xref: /linux/fs/fuse/file.c (revision e999db587312e5b798421d803495f41d1283d7d7)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22 
23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 				      struct fuse_page_desc **desc)
25 {
26 	struct page **pages;
27 
28 	pages = kzalloc(npages * (sizeof(struct page *) +
29 				  sizeof(struct fuse_page_desc)), flags);
30 	*desc = (void *) (pages + npages);
31 
32 	return pages;
33 }
34 
35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 			  int opcode, struct fuse_open_out *outargp)
37 {
38 	struct fuse_open_in inarg;
39 	FUSE_ARGS(args);
40 
41 	memset(&inarg, 0, sizeof(inarg));
42 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 	if (!fm->fc->atomic_o_trunc)
44 		inarg.flags &= ~O_TRUNC;
45 
46 	if (fm->fc->handle_killpriv_v2 &&
47 	    (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
48 		inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
49 	}
50 
51 	args.opcode = opcode;
52 	args.nodeid = nodeid;
53 	args.in_numargs = 1;
54 	args.in_args[0].size = sizeof(inarg);
55 	args.in_args[0].value = &inarg;
56 	args.out_numargs = 1;
57 	args.out_args[0].size = sizeof(*outargp);
58 	args.out_args[0].value = outargp;
59 
60 	return fuse_simple_request(fm, &args);
61 }
62 
63 struct fuse_release_args {
64 	struct fuse_args args;
65 	struct fuse_release_in inarg;
66 	struct inode *inode;
67 };
68 
69 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
70 {
71 	struct fuse_file *ff;
72 
73 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
74 	if (unlikely(!ff))
75 		return NULL;
76 
77 	ff->fm = fm;
78 	ff->release_args = kzalloc(sizeof(*ff->release_args),
79 				   GFP_KERNEL_ACCOUNT);
80 	if (!ff->release_args) {
81 		kfree(ff);
82 		return NULL;
83 	}
84 
85 	INIT_LIST_HEAD(&ff->write_entry);
86 	mutex_init(&ff->readdir.lock);
87 	refcount_set(&ff->count, 1);
88 	RB_CLEAR_NODE(&ff->polled_node);
89 	init_waitqueue_head(&ff->poll_wait);
90 
91 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
92 
93 	return ff;
94 }
95 
96 void fuse_file_free(struct fuse_file *ff)
97 {
98 	kfree(ff->release_args);
99 	mutex_destroy(&ff->readdir.lock);
100 	kfree(ff);
101 }
102 
103 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
104 {
105 	refcount_inc(&ff->count);
106 	return ff;
107 }
108 
109 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
110 			     int error)
111 {
112 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
113 
114 	iput(ra->inode);
115 	kfree(ra);
116 }
117 
118 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
119 {
120 	if (refcount_dec_and_test(&ff->count)) {
121 		struct fuse_args *args = &ff->release_args->args;
122 
123 		if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
124 			/* Do nothing when client does not implement 'open' */
125 			fuse_release_end(ff->fm, args, 0);
126 		} else if (sync) {
127 			fuse_simple_request(ff->fm, args);
128 			fuse_release_end(ff->fm, args, 0);
129 		} else {
130 			args->end = fuse_release_end;
131 			if (fuse_simple_background(ff->fm, args,
132 						   GFP_KERNEL | __GFP_NOFAIL))
133 				fuse_release_end(ff->fm, args, -ENOTCONN);
134 		}
135 		kfree(ff);
136 	}
137 }
138 
139 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
140 		 bool isdir)
141 {
142 	struct fuse_conn *fc = fm->fc;
143 	struct fuse_file *ff;
144 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
145 
146 	ff = fuse_file_alloc(fm);
147 	if (!ff)
148 		return -ENOMEM;
149 
150 	ff->fh = 0;
151 	/* Default for no-open */
152 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
153 	if (isdir ? !fc->no_opendir : !fc->no_open) {
154 		struct fuse_open_out outarg;
155 		int err;
156 
157 		err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
158 		if (!err) {
159 			ff->fh = outarg.fh;
160 			ff->open_flags = outarg.open_flags;
161 
162 		} else if (err != -ENOSYS) {
163 			fuse_file_free(ff);
164 			return err;
165 		} else {
166 			if (isdir)
167 				fc->no_opendir = 1;
168 			else
169 				fc->no_open = 1;
170 		}
171 	}
172 
173 	if (isdir)
174 		ff->open_flags &= ~FOPEN_DIRECT_IO;
175 
176 	ff->nodeid = nodeid;
177 	file->private_data = ff;
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(fuse_do_open);
182 
183 static void fuse_link_write_file(struct file *file)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct fuse_inode *fi = get_fuse_inode(inode);
187 	struct fuse_file *ff = file->private_data;
188 	/*
189 	 * file may be written through mmap, so chain it onto the
190 	 * inodes's write_file list
191 	 */
192 	spin_lock(&fi->lock);
193 	if (list_empty(&ff->write_entry))
194 		list_add(&ff->write_entry, &fi->write_files);
195 	spin_unlock(&fi->lock);
196 }
197 
198 void fuse_finish_open(struct inode *inode, struct file *file)
199 {
200 	struct fuse_file *ff = file->private_data;
201 	struct fuse_conn *fc = get_fuse_conn(inode);
202 
203 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
204 		invalidate_inode_pages2(inode->i_mapping);
205 	if (ff->open_flags & FOPEN_STREAM)
206 		stream_open(inode, file);
207 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
208 		nonseekable_open(inode, file);
209 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
210 		struct fuse_inode *fi = get_fuse_inode(inode);
211 
212 		spin_lock(&fi->lock);
213 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
214 		i_size_write(inode, 0);
215 		spin_unlock(&fi->lock);
216 		fuse_invalidate_attr(inode);
217 		if (fc->writeback_cache)
218 			file_update_time(file);
219 	}
220 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
221 		fuse_link_write_file(file);
222 }
223 
224 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
225 {
226 	struct fuse_mount *fm = get_fuse_mount(inode);
227 	struct fuse_conn *fc = fm->fc;
228 	int err;
229 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
230 			  fc->atomic_o_trunc &&
231 			  fc->writeback_cache;
232 	bool dax_truncate = (file->f_flags & O_TRUNC) &&
233 			  fc->atomic_o_trunc && FUSE_IS_DAX(inode);
234 
235 	if (fuse_is_bad(inode))
236 		return -EIO;
237 
238 	err = generic_file_open(inode, file);
239 	if (err)
240 		return err;
241 
242 	if (is_wb_truncate || dax_truncate) {
243 		inode_lock(inode);
244 		fuse_set_nowrite(inode);
245 	}
246 
247 	if (dax_truncate) {
248 		down_write(&get_fuse_inode(inode)->i_mmap_sem);
249 		err = fuse_dax_break_layouts(inode, 0, 0);
250 		if (err)
251 			goto out;
252 	}
253 
254 	err = fuse_do_open(fm, get_node_id(inode), file, isdir);
255 	if (!err)
256 		fuse_finish_open(inode, file);
257 
258 out:
259 	if (dax_truncate)
260 		up_write(&get_fuse_inode(inode)->i_mmap_sem);
261 
262 	if (is_wb_truncate | dax_truncate) {
263 		fuse_release_nowrite(inode);
264 		inode_unlock(inode);
265 	}
266 
267 	return err;
268 }
269 
270 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
271 				 int flags, int opcode)
272 {
273 	struct fuse_conn *fc = ff->fm->fc;
274 	struct fuse_release_args *ra = ff->release_args;
275 
276 	/* Inode is NULL on error path of fuse_create_open() */
277 	if (likely(fi)) {
278 		spin_lock(&fi->lock);
279 		list_del(&ff->write_entry);
280 		spin_unlock(&fi->lock);
281 	}
282 	spin_lock(&fc->lock);
283 	if (!RB_EMPTY_NODE(&ff->polled_node))
284 		rb_erase(&ff->polled_node, &fc->polled_files);
285 	spin_unlock(&fc->lock);
286 
287 	wake_up_interruptible_all(&ff->poll_wait);
288 
289 	ra->inarg.fh = ff->fh;
290 	ra->inarg.flags = flags;
291 	ra->args.in_numargs = 1;
292 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
293 	ra->args.in_args[0].value = &ra->inarg;
294 	ra->args.opcode = opcode;
295 	ra->args.nodeid = ff->nodeid;
296 	ra->args.force = true;
297 	ra->args.nocreds = true;
298 }
299 
300 void fuse_release_common(struct file *file, bool isdir)
301 {
302 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
303 	struct fuse_file *ff = file->private_data;
304 	struct fuse_release_args *ra = ff->release_args;
305 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
306 
307 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
308 
309 	if (ff->flock) {
310 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
311 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
312 							  (fl_owner_t) file);
313 	}
314 	/* Hold inode until release is finished */
315 	ra->inode = igrab(file_inode(file));
316 
317 	/*
318 	 * Normally this will send the RELEASE request, however if
319 	 * some asynchronous READ or WRITE requests are outstanding,
320 	 * the sending will be delayed.
321 	 *
322 	 * Make the release synchronous if this is a fuseblk mount,
323 	 * synchronous RELEASE is allowed (and desirable) in this case
324 	 * because the server can be trusted not to screw up.
325 	 */
326 	fuse_file_put(ff, ff->fm->fc->destroy, isdir);
327 }
328 
329 static int fuse_open(struct inode *inode, struct file *file)
330 {
331 	return fuse_open_common(inode, file, false);
332 }
333 
334 static int fuse_release(struct inode *inode, struct file *file)
335 {
336 	struct fuse_conn *fc = get_fuse_conn(inode);
337 
338 	/* see fuse_vma_close() for !writeback_cache case */
339 	if (fc->writeback_cache)
340 		write_inode_now(inode, 1);
341 
342 	fuse_release_common(file, false);
343 
344 	/* return value is ignored by VFS */
345 	return 0;
346 }
347 
348 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
349 {
350 	WARN_ON(refcount_read(&ff->count) > 1);
351 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
352 	/*
353 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
354 	 * synchronous, we are fine with not doing igrab() here"
355 	 */
356 	fuse_file_put(ff, true, false);
357 }
358 EXPORT_SYMBOL_GPL(fuse_sync_release);
359 
360 /*
361  * Scramble the ID space with XTEA, so that the value of the files_struct
362  * pointer is not exposed to userspace.
363  */
364 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
365 {
366 	u32 *k = fc->scramble_key;
367 	u64 v = (unsigned long) id;
368 	u32 v0 = v;
369 	u32 v1 = v >> 32;
370 	u32 sum = 0;
371 	int i;
372 
373 	for (i = 0; i < 32; i++) {
374 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
375 		sum += 0x9E3779B9;
376 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
377 	}
378 
379 	return (u64) v0 + ((u64) v1 << 32);
380 }
381 
382 struct fuse_writepage_args {
383 	struct fuse_io_args ia;
384 	struct rb_node writepages_entry;
385 	struct list_head queue_entry;
386 	struct fuse_writepage_args *next;
387 	struct inode *inode;
388 };
389 
390 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
391 					    pgoff_t idx_from, pgoff_t idx_to)
392 {
393 	struct rb_node *n;
394 
395 	n = fi->writepages.rb_node;
396 
397 	while (n) {
398 		struct fuse_writepage_args *wpa;
399 		pgoff_t curr_index;
400 
401 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
402 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
403 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
404 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
405 			n = n->rb_right;
406 		else if (idx_to < curr_index)
407 			n = n->rb_left;
408 		else
409 			return wpa;
410 	}
411 	return NULL;
412 }
413 
414 /*
415  * Check if any page in a range is under writeback
416  *
417  * This is currently done by walking the list of writepage requests
418  * for the inode, which can be pretty inefficient.
419  */
420 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
421 				   pgoff_t idx_to)
422 {
423 	struct fuse_inode *fi = get_fuse_inode(inode);
424 	bool found;
425 
426 	spin_lock(&fi->lock);
427 	found = fuse_find_writeback(fi, idx_from, idx_to);
428 	spin_unlock(&fi->lock);
429 
430 	return found;
431 }
432 
433 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
434 {
435 	return fuse_range_is_writeback(inode, index, index);
436 }
437 
438 /*
439  * Wait for page writeback to be completed.
440  *
441  * Since fuse doesn't rely on the VM writeback tracking, this has to
442  * use some other means.
443  */
444 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
445 {
446 	struct fuse_inode *fi = get_fuse_inode(inode);
447 
448 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
449 }
450 
451 /*
452  * Wait for all pending writepages on the inode to finish.
453  *
454  * This is currently done by blocking further writes with FUSE_NOWRITE
455  * and waiting for all sent writes to complete.
456  *
457  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
458  * could conflict with truncation.
459  */
460 static void fuse_sync_writes(struct inode *inode)
461 {
462 	fuse_set_nowrite(inode);
463 	fuse_release_nowrite(inode);
464 }
465 
466 static int fuse_flush(struct file *file, fl_owner_t id)
467 {
468 	struct inode *inode = file_inode(file);
469 	struct fuse_mount *fm = get_fuse_mount(inode);
470 	struct fuse_file *ff = file->private_data;
471 	struct fuse_flush_in inarg;
472 	FUSE_ARGS(args);
473 	int err;
474 
475 	if (fuse_is_bad(inode))
476 		return -EIO;
477 
478 	err = write_inode_now(inode, 1);
479 	if (err)
480 		return err;
481 
482 	inode_lock(inode);
483 	fuse_sync_writes(inode);
484 	inode_unlock(inode);
485 
486 	err = filemap_check_errors(file->f_mapping);
487 	if (err)
488 		return err;
489 
490 	err = 0;
491 	if (fm->fc->no_flush)
492 		goto inval_attr_out;
493 
494 	memset(&inarg, 0, sizeof(inarg));
495 	inarg.fh = ff->fh;
496 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
497 	args.opcode = FUSE_FLUSH;
498 	args.nodeid = get_node_id(inode);
499 	args.in_numargs = 1;
500 	args.in_args[0].size = sizeof(inarg);
501 	args.in_args[0].value = &inarg;
502 	args.force = true;
503 
504 	err = fuse_simple_request(fm, &args);
505 	if (err == -ENOSYS) {
506 		fm->fc->no_flush = 1;
507 		err = 0;
508 	}
509 
510 inval_attr_out:
511 	/*
512 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
513 	 * enabled, i_blocks from cached attr may not be accurate.
514 	 */
515 	if (!err && fm->fc->writeback_cache)
516 		fuse_invalidate_attr(inode);
517 	return err;
518 }
519 
520 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
521 		      int datasync, int opcode)
522 {
523 	struct inode *inode = file->f_mapping->host;
524 	struct fuse_mount *fm = get_fuse_mount(inode);
525 	struct fuse_file *ff = file->private_data;
526 	FUSE_ARGS(args);
527 	struct fuse_fsync_in inarg;
528 
529 	memset(&inarg, 0, sizeof(inarg));
530 	inarg.fh = ff->fh;
531 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
532 	args.opcode = opcode;
533 	args.nodeid = get_node_id(inode);
534 	args.in_numargs = 1;
535 	args.in_args[0].size = sizeof(inarg);
536 	args.in_args[0].value = &inarg;
537 	return fuse_simple_request(fm, &args);
538 }
539 
540 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
541 		      int datasync)
542 {
543 	struct inode *inode = file->f_mapping->host;
544 	struct fuse_conn *fc = get_fuse_conn(inode);
545 	int err;
546 
547 	if (fuse_is_bad(inode))
548 		return -EIO;
549 
550 	inode_lock(inode);
551 
552 	/*
553 	 * Start writeback against all dirty pages of the inode, then
554 	 * wait for all outstanding writes, before sending the FSYNC
555 	 * request.
556 	 */
557 	err = file_write_and_wait_range(file, start, end);
558 	if (err)
559 		goto out;
560 
561 	fuse_sync_writes(inode);
562 
563 	/*
564 	 * Due to implementation of fuse writeback
565 	 * file_write_and_wait_range() does not catch errors.
566 	 * We have to do this directly after fuse_sync_writes()
567 	 */
568 	err = file_check_and_advance_wb_err(file);
569 	if (err)
570 		goto out;
571 
572 	err = sync_inode_metadata(inode, 1);
573 	if (err)
574 		goto out;
575 
576 	if (fc->no_fsync)
577 		goto out;
578 
579 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
580 	if (err == -ENOSYS) {
581 		fc->no_fsync = 1;
582 		err = 0;
583 	}
584 out:
585 	inode_unlock(inode);
586 
587 	return err;
588 }
589 
590 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
591 			 size_t count, int opcode)
592 {
593 	struct fuse_file *ff = file->private_data;
594 	struct fuse_args *args = &ia->ap.args;
595 
596 	ia->read.in.fh = ff->fh;
597 	ia->read.in.offset = pos;
598 	ia->read.in.size = count;
599 	ia->read.in.flags = file->f_flags;
600 	args->opcode = opcode;
601 	args->nodeid = ff->nodeid;
602 	args->in_numargs = 1;
603 	args->in_args[0].size = sizeof(ia->read.in);
604 	args->in_args[0].value = &ia->read.in;
605 	args->out_argvar = true;
606 	args->out_numargs = 1;
607 	args->out_args[0].size = count;
608 }
609 
610 static void fuse_release_user_pages(struct fuse_args_pages *ap,
611 				    bool should_dirty)
612 {
613 	unsigned int i;
614 
615 	for (i = 0; i < ap->num_pages; i++) {
616 		if (should_dirty)
617 			set_page_dirty_lock(ap->pages[i]);
618 		put_page(ap->pages[i]);
619 	}
620 }
621 
622 static void fuse_io_release(struct kref *kref)
623 {
624 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
625 }
626 
627 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
628 {
629 	if (io->err)
630 		return io->err;
631 
632 	if (io->bytes >= 0 && io->write)
633 		return -EIO;
634 
635 	return io->bytes < 0 ? io->size : io->bytes;
636 }
637 
638 /**
639  * In case of short read, the caller sets 'pos' to the position of
640  * actual end of fuse request in IO request. Otherwise, if bytes_requested
641  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
642  *
643  * An example:
644  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
645  * both submitted asynchronously. The first of them was ACKed by userspace as
646  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
647  * second request was ACKed as short, e.g. only 1K was read, resulting in
648  * pos == 33K.
649  *
650  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
651  * will be equal to the length of the longest contiguous fragment of
652  * transferred data starting from the beginning of IO request.
653  */
654 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
655 {
656 	int left;
657 
658 	spin_lock(&io->lock);
659 	if (err)
660 		io->err = io->err ? : err;
661 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
662 		io->bytes = pos;
663 
664 	left = --io->reqs;
665 	if (!left && io->blocking)
666 		complete(io->done);
667 	spin_unlock(&io->lock);
668 
669 	if (!left && !io->blocking) {
670 		ssize_t res = fuse_get_res_by_io(io);
671 
672 		if (res >= 0) {
673 			struct inode *inode = file_inode(io->iocb->ki_filp);
674 			struct fuse_conn *fc = get_fuse_conn(inode);
675 			struct fuse_inode *fi = get_fuse_inode(inode);
676 
677 			spin_lock(&fi->lock);
678 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
679 			spin_unlock(&fi->lock);
680 		}
681 
682 		io->iocb->ki_complete(io->iocb, res, 0);
683 	}
684 
685 	kref_put(&io->refcnt, fuse_io_release);
686 }
687 
688 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
689 					  unsigned int npages)
690 {
691 	struct fuse_io_args *ia;
692 
693 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
694 	if (ia) {
695 		ia->io = io;
696 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
697 						&ia->ap.descs);
698 		if (!ia->ap.pages) {
699 			kfree(ia);
700 			ia = NULL;
701 		}
702 	}
703 	return ia;
704 }
705 
706 static void fuse_io_free(struct fuse_io_args *ia)
707 {
708 	kfree(ia->ap.pages);
709 	kfree(ia);
710 }
711 
712 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
713 				  int err)
714 {
715 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
716 	struct fuse_io_priv *io = ia->io;
717 	ssize_t pos = -1;
718 
719 	fuse_release_user_pages(&ia->ap, io->should_dirty);
720 
721 	if (err) {
722 		/* Nothing */
723 	} else if (io->write) {
724 		if (ia->write.out.size > ia->write.in.size) {
725 			err = -EIO;
726 		} else if (ia->write.in.size != ia->write.out.size) {
727 			pos = ia->write.in.offset - io->offset +
728 				ia->write.out.size;
729 		}
730 	} else {
731 		u32 outsize = args->out_args[0].size;
732 
733 		if (ia->read.in.size != outsize)
734 			pos = ia->read.in.offset - io->offset + outsize;
735 	}
736 
737 	fuse_aio_complete(io, err, pos);
738 	fuse_io_free(ia);
739 }
740 
741 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
742 				   struct fuse_io_args *ia, size_t num_bytes)
743 {
744 	ssize_t err;
745 	struct fuse_io_priv *io = ia->io;
746 
747 	spin_lock(&io->lock);
748 	kref_get(&io->refcnt);
749 	io->size += num_bytes;
750 	io->reqs++;
751 	spin_unlock(&io->lock);
752 
753 	ia->ap.args.end = fuse_aio_complete_req;
754 	ia->ap.args.may_block = io->should_dirty;
755 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
756 	if (err)
757 		fuse_aio_complete_req(fm, &ia->ap.args, err);
758 
759 	return num_bytes;
760 }
761 
762 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
763 			      fl_owner_t owner)
764 {
765 	struct file *file = ia->io->iocb->ki_filp;
766 	struct fuse_file *ff = file->private_data;
767 	struct fuse_mount *fm = ff->fm;
768 
769 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
770 	if (owner != NULL) {
771 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
772 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
773 	}
774 
775 	if (ia->io->async)
776 		return fuse_async_req_send(fm, ia, count);
777 
778 	return fuse_simple_request(fm, &ia->ap.args);
779 }
780 
781 static void fuse_read_update_size(struct inode *inode, loff_t size,
782 				  u64 attr_ver)
783 {
784 	struct fuse_conn *fc = get_fuse_conn(inode);
785 	struct fuse_inode *fi = get_fuse_inode(inode);
786 
787 	spin_lock(&fi->lock);
788 	if (attr_ver == fi->attr_version && size < inode->i_size &&
789 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
790 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
791 		i_size_write(inode, size);
792 	}
793 	spin_unlock(&fi->lock);
794 }
795 
796 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
797 			    struct fuse_args_pages *ap)
798 {
799 	struct fuse_conn *fc = get_fuse_conn(inode);
800 
801 	if (fc->writeback_cache) {
802 		/*
803 		 * A hole in a file. Some data after the hole are in page cache,
804 		 * but have not reached the client fs yet. So, the hole is not
805 		 * present there.
806 		 */
807 		int i;
808 		int start_idx = num_read >> PAGE_SHIFT;
809 		size_t off = num_read & (PAGE_SIZE - 1);
810 
811 		for (i = start_idx; i < ap->num_pages; i++) {
812 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
813 			off = 0;
814 		}
815 	} else {
816 		loff_t pos = page_offset(ap->pages[0]) + num_read;
817 		fuse_read_update_size(inode, pos, attr_ver);
818 	}
819 }
820 
821 static int fuse_do_readpage(struct file *file, struct page *page)
822 {
823 	struct inode *inode = page->mapping->host;
824 	struct fuse_mount *fm = get_fuse_mount(inode);
825 	loff_t pos = page_offset(page);
826 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
827 	struct fuse_io_args ia = {
828 		.ap.args.page_zeroing = true,
829 		.ap.args.out_pages = true,
830 		.ap.num_pages = 1,
831 		.ap.pages = &page,
832 		.ap.descs = &desc,
833 	};
834 	ssize_t res;
835 	u64 attr_ver;
836 
837 	/*
838 	 * Page writeback can extend beyond the lifetime of the
839 	 * page-cache page, so make sure we read a properly synced
840 	 * page.
841 	 */
842 	fuse_wait_on_page_writeback(inode, page->index);
843 
844 	attr_ver = fuse_get_attr_version(fm->fc);
845 
846 	/* Don't overflow end offset */
847 	if (pos + (desc.length - 1) == LLONG_MAX)
848 		desc.length--;
849 
850 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
851 	res = fuse_simple_request(fm, &ia.ap.args);
852 	if (res < 0)
853 		return res;
854 	/*
855 	 * Short read means EOF.  If file size is larger, truncate it
856 	 */
857 	if (res < desc.length)
858 		fuse_short_read(inode, attr_ver, res, &ia.ap);
859 
860 	SetPageUptodate(page);
861 
862 	return 0;
863 }
864 
865 static int fuse_readpage(struct file *file, struct page *page)
866 {
867 	struct inode *inode = page->mapping->host;
868 	int err;
869 
870 	err = -EIO;
871 	if (fuse_is_bad(inode))
872 		goto out;
873 
874 	err = fuse_do_readpage(file, page);
875 	fuse_invalidate_atime(inode);
876  out:
877 	unlock_page(page);
878 	return err;
879 }
880 
881 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
882 			       int err)
883 {
884 	int i;
885 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
886 	struct fuse_args_pages *ap = &ia->ap;
887 	size_t count = ia->read.in.size;
888 	size_t num_read = args->out_args[0].size;
889 	struct address_space *mapping = NULL;
890 
891 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
892 		mapping = ap->pages[i]->mapping;
893 
894 	if (mapping) {
895 		struct inode *inode = mapping->host;
896 
897 		/*
898 		 * Short read means EOF. If file size is larger, truncate it
899 		 */
900 		if (!err && num_read < count)
901 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
902 
903 		fuse_invalidate_atime(inode);
904 	}
905 
906 	for (i = 0; i < ap->num_pages; i++) {
907 		struct page *page = ap->pages[i];
908 
909 		if (!err)
910 			SetPageUptodate(page);
911 		else
912 			SetPageError(page);
913 		unlock_page(page);
914 		put_page(page);
915 	}
916 	if (ia->ff)
917 		fuse_file_put(ia->ff, false, false);
918 
919 	fuse_io_free(ia);
920 }
921 
922 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
923 {
924 	struct fuse_file *ff = file->private_data;
925 	struct fuse_mount *fm = ff->fm;
926 	struct fuse_args_pages *ap = &ia->ap;
927 	loff_t pos = page_offset(ap->pages[0]);
928 	size_t count = ap->num_pages << PAGE_SHIFT;
929 	ssize_t res;
930 	int err;
931 
932 	ap->args.out_pages = true;
933 	ap->args.page_zeroing = true;
934 	ap->args.page_replace = true;
935 
936 	/* Don't overflow end offset */
937 	if (pos + (count - 1) == LLONG_MAX) {
938 		count--;
939 		ap->descs[ap->num_pages - 1].length--;
940 	}
941 	WARN_ON((loff_t) (pos + count) < 0);
942 
943 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
944 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
945 	if (fm->fc->async_read) {
946 		ia->ff = fuse_file_get(ff);
947 		ap->args.end = fuse_readpages_end;
948 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
949 		if (!err)
950 			return;
951 	} else {
952 		res = fuse_simple_request(fm, &ap->args);
953 		err = res < 0 ? res : 0;
954 	}
955 	fuse_readpages_end(fm, &ap->args, err);
956 }
957 
958 static void fuse_readahead(struct readahead_control *rac)
959 {
960 	struct inode *inode = rac->mapping->host;
961 	struct fuse_conn *fc = get_fuse_conn(inode);
962 	unsigned int i, max_pages, nr_pages = 0;
963 
964 	if (fuse_is_bad(inode))
965 		return;
966 
967 	max_pages = min_t(unsigned int, fc->max_pages,
968 			fc->max_read / PAGE_SIZE);
969 
970 	for (;;) {
971 		struct fuse_io_args *ia;
972 		struct fuse_args_pages *ap;
973 
974 		nr_pages = readahead_count(rac) - nr_pages;
975 		if (nr_pages > max_pages)
976 			nr_pages = max_pages;
977 		if (nr_pages == 0)
978 			break;
979 		ia = fuse_io_alloc(NULL, nr_pages);
980 		if (!ia)
981 			return;
982 		ap = &ia->ap;
983 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
984 		for (i = 0; i < nr_pages; i++) {
985 			fuse_wait_on_page_writeback(inode,
986 						    readahead_index(rac) + i);
987 			ap->descs[i].length = PAGE_SIZE;
988 		}
989 		ap->num_pages = nr_pages;
990 		fuse_send_readpages(ia, rac->file);
991 	}
992 }
993 
994 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
995 {
996 	struct inode *inode = iocb->ki_filp->f_mapping->host;
997 	struct fuse_conn *fc = get_fuse_conn(inode);
998 
999 	/*
1000 	 * In auto invalidate mode, always update attributes on read.
1001 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1002 	 * i_size is up to date).
1003 	 */
1004 	if (fc->auto_inval_data ||
1005 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1006 		int err;
1007 		err = fuse_update_attributes(inode, iocb->ki_filp);
1008 		if (err)
1009 			return err;
1010 	}
1011 
1012 	return generic_file_read_iter(iocb, to);
1013 }
1014 
1015 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1016 				 loff_t pos, size_t count)
1017 {
1018 	struct fuse_args *args = &ia->ap.args;
1019 
1020 	ia->write.in.fh = ff->fh;
1021 	ia->write.in.offset = pos;
1022 	ia->write.in.size = count;
1023 	args->opcode = FUSE_WRITE;
1024 	args->nodeid = ff->nodeid;
1025 	args->in_numargs = 2;
1026 	if (ff->fm->fc->minor < 9)
1027 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1028 	else
1029 		args->in_args[0].size = sizeof(ia->write.in);
1030 	args->in_args[0].value = &ia->write.in;
1031 	args->in_args[1].size = count;
1032 	args->out_numargs = 1;
1033 	args->out_args[0].size = sizeof(ia->write.out);
1034 	args->out_args[0].value = &ia->write.out;
1035 }
1036 
1037 static unsigned int fuse_write_flags(struct kiocb *iocb)
1038 {
1039 	unsigned int flags = iocb->ki_filp->f_flags;
1040 
1041 	if (iocb->ki_flags & IOCB_DSYNC)
1042 		flags |= O_DSYNC;
1043 	if (iocb->ki_flags & IOCB_SYNC)
1044 		flags |= O_SYNC;
1045 
1046 	return flags;
1047 }
1048 
1049 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1050 			       size_t count, fl_owner_t owner)
1051 {
1052 	struct kiocb *iocb = ia->io->iocb;
1053 	struct file *file = iocb->ki_filp;
1054 	struct fuse_file *ff = file->private_data;
1055 	struct fuse_mount *fm = ff->fm;
1056 	struct fuse_write_in *inarg = &ia->write.in;
1057 	ssize_t err;
1058 
1059 	fuse_write_args_fill(ia, ff, pos, count);
1060 	inarg->flags = fuse_write_flags(iocb);
1061 	if (owner != NULL) {
1062 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1063 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1064 	}
1065 
1066 	if (ia->io->async)
1067 		return fuse_async_req_send(fm, ia, count);
1068 
1069 	err = fuse_simple_request(fm, &ia->ap.args);
1070 	if (!err && ia->write.out.size > count)
1071 		err = -EIO;
1072 
1073 	return err ?: ia->write.out.size;
1074 }
1075 
1076 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1077 {
1078 	struct fuse_conn *fc = get_fuse_conn(inode);
1079 	struct fuse_inode *fi = get_fuse_inode(inode);
1080 	bool ret = false;
1081 
1082 	spin_lock(&fi->lock);
1083 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1084 	if (pos > inode->i_size) {
1085 		i_size_write(inode, pos);
1086 		ret = true;
1087 	}
1088 	spin_unlock(&fi->lock);
1089 
1090 	return ret;
1091 }
1092 
1093 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1094 				     struct kiocb *iocb, struct inode *inode,
1095 				     loff_t pos, size_t count)
1096 {
1097 	struct fuse_args_pages *ap = &ia->ap;
1098 	struct file *file = iocb->ki_filp;
1099 	struct fuse_file *ff = file->private_data;
1100 	struct fuse_mount *fm = ff->fm;
1101 	unsigned int offset, i;
1102 	int err;
1103 
1104 	for (i = 0; i < ap->num_pages; i++)
1105 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1106 
1107 	fuse_write_args_fill(ia, ff, pos, count);
1108 	ia->write.in.flags = fuse_write_flags(iocb);
1109 	if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1110 		ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1111 
1112 	err = fuse_simple_request(fm, &ap->args);
1113 	if (!err && ia->write.out.size > count)
1114 		err = -EIO;
1115 
1116 	offset = ap->descs[0].offset;
1117 	count = ia->write.out.size;
1118 	for (i = 0; i < ap->num_pages; i++) {
1119 		struct page *page = ap->pages[i];
1120 
1121 		if (!err && !offset && count >= PAGE_SIZE)
1122 			SetPageUptodate(page);
1123 
1124 		if (count > PAGE_SIZE - offset)
1125 			count -= PAGE_SIZE - offset;
1126 		else
1127 			count = 0;
1128 		offset = 0;
1129 
1130 		unlock_page(page);
1131 		put_page(page);
1132 	}
1133 
1134 	return err;
1135 }
1136 
1137 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1138 				     struct address_space *mapping,
1139 				     struct iov_iter *ii, loff_t pos,
1140 				     unsigned int max_pages)
1141 {
1142 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1143 	unsigned offset = pos & (PAGE_SIZE - 1);
1144 	size_t count = 0;
1145 	int err;
1146 
1147 	ap->args.in_pages = true;
1148 	ap->descs[0].offset = offset;
1149 
1150 	do {
1151 		size_t tmp;
1152 		struct page *page;
1153 		pgoff_t index = pos >> PAGE_SHIFT;
1154 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1155 				     iov_iter_count(ii));
1156 
1157 		bytes = min_t(size_t, bytes, fc->max_write - count);
1158 
1159  again:
1160 		err = -EFAULT;
1161 		if (iov_iter_fault_in_readable(ii, bytes))
1162 			break;
1163 
1164 		err = -ENOMEM;
1165 		page = grab_cache_page_write_begin(mapping, index, 0);
1166 		if (!page)
1167 			break;
1168 
1169 		if (mapping_writably_mapped(mapping))
1170 			flush_dcache_page(page);
1171 
1172 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1173 		flush_dcache_page(page);
1174 
1175 		iov_iter_advance(ii, tmp);
1176 		if (!tmp) {
1177 			unlock_page(page);
1178 			put_page(page);
1179 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1180 			goto again;
1181 		}
1182 
1183 		err = 0;
1184 		ap->pages[ap->num_pages] = page;
1185 		ap->descs[ap->num_pages].length = tmp;
1186 		ap->num_pages++;
1187 
1188 		count += tmp;
1189 		pos += tmp;
1190 		offset += tmp;
1191 		if (offset == PAGE_SIZE)
1192 			offset = 0;
1193 
1194 		if (!fc->big_writes)
1195 			break;
1196 	} while (iov_iter_count(ii) && count < fc->max_write &&
1197 		 ap->num_pages < max_pages && offset == 0);
1198 
1199 	return count > 0 ? count : err;
1200 }
1201 
1202 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1203 				     unsigned int max_pages)
1204 {
1205 	return min_t(unsigned int,
1206 		     ((pos + len - 1) >> PAGE_SHIFT) -
1207 		     (pos >> PAGE_SHIFT) + 1,
1208 		     max_pages);
1209 }
1210 
1211 static ssize_t fuse_perform_write(struct kiocb *iocb,
1212 				  struct address_space *mapping,
1213 				  struct iov_iter *ii, loff_t pos)
1214 {
1215 	struct inode *inode = mapping->host;
1216 	struct fuse_conn *fc = get_fuse_conn(inode);
1217 	struct fuse_inode *fi = get_fuse_inode(inode);
1218 	int err = 0;
1219 	ssize_t res = 0;
1220 
1221 	if (inode->i_size < pos + iov_iter_count(ii))
1222 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1223 
1224 	do {
1225 		ssize_t count;
1226 		struct fuse_io_args ia = {};
1227 		struct fuse_args_pages *ap = &ia.ap;
1228 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1229 						      fc->max_pages);
1230 
1231 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1232 		if (!ap->pages) {
1233 			err = -ENOMEM;
1234 			break;
1235 		}
1236 
1237 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1238 		if (count <= 0) {
1239 			err = count;
1240 		} else {
1241 			err = fuse_send_write_pages(&ia, iocb, inode,
1242 						    pos, count);
1243 			if (!err) {
1244 				size_t num_written = ia.write.out.size;
1245 
1246 				res += num_written;
1247 				pos += num_written;
1248 
1249 				/* break out of the loop on short write */
1250 				if (num_written != count)
1251 					err = -EIO;
1252 			}
1253 		}
1254 		kfree(ap->pages);
1255 	} while (!err && iov_iter_count(ii));
1256 
1257 	if (res > 0)
1258 		fuse_write_update_size(inode, pos);
1259 
1260 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1261 	fuse_invalidate_attr(inode);
1262 
1263 	return res > 0 ? res : err;
1264 }
1265 
1266 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1267 {
1268 	struct file *file = iocb->ki_filp;
1269 	struct address_space *mapping = file->f_mapping;
1270 	ssize_t written = 0;
1271 	ssize_t written_buffered = 0;
1272 	struct inode *inode = mapping->host;
1273 	ssize_t err;
1274 	struct fuse_conn *fc = get_fuse_conn(inode);
1275 	loff_t endbyte = 0;
1276 
1277 	if (fc->writeback_cache) {
1278 		/* Update size (EOF optimization) and mode (SUID clearing) */
1279 		err = fuse_update_attributes(mapping->host, file);
1280 		if (err)
1281 			return err;
1282 
1283 		if (fc->handle_killpriv_v2 &&
1284 		    should_remove_suid(file_dentry(file))) {
1285 			goto writethrough;
1286 		}
1287 
1288 		return generic_file_write_iter(iocb, from);
1289 	}
1290 
1291 writethrough:
1292 	inode_lock(inode);
1293 
1294 	/* We can write back this queue in page reclaim */
1295 	current->backing_dev_info = inode_to_bdi(inode);
1296 
1297 	err = generic_write_checks(iocb, from);
1298 	if (err <= 0)
1299 		goto out;
1300 
1301 	err = file_remove_privs(file);
1302 	if (err)
1303 		goto out;
1304 
1305 	err = file_update_time(file);
1306 	if (err)
1307 		goto out;
1308 
1309 	if (iocb->ki_flags & IOCB_DIRECT) {
1310 		loff_t pos = iocb->ki_pos;
1311 		written = generic_file_direct_write(iocb, from);
1312 		if (written < 0 || !iov_iter_count(from))
1313 			goto out;
1314 
1315 		pos += written;
1316 
1317 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1318 		if (written_buffered < 0) {
1319 			err = written_buffered;
1320 			goto out;
1321 		}
1322 		endbyte = pos + written_buffered - 1;
1323 
1324 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1325 						   endbyte);
1326 		if (err)
1327 			goto out;
1328 
1329 		invalidate_mapping_pages(file->f_mapping,
1330 					 pos >> PAGE_SHIFT,
1331 					 endbyte >> PAGE_SHIFT);
1332 
1333 		written += written_buffered;
1334 		iocb->ki_pos = pos + written_buffered;
1335 	} else {
1336 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1337 		if (written >= 0)
1338 			iocb->ki_pos += written;
1339 	}
1340 out:
1341 	current->backing_dev_info = NULL;
1342 	inode_unlock(inode);
1343 	if (written > 0)
1344 		written = generic_write_sync(iocb, written);
1345 
1346 	return written ? written : err;
1347 }
1348 
1349 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1350 					       unsigned int index,
1351 					       unsigned int nr_pages)
1352 {
1353 	int i;
1354 
1355 	for (i = index; i < index + nr_pages; i++)
1356 		descs[i].length = PAGE_SIZE - descs[i].offset;
1357 }
1358 
1359 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1360 {
1361 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1362 }
1363 
1364 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1365 					size_t max_size)
1366 {
1367 	return min(iov_iter_single_seg_count(ii), max_size);
1368 }
1369 
1370 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1371 			       size_t *nbytesp, int write,
1372 			       unsigned int max_pages)
1373 {
1374 	size_t nbytes = 0;  /* # bytes already packed in req */
1375 	ssize_t ret = 0;
1376 
1377 	/* Special case for kernel I/O: can copy directly into the buffer */
1378 	if (iov_iter_is_kvec(ii)) {
1379 		unsigned long user_addr = fuse_get_user_addr(ii);
1380 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1381 
1382 		if (write)
1383 			ap->args.in_args[1].value = (void *) user_addr;
1384 		else
1385 			ap->args.out_args[0].value = (void *) user_addr;
1386 
1387 		iov_iter_advance(ii, frag_size);
1388 		*nbytesp = frag_size;
1389 		return 0;
1390 	}
1391 
1392 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1393 		unsigned npages;
1394 		size_t start;
1395 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1396 					*nbytesp - nbytes,
1397 					max_pages - ap->num_pages,
1398 					&start);
1399 		if (ret < 0)
1400 			break;
1401 
1402 		iov_iter_advance(ii, ret);
1403 		nbytes += ret;
1404 
1405 		ret += start;
1406 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1407 
1408 		ap->descs[ap->num_pages].offset = start;
1409 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1410 
1411 		ap->num_pages += npages;
1412 		ap->descs[ap->num_pages - 1].length -=
1413 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1414 	}
1415 
1416 	if (write)
1417 		ap->args.in_pages = true;
1418 	else
1419 		ap->args.out_pages = true;
1420 
1421 	*nbytesp = nbytes;
1422 
1423 	return ret < 0 ? ret : 0;
1424 }
1425 
1426 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1427 		       loff_t *ppos, int flags)
1428 {
1429 	int write = flags & FUSE_DIO_WRITE;
1430 	int cuse = flags & FUSE_DIO_CUSE;
1431 	struct file *file = io->iocb->ki_filp;
1432 	struct inode *inode = file->f_mapping->host;
1433 	struct fuse_file *ff = file->private_data;
1434 	struct fuse_conn *fc = ff->fm->fc;
1435 	size_t nmax = write ? fc->max_write : fc->max_read;
1436 	loff_t pos = *ppos;
1437 	size_t count = iov_iter_count(iter);
1438 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1439 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1440 	ssize_t res = 0;
1441 	int err = 0;
1442 	struct fuse_io_args *ia;
1443 	unsigned int max_pages;
1444 
1445 	max_pages = iov_iter_npages(iter, fc->max_pages);
1446 	ia = fuse_io_alloc(io, max_pages);
1447 	if (!ia)
1448 		return -ENOMEM;
1449 
1450 	ia->io = io;
1451 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1452 		if (!write)
1453 			inode_lock(inode);
1454 		fuse_sync_writes(inode);
1455 		if (!write)
1456 			inode_unlock(inode);
1457 	}
1458 
1459 	io->should_dirty = !write && iter_is_iovec(iter);
1460 	while (count) {
1461 		ssize_t nres;
1462 		fl_owner_t owner = current->files;
1463 		size_t nbytes = min(count, nmax);
1464 
1465 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1466 					  max_pages);
1467 		if (err && !nbytes)
1468 			break;
1469 
1470 		if (write) {
1471 			if (!capable(CAP_FSETID))
1472 				ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1473 
1474 			nres = fuse_send_write(ia, pos, nbytes, owner);
1475 		} else {
1476 			nres = fuse_send_read(ia, pos, nbytes, owner);
1477 		}
1478 
1479 		if (!io->async || nres < 0) {
1480 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1481 			fuse_io_free(ia);
1482 		}
1483 		ia = NULL;
1484 		if (nres < 0) {
1485 			iov_iter_revert(iter, nbytes);
1486 			err = nres;
1487 			break;
1488 		}
1489 		WARN_ON(nres > nbytes);
1490 
1491 		count -= nres;
1492 		res += nres;
1493 		pos += nres;
1494 		if (nres != nbytes) {
1495 			iov_iter_revert(iter, nbytes - nres);
1496 			break;
1497 		}
1498 		if (count) {
1499 			max_pages = iov_iter_npages(iter, fc->max_pages);
1500 			ia = fuse_io_alloc(io, max_pages);
1501 			if (!ia)
1502 				break;
1503 		}
1504 	}
1505 	if (ia)
1506 		fuse_io_free(ia);
1507 	if (res > 0)
1508 		*ppos = pos;
1509 
1510 	return res > 0 ? res : err;
1511 }
1512 EXPORT_SYMBOL_GPL(fuse_direct_io);
1513 
1514 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1515 				  struct iov_iter *iter,
1516 				  loff_t *ppos)
1517 {
1518 	ssize_t res;
1519 	struct inode *inode = file_inode(io->iocb->ki_filp);
1520 
1521 	res = fuse_direct_io(io, iter, ppos, 0);
1522 
1523 	fuse_invalidate_atime(inode);
1524 
1525 	return res;
1526 }
1527 
1528 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1529 
1530 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1531 {
1532 	ssize_t res;
1533 
1534 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1535 		res = fuse_direct_IO(iocb, to);
1536 	} else {
1537 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1538 
1539 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1540 	}
1541 
1542 	return res;
1543 }
1544 
1545 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1546 {
1547 	struct inode *inode = file_inode(iocb->ki_filp);
1548 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1549 	ssize_t res;
1550 
1551 	/* Don't allow parallel writes to the same file */
1552 	inode_lock(inode);
1553 	res = generic_write_checks(iocb, from);
1554 	if (res > 0) {
1555 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1556 			res = fuse_direct_IO(iocb, from);
1557 		} else {
1558 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1559 					     FUSE_DIO_WRITE);
1560 		}
1561 	}
1562 	fuse_invalidate_attr(inode);
1563 	if (res > 0)
1564 		fuse_write_update_size(inode, iocb->ki_pos);
1565 	inode_unlock(inode);
1566 
1567 	return res;
1568 }
1569 
1570 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1571 {
1572 	struct file *file = iocb->ki_filp;
1573 	struct fuse_file *ff = file->private_data;
1574 	struct inode *inode = file_inode(file);
1575 
1576 	if (fuse_is_bad(inode))
1577 		return -EIO;
1578 
1579 	if (FUSE_IS_DAX(inode))
1580 		return fuse_dax_read_iter(iocb, to);
1581 
1582 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1583 		return fuse_cache_read_iter(iocb, to);
1584 	else
1585 		return fuse_direct_read_iter(iocb, to);
1586 }
1587 
1588 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1589 {
1590 	struct file *file = iocb->ki_filp;
1591 	struct fuse_file *ff = file->private_data;
1592 	struct inode *inode = file_inode(file);
1593 
1594 	if (fuse_is_bad(inode))
1595 		return -EIO;
1596 
1597 	if (FUSE_IS_DAX(inode))
1598 		return fuse_dax_write_iter(iocb, from);
1599 
1600 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1601 		return fuse_cache_write_iter(iocb, from);
1602 	else
1603 		return fuse_direct_write_iter(iocb, from);
1604 }
1605 
1606 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1607 {
1608 	struct fuse_args_pages *ap = &wpa->ia.ap;
1609 	int i;
1610 
1611 	for (i = 0; i < ap->num_pages; i++)
1612 		__free_page(ap->pages[i]);
1613 
1614 	if (wpa->ia.ff)
1615 		fuse_file_put(wpa->ia.ff, false, false);
1616 
1617 	kfree(ap->pages);
1618 	kfree(wpa);
1619 }
1620 
1621 static void fuse_writepage_finish(struct fuse_mount *fm,
1622 				  struct fuse_writepage_args *wpa)
1623 {
1624 	struct fuse_args_pages *ap = &wpa->ia.ap;
1625 	struct inode *inode = wpa->inode;
1626 	struct fuse_inode *fi = get_fuse_inode(inode);
1627 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1628 	int i;
1629 
1630 	for (i = 0; i < ap->num_pages; i++) {
1631 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1632 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1633 		wb_writeout_inc(&bdi->wb);
1634 	}
1635 	wake_up(&fi->page_waitq);
1636 }
1637 
1638 /* Called under fi->lock, may release and reacquire it */
1639 static void fuse_send_writepage(struct fuse_mount *fm,
1640 				struct fuse_writepage_args *wpa, loff_t size)
1641 __releases(fi->lock)
1642 __acquires(fi->lock)
1643 {
1644 	struct fuse_writepage_args *aux, *next;
1645 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1646 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1647 	struct fuse_args *args = &wpa->ia.ap.args;
1648 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1649 	int err;
1650 
1651 	fi->writectr++;
1652 	if (inarg->offset + data_size <= size) {
1653 		inarg->size = data_size;
1654 	} else if (inarg->offset < size) {
1655 		inarg->size = size - inarg->offset;
1656 	} else {
1657 		/* Got truncated off completely */
1658 		goto out_free;
1659 	}
1660 
1661 	args->in_args[1].size = inarg->size;
1662 	args->force = true;
1663 	args->nocreds = true;
1664 
1665 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1666 	if (err == -ENOMEM) {
1667 		spin_unlock(&fi->lock);
1668 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1669 		spin_lock(&fi->lock);
1670 	}
1671 
1672 	/* Fails on broken connection only */
1673 	if (unlikely(err))
1674 		goto out_free;
1675 
1676 	return;
1677 
1678  out_free:
1679 	fi->writectr--;
1680 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1681 	fuse_writepage_finish(fm, wpa);
1682 	spin_unlock(&fi->lock);
1683 
1684 	/* After fuse_writepage_finish() aux request list is private */
1685 	for (aux = wpa->next; aux; aux = next) {
1686 		next = aux->next;
1687 		aux->next = NULL;
1688 		fuse_writepage_free(aux);
1689 	}
1690 
1691 	fuse_writepage_free(wpa);
1692 	spin_lock(&fi->lock);
1693 }
1694 
1695 /*
1696  * If fi->writectr is positive (no truncate or fsync going on) send
1697  * all queued writepage requests.
1698  *
1699  * Called with fi->lock
1700  */
1701 void fuse_flush_writepages(struct inode *inode)
1702 __releases(fi->lock)
1703 __acquires(fi->lock)
1704 {
1705 	struct fuse_mount *fm = get_fuse_mount(inode);
1706 	struct fuse_inode *fi = get_fuse_inode(inode);
1707 	loff_t crop = i_size_read(inode);
1708 	struct fuse_writepage_args *wpa;
1709 
1710 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1711 		wpa = list_entry(fi->queued_writes.next,
1712 				 struct fuse_writepage_args, queue_entry);
1713 		list_del_init(&wpa->queue_entry);
1714 		fuse_send_writepage(fm, wpa, crop);
1715 	}
1716 }
1717 
1718 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1719 						struct fuse_writepage_args *wpa)
1720 {
1721 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1722 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1723 	struct rb_node **p = &root->rb_node;
1724 	struct rb_node  *parent = NULL;
1725 
1726 	WARN_ON(!wpa->ia.ap.num_pages);
1727 	while (*p) {
1728 		struct fuse_writepage_args *curr;
1729 		pgoff_t curr_index;
1730 
1731 		parent = *p;
1732 		curr = rb_entry(parent, struct fuse_writepage_args,
1733 				writepages_entry);
1734 		WARN_ON(curr->inode != wpa->inode);
1735 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1736 
1737 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1738 			p = &(*p)->rb_right;
1739 		else if (idx_to < curr_index)
1740 			p = &(*p)->rb_left;
1741 		else
1742 			return curr;
1743 	}
1744 
1745 	rb_link_node(&wpa->writepages_entry, parent, p);
1746 	rb_insert_color(&wpa->writepages_entry, root);
1747 	return NULL;
1748 }
1749 
1750 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1751 {
1752 	WARN_ON(fuse_insert_writeback(root, wpa));
1753 }
1754 
1755 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1756 			       int error)
1757 {
1758 	struct fuse_writepage_args *wpa =
1759 		container_of(args, typeof(*wpa), ia.ap.args);
1760 	struct inode *inode = wpa->inode;
1761 	struct fuse_inode *fi = get_fuse_inode(inode);
1762 
1763 	mapping_set_error(inode->i_mapping, error);
1764 	spin_lock(&fi->lock);
1765 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1766 	while (wpa->next) {
1767 		struct fuse_mount *fm = get_fuse_mount(inode);
1768 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1769 		struct fuse_writepage_args *next = wpa->next;
1770 
1771 		wpa->next = next->next;
1772 		next->next = NULL;
1773 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1774 		tree_insert(&fi->writepages, next);
1775 
1776 		/*
1777 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1778 		 * based on primary request size.
1779 		 *
1780 		 * 1st case (trivial): there are no concurrent activities using
1781 		 * fuse_set/release_nowrite.  Then we're on safe side because
1782 		 * fuse_flush_writepages() would call fuse_send_writepage()
1783 		 * anyway.
1784 		 *
1785 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1786 		 * now for completion of all in-flight requests.  This happens
1787 		 * rarely and no more than once per page, so this should be
1788 		 * okay.
1789 		 *
1790 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1791 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1792 		 * that fuse_set_nowrite returned implies that all in-flight
1793 		 * requests were completed along with all of their secondary
1794 		 * requests.  Further primary requests are blocked by negative
1795 		 * writectr.  Hence there cannot be any in-flight requests and
1796 		 * no invocations of fuse_writepage_end() while we're in
1797 		 * fuse_set_nowrite..fuse_release_nowrite section.
1798 		 */
1799 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1800 	}
1801 	fi->writectr--;
1802 	fuse_writepage_finish(fm, wpa);
1803 	spin_unlock(&fi->lock);
1804 	fuse_writepage_free(wpa);
1805 }
1806 
1807 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1808 					       struct fuse_inode *fi)
1809 {
1810 	struct fuse_file *ff = NULL;
1811 
1812 	spin_lock(&fi->lock);
1813 	if (!list_empty(&fi->write_files)) {
1814 		ff = list_entry(fi->write_files.next, struct fuse_file,
1815 				write_entry);
1816 		fuse_file_get(ff);
1817 	}
1818 	spin_unlock(&fi->lock);
1819 
1820 	return ff;
1821 }
1822 
1823 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1824 					     struct fuse_inode *fi)
1825 {
1826 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1827 	WARN_ON(!ff);
1828 	return ff;
1829 }
1830 
1831 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1832 {
1833 	struct fuse_conn *fc = get_fuse_conn(inode);
1834 	struct fuse_inode *fi = get_fuse_inode(inode);
1835 	struct fuse_file *ff;
1836 	int err;
1837 
1838 	ff = __fuse_write_file_get(fc, fi);
1839 	err = fuse_flush_times(inode, ff);
1840 	if (ff)
1841 		fuse_file_put(ff, false, false);
1842 
1843 	return err;
1844 }
1845 
1846 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1847 {
1848 	struct fuse_writepage_args *wpa;
1849 	struct fuse_args_pages *ap;
1850 
1851 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1852 	if (wpa) {
1853 		ap = &wpa->ia.ap;
1854 		ap->num_pages = 0;
1855 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1856 		if (!ap->pages) {
1857 			kfree(wpa);
1858 			wpa = NULL;
1859 		}
1860 	}
1861 	return wpa;
1862 
1863 }
1864 
1865 static int fuse_writepage_locked(struct page *page)
1866 {
1867 	struct address_space *mapping = page->mapping;
1868 	struct inode *inode = mapping->host;
1869 	struct fuse_conn *fc = get_fuse_conn(inode);
1870 	struct fuse_inode *fi = get_fuse_inode(inode);
1871 	struct fuse_writepage_args *wpa;
1872 	struct fuse_args_pages *ap;
1873 	struct page *tmp_page;
1874 	int error = -ENOMEM;
1875 
1876 	set_page_writeback(page);
1877 
1878 	wpa = fuse_writepage_args_alloc();
1879 	if (!wpa)
1880 		goto err;
1881 	ap = &wpa->ia.ap;
1882 
1883 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1884 	if (!tmp_page)
1885 		goto err_free;
1886 
1887 	error = -EIO;
1888 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1889 	if (!wpa->ia.ff)
1890 		goto err_nofile;
1891 
1892 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1893 
1894 	copy_highpage(tmp_page, page);
1895 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1896 	wpa->next = NULL;
1897 	ap->args.in_pages = true;
1898 	ap->num_pages = 1;
1899 	ap->pages[0] = tmp_page;
1900 	ap->descs[0].offset = 0;
1901 	ap->descs[0].length = PAGE_SIZE;
1902 	ap->args.end = fuse_writepage_end;
1903 	wpa->inode = inode;
1904 
1905 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1906 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1907 
1908 	spin_lock(&fi->lock);
1909 	tree_insert(&fi->writepages, wpa);
1910 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1911 	fuse_flush_writepages(inode);
1912 	spin_unlock(&fi->lock);
1913 
1914 	end_page_writeback(page);
1915 
1916 	return 0;
1917 
1918 err_nofile:
1919 	__free_page(tmp_page);
1920 err_free:
1921 	kfree(wpa);
1922 err:
1923 	mapping_set_error(page->mapping, error);
1924 	end_page_writeback(page);
1925 	return error;
1926 }
1927 
1928 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1929 {
1930 	int err;
1931 
1932 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1933 		/*
1934 		 * ->writepages() should be called for sync() and friends.  We
1935 		 * should only get here on direct reclaim and then we are
1936 		 * allowed to skip a page which is already in flight
1937 		 */
1938 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1939 
1940 		redirty_page_for_writepage(wbc, page);
1941 		unlock_page(page);
1942 		return 0;
1943 	}
1944 
1945 	err = fuse_writepage_locked(page);
1946 	unlock_page(page);
1947 
1948 	return err;
1949 }
1950 
1951 struct fuse_fill_wb_data {
1952 	struct fuse_writepage_args *wpa;
1953 	struct fuse_file *ff;
1954 	struct inode *inode;
1955 	struct page **orig_pages;
1956 	unsigned int max_pages;
1957 };
1958 
1959 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1960 {
1961 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1962 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1963 	struct page **pages;
1964 	struct fuse_page_desc *descs;
1965 	unsigned int npages = min_t(unsigned int,
1966 				    max_t(unsigned int, data->max_pages * 2,
1967 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1968 				    fc->max_pages);
1969 	WARN_ON(npages <= data->max_pages);
1970 
1971 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1972 	if (!pages)
1973 		return false;
1974 
1975 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1976 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1977 	kfree(ap->pages);
1978 	ap->pages = pages;
1979 	ap->descs = descs;
1980 	data->max_pages = npages;
1981 
1982 	return true;
1983 }
1984 
1985 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1986 {
1987 	struct fuse_writepage_args *wpa = data->wpa;
1988 	struct inode *inode = data->inode;
1989 	struct fuse_inode *fi = get_fuse_inode(inode);
1990 	int num_pages = wpa->ia.ap.num_pages;
1991 	int i;
1992 
1993 	wpa->ia.ff = fuse_file_get(data->ff);
1994 	spin_lock(&fi->lock);
1995 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1996 	fuse_flush_writepages(inode);
1997 	spin_unlock(&fi->lock);
1998 
1999 	for (i = 0; i < num_pages; i++)
2000 		end_page_writeback(data->orig_pages[i]);
2001 }
2002 
2003 /*
2004  * Check under fi->lock if the page is under writeback, and insert it onto the
2005  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2006  * one already added for a page at this offset.  If there's none, then insert
2007  * this new request onto the auxiliary list, otherwise reuse the existing one by
2008  * swapping the new temp page with the old one.
2009  */
2010 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2011 			       struct page *page)
2012 {
2013 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2014 	struct fuse_writepage_args *tmp;
2015 	struct fuse_writepage_args *old_wpa;
2016 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2017 
2018 	WARN_ON(new_ap->num_pages != 0);
2019 	new_ap->num_pages = 1;
2020 
2021 	spin_lock(&fi->lock);
2022 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2023 	if (!old_wpa) {
2024 		spin_unlock(&fi->lock);
2025 		return true;
2026 	}
2027 
2028 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2029 		pgoff_t curr_index;
2030 
2031 		WARN_ON(tmp->inode != new_wpa->inode);
2032 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2033 		if (curr_index == page->index) {
2034 			WARN_ON(tmp->ia.ap.num_pages != 1);
2035 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2036 			break;
2037 		}
2038 	}
2039 
2040 	if (!tmp) {
2041 		new_wpa->next = old_wpa->next;
2042 		old_wpa->next = new_wpa;
2043 	}
2044 
2045 	spin_unlock(&fi->lock);
2046 
2047 	if (tmp) {
2048 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2049 
2050 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2051 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2052 		wb_writeout_inc(&bdi->wb);
2053 		fuse_writepage_free(new_wpa);
2054 	}
2055 
2056 	return false;
2057 }
2058 
2059 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2060 				     struct fuse_args_pages *ap,
2061 				     struct fuse_fill_wb_data *data)
2062 {
2063 	WARN_ON(!ap->num_pages);
2064 
2065 	/*
2066 	 * Being under writeback is unlikely but possible.  For example direct
2067 	 * read to an mmaped fuse file will set the page dirty twice; once when
2068 	 * the pages are faulted with get_user_pages(), and then after the read
2069 	 * completed.
2070 	 */
2071 	if (fuse_page_is_writeback(data->inode, page->index))
2072 		return true;
2073 
2074 	/* Reached max pages */
2075 	if (ap->num_pages == fc->max_pages)
2076 		return true;
2077 
2078 	/* Reached max write bytes */
2079 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2080 		return true;
2081 
2082 	/* Discontinuity */
2083 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2084 		return true;
2085 
2086 	/* Need to grow the pages array?  If so, did the expansion fail? */
2087 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2088 		return true;
2089 
2090 	return false;
2091 }
2092 
2093 static int fuse_writepages_fill(struct page *page,
2094 		struct writeback_control *wbc, void *_data)
2095 {
2096 	struct fuse_fill_wb_data *data = _data;
2097 	struct fuse_writepage_args *wpa = data->wpa;
2098 	struct fuse_args_pages *ap = &wpa->ia.ap;
2099 	struct inode *inode = data->inode;
2100 	struct fuse_inode *fi = get_fuse_inode(inode);
2101 	struct fuse_conn *fc = get_fuse_conn(inode);
2102 	struct page *tmp_page;
2103 	int err;
2104 
2105 	if (!data->ff) {
2106 		err = -EIO;
2107 		data->ff = fuse_write_file_get(fc, fi);
2108 		if (!data->ff)
2109 			goto out_unlock;
2110 	}
2111 
2112 	if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2113 		fuse_writepages_send(data);
2114 		data->wpa = NULL;
2115 	}
2116 
2117 	err = -ENOMEM;
2118 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2119 	if (!tmp_page)
2120 		goto out_unlock;
2121 
2122 	/*
2123 	 * The page must not be redirtied until the writeout is completed
2124 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2125 	 * there could be more than one temporary page instance for each real
2126 	 * page.
2127 	 *
2128 	 * This is ensured by holding the page lock in page_mkwrite() while
2129 	 * checking fuse_page_is_writeback().  We already hold the page lock
2130 	 * since clear_page_dirty_for_io() and keep it held until we add the
2131 	 * request to the fi->writepages list and increment ap->num_pages.
2132 	 * After this fuse_page_is_writeback() will indicate that the page is
2133 	 * under writeback, so we can release the page lock.
2134 	 */
2135 	if (data->wpa == NULL) {
2136 		err = -ENOMEM;
2137 		wpa = fuse_writepage_args_alloc();
2138 		if (!wpa) {
2139 			__free_page(tmp_page);
2140 			goto out_unlock;
2141 		}
2142 		data->max_pages = 1;
2143 
2144 		ap = &wpa->ia.ap;
2145 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2146 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2147 		wpa->next = NULL;
2148 		ap->args.in_pages = true;
2149 		ap->args.end = fuse_writepage_end;
2150 		ap->num_pages = 0;
2151 		wpa->inode = inode;
2152 	}
2153 	set_page_writeback(page);
2154 
2155 	copy_highpage(tmp_page, page);
2156 	ap->pages[ap->num_pages] = tmp_page;
2157 	ap->descs[ap->num_pages].offset = 0;
2158 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2159 	data->orig_pages[ap->num_pages] = page;
2160 
2161 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2162 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2163 
2164 	err = 0;
2165 	if (data->wpa) {
2166 		/*
2167 		 * Protected by fi->lock against concurrent access by
2168 		 * fuse_page_is_writeback().
2169 		 */
2170 		spin_lock(&fi->lock);
2171 		ap->num_pages++;
2172 		spin_unlock(&fi->lock);
2173 	} else if (fuse_writepage_add(wpa, page)) {
2174 		data->wpa = wpa;
2175 	} else {
2176 		end_page_writeback(page);
2177 	}
2178 out_unlock:
2179 	unlock_page(page);
2180 
2181 	return err;
2182 }
2183 
2184 static int fuse_writepages(struct address_space *mapping,
2185 			   struct writeback_control *wbc)
2186 {
2187 	struct inode *inode = mapping->host;
2188 	struct fuse_conn *fc = get_fuse_conn(inode);
2189 	struct fuse_fill_wb_data data;
2190 	int err;
2191 
2192 	err = -EIO;
2193 	if (fuse_is_bad(inode))
2194 		goto out;
2195 
2196 	data.inode = inode;
2197 	data.wpa = NULL;
2198 	data.ff = NULL;
2199 
2200 	err = -ENOMEM;
2201 	data.orig_pages = kcalloc(fc->max_pages,
2202 				  sizeof(struct page *),
2203 				  GFP_NOFS);
2204 	if (!data.orig_pages)
2205 		goto out;
2206 
2207 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2208 	if (data.wpa) {
2209 		WARN_ON(!data.wpa->ia.ap.num_pages);
2210 		fuse_writepages_send(&data);
2211 	}
2212 	if (data.ff)
2213 		fuse_file_put(data.ff, false, false);
2214 
2215 	kfree(data.orig_pages);
2216 out:
2217 	return err;
2218 }
2219 
2220 /*
2221  * It's worthy to make sure that space is reserved on disk for the write,
2222  * but how to implement it without killing performance need more thinking.
2223  */
2224 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2225 		loff_t pos, unsigned len, unsigned flags,
2226 		struct page **pagep, void **fsdata)
2227 {
2228 	pgoff_t index = pos >> PAGE_SHIFT;
2229 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2230 	struct page *page;
2231 	loff_t fsize;
2232 	int err = -ENOMEM;
2233 
2234 	WARN_ON(!fc->writeback_cache);
2235 
2236 	page = grab_cache_page_write_begin(mapping, index, flags);
2237 	if (!page)
2238 		goto error;
2239 
2240 	fuse_wait_on_page_writeback(mapping->host, page->index);
2241 
2242 	if (PageUptodate(page) || len == PAGE_SIZE)
2243 		goto success;
2244 	/*
2245 	 * Check if the start this page comes after the end of file, in which
2246 	 * case the readpage can be optimized away.
2247 	 */
2248 	fsize = i_size_read(mapping->host);
2249 	if (fsize <= (pos & PAGE_MASK)) {
2250 		size_t off = pos & ~PAGE_MASK;
2251 		if (off)
2252 			zero_user_segment(page, 0, off);
2253 		goto success;
2254 	}
2255 	err = fuse_do_readpage(file, page);
2256 	if (err)
2257 		goto cleanup;
2258 success:
2259 	*pagep = page;
2260 	return 0;
2261 
2262 cleanup:
2263 	unlock_page(page);
2264 	put_page(page);
2265 error:
2266 	return err;
2267 }
2268 
2269 static int fuse_write_end(struct file *file, struct address_space *mapping,
2270 		loff_t pos, unsigned len, unsigned copied,
2271 		struct page *page, void *fsdata)
2272 {
2273 	struct inode *inode = page->mapping->host;
2274 
2275 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2276 	if (!copied)
2277 		goto unlock;
2278 
2279 	if (!PageUptodate(page)) {
2280 		/* Zero any unwritten bytes at the end of the page */
2281 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2282 		if (endoff)
2283 			zero_user_segment(page, endoff, PAGE_SIZE);
2284 		SetPageUptodate(page);
2285 	}
2286 
2287 	fuse_write_update_size(inode, pos + copied);
2288 	set_page_dirty(page);
2289 
2290 unlock:
2291 	unlock_page(page);
2292 	put_page(page);
2293 
2294 	return copied;
2295 }
2296 
2297 static int fuse_launder_page(struct page *page)
2298 {
2299 	int err = 0;
2300 	if (clear_page_dirty_for_io(page)) {
2301 		struct inode *inode = page->mapping->host;
2302 
2303 		/* Serialize with pending writeback for the same page */
2304 		fuse_wait_on_page_writeback(inode, page->index);
2305 		err = fuse_writepage_locked(page);
2306 		if (!err)
2307 			fuse_wait_on_page_writeback(inode, page->index);
2308 	}
2309 	return err;
2310 }
2311 
2312 /*
2313  * Write back dirty pages now, because there may not be any suitable
2314  * open files later
2315  */
2316 static void fuse_vma_close(struct vm_area_struct *vma)
2317 {
2318 	filemap_write_and_wait(vma->vm_file->f_mapping);
2319 }
2320 
2321 /*
2322  * Wait for writeback against this page to complete before allowing it
2323  * to be marked dirty again, and hence written back again, possibly
2324  * before the previous writepage completed.
2325  *
2326  * Block here, instead of in ->writepage(), so that the userspace fs
2327  * can only block processes actually operating on the filesystem.
2328  *
2329  * Otherwise unprivileged userspace fs would be able to block
2330  * unrelated:
2331  *
2332  * - page migration
2333  * - sync(2)
2334  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2335  */
2336 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2337 {
2338 	struct page *page = vmf->page;
2339 	struct inode *inode = file_inode(vmf->vma->vm_file);
2340 
2341 	file_update_time(vmf->vma->vm_file);
2342 	lock_page(page);
2343 	if (page->mapping != inode->i_mapping) {
2344 		unlock_page(page);
2345 		return VM_FAULT_NOPAGE;
2346 	}
2347 
2348 	fuse_wait_on_page_writeback(inode, page->index);
2349 	return VM_FAULT_LOCKED;
2350 }
2351 
2352 static const struct vm_operations_struct fuse_file_vm_ops = {
2353 	.close		= fuse_vma_close,
2354 	.fault		= filemap_fault,
2355 	.map_pages	= filemap_map_pages,
2356 	.page_mkwrite	= fuse_page_mkwrite,
2357 };
2358 
2359 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2360 {
2361 	struct fuse_file *ff = file->private_data;
2362 
2363 	/* DAX mmap is superior to direct_io mmap */
2364 	if (FUSE_IS_DAX(file_inode(file)))
2365 		return fuse_dax_mmap(file, vma);
2366 
2367 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2368 		/* Can't provide the coherency needed for MAP_SHARED */
2369 		if (vma->vm_flags & VM_MAYSHARE)
2370 			return -ENODEV;
2371 
2372 		invalidate_inode_pages2(file->f_mapping);
2373 
2374 		return generic_file_mmap(file, vma);
2375 	}
2376 
2377 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2378 		fuse_link_write_file(file);
2379 
2380 	file_accessed(file);
2381 	vma->vm_ops = &fuse_file_vm_ops;
2382 	return 0;
2383 }
2384 
2385 static int convert_fuse_file_lock(struct fuse_conn *fc,
2386 				  const struct fuse_file_lock *ffl,
2387 				  struct file_lock *fl)
2388 {
2389 	switch (ffl->type) {
2390 	case F_UNLCK:
2391 		break;
2392 
2393 	case F_RDLCK:
2394 	case F_WRLCK:
2395 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2396 		    ffl->end < ffl->start)
2397 			return -EIO;
2398 
2399 		fl->fl_start = ffl->start;
2400 		fl->fl_end = ffl->end;
2401 
2402 		/*
2403 		 * Convert pid into init's pid namespace.  The locks API will
2404 		 * translate it into the caller's pid namespace.
2405 		 */
2406 		rcu_read_lock();
2407 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2408 		rcu_read_unlock();
2409 		break;
2410 
2411 	default:
2412 		return -EIO;
2413 	}
2414 	fl->fl_type = ffl->type;
2415 	return 0;
2416 }
2417 
2418 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2419 			 const struct file_lock *fl, int opcode, pid_t pid,
2420 			 int flock, struct fuse_lk_in *inarg)
2421 {
2422 	struct inode *inode = file_inode(file);
2423 	struct fuse_conn *fc = get_fuse_conn(inode);
2424 	struct fuse_file *ff = file->private_data;
2425 
2426 	memset(inarg, 0, sizeof(*inarg));
2427 	inarg->fh = ff->fh;
2428 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2429 	inarg->lk.start = fl->fl_start;
2430 	inarg->lk.end = fl->fl_end;
2431 	inarg->lk.type = fl->fl_type;
2432 	inarg->lk.pid = pid;
2433 	if (flock)
2434 		inarg->lk_flags |= FUSE_LK_FLOCK;
2435 	args->opcode = opcode;
2436 	args->nodeid = get_node_id(inode);
2437 	args->in_numargs = 1;
2438 	args->in_args[0].size = sizeof(*inarg);
2439 	args->in_args[0].value = inarg;
2440 }
2441 
2442 static int fuse_getlk(struct file *file, struct file_lock *fl)
2443 {
2444 	struct inode *inode = file_inode(file);
2445 	struct fuse_mount *fm = get_fuse_mount(inode);
2446 	FUSE_ARGS(args);
2447 	struct fuse_lk_in inarg;
2448 	struct fuse_lk_out outarg;
2449 	int err;
2450 
2451 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2452 	args.out_numargs = 1;
2453 	args.out_args[0].size = sizeof(outarg);
2454 	args.out_args[0].value = &outarg;
2455 	err = fuse_simple_request(fm, &args);
2456 	if (!err)
2457 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2458 
2459 	return err;
2460 }
2461 
2462 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2463 {
2464 	struct inode *inode = file_inode(file);
2465 	struct fuse_mount *fm = get_fuse_mount(inode);
2466 	FUSE_ARGS(args);
2467 	struct fuse_lk_in inarg;
2468 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2469 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2470 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2471 	int err;
2472 
2473 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2474 		/* NLM needs asynchronous locks, which we don't support yet */
2475 		return -ENOLCK;
2476 	}
2477 
2478 	/* Unlock on close is handled by the flush method */
2479 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2480 		return 0;
2481 
2482 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2483 	err = fuse_simple_request(fm, &args);
2484 
2485 	/* locking is restartable */
2486 	if (err == -EINTR)
2487 		err = -ERESTARTSYS;
2488 
2489 	return err;
2490 }
2491 
2492 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2493 {
2494 	struct inode *inode = file_inode(file);
2495 	struct fuse_conn *fc = get_fuse_conn(inode);
2496 	int err;
2497 
2498 	if (cmd == F_CANCELLK) {
2499 		err = 0;
2500 	} else if (cmd == F_GETLK) {
2501 		if (fc->no_lock) {
2502 			posix_test_lock(file, fl);
2503 			err = 0;
2504 		} else
2505 			err = fuse_getlk(file, fl);
2506 	} else {
2507 		if (fc->no_lock)
2508 			err = posix_lock_file(file, fl, NULL);
2509 		else
2510 			err = fuse_setlk(file, fl, 0);
2511 	}
2512 	return err;
2513 }
2514 
2515 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2516 {
2517 	struct inode *inode = file_inode(file);
2518 	struct fuse_conn *fc = get_fuse_conn(inode);
2519 	int err;
2520 
2521 	if (fc->no_flock) {
2522 		err = locks_lock_file_wait(file, fl);
2523 	} else {
2524 		struct fuse_file *ff = file->private_data;
2525 
2526 		/* emulate flock with POSIX locks */
2527 		ff->flock = true;
2528 		err = fuse_setlk(file, fl, 1);
2529 	}
2530 
2531 	return err;
2532 }
2533 
2534 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2535 {
2536 	struct inode *inode = mapping->host;
2537 	struct fuse_mount *fm = get_fuse_mount(inode);
2538 	FUSE_ARGS(args);
2539 	struct fuse_bmap_in inarg;
2540 	struct fuse_bmap_out outarg;
2541 	int err;
2542 
2543 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2544 		return 0;
2545 
2546 	memset(&inarg, 0, sizeof(inarg));
2547 	inarg.block = block;
2548 	inarg.blocksize = inode->i_sb->s_blocksize;
2549 	args.opcode = FUSE_BMAP;
2550 	args.nodeid = get_node_id(inode);
2551 	args.in_numargs = 1;
2552 	args.in_args[0].size = sizeof(inarg);
2553 	args.in_args[0].value = &inarg;
2554 	args.out_numargs = 1;
2555 	args.out_args[0].size = sizeof(outarg);
2556 	args.out_args[0].value = &outarg;
2557 	err = fuse_simple_request(fm, &args);
2558 	if (err == -ENOSYS)
2559 		fm->fc->no_bmap = 1;
2560 
2561 	return err ? 0 : outarg.block;
2562 }
2563 
2564 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2565 {
2566 	struct inode *inode = file->f_mapping->host;
2567 	struct fuse_mount *fm = get_fuse_mount(inode);
2568 	struct fuse_file *ff = file->private_data;
2569 	FUSE_ARGS(args);
2570 	struct fuse_lseek_in inarg = {
2571 		.fh = ff->fh,
2572 		.offset = offset,
2573 		.whence = whence
2574 	};
2575 	struct fuse_lseek_out outarg;
2576 	int err;
2577 
2578 	if (fm->fc->no_lseek)
2579 		goto fallback;
2580 
2581 	args.opcode = FUSE_LSEEK;
2582 	args.nodeid = ff->nodeid;
2583 	args.in_numargs = 1;
2584 	args.in_args[0].size = sizeof(inarg);
2585 	args.in_args[0].value = &inarg;
2586 	args.out_numargs = 1;
2587 	args.out_args[0].size = sizeof(outarg);
2588 	args.out_args[0].value = &outarg;
2589 	err = fuse_simple_request(fm, &args);
2590 	if (err) {
2591 		if (err == -ENOSYS) {
2592 			fm->fc->no_lseek = 1;
2593 			goto fallback;
2594 		}
2595 		return err;
2596 	}
2597 
2598 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2599 
2600 fallback:
2601 	err = fuse_update_attributes(inode, file);
2602 	if (!err)
2603 		return generic_file_llseek(file, offset, whence);
2604 	else
2605 		return err;
2606 }
2607 
2608 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2609 {
2610 	loff_t retval;
2611 	struct inode *inode = file_inode(file);
2612 
2613 	switch (whence) {
2614 	case SEEK_SET:
2615 	case SEEK_CUR:
2616 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2617 		retval = generic_file_llseek(file, offset, whence);
2618 		break;
2619 	case SEEK_END:
2620 		inode_lock(inode);
2621 		retval = fuse_update_attributes(inode, file);
2622 		if (!retval)
2623 			retval = generic_file_llseek(file, offset, whence);
2624 		inode_unlock(inode);
2625 		break;
2626 	case SEEK_HOLE:
2627 	case SEEK_DATA:
2628 		inode_lock(inode);
2629 		retval = fuse_lseek(file, offset, whence);
2630 		inode_unlock(inode);
2631 		break;
2632 	default:
2633 		retval = -EINVAL;
2634 	}
2635 
2636 	return retval;
2637 }
2638 
2639 /*
2640  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2641  * ABI was defined to be 'struct iovec' which is different on 32bit
2642  * and 64bit.  Fortunately we can determine which structure the server
2643  * used from the size of the reply.
2644  */
2645 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2646 				     size_t transferred, unsigned count,
2647 				     bool is_compat)
2648 {
2649 #ifdef CONFIG_COMPAT
2650 	if (count * sizeof(struct compat_iovec) == transferred) {
2651 		struct compat_iovec *ciov = src;
2652 		unsigned i;
2653 
2654 		/*
2655 		 * With this interface a 32bit server cannot support
2656 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2657 		 * requests
2658 		 */
2659 		if (!is_compat)
2660 			return -EINVAL;
2661 
2662 		for (i = 0; i < count; i++) {
2663 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2664 			dst[i].iov_len = ciov[i].iov_len;
2665 		}
2666 		return 0;
2667 	}
2668 #endif
2669 
2670 	if (count * sizeof(struct iovec) != transferred)
2671 		return -EIO;
2672 
2673 	memcpy(dst, src, transferred);
2674 	return 0;
2675 }
2676 
2677 /* Make sure iov_length() won't overflow */
2678 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2679 				 size_t count)
2680 {
2681 	size_t n;
2682 	u32 max = fc->max_pages << PAGE_SHIFT;
2683 
2684 	for (n = 0; n < count; n++, iov++) {
2685 		if (iov->iov_len > (size_t) max)
2686 			return -ENOMEM;
2687 		max -= iov->iov_len;
2688 	}
2689 	return 0;
2690 }
2691 
2692 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2693 				 void *src, size_t transferred, unsigned count,
2694 				 bool is_compat)
2695 {
2696 	unsigned i;
2697 	struct fuse_ioctl_iovec *fiov = src;
2698 
2699 	if (fc->minor < 16) {
2700 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2701 						 count, is_compat);
2702 	}
2703 
2704 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2705 		return -EIO;
2706 
2707 	for (i = 0; i < count; i++) {
2708 		/* Did the server supply an inappropriate value? */
2709 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2710 		    fiov[i].len != (unsigned long) fiov[i].len)
2711 			return -EIO;
2712 
2713 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2714 		dst[i].iov_len = (size_t) fiov[i].len;
2715 
2716 #ifdef CONFIG_COMPAT
2717 		if (is_compat &&
2718 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2719 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2720 			return -EIO;
2721 #endif
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 
2728 /*
2729  * For ioctls, there is no generic way to determine how much memory
2730  * needs to be read and/or written.  Furthermore, ioctls are allowed
2731  * to dereference the passed pointer, so the parameter requires deep
2732  * copying but FUSE has no idea whatsoever about what to copy in or
2733  * out.
2734  *
2735  * This is solved by allowing FUSE server to retry ioctl with
2736  * necessary in/out iovecs.  Let's assume the ioctl implementation
2737  * needs to read in the following structure.
2738  *
2739  * struct a {
2740  *	char	*buf;
2741  *	size_t	buflen;
2742  * }
2743  *
2744  * On the first callout to FUSE server, inarg->in_size and
2745  * inarg->out_size will be NULL; then, the server completes the ioctl
2746  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2747  * the actual iov array to
2748  *
2749  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2750  *
2751  * which tells FUSE to copy in the requested area and retry the ioctl.
2752  * On the second round, the server has access to the structure and
2753  * from that it can tell what to look for next, so on the invocation,
2754  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2755  *
2756  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2757  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2758  *
2759  * FUSE will copy both struct a and the pointed buffer from the
2760  * process doing the ioctl and retry ioctl with both struct a and the
2761  * buffer.
2762  *
2763  * This time, FUSE server has everything it needs and completes ioctl
2764  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2765  *
2766  * Copying data out works the same way.
2767  *
2768  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2769  * automatically initializes in and out iovs by decoding @cmd with
2770  * _IOC_* macros and the server is not allowed to request RETRY.  This
2771  * limits ioctl data transfers to well-formed ioctls and is the forced
2772  * behavior for all FUSE servers.
2773  */
2774 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2775 		   unsigned int flags)
2776 {
2777 	struct fuse_file *ff = file->private_data;
2778 	struct fuse_mount *fm = ff->fm;
2779 	struct fuse_ioctl_in inarg = {
2780 		.fh = ff->fh,
2781 		.cmd = cmd,
2782 		.arg = arg,
2783 		.flags = flags
2784 	};
2785 	struct fuse_ioctl_out outarg;
2786 	struct iovec *iov_page = NULL;
2787 	struct iovec *in_iov = NULL, *out_iov = NULL;
2788 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2789 	size_t in_size, out_size, c;
2790 	ssize_t transferred;
2791 	int err, i;
2792 	struct iov_iter ii;
2793 	struct fuse_args_pages ap = {};
2794 
2795 #if BITS_PER_LONG == 32
2796 	inarg.flags |= FUSE_IOCTL_32BIT;
2797 #else
2798 	if (flags & FUSE_IOCTL_COMPAT) {
2799 		inarg.flags |= FUSE_IOCTL_32BIT;
2800 #ifdef CONFIG_X86_X32
2801 		if (in_x32_syscall())
2802 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2803 #endif
2804 	}
2805 #endif
2806 
2807 	/* assume all the iovs returned by client always fits in a page */
2808 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2809 
2810 	err = -ENOMEM;
2811 	ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2812 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2813 	if (!ap.pages || !iov_page)
2814 		goto out;
2815 
2816 	fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2817 
2818 	/*
2819 	 * If restricted, initialize IO parameters as encoded in @cmd.
2820 	 * RETRY from server is not allowed.
2821 	 */
2822 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2823 		struct iovec *iov = iov_page;
2824 
2825 		iov->iov_base = (void __user *)arg;
2826 
2827 		switch (cmd) {
2828 		case FS_IOC_GETFLAGS:
2829 		case FS_IOC_SETFLAGS:
2830 			iov->iov_len = sizeof(int);
2831 			break;
2832 		default:
2833 			iov->iov_len = _IOC_SIZE(cmd);
2834 			break;
2835 		}
2836 
2837 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2838 			in_iov = iov;
2839 			in_iovs = 1;
2840 		}
2841 
2842 		if (_IOC_DIR(cmd) & _IOC_READ) {
2843 			out_iov = iov;
2844 			out_iovs = 1;
2845 		}
2846 	}
2847 
2848  retry:
2849 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2850 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2851 
2852 	/*
2853 	 * Out data can be used either for actual out data or iovs,
2854 	 * make sure there always is at least one page.
2855 	 */
2856 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2857 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2858 
2859 	/* make sure there are enough buffer pages and init request with them */
2860 	err = -ENOMEM;
2861 	if (max_pages > fm->fc->max_pages)
2862 		goto out;
2863 	while (ap.num_pages < max_pages) {
2864 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2865 		if (!ap.pages[ap.num_pages])
2866 			goto out;
2867 		ap.num_pages++;
2868 	}
2869 
2870 
2871 	/* okay, let's send it to the client */
2872 	ap.args.opcode = FUSE_IOCTL;
2873 	ap.args.nodeid = ff->nodeid;
2874 	ap.args.in_numargs = 1;
2875 	ap.args.in_args[0].size = sizeof(inarg);
2876 	ap.args.in_args[0].value = &inarg;
2877 	if (in_size) {
2878 		ap.args.in_numargs++;
2879 		ap.args.in_args[1].size = in_size;
2880 		ap.args.in_pages = true;
2881 
2882 		err = -EFAULT;
2883 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2884 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2885 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2886 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2887 				goto out;
2888 		}
2889 	}
2890 
2891 	ap.args.out_numargs = 2;
2892 	ap.args.out_args[0].size = sizeof(outarg);
2893 	ap.args.out_args[0].value = &outarg;
2894 	ap.args.out_args[1].size = out_size;
2895 	ap.args.out_pages = true;
2896 	ap.args.out_argvar = true;
2897 
2898 	transferred = fuse_simple_request(fm, &ap.args);
2899 	err = transferred;
2900 	if (transferred < 0)
2901 		goto out;
2902 
2903 	/* did it ask for retry? */
2904 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2905 		void *vaddr;
2906 
2907 		/* no retry if in restricted mode */
2908 		err = -EIO;
2909 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2910 			goto out;
2911 
2912 		in_iovs = outarg.in_iovs;
2913 		out_iovs = outarg.out_iovs;
2914 
2915 		/*
2916 		 * Make sure things are in boundary, separate checks
2917 		 * are to protect against overflow.
2918 		 */
2919 		err = -ENOMEM;
2920 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2921 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2922 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2923 			goto out;
2924 
2925 		vaddr = kmap_atomic(ap.pages[0]);
2926 		err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2927 					    transferred, in_iovs + out_iovs,
2928 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2929 		kunmap_atomic(vaddr);
2930 		if (err)
2931 			goto out;
2932 
2933 		in_iov = iov_page;
2934 		out_iov = in_iov + in_iovs;
2935 
2936 		err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2937 		if (err)
2938 			goto out;
2939 
2940 		err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2941 		if (err)
2942 			goto out;
2943 
2944 		goto retry;
2945 	}
2946 
2947 	err = -EIO;
2948 	if (transferred > inarg.out_size)
2949 		goto out;
2950 
2951 	err = -EFAULT;
2952 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2953 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2954 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2955 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2956 			goto out;
2957 	}
2958 	err = 0;
2959  out:
2960 	free_page((unsigned long) iov_page);
2961 	while (ap.num_pages)
2962 		__free_page(ap.pages[--ap.num_pages]);
2963 	kfree(ap.pages);
2964 
2965 	return err ? err : outarg.result;
2966 }
2967 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2968 
2969 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2970 		       unsigned long arg, unsigned int flags)
2971 {
2972 	struct inode *inode = file_inode(file);
2973 	struct fuse_conn *fc = get_fuse_conn(inode);
2974 
2975 	if (!fuse_allow_current_process(fc))
2976 		return -EACCES;
2977 
2978 	if (fuse_is_bad(inode))
2979 		return -EIO;
2980 
2981 	return fuse_do_ioctl(file, cmd, arg, flags);
2982 }
2983 
2984 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2985 			    unsigned long arg)
2986 {
2987 	return fuse_ioctl_common(file, cmd, arg, 0);
2988 }
2989 
2990 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2991 				   unsigned long arg)
2992 {
2993 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2994 }
2995 
2996 /*
2997  * All files which have been polled are linked to RB tree
2998  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2999  * find the matching one.
3000  */
3001 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
3002 					      struct rb_node **parent_out)
3003 {
3004 	struct rb_node **link = &fc->polled_files.rb_node;
3005 	struct rb_node *last = NULL;
3006 
3007 	while (*link) {
3008 		struct fuse_file *ff;
3009 
3010 		last = *link;
3011 		ff = rb_entry(last, struct fuse_file, polled_node);
3012 
3013 		if (kh < ff->kh)
3014 			link = &last->rb_left;
3015 		else if (kh > ff->kh)
3016 			link = &last->rb_right;
3017 		else
3018 			return link;
3019 	}
3020 
3021 	if (parent_out)
3022 		*parent_out = last;
3023 	return link;
3024 }
3025 
3026 /*
3027  * The file is about to be polled.  Make sure it's on the polled_files
3028  * RB tree.  Note that files once added to the polled_files tree are
3029  * not removed before the file is released.  This is because a file
3030  * polled once is likely to be polled again.
3031  */
3032 static void fuse_register_polled_file(struct fuse_conn *fc,
3033 				      struct fuse_file *ff)
3034 {
3035 	spin_lock(&fc->lock);
3036 	if (RB_EMPTY_NODE(&ff->polled_node)) {
3037 		struct rb_node **link, *parent;
3038 
3039 		link = fuse_find_polled_node(fc, ff->kh, &parent);
3040 		BUG_ON(*link);
3041 		rb_link_node(&ff->polled_node, parent, link);
3042 		rb_insert_color(&ff->polled_node, &fc->polled_files);
3043 	}
3044 	spin_unlock(&fc->lock);
3045 }
3046 
3047 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3048 {
3049 	struct fuse_file *ff = file->private_data;
3050 	struct fuse_mount *fm = ff->fm;
3051 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3052 	struct fuse_poll_out outarg;
3053 	FUSE_ARGS(args);
3054 	int err;
3055 
3056 	if (fm->fc->no_poll)
3057 		return DEFAULT_POLLMASK;
3058 
3059 	poll_wait(file, &ff->poll_wait, wait);
3060 	inarg.events = mangle_poll(poll_requested_events(wait));
3061 
3062 	/*
3063 	 * Ask for notification iff there's someone waiting for it.
3064 	 * The client may ignore the flag and always notify.
3065 	 */
3066 	if (waitqueue_active(&ff->poll_wait)) {
3067 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3068 		fuse_register_polled_file(fm->fc, ff);
3069 	}
3070 
3071 	args.opcode = FUSE_POLL;
3072 	args.nodeid = ff->nodeid;
3073 	args.in_numargs = 1;
3074 	args.in_args[0].size = sizeof(inarg);
3075 	args.in_args[0].value = &inarg;
3076 	args.out_numargs = 1;
3077 	args.out_args[0].size = sizeof(outarg);
3078 	args.out_args[0].value = &outarg;
3079 	err = fuse_simple_request(fm, &args);
3080 
3081 	if (!err)
3082 		return demangle_poll(outarg.revents);
3083 	if (err == -ENOSYS) {
3084 		fm->fc->no_poll = 1;
3085 		return DEFAULT_POLLMASK;
3086 	}
3087 	return EPOLLERR;
3088 }
3089 EXPORT_SYMBOL_GPL(fuse_file_poll);
3090 
3091 /*
3092  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3093  * wakes up the poll waiters.
3094  */
3095 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3096 			    struct fuse_notify_poll_wakeup_out *outarg)
3097 {
3098 	u64 kh = outarg->kh;
3099 	struct rb_node **link;
3100 
3101 	spin_lock(&fc->lock);
3102 
3103 	link = fuse_find_polled_node(fc, kh, NULL);
3104 	if (*link) {
3105 		struct fuse_file *ff;
3106 
3107 		ff = rb_entry(*link, struct fuse_file, polled_node);
3108 		wake_up_interruptible_sync(&ff->poll_wait);
3109 	}
3110 
3111 	spin_unlock(&fc->lock);
3112 	return 0;
3113 }
3114 
3115 static void fuse_do_truncate(struct file *file)
3116 {
3117 	struct inode *inode = file->f_mapping->host;
3118 	struct iattr attr;
3119 
3120 	attr.ia_valid = ATTR_SIZE;
3121 	attr.ia_size = i_size_read(inode);
3122 
3123 	attr.ia_file = file;
3124 	attr.ia_valid |= ATTR_FILE;
3125 
3126 	fuse_do_setattr(file_dentry(file), &attr, file);
3127 }
3128 
3129 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3130 {
3131 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3132 }
3133 
3134 static ssize_t
3135 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3136 {
3137 	DECLARE_COMPLETION_ONSTACK(wait);
3138 	ssize_t ret = 0;
3139 	struct file *file = iocb->ki_filp;
3140 	struct fuse_file *ff = file->private_data;
3141 	loff_t pos = 0;
3142 	struct inode *inode;
3143 	loff_t i_size;
3144 	size_t count = iov_iter_count(iter), shortened = 0;
3145 	loff_t offset = iocb->ki_pos;
3146 	struct fuse_io_priv *io;
3147 
3148 	pos = offset;
3149 	inode = file->f_mapping->host;
3150 	i_size = i_size_read(inode);
3151 
3152 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3153 		return 0;
3154 
3155 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3156 	if (!io)
3157 		return -ENOMEM;
3158 	spin_lock_init(&io->lock);
3159 	kref_init(&io->refcnt);
3160 	io->reqs = 1;
3161 	io->bytes = -1;
3162 	io->size = 0;
3163 	io->offset = offset;
3164 	io->write = (iov_iter_rw(iter) == WRITE);
3165 	io->err = 0;
3166 	/*
3167 	 * By default, we want to optimize all I/Os with async request
3168 	 * submission to the client filesystem if supported.
3169 	 */
3170 	io->async = ff->fm->fc->async_dio;
3171 	io->iocb = iocb;
3172 	io->blocking = is_sync_kiocb(iocb);
3173 
3174 	/* optimization for short read */
3175 	if (io->async && !io->write && offset + count > i_size) {
3176 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3177 		shortened = count - iov_iter_count(iter);
3178 		count -= shortened;
3179 	}
3180 
3181 	/*
3182 	 * We cannot asynchronously extend the size of a file.
3183 	 * In such case the aio will behave exactly like sync io.
3184 	 */
3185 	if ((offset + count > i_size) && io->write)
3186 		io->blocking = true;
3187 
3188 	if (io->async && io->blocking) {
3189 		/*
3190 		 * Additional reference to keep io around after
3191 		 * calling fuse_aio_complete()
3192 		 */
3193 		kref_get(&io->refcnt);
3194 		io->done = &wait;
3195 	}
3196 
3197 	if (iov_iter_rw(iter) == WRITE) {
3198 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3199 		fuse_invalidate_attr(inode);
3200 	} else {
3201 		ret = __fuse_direct_read(io, iter, &pos);
3202 	}
3203 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3204 
3205 	if (io->async) {
3206 		bool blocking = io->blocking;
3207 
3208 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3209 
3210 		/* we have a non-extending, async request, so return */
3211 		if (!blocking)
3212 			return -EIOCBQUEUED;
3213 
3214 		wait_for_completion(&wait);
3215 		ret = fuse_get_res_by_io(io);
3216 	}
3217 
3218 	kref_put(&io->refcnt, fuse_io_release);
3219 
3220 	if (iov_iter_rw(iter) == WRITE) {
3221 		if (ret > 0)
3222 			fuse_write_update_size(inode, pos);
3223 		else if (ret < 0 && offset + count > i_size)
3224 			fuse_do_truncate(file);
3225 	}
3226 
3227 	return ret;
3228 }
3229 
3230 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3231 {
3232 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3233 
3234 	if (!err)
3235 		fuse_sync_writes(inode);
3236 
3237 	return err;
3238 }
3239 
3240 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3241 				loff_t length)
3242 {
3243 	struct fuse_file *ff = file->private_data;
3244 	struct inode *inode = file_inode(file);
3245 	struct fuse_inode *fi = get_fuse_inode(inode);
3246 	struct fuse_mount *fm = ff->fm;
3247 	FUSE_ARGS(args);
3248 	struct fuse_fallocate_in inarg = {
3249 		.fh = ff->fh,
3250 		.offset = offset,
3251 		.length = length,
3252 		.mode = mode
3253 	};
3254 	int err;
3255 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3256 			   (mode & FALLOC_FL_PUNCH_HOLE);
3257 
3258 	bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
3259 
3260 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3261 		return -EOPNOTSUPP;
3262 
3263 	if (fm->fc->no_fallocate)
3264 		return -EOPNOTSUPP;
3265 
3266 	if (lock_inode) {
3267 		inode_lock(inode);
3268 		if (block_faults) {
3269 			down_write(&fi->i_mmap_sem);
3270 			err = fuse_dax_break_layouts(inode, 0, 0);
3271 			if (err)
3272 				goto out;
3273 		}
3274 
3275 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3276 			loff_t endbyte = offset + length - 1;
3277 
3278 			err = fuse_writeback_range(inode, offset, endbyte);
3279 			if (err)
3280 				goto out;
3281 		}
3282 	}
3283 
3284 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3285 	    offset + length > i_size_read(inode)) {
3286 		err = inode_newsize_ok(inode, offset + length);
3287 		if (err)
3288 			goto out;
3289 	}
3290 
3291 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3292 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3293 
3294 	args.opcode = FUSE_FALLOCATE;
3295 	args.nodeid = ff->nodeid;
3296 	args.in_numargs = 1;
3297 	args.in_args[0].size = sizeof(inarg);
3298 	args.in_args[0].value = &inarg;
3299 	err = fuse_simple_request(fm, &args);
3300 	if (err == -ENOSYS) {
3301 		fm->fc->no_fallocate = 1;
3302 		err = -EOPNOTSUPP;
3303 	}
3304 	if (err)
3305 		goto out;
3306 
3307 	/* we could have extended the file */
3308 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3309 		bool changed = fuse_write_update_size(inode, offset + length);
3310 
3311 		if (changed && fm->fc->writeback_cache)
3312 			file_update_time(file);
3313 	}
3314 
3315 	if (mode & FALLOC_FL_PUNCH_HOLE)
3316 		truncate_pagecache_range(inode, offset, offset + length - 1);
3317 
3318 	fuse_invalidate_attr(inode);
3319 
3320 out:
3321 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3322 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3323 
3324 	if (block_faults)
3325 		up_write(&fi->i_mmap_sem);
3326 
3327 	if (lock_inode)
3328 		inode_unlock(inode);
3329 
3330 	return err;
3331 }
3332 
3333 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3334 				      struct file *file_out, loff_t pos_out,
3335 				      size_t len, unsigned int flags)
3336 {
3337 	struct fuse_file *ff_in = file_in->private_data;
3338 	struct fuse_file *ff_out = file_out->private_data;
3339 	struct inode *inode_in = file_inode(file_in);
3340 	struct inode *inode_out = file_inode(file_out);
3341 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3342 	struct fuse_mount *fm = ff_in->fm;
3343 	struct fuse_conn *fc = fm->fc;
3344 	FUSE_ARGS(args);
3345 	struct fuse_copy_file_range_in inarg = {
3346 		.fh_in = ff_in->fh,
3347 		.off_in = pos_in,
3348 		.nodeid_out = ff_out->nodeid,
3349 		.fh_out = ff_out->fh,
3350 		.off_out = pos_out,
3351 		.len = len,
3352 		.flags = flags
3353 	};
3354 	struct fuse_write_out outarg;
3355 	ssize_t err;
3356 	/* mark unstable when write-back is not used, and file_out gets
3357 	 * extended */
3358 	bool is_unstable = (!fc->writeback_cache) &&
3359 			   ((pos_out + len) > inode_out->i_size);
3360 
3361 	if (fc->no_copy_file_range)
3362 		return -EOPNOTSUPP;
3363 
3364 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3365 		return -EXDEV;
3366 
3367 	inode_lock(inode_in);
3368 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3369 	inode_unlock(inode_in);
3370 	if (err)
3371 		return err;
3372 
3373 	inode_lock(inode_out);
3374 
3375 	err = file_modified(file_out);
3376 	if (err)
3377 		goto out;
3378 
3379 	/*
3380 	 * Write out dirty pages in the destination file before sending the COPY
3381 	 * request to userspace.  After the request is completed, truncate off
3382 	 * pages (including partial ones) from the cache that have been copied,
3383 	 * since these contain stale data at that point.
3384 	 *
3385 	 * This should be mostly correct, but if the COPY writes to partial
3386 	 * pages (at the start or end) and the parts not covered by the COPY are
3387 	 * written through a memory map after calling fuse_writeback_range(),
3388 	 * then these partial page modifications will be lost on truncation.
3389 	 *
3390 	 * It is unlikely that someone would rely on such mixed style
3391 	 * modifications.  Yet this does give less guarantees than if the
3392 	 * copying was performed with write(2).
3393 	 *
3394 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3395 	 * faults while the copy is ongoing.
3396 	 */
3397 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3398 	if (err)
3399 		goto out;
3400 
3401 	if (is_unstable)
3402 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3403 
3404 	args.opcode = FUSE_COPY_FILE_RANGE;
3405 	args.nodeid = ff_in->nodeid;
3406 	args.in_numargs = 1;
3407 	args.in_args[0].size = sizeof(inarg);
3408 	args.in_args[0].value = &inarg;
3409 	args.out_numargs = 1;
3410 	args.out_args[0].size = sizeof(outarg);
3411 	args.out_args[0].value = &outarg;
3412 	err = fuse_simple_request(fm, &args);
3413 	if (err == -ENOSYS) {
3414 		fc->no_copy_file_range = 1;
3415 		err = -EOPNOTSUPP;
3416 	}
3417 	if (err)
3418 		goto out;
3419 
3420 	truncate_inode_pages_range(inode_out->i_mapping,
3421 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3422 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3423 
3424 	if (fc->writeback_cache) {
3425 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3426 		file_update_time(file_out);
3427 	}
3428 
3429 	fuse_invalidate_attr(inode_out);
3430 
3431 	err = outarg.size;
3432 out:
3433 	if (is_unstable)
3434 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3435 
3436 	inode_unlock(inode_out);
3437 	file_accessed(file_in);
3438 
3439 	return err;
3440 }
3441 
3442 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3443 				    struct file *dst_file, loff_t dst_off,
3444 				    size_t len, unsigned int flags)
3445 {
3446 	ssize_t ret;
3447 
3448 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3449 				     len, flags);
3450 
3451 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3452 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3453 					      dst_off, len, flags);
3454 	return ret;
3455 }
3456 
3457 static const struct file_operations fuse_file_operations = {
3458 	.llseek		= fuse_file_llseek,
3459 	.read_iter	= fuse_file_read_iter,
3460 	.write_iter	= fuse_file_write_iter,
3461 	.mmap		= fuse_file_mmap,
3462 	.open		= fuse_open,
3463 	.flush		= fuse_flush,
3464 	.release	= fuse_release,
3465 	.fsync		= fuse_fsync,
3466 	.lock		= fuse_file_lock,
3467 	.get_unmapped_area = thp_get_unmapped_area,
3468 	.flock		= fuse_file_flock,
3469 	.splice_read	= generic_file_splice_read,
3470 	.splice_write	= iter_file_splice_write,
3471 	.unlocked_ioctl	= fuse_file_ioctl,
3472 	.compat_ioctl	= fuse_file_compat_ioctl,
3473 	.poll		= fuse_file_poll,
3474 	.fallocate	= fuse_file_fallocate,
3475 	.copy_file_range = fuse_copy_file_range,
3476 };
3477 
3478 static const struct address_space_operations fuse_file_aops  = {
3479 	.readpage	= fuse_readpage,
3480 	.readahead	= fuse_readahead,
3481 	.writepage	= fuse_writepage,
3482 	.writepages	= fuse_writepages,
3483 	.launder_page	= fuse_launder_page,
3484 	.set_page_dirty	= __set_page_dirty_nobuffers,
3485 	.bmap		= fuse_bmap,
3486 	.direct_IO	= fuse_direct_IO,
3487 	.write_begin	= fuse_write_begin,
3488 	.write_end	= fuse_write_end,
3489 };
3490 
3491 void fuse_init_file_inode(struct inode *inode)
3492 {
3493 	struct fuse_inode *fi = get_fuse_inode(inode);
3494 
3495 	inode->i_fop = &fuse_file_operations;
3496 	inode->i_data.a_ops = &fuse_file_aops;
3497 
3498 	INIT_LIST_HEAD(&fi->write_files);
3499 	INIT_LIST_HEAD(&fi->queued_writes);
3500 	fi->writectr = 0;
3501 	init_waitqueue_head(&fi->page_waitq);
3502 	fi->writepages = RB_ROOT;
3503 
3504 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3505 		fuse_dax_inode_init(inode);
3506 }
3507