388 if (!cycled && !done) { 389 /* 390 * range_cyclic: 391 * We hit the last page and there is more work to be done: wrap 392 * back to the start of the file 393 */ 394 cycled = 1; 395 index = 0; 396 end = writeback_index - 1; 397 goto retry; 398 } 399 400 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 401 mapping->writeback_index = done_index; 402 403 return ret; 404 } 405 406 407 /** 408 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk 409 * @mapping: The mapping to write 410 * @wbc: The writeback control 411 * 412 */ 413 414 static int gfs2_jdata_writepages(struct address_space *mapping, 415 struct writeback_control *wbc) 416 { 417 struct gfs2_inode *ip = GFS2_I(mapping->host); 418 struct gfs2_sbd *sdp = GFS2_SB(mapping->host); 419 int ret; 420 421 ret = gfs2_write_cache_jdata(mapping, wbc); 422 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) { 423 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL | 424 GFS2_LFC_JDATA_WPAGES); 425 ret = gfs2_write_cache_jdata(mapping, wbc); 426 } 427 return ret; 428 } 429 430 /** 431 * stuffed_readpage - Fill in a Linux page with stuffed file data 432 * @ip: the inode 433 * @page: the page 434 * 435 * Returns: errno 436 */ 437 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page) 438 { 439 struct buffer_head *dibh; 440 u64 dsize = i_size_read(&ip->i_inode); 441 void *kaddr; 442 int error; 443 444 /* 445 * Due to the order of unstuffing files and ->fault(), we can be 446 * asked for a zero page in the case of a stuffed file being extended, 447 * so we need to supply one here. It doesn't happen often. 448 */ 449 if (unlikely(page->index)) { 450 zero_user(page, 0, PAGE_SIZE); 451 SetPageUptodate(page); 452 return 0; 453 } 454 455 error = gfs2_meta_inode_buffer(ip, &dibh); 456 if (error) 457 return error; 458 459 kaddr = kmap_atomic(page); 460 if (dsize > gfs2_max_stuffed_size(ip)) 461 dsize = gfs2_max_stuffed_size(ip); 462 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 463 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 464 kunmap_atomic(kaddr); 465 flush_dcache_page(page); 466 brelse(dibh); 467 SetPageUptodate(page); 468 469 return 0; 470 } 471 472 473 /** 474 * __gfs2_readpage - readpage 475 * @file: The file to read a page for 476 * @page: The page to read 477 * 478 * This is the core of gfs2's readpage. It's used by the internal file 479 * reading code as in that case we already hold the glock. Also it's 480 * called by gfs2_readpage() once the required lock has been granted. 481 */ 482 483 static int __gfs2_readpage(void *file, struct page *page) 484 { 485 struct gfs2_inode *ip = GFS2_I(page->mapping->host); 486 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 487 488 int error; 489 490 if (i_blocksize(page->mapping->host) == PAGE_SIZE && 491 !page_has_buffers(page)) { 492 error = iomap_readpage(page, &gfs2_iomap_ops); 493 } else if (gfs2_is_stuffed(ip)) { 494 error = stuffed_readpage(ip, page); 495 unlock_page(page); 496 } else { 497 error = mpage_readpage(page, gfs2_block_map); 498 } 499 500 if (unlikely(gfs2_withdrawn(sdp))) 501 return -EIO; 502 503 return error; 504 } 505 506 /** 507 * gfs2_readpage - read a page of a file 508 * @file: The file to read 509 * @page: The page of the file 510 * 511 * This deals with the locking required. We have to unlock and 512 * relock the page in order to get the locking in the right 513 * order. 514 */ 515 516 static int gfs2_readpage(struct file *file, struct page *page) 517 { 518 struct address_space *mapping = page->mapping; 519 struct gfs2_inode *ip = GFS2_I(mapping->host); 520 struct gfs2_holder gh; 521 int error; 522 523 unlock_page(page); 524 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 525 error = gfs2_glock_nq(&gh); 526 if (unlikely(error)) 527 goto out; 528 error = AOP_TRUNCATED_PAGE; 529 lock_page(page); 530 if (page->mapping == mapping && !PageUptodate(page)) 531 error = __gfs2_readpage(file, page); 532 else 533 unlock_page(page); 534 gfs2_glock_dq(&gh); 535 out: 536 gfs2_holder_uninit(&gh); 537 if (error && error != AOP_TRUNCATED_PAGE) 538 lock_page(page); 539 return error; 540 } 541 542 /** 543 * gfs2_internal_read - read an internal file 544 * @ip: The gfs2 inode 545 * @buf: The buffer to fill 546 * @pos: The file position 547 * @size: The amount to read 548 * 549 */ 550 551 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos, 552 unsigned size) 553 { 554 struct address_space *mapping = ip->i_inode.i_mapping; 555 unsigned long index = *pos >> PAGE_SHIFT; 556 unsigned offset = *pos & (PAGE_SIZE - 1); 557 unsigned copied = 0; 558 unsigned amt; 559 struct page *page; 560 void *p; 561 562 do { 563 amt = size - copied; 564 if (offset + size > PAGE_SIZE) 565 amt = PAGE_SIZE - offset; 566 page = read_cache_page(mapping, index, __gfs2_readpage, NULL); 567 if (IS_ERR(page)) 568 return PTR_ERR(page); 569 p = kmap_atomic(page); 570 memcpy(buf + copied, p + offset, amt); 571 kunmap_atomic(p); 572 put_page(page); 573 copied += amt; 574 index++; 575 offset = 0; 576 } while(copied < size); 577 (*pos) += size; 578 return size; 579 } 580 581 /** 582 * gfs2_readpages - Read a bunch of pages at once 583 * @file: The file to read from 584 * @mapping: Address space info 585 * @pages: List of pages to read 586 * @nr_pages: Number of pages to read 587 * 588 * Some notes: 589 * 1. This is only for readahead, so we can simply ignore any things 590 * which are slightly inconvenient (such as locking conflicts between 591 * the page lock and the glock) and return having done no I/O. Its 592 * obviously not something we'd want to do on too regular a basis. 593 * Any I/O we ignore at this time will be done via readpage later. 594 * 2. We don't handle stuffed files here we let readpage do the honours. 595 * 3. mpage_readpages() does most of the heavy lifting in the common case. 596 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places. 597 */ 598 599 static int gfs2_readpages(struct file *file, struct address_space *mapping, 600 struct list_head *pages, unsigned nr_pages) 601 { 602 struct inode *inode = mapping->host; 603 struct gfs2_inode *ip = GFS2_I(inode); 604 struct gfs2_sbd *sdp = GFS2_SB(inode); 605 struct gfs2_holder gh; 606 int ret; 607 608 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 609 ret = gfs2_glock_nq(&gh); 610 if (unlikely(ret)) 611 goto out_uninit; 612 if (!gfs2_is_stuffed(ip)) 613 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map); 614 gfs2_glock_dq(&gh); 615 out_uninit: 616 gfs2_holder_uninit(&gh); 617 if (unlikely(gfs2_withdrawn(sdp))) 618 ret = -EIO; 619 return ret; 620 } 621 622 /** 623 * adjust_fs_space - Adjusts the free space available due to gfs2_grow 624 * @inode: the rindex inode 625 */ 626 void adjust_fs_space(struct inode *inode) 627 { 628 struct gfs2_sbd *sdp = GFS2_SB(inode); 629 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 630 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode); 631 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master; 632 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local; 633 struct buffer_head *m_bh, *l_bh; 634 u64 fs_total, new_free; 635 636 if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0) 637 return; 638 639 /* Total up the file system space, according to the latest rindex. */ 640 fs_total = gfs2_ri_total(sdp); 641 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0) 642 goto out; 643 644 spin_lock(&sdp->sd_statfs_spin); 645 gfs2_statfs_change_in(m_sc, m_bh->b_data + 646 sizeof(struct gfs2_dinode)); 647 if (fs_total > (m_sc->sc_total + l_sc->sc_total)) 648 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total); 649 else 650 new_free = 0; 651 spin_unlock(&sdp->sd_statfs_spin); 652 fs_warn(sdp, "File system extended by %llu blocks.\n", 653 (unsigned long long)new_free); 654 gfs2_statfs_change(sdp, new_free, new_free, 0); 655 656 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0) 657 goto out2; 658 update_statfs(sdp, m_bh, l_bh); 659 brelse(l_bh); 660 out2: 661 brelse(m_bh); 662 out: 663 sdp->sd_rindex_uptodate = 0; 664 gfs2_trans_end(sdp); 665 } 666 667 /** 668 * jdata_set_page_dirty - Page dirtying function 669 * @page: The page to dirty 670 * 671 * Returns: 1 if it dirtyed the page, or 0 otherwise 672 */ 673 674 static int jdata_set_page_dirty(struct page *page) 675 { 676 SetPageChecked(page); 677 return __set_page_dirty_buffers(page); 678 } 679 680 /** 681 * gfs2_bmap - Block map function 682 * @mapping: Address space info 683 * @lblock: The block to map 684 * 685 * Returns: The disk address for the block or 0 on hole or error 686 */ 687 688 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock) 689 { 690 struct gfs2_inode *ip = GFS2_I(mapping->host); 691 struct gfs2_holder i_gh; 692 sector_t dblock = 0; 693 int error; 694 695 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); 696 if (error) 697 return 0; 698 699 if (!gfs2_is_stuffed(ip)) 700 dblock = iomap_bmap(mapping, lblock, &gfs2_iomap_ops); 701 702 gfs2_glock_dq_uninit(&i_gh); 703 704 return dblock; 705 } 706 707 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh) 708 { 709 struct gfs2_bufdata *bd; 710 711 lock_buffer(bh); 712 gfs2_log_lock(sdp); 713 clear_buffer_dirty(bh); 714 bd = bh->b_private; 715 if (bd) { 716 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh)) 717 list_del_init(&bd->bd_list); 718 else 719 gfs2_remove_from_journal(bh, REMOVE_JDATA); 720 } 721 bh->b_bdev = NULL; 722 clear_buffer_mapped(bh); 723 clear_buffer_req(bh); 724 clear_buffer_new(bh); 725 gfs2_log_unlock(sdp); 726 unlock_buffer(bh); 727 } 728 729 static void gfs2_invalidatepage(struct page *page, unsigned int offset, 730 unsigned int length) 731 { 732 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host); 733 unsigned int stop = offset + length; 734 int partial_page = (offset || length < PAGE_SIZE); 735 struct buffer_head *bh, *head; 736 unsigned long pos = 0; 737 738 BUG_ON(!PageLocked(page)); 739 if (!partial_page) 740 ClearPageChecked(page); 741 if (!page_has_buffers(page)) 742 goto out; 743 744 bh = head = page_buffers(page); 745 do { 746 if (pos + bh->b_size > stop) 747 return; 748 749 if (offset <= pos) 750 gfs2_discard(sdp, bh); 751 pos += bh->b_size; 752 bh = bh->b_this_page; 753 } while (bh != head); 754 out: 755 if (!partial_page) 756 try_to_release_page(page, 0); 757 } 758 759 /** 760 * gfs2_releasepage - free the metadata associated with a page 761 * @page: the page that's being released 762 * @gfp_mask: passed from Linux VFS, ignored by us 763 * 764 * Calls try_to_free_buffers() to free the buffers and put the page if the 765 * buffers can be released. 766 * 767 * Returns: 1 if the page was put or else 0 768 */ 769 770 int gfs2_releasepage(struct page *page, gfp_t gfp_mask) 771 { 772 struct address_space *mapping = page->mapping; 773 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping); 774 struct buffer_head *bh, *head; 775 struct gfs2_bufdata *bd; 776 777 if (!page_has_buffers(page)) 778 return 0; 779 780 /* 781 * From xfs_vm_releasepage: mm accommodates an old ext3 case where 782 * clean pages might not have had the dirty bit cleared. Thus, it can 783 * send actual dirty pages to ->releasepage() via shrink_active_list(). 784 * 785 * As a workaround, we skip pages that contain dirty buffers below. 786 * Once ->releasepage isn't called on dirty pages anymore, we can warn 787 * on dirty buffers like we used to here again. 788 */ 789 790 gfs2_log_lock(sdp); 791 spin_lock(&sdp->sd_ail_lock); 792 head = bh = page_buffers(page); 793 do { 794 if (atomic_read(&bh->b_count)) 795 goto cannot_release; 796 bd = bh->b_private; 797 if (bd && bd->bd_tr) 798 goto cannot_release; 799 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh))) 800 goto cannot_release; 801 bh = bh->b_this_page; 802 } while(bh != head); 803 spin_unlock(&sdp->sd_ail_lock); 804 805 head = bh = page_buffers(page); 806 do { 807 bd = bh->b_private; 808 if (bd) { 809 gfs2_assert_warn(sdp, bd->bd_bh == bh); 810 if (!list_empty(&bd->bd_list)) 811 list_del_init(&bd->bd_list); 812 bd->bd_bh = NULL; 813 bh->b_private = NULL; 814 kmem_cache_free(gfs2_bufdata_cachep, bd); 815 } 816 817 bh = bh->b_this_page; 818 } while (bh != head); 819 gfs2_log_unlock(sdp); 820 821 return try_to_free_buffers(page); 822 823 cannot_release: 824 spin_unlock(&sdp->sd_ail_lock); 825 gfs2_log_unlock(sdp); 826 return 0; 827 } 828 829 static const struct address_space_operations gfs2_aops = { 830 .writepage = gfs2_writepage, 831 .writepages = gfs2_writepages, 832 .readpage = gfs2_readpage, 833 .readpages = gfs2_readpages, 834 .bmap = gfs2_bmap, 835 .invalidatepage = gfs2_invalidatepage, 836 .releasepage = gfs2_releasepage, 837 .direct_IO = noop_direct_IO, 838 .migratepage = buffer_migrate_page, 839 .is_partially_uptodate = block_is_partially_uptodate, 840 .error_remove_page = generic_error_remove_page, 841 }; 842 843 static const struct address_space_operations gfs2_jdata_aops = { 844 .writepage = gfs2_jdata_writepage, 845 .writepages = gfs2_jdata_writepages, 846 .readpage = gfs2_readpage, 847 .readpages = gfs2_readpages, 848 .set_page_dirty = jdata_set_page_dirty, 849 .bmap = gfs2_bmap, 850 .invalidatepage = gfs2_invalidatepage, 851 .releasepage = gfs2_releasepage, 852 .is_partially_uptodate = block_is_partially_uptodate, 853 .error_remove_page = generic_error_remove_page, 854 }; 855 856 void gfs2_set_aops(struct inode *inode) 857 { 858 if (gfs2_is_jdata(GFS2_I(inode))) 859 inode->i_mapping->a_ops = &gfs2_jdata_aops; 860 else 861 inode->i_mapping->a_ops = &gfs2_aops; 862 } 863