1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/module.h> 16 #include <linux/compat.h> 17 #include <linux/swap.h> 18 #include <linux/aio.h> 19 #include <linux/falloc.h> 20 21 static const struct file_operations fuse_direct_io_file_operations; 22 23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 24 int opcode, struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 args.in.h.opcode = opcode; 34 args.in.h.nodeid = nodeid; 35 args.in.numargs = 1; 36 args.in.args[0].size = sizeof(inarg); 37 args.in.args[0].value = &inarg; 38 args.out.numargs = 1; 39 args.out.args[0].size = sizeof(*outargp); 40 args.out.args[0].value = outargp; 41 42 return fuse_simple_request(fc, &args); 43 } 44 45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 46 { 47 struct fuse_file *ff; 48 49 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL); 50 if (unlikely(!ff)) 51 return NULL; 52 53 ff->fc = fc; 54 ff->reserved_req = fuse_request_alloc(0); 55 if (unlikely(!ff->reserved_req)) { 56 kfree(ff); 57 return NULL; 58 } 59 60 INIT_LIST_HEAD(&ff->write_entry); 61 atomic_set(&ff->count, 0); 62 RB_CLEAR_NODE(&ff->polled_node); 63 init_waitqueue_head(&ff->poll_wait); 64 65 spin_lock(&fc->lock); 66 ff->kh = ++fc->khctr; 67 spin_unlock(&fc->lock); 68 69 return ff; 70 } 71 72 void fuse_file_free(struct fuse_file *ff) 73 { 74 fuse_request_free(ff->reserved_req); 75 kfree(ff); 76 } 77 78 struct fuse_file *fuse_file_get(struct fuse_file *ff) 79 { 80 atomic_inc(&ff->count); 81 return ff; 82 } 83 84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 85 { 86 iput(req->misc.release.inode); 87 } 88 89 static void fuse_file_put(struct fuse_file *ff, bool sync) 90 { 91 if (atomic_dec_and_test(&ff->count)) { 92 struct fuse_req *req = ff->reserved_req; 93 94 if (ff->fc->no_open) { 95 /* 96 * Drop the release request when client does not 97 * implement 'open' 98 */ 99 req->background = 0; 100 iput(req->misc.release.inode); 101 fuse_put_request(ff->fc, req); 102 } else if (sync) { 103 req->background = 0; 104 fuse_request_send(ff->fc, req); 105 iput(req->misc.release.inode); 106 fuse_put_request(ff->fc, req); 107 } else { 108 req->end = fuse_release_end; 109 req->background = 1; 110 fuse_request_send_background(ff->fc, req); 111 } 112 kfree(ff); 113 } 114 } 115 116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 117 bool isdir) 118 { 119 struct fuse_file *ff; 120 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 121 122 ff = fuse_file_alloc(fc); 123 if (!ff) 124 return -ENOMEM; 125 126 ff->fh = 0; 127 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */ 128 if (!fc->no_open || isdir) { 129 struct fuse_open_out outarg; 130 int err; 131 132 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 133 if (!err) { 134 ff->fh = outarg.fh; 135 ff->open_flags = outarg.open_flags; 136 137 } else if (err != -ENOSYS || isdir) { 138 fuse_file_free(ff); 139 return err; 140 } else { 141 fc->no_open = 1; 142 } 143 } 144 145 if (isdir) 146 ff->open_flags &= ~FOPEN_DIRECT_IO; 147 148 ff->nodeid = nodeid; 149 file->private_data = fuse_file_get(ff); 150 151 return 0; 152 } 153 EXPORT_SYMBOL_GPL(fuse_do_open); 154 155 static void fuse_link_write_file(struct file *file) 156 { 157 struct inode *inode = file_inode(file); 158 struct fuse_conn *fc = get_fuse_conn(inode); 159 struct fuse_inode *fi = get_fuse_inode(inode); 160 struct fuse_file *ff = file->private_data; 161 /* 162 * file may be written through mmap, so chain it onto the 163 * inodes's write_file list 164 */ 165 spin_lock(&fc->lock); 166 if (list_empty(&ff->write_entry)) 167 list_add(&ff->write_entry, &fi->write_files); 168 spin_unlock(&fc->lock); 169 } 170 171 void fuse_finish_open(struct inode *inode, struct file *file) 172 { 173 struct fuse_file *ff = file->private_data; 174 struct fuse_conn *fc = get_fuse_conn(inode); 175 176 if (ff->open_flags & FOPEN_DIRECT_IO) 177 file->f_op = &fuse_direct_io_file_operations; 178 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 179 invalidate_inode_pages2(inode->i_mapping); 180 if (ff->open_flags & FOPEN_NONSEEKABLE) 181 nonseekable_open(inode, file); 182 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 183 struct fuse_inode *fi = get_fuse_inode(inode); 184 185 spin_lock(&fc->lock); 186 fi->attr_version = ++fc->attr_version; 187 i_size_write(inode, 0); 188 spin_unlock(&fc->lock); 189 fuse_invalidate_attr(inode); 190 if (fc->writeback_cache) 191 file_update_time(file); 192 } 193 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 194 fuse_link_write_file(file); 195 } 196 197 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 198 { 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 int err; 201 bool lock_inode = (file->f_flags & O_TRUNC) && 202 fc->atomic_o_trunc && 203 fc->writeback_cache; 204 205 err = generic_file_open(inode, file); 206 if (err) 207 return err; 208 209 if (lock_inode) 210 mutex_lock(&inode->i_mutex); 211 212 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 213 214 if (!err) 215 fuse_finish_open(inode, file); 216 217 if (lock_inode) 218 mutex_unlock(&inode->i_mutex); 219 220 return err; 221 } 222 223 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 224 { 225 struct fuse_conn *fc = ff->fc; 226 struct fuse_req *req = ff->reserved_req; 227 struct fuse_release_in *inarg = &req->misc.release.in; 228 229 spin_lock(&fc->lock); 230 list_del(&ff->write_entry); 231 if (!RB_EMPTY_NODE(&ff->polled_node)) 232 rb_erase(&ff->polled_node, &fc->polled_files); 233 spin_unlock(&fc->lock); 234 235 wake_up_interruptible_all(&ff->poll_wait); 236 237 inarg->fh = ff->fh; 238 inarg->flags = flags; 239 req->in.h.opcode = opcode; 240 req->in.h.nodeid = ff->nodeid; 241 req->in.numargs = 1; 242 req->in.args[0].size = sizeof(struct fuse_release_in); 243 req->in.args[0].value = inarg; 244 } 245 246 void fuse_release_common(struct file *file, int opcode) 247 { 248 struct fuse_file *ff; 249 struct fuse_req *req; 250 251 ff = file->private_data; 252 if (unlikely(!ff)) 253 return; 254 255 req = ff->reserved_req; 256 fuse_prepare_release(ff, file->f_flags, opcode); 257 258 if (ff->flock) { 259 struct fuse_release_in *inarg = &req->misc.release.in; 260 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 261 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 262 (fl_owner_t) file); 263 } 264 /* Hold inode until release is finished */ 265 req->misc.release.inode = igrab(file_inode(file)); 266 267 /* 268 * Normally this will send the RELEASE request, however if 269 * some asynchronous READ or WRITE requests are outstanding, 270 * the sending will be delayed. 271 * 272 * Make the release synchronous if this is a fuseblk mount, 273 * synchronous RELEASE is allowed (and desirable) in this case 274 * because the server can be trusted not to screw up. 275 */ 276 fuse_file_put(ff, ff->fc->destroy_req != NULL); 277 } 278 279 static int fuse_open(struct inode *inode, struct file *file) 280 { 281 return fuse_open_common(inode, file, false); 282 } 283 284 static int fuse_release(struct inode *inode, struct file *file) 285 { 286 struct fuse_conn *fc = get_fuse_conn(inode); 287 288 /* see fuse_vma_close() for !writeback_cache case */ 289 if (fc->writeback_cache) 290 write_inode_now(inode, 1); 291 292 fuse_release_common(file, FUSE_RELEASE); 293 294 /* return value is ignored by VFS */ 295 return 0; 296 } 297 298 void fuse_sync_release(struct fuse_file *ff, int flags) 299 { 300 WARN_ON(atomic_read(&ff->count) > 1); 301 fuse_prepare_release(ff, flags, FUSE_RELEASE); 302 ff->reserved_req->force = 1; 303 ff->reserved_req->background = 0; 304 fuse_request_send(ff->fc, ff->reserved_req); 305 fuse_put_request(ff->fc, ff->reserved_req); 306 kfree(ff); 307 } 308 EXPORT_SYMBOL_GPL(fuse_sync_release); 309 310 /* 311 * Scramble the ID space with XTEA, so that the value of the files_struct 312 * pointer is not exposed to userspace. 313 */ 314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 315 { 316 u32 *k = fc->scramble_key; 317 u64 v = (unsigned long) id; 318 u32 v0 = v; 319 u32 v1 = v >> 32; 320 u32 sum = 0; 321 int i; 322 323 for (i = 0; i < 32; i++) { 324 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 325 sum += 0x9E3779B9; 326 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 327 } 328 329 return (u64) v0 + ((u64) v1 << 32); 330 } 331 332 /* 333 * Check if any page in a range is under writeback 334 * 335 * This is currently done by walking the list of writepage requests 336 * for the inode, which can be pretty inefficient. 337 */ 338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 339 pgoff_t idx_to) 340 { 341 struct fuse_conn *fc = get_fuse_conn(inode); 342 struct fuse_inode *fi = get_fuse_inode(inode); 343 struct fuse_req *req; 344 bool found = false; 345 346 spin_lock(&fc->lock); 347 list_for_each_entry(req, &fi->writepages, writepages_entry) { 348 pgoff_t curr_index; 349 350 BUG_ON(req->inode != inode); 351 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 352 if (idx_from < curr_index + req->num_pages && 353 curr_index <= idx_to) { 354 found = true; 355 break; 356 } 357 } 358 spin_unlock(&fc->lock); 359 360 return found; 361 } 362 363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 364 { 365 return fuse_range_is_writeback(inode, index, index); 366 } 367 368 /* 369 * Wait for page writeback to be completed. 370 * 371 * Since fuse doesn't rely on the VM writeback tracking, this has to 372 * use some other means. 373 */ 374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 375 { 376 struct fuse_inode *fi = get_fuse_inode(inode); 377 378 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 379 return 0; 380 } 381 382 /* 383 * Wait for all pending writepages on the inode to finish. 384 * 385 * This is currently done by blocking further writes with FUSE_NOWRITE 386 * and waiting for all sent writes to complete. 387 * 388 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 389 * could conflict with truncation. 390 */ 391 static void fuse_sync_writes(struct inode *inode) 392 { 393 fuse_set_nowrite(inode); 394 fuse_release_nowrite(inode); 395 } 396 397 static int fuse_flush(struct file *file, fl_owner_t id) 398 { 399 struct inode *inode = file_inode(file); 400 struct fuse_conn *fc = get_fuse_conn(inode); 401 struct fuse_file *ff = file->private_data; 402 struct fuse_req *req; 403 struct fuse_flush_in inarg; 404 int err; 405 406 if (is_bad_inode(inode)) 407 return -EIO; 408 409 if (fc->no_flush) 410 return 0; 411 412 err = write_inode_now(inode, 1); 413 if (err) 414 return err; 415 416 mutex_lock(&inode->i_mutex); 417 fuse_sync_writes(inode); 418 mutex_unlock(&inode->i_mutex); 419 420 req = fuse_get_req_nofail_nopages(fc, file); 421 memset(&inarg, 0, sizeof(inarg)); 422 inarg.fh = ff->fh; 423 inarg.lock_owner = fuse_lock_owner_id(fc, id); 424 req->in.h.opcode = FUSE_FLUSH; 425 req->in.h.nodeid = get_node_id(inode); 426 req->in.numargs = 1; 427 req->in.args[0].size = sizeof(inarg); 428 req->in.args[0].value = &inarg; 429 req->force = 1; 430 fuse_request_send(fc, req); 431 err = req->out.h.error; 432 fuse_put_request(fc, req); 433 if (err == -ENOSYS) { 434 fc->no_flush = 1; 435 err = 0; 436 } 437 return err; 438 } 439 440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 441 int datasync, int isdir) 442 { 443 struct inode *inode = file->f_mapping->host; 444 struct fuse_conn *fc = get_fuse_conn(inode); 445 struct fuse_file *ff = file->private_data; 446 FUSE_ARGS(args); 447 struct fuse_fsync_in inarg; 448 int err; 449 450 if (is_bad_inode(inode)) 451 return -EIO; 452 453 mutex_lock(&inode->i_mutex); 454 455 /* 456 * Start writeback against all dirty pages of the inode, then 457 * wait for all outstanding writes, before sending the FSYNC 458 * request. 459 */ 460 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 461 if (err) 462 goto out; 463 464 fuse_sync_writes(inode); 465 err = sync_inode_metadata(inode, 1); 466 if (err) 467 goto out; 468 469 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir)) 470 goto out; 471 472 memset(&inarg, 0, sizeof(inarg)); 473 inarg.fh = ff->fh; 474 inarg.fsync_flags = datasync ? 1 : 0; 475 args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC; 476 args.in.h.nodeid = get_node_id(inode); 477 args.in.numargs = 1; 478 args.in.args[0].size = sizeof(inarg); 479 args.in.args[0].value = &inarg; 480 err = fuse_simple_request(fc, &args); 481 if (err == -ENOSYS) { 482 if (isdir) 483 fc->no_fsyncdir = 1; 484 else 485 fc->no_fsync = 1; 486 err = 0; 487 } 488 out: 489 mutex_unlock(&inode->i_mutex); 490 return err; 491 } 492 493 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 494 int datasync) 495 { 496 return fuse_fsync_common(file, start, end, datasync, 0); 497 } 498 499 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 500 size_t count, int opcode) 501 { 502 struct fuse_read_in *inarg = &req->misc.read.in; 503 struct fuse_file *ff = file->private_data; 504 505 inarg->fh = ff->fh; 506 inarg->offset = pos; 507 inarg->size = count; 508 inarg->flags = file->f_flags; 509 req->in.h.opcode = opcode; 510 req->in.h.nodeid = ff->nodeid; 511 req->in.numargs = 1; 512 req->in.args[0].size = sizeof(struct fuse_read_in); 513 req->in.args[0].value = inarg; 514 req->out.argvar = 1; 515 req->out.numargs = 1; 516 req->out.args[0].size = count; 517 } 518 519 static void fuse_release_user_pages(struct fuse_req *req, int write) 520 { 521 unsigned i; 522 523 for (i = 0; i < req->num_pages; i++) { 524 struct page *page = req->pages[i]; 525 if (write) 526 set_page_dirty_lock(page); 527 put_page(page); 528 } 529 } 530 531 /** 532 * In case of short read, the caller sets 'pos' to the position of 533 * actual end of fuse request in IO request. Otherwise, if bytes_requested 534 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 535 * 536 * An example: 537 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 538 * both submitted asynchronously. The first of them was ACKed by userspace as 539 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 540 * second request was ACKed as short, e.g. only 1K was read, resulting in 541 * pos == 33K. 542 * 543 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 544 * will be equal to the length of the longest contiguous fragment of 545 * transferred data starting from the beginning of IO request. 546 */ 547 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 548 { 549 int left; 550 551 spin_lock(&io->lock); 552 if (err) 553 io->err = io->err ? : err; 554 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 555 io->bytes = pos; 556 557 left = --io->reqs; 558 spin_unlock(&io->lock); 559 560 if (!left) { 561 long res; 562 563 if (io->err) 564 res = io->err; 565 else if (io->bytes >= 0 && io->write) 566 res = -EIO; 567 else { 568 res = io->bytes < 0 ? io->size : io->bytes; 569 570 if (!is_sync_kiocb(io->iocb)) { 571 struct inode *inode = file_inode(io->iocb->ki_filp); 572 struct fuse_conn *fc = get_fuse_conn(inode); 573 struct fuse_inode *fi = get_fuse_inode(inode); 574 575 spin_lock(&fc->lock); 576 fi->attr_version = ++fc->attr_version; 577 spin_unlock(&fc->lock); 578 } 579 } 580 581 aio_complete(io->iocb, res, 0); 582 kfree(io); 583 } 584 } 585 586 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 587 { 588 struct fuse_io_priv *io = req->io; 589 ssize_t pos = -1; 590 591 fuse_release_user_pages(req, !io->write); 592 593 if (io->write) { 594 if (req->misc.write.in.size != req->misc.write.out.size) 595 pos = req->misc.write.in.offset - io->offset + 596 req->misc.write.out.size; 597 } else { 598 if (req->misc.read.in.size != req->out.args[0].size) 599 pos = req->misc.read.in.offset - io->offset + 600 req->out.args[0].size; 601 } 602 603 fuse_aio_complete(io, req->out.h.error, pos); 604 } 605 606 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 607 size_t num_bytes, struct fuse_io_priv *io) 608 { 609 spin_lock(&io->lock); 610 io->size += num_bytes; 611 io->reqs++; 612 spin_unlock(&io->lock); 613 614 req->io = io; 615 req->end = fuse_aio_complete_req; 616 617 __fuse_get_request(req); 618 fuse_request_send_background(fc, req); 619 620 return num_bytes; 621 } 622 623 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 624 loff_t pos, size_t count, fl_owner_t owner) 625 { 626 struct file *file = io->file; 627 struct fuse_file *ff = file->private_data; 628 struct fuse_conn *fc = ff->fc; 629 630 fuse_read_fill(req, file, pos, count, FUSE_READ); 631 if (owner != NULL) { 632 struct fuse_read_in *inarg = &req->misc.read.in; 633 634 inarg->read_flags |= FUSE_READ_LOCKOWNER; 635 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 636 } 637 638 if (io->async) 639 return fuse_async_req_send(fc, req, count, io); 640 641 fuse_request_send(fc, req); 642 return req->out.args[0].size; 643 } 644 645 static void fuse_read_update_size(struct inode *inode, loff_t size, 646 u64 attr_ver) 647 { 648 struct fuse_conn *fc = get_fuse_conn(inode); 649 struct fuse_inode *fi = get_fuse_inode(inode); 650 651 spin_lock(&fc->lock); 652 if (attr_ver == fi->attr_version && size < inode->i_size && 653 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 654 fi->attr_version = ++fc->attr_version; 655 i_size_write(inode, size); 656 } 657 spin_unlock(&fc->lock); 658 } 659 660 static void fuse_short_read(struct fuse_req *req, struct inode *inode, 661 u64 attr_ver) 662 { 663 size_t num_read = req->out.args[0].size; 664 struct fuse_conn *fc = get_fuse_conn(inode); 665 666 if (fc->writeback_cache) { 667 /* 668 * A hole in a file. Some data after the hole are in page cache, 669 * but have not reached the client fs yet. So, the hole is not 670 * present there. 671 */ 672 int i; 673 int start_idx = num_read >> PAGE_CACHE_SHIFT; 674 size_t off = num_read & (PAGE_CACHE_SIZE - 1); 675 676 for (i = start_idx; i < req->num_pages; i++) { 677 zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE); 678 off = 0; 679 } 680 } else { 681 loff_t pos = page_offset(req->pages[0]) + num_read; 682 fuse_read_update_size(inode, pos, attr_ver); 683 } 684 } 685 686 static int fuse_do_readpage(struct file *file, struct page *page) 687 { 688 struct fuse_io_priv io = { .async = 0, .file = file }; 689 struct inode *inode = page->mapping->host; 690 struct fuse_conn *fc = get_fuse_conn(inode); 691 struct fuse_req *req; 692 size_t num_read; 693 loff_t pos = page_offset(page); 694 size_t count = PAGE_CACHE_SIZE; 695 u64 attr_ver; 696 int err; 697 698 /* 699 * Page writeback can extend beyond the lifetime of the 700 * page-cache page, so make sure we read a properly synced 701 * page. 702 */ 703 fuse_wait_on_page_writeback(inode, page->index); 704 705 req = fuse_get_req(fc, 1); 706 if (IS_ERR(req)) 707 return PTR_ERR(req); 708 709 attr_ver = fuse_get_attr_version(fc); 710 711 req->out.page_zeroing = 1; 712 req->out.argpages = 1; 713 req->num_pages = 1; 714 req->pages[0] = page; 715 req->page_descs[0].length = count; 716 num_read = fuse_send_read(req, &io, pos, count, NULL); 717 err = req->out.h.error; 718 719 if (!err) { 720 /* 721 * Short read means EOF. If file size is larger, truncate it 722 */ 723 if (num_read < count) 724 fuse_short_read(req, inode, attr_ver); 725 726 SetPageUptodate(page); 727 } 728 729 fuse_put_request(fc, req); 730 731 return err; 732 } 733 734 static int fuse_readpage(struct file *file, struct page *page) 735 { 736 struct inode *inode = page->mapping->host; 737 int err; 738 739 err = -EIO; 740 if (is_bad_inode(inode)) 741 goto out; 742 743 err = fuse_do_readpage(file, page); 744 fuse_invalidate_atime(inode); 745 out: 746 unlock_page(page); 747 return err; 748 } 749 750 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 751 { 752 int i; 753 size_t count = req->misc.read.in.size; 754 size_t num_read = req->out.args[0].size; 755 struct address_space *mapping = NULL; 756 757 for (i = 0; mapping == NULL && i < req->num_pages; i++) 758 mapping = req->pages[i]->mapping; 759 760 if (mapping) { 761 struct inode *inode = mapping->host; 762 763 /* 764 * Short read means EOF. If file size is larger, truncate it 765 */ 766 if (!req->out.h.error && num_read < count) 767 fuse_short_read(req, inode, req->misc.read.attr_ver); 768 769 fuse_invalidate_atime(inode); 770 } 771 772 for (i = 0; i < req->num_pages; i++) { 773 struct page *page = req->pages[i]; 774 if (!req->out.h.error) 775 SetPageUptodate(page); 776 else 777 SetPageError(page); 778 unlock_page(page); 779 page_cache_release(page); 780 } 781 if (req->ff) 782 fuse_file_put(req->ff, false); 783 } 784 785 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 786 { 787 struct fuse_file *ff = file->private_data; 788 struct fuse_conn *fc = ff->fc; 789 loff_t pos = page_offset(req->pages[0]); 790 size_t count = req->num_pages << PAGE_CACHE_SHIFT; 791 792 req->out.argpages = 1; 793 req->out.page_zeroing = 1; 794 req->out.page_replace = 1; 795 fuse_read_fill(req, file, pos, count, FUSE_READ); 796 req->misc.read.attr_ver = fuse_get_attr_version(fc); 797 if (fc->async_read) { 798 req->ff = fuse_file_get(ff); 799 req->end = fuse_readpages_end; 800 fuse_request_send_background(fc, req); 801 } else { 802 fuse_request_send(fc, req); 803 fuse_readpages_end(fc, req); 804 fuse_put_request(fc, req); 805 } 806 } 807 808 struct fuse_fill_data { 809 struct fuse_req *req; 810 struct file *file; 811 struct inode *inode; 812 unsigned nr_pages; 813 }; 814 815 static int fuse_readpages_fill(void *_data, struct page *page) 816 { 817 struct fuse_fill_data *data = _data; 818 struct fuse_req *req = data->req; 819 struct inode *inode = data->inode; 820 struct fuse_conn *fc = get_fuse_conn(inode); 821 822 fuse_wait_on_page_writeback(inode, page->index); 823 824 if (req->num_pages && 825 (req->num_pages == FUSE_MAX_PAGES_PER_REQ || 826 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read || 827 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 828 int nr_alloc = min_t(unsigned, data->nr_pages, 829 FUSE_MAX_PAGES_PER_REQ); 830 fuse_send_readpages(req, data->file); 831 if (fc->async_read) 832 req = fuse_get_req_for_background(fc, nr_alloc); 833 else 834 req = fuse_get_req(fc, nr_alloc); 835 836 data->req = req; 837 if (IS_ERR(req)) { 838 unlock_page(page); 839 return PTR_ERR(req); 840 } 841 } 842 843 if (WARN_ON(req->num_pages >= req->max_pages)) { 844 fuse_put_request(fc, req); 845 return -EIO; 846 } 847 848 page_cache_get(page); 849 req->pages[req->num_pages] = page; 850 req->page_descs[req->num_pages].length = PAGE_SIZE; 851 req->num_pages++; 852 data->nr_pages--; 853 return 0; 854 } 855 856 static int fuse_readpages(struct file *file, struct address_space *mapping, 857 struct list_head *pages, unsigned nr_pages) 858 { 859 struct inode *inode = mapping->host; 860 struct fuse_conn *fc = get_fuse_conn(inode); 861 struct fuse_fill_data data; 862 int err; 863 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ); 864 865 err = -EIO; 866 if (is_bad_inode(inode)) 867 goto out; 868 869 data.file = file; 870 data.inode = inode; 871 if (fc->async_read) 872 data.req = fuse_get_req_for_background(fc, nr_alloc); 873 else 874 data.req = fuse_get_req(fc, nr_alloc); 875 data.nr_pages = nr_pages; 876 err = PTR_ERR(data.req); 877 if (IS_ERR(data.req)) 878 goto out; 879 880 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 881 if (!err) { 882 if (data.req->num_pages) 883 fuse_send_readpages(data.req, file); 884 else 885 fuse_put_request(fc, data.req); 886 } 887 out: 888 return err; 889 } 890 891 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 892 { 893 struct inode *inode = iocb->ki_filp->f_mapping->host; 894 struct fuse_conn *fc = get_fuse_conn(inode); 895 896 /* 897 * In auto invalidate mode, always update attributes on read. 898 * Otherwise, only update if we attempt to read past EOF (to ensure 899 * i_size is up to date). 900 */ 901 if (fc->auto_inval_data || 902 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 903 int err; 904 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL); 905 if (err) 906 return err; 907 } 908 909 return generic_file_read_iter(iocb, to); 910 } 911 912 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 913 loff_t pos, size_t count) 914 { 915 struct fuse_write_in *inarg = &req->misc.write.in; 916 struct fuse_write_out *outarg = &req->misc.write.out; 917 918 inarg->fh = ff->fh; 919 inarg->offset = pos; 920 inarg->size = count; 921 req->in.h.opcode = FUSE_WRITE; 922 req->in.h.nodeid = ff->nodeid; 923 req->in.numargs = 2; 924 if (ff->fc->minor < 9) 925 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 926 else 927 req->in.args[0].size = sizeof(struct fuse_write_in); 928 req->in.args[0].value = inarg; 929 req->in.args[1].size = count; 930 req->out.numargs = 1; 931 req->out.args[0].size = sizeof(struct fuse_write_out); 932 req->out.args[0].value = outarg; 933 } 934 935 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 936 loff_t pos, size_t count, fl_owner_t owner) 937 { 938 struct file *file = io->file; 939 struct fuse_file *ff = file->private_data; 940 struct fuse_conn *fc = ff->fc; 941 struct fuse_write_in *inarg = &req->misc.write.in; 942 943 fuse_write_fill(req, ff, pos, count); 944 inarg->flags = file->f_flags; 945 if (owner != NULL) { 946 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 947 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 948 } 949 950 if (io->async) 951 return fuse_async_req_send(fc, req, count, io); 952 953 fuse_request_send(fc, req); 954 return req->misc.write.out.size; 955 } 956 957 bool fuse_write_update_size(struct inode *inode, loff_t pos) 958 { 959 struct fuse_conn *fc = get_fuse_conn(inode); 960 struct fuse_inode *fi = get_fuse_inode(inode); 961 bool ret = false; 962 963 spin_lock(&fc->lock); 964 fi->attr_version = ++fc->attr_version; 965 if (pos > inode->i_size) { 966 i_size_write(inode, pos); 967 ret = true; 968 } 969 spin_unlock(&fc->lock); 970 971 return ret; 972 } 973 974 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file, 975 struct inode *inode, loff_t pos, 976 size_t count) 977 { 978 size_t res; 979 unsigned offset; 980 unsigned i; 981 struct fuse_io_priv io = { .async = 0, .file = file }; 982 983 for (i = 0; i < req->num_pages; i++) 984 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 985 986 res = fuse_send_write(req, &io, pos, count, NULL); 987 988 offset = req->page_descs[0].offset; 989 count = res; 990 for (i = 0; i < req->num_pages; i++) { 991 struct page *page = req->pages[i]; 992 993 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE) 994 SetPageUptodate(page); 995 996 if (count > PAGE_CACHE_SIZE - offset) 997 count -= PAGE_CACHE_SIZE - offset; 998 else 999 count = 0; 1000 offset = 0; 1001 1002 unlock_page(page); 1003 page_cache_release(page); 1004 } 1005 1006 return res; 1007 } 1008 1009 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 1010 struct address_space *mapping, 1011 struct iov_iter *ii, loff_t pos) 1012 { 1013 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1014 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1015 size_t count = 0; 1016 int err; 1017 1018 req->in.argpages = 1; 1019 req->page_descs[0].offset = offset; 1020 1021 do { 1022 size_t tmp; 1023 struct page *page; 1024 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1025 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset, 1026 iov_iter_count(ii)); 1027 1028 bytes = min_t(size_t, bytes, fc->max_write - count); 1029 1030 again: 1031 err = -EFAULT; 1032 if (iov_iter_fault_in_readable(ii, bytes)) 1033 break; 1034 1035 err = -ENOMEM; 1036 page = grab_cache_page_write_begin(mapping, index, 0); 1037 if (!page) 1038 break; 1039 1040 if (mapping_writably_mapped(mapping)) 1041 flush_dcache_page(page); 1042 1043 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1044 flush_dcache_page(page); 1045 1046 if (!tmp) { 1047 unlock_page(page); 1048 page_cache_release(page); 1049 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1050 goto again; 1051 } 1052 1053 err = 0; 1054 req->pages[req->num_pages] = page; 1055 req->page_descs[req->num_pages].length = tmp; 1056 req->num_pages++; 1057 1058 iov_iter_advance(ii, tmp); 1059 count += tmp; 1060 pos += tmp; 1061 offset += tmp; 1062 if (offset == PAGE_CACHE_SIZE) 1063 offset = 0; 1064 1065 if (!fc->big_writes) 1066 break; 1067 } while (iov_iter_count(ii) && count < fc->max_write && 1068 req->num_pages < req->max_pages && offset == 0); 1069 1070 return count > 0 ? count : err; 1071 } 1072 1073 static inline unsigned fuse_wr_pages(loff_t pos, size_t len) 1074 { 1075 return min_t(unsigned, 1076 ((pos + len - 1) >> PAGE_CACHE_SHIFT) - 1077 (pos >> PAGE_CACHE_SHIFT) + 1, 1078 FUSE_MAX_PAGES_PER_REQ); 1079 } 1080 1081 static ssize_t fuse_perform_write(struct file *file, 1082 struct address_space *mapping, 1083 struct iov_iter *ii, loff_t pos) 1084 { 1085 struct inode *inode = mapping->host; 1086 struct fuse_conn *fc = get_fuse_conn(inode); 1087 struct fuse_inode *fi = get_fuse_inode(inode); 1088 int err = 0; 1089 ssize_t res = 0; 1090 1091 if (is_bad_inode(inode)) 1092 return -EIO; 1093 1094 if (inode->i_size < pos + iov_iter_count(ii)) 1095 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1096 1097 do { 1098 struct fuse_req *req; 1099 ssize_t count; 1100 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii)); 1101 1102 req = fuse_get_req(fc, nr_pages); 1103 if (IS_ERR(req)) { 1104 err = PTR_ERR(req); 1105 break; 1106 } 1107 1108 count = fuse_fill_write_pages(req, mapping, ii, pos); 1109 if (count <= 0) { 1110 err = count; 1111 } else { 1112 size_t num_written; 1113 1114 num_written = fuse_send_write_pages(req, file, inode, 1115 pos, count); 1116 err = req->out.h.error; 1117 if (!err) { 1118 res += num_written; 1119 pos += num_written; 1120 1121 /* break out of the loop on short write */ 1122 if (num_written != count) 1123 err = -EIO; 1124 } 1125 } 1126 fuse_put_request(fc, req); 1127 } while (!err && iov_iter_count(ii)); 1128 1129 if (res > 0) 1130 fuse_write_update_size(inode, pos); 1131 1132 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1133 fuse_invalidate_attr(inode); 1134 1135 return res > 0 ? res : err; 1136 } 1137 1138 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1139 { 1140 struct file *file = iocb->ki_filp; 1141 struct address_space *mapping = file->f_mapping; 1142 size_t count = iov_iter_count(from); 1143 ssize_t written = 0; 1144 ssize_t written_buffered = 0; 1145 struct inode *inode = mapping->host; 1146 ssize_t err; 1147 loff_t endbyte = 0; 1148 loff_t pos = iocb->ki_pos; 1149 1150 if (get_fuse_conn(inode)->writeback_cache) { 1151 /* Update size (EOF optimization) and mode (SUID clearing) */ 1152 err = fuse_update_attributes(mapping->host, NULL, file, NULL); 1153 if (err) 1154 return err; 1155 1156 return generic_file_write_iter(iocb, from); 1157 } 1158 1159 mutex_lock(&inode->i_mutex); 1160 1161 /* We can write back this queue in page reclaim */ 1162 current->backing_dev_info = inode_to_bdi(inode); 1163 1164 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1165 if (err) 1166 goto out; 1167 1168 if (count == 0) 1169 goto out; 1170 1171 iov_iter_truncate(from, count); 1172 err = file_remove_suid(file); 1173 if (err) 1174 goto out; 1175 1176 err = file_update_time(file); 1177 if (err) 1178 goto out; 1179 1180 if (file->f_flags & O_DIRECT) { 1181 written = generic_file_direct_write(iocb, from, pos); 1182 if (written < 0 || !iov_iter_count(from)) 1183 goto out; 1184 1185 pos += written; 1186 1187 written_buffered = fuse_perform_write(file, mapping, from, pos); 1188 if (written_buffered < 0) { 1189 err = written_buffered; 1190 goto out; 1191 } 1192 endbyte = pos + written_buffered - 1; 1193 1194 err = filemap_write_and_wait_range(file->f_mapping, pos, 1195 endbyte); 1196 if (err) 1197 goto out; 1198 1199 invalidate_mapping_pages(file->f_mapping, 1200 pos >> PAGE_CACHE_SHIFT, 1201 endbyte >> PAGE_CACHE_SHIFT); 1202 1203 written += written_buffered; 1204 iocb->ki_pos = pos + written_buffered; 1205 } else { 1206 written = fuse_perform_write(file, mapping, from, pos); 1207 if (written >= 0) 1208 iocb->ki_pos = pos + written; 1209 } 1210 out: 1211 current->backing_dev_info = NULL; 1212 mutex_unlock(&inode->i_mutex); 1213 1214 return written ? written : err; 1215 } 1216 1217 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1218 unsigned index, unsigned nr_pages) 1219 { 1220 int i; 1221 1222 for (i = index; i < index + nr_pages; i++) 1223 req->page_descs[i].length = PAGE_SIZE - 1224 req->page_descs[i].offset; 1225 } 1226 1227 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1228 { 1229 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1230 } 1231 1232 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1233 size_t max_size) 1234 { 1235 return min(iov_iter_single_seg_count(ii), max_size); 1236 } 1237 1238 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1239 size_t *nbytesp, int write) 1240 { 1241 size_t nbytes = 0; /* # bytes already packed in req */ 1242 1243 /* Special case for kernel I/O: can copy directly into the buffer */ 1244 if (ii->type & ITER_KVEC) { 1245 unsigned long user_addr = fuse_get_user_addr(ii); 1246 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1247 1248 if (write) 1249 req->in.args[1].value = (void *) user_addr; 1250 else 1251 req->out.args[0].value = (void *) user_addr; 1252 1253 iov_iter_advance(ii, frag_size); 1254 *nbytesp = frag_size; 1255 return 0; 1256 } 1257 1258 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1259 unsigned npages; 1260 size_t start; 1261 ssize_t ret = iov_iter_get_pages(ii, 1262 &req->pages[req->num_pages], 1263 *nbytesp - nbytes, 1264 req->max_pages - req->num_pages, 1265 &start); 1266 if (ret < 0) 1267 return ret; 1268 1269 iov_iter_advance(ii, ret); 1270 nbytes += ret; 1271 1272 ret += start; 1273 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1274 1275 req->page_descs[req->num_pages].offset = start; 1276 fuse_page_descs_length_init(req, req->num_pages, npages); 1277 1278 req->num_pages += npages; 1279 req->page_descs[req->num_pages - 1].length -= 1280 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1281 } 1282 1283 if (write) 1284 req->in.argpages = 1; 1285 else 1286 req->out.argpages = 1; 1287 1288 *nbytesp = nbytes; 1289 1290 return 0; 1291 } 1292 1293 static inline int fuse_iter_npages(const struct iov_iter *ii_p) 1294 { 1295 return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ); 1296 } 1297 1298 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1299 loff_t *ppos, int flags) 1300 { 1301 int write = flags & FUSE_DIO_WRITE; 1302 int cuse = flags & FUSE_DIO_CUSE; 1303 struct file *file = io->file; 1304 struct inode *inode = file->f_mapping->host; 1305 struct fuse_file *ff = file->private_data; 1306 struct fuse_conn *fc = ff->fc; 1307 size_t nmax = write ? fc->max_write : fc->max_read; 1308 loff_t pos = *ppos; 1309 size_t count = iov_iter_count(iter); 1310 pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT; 1311 pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT; 1312 ssize_t res = 0; 1313 struct fuse_req *req; 1314 1315 if (io->async) 1316 req = fuse_get_req_for_background(fc, fuse_iter_npages(iter)); 1317 else 1318 req = fuse_get_req(fc, fuse_iter_npages(iter)); 1319 if (IS_ERR(req)) 1320 return PTR_ERR(req); 1321 1322 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1323 if (!write) 1324 mutex_lock(&inode->i_mutex); 1325 fuse_sync_writes(inode); 1326 if (!write) 1327 mutex_unlock(&inode->i_mutex); 1328 } 1329 1330 while (count) { 1331 size_t nres; 1332 fl_owner_t owner = current->files; 1333 size_t nbytes = min(count, nmax); 1334 int err = fuse_get_user_pages(req, iter, &nbytes, write); 1335 if (err) { 1336 res = err; 1337 break; 1338 } 1339 1340 if (write) 1341 nres = fuse_send_write(req, io, pos, nbytes, owner); 1342 else 1343 nres = fuse_send_read(req, io, pos, nbytes, owner); 1344 1345 if (!io->async) 1346 fuse_release_user_pages(req, !write); 1347 if (req->out.h.error) { 1348 if (!res) 1349 res = req->out.h.error; 1350 break; 1351 } else if (nres > nbytes) { 1352 res = -EIO; 1353 break; 1354 } 1355 count -= nres; 1356 res += nres; 1357 pos += nres; 1358 if (nres != nbytes) 1359 break; 1360 if (count) { 1361 fuse_put_request(fc, req); 1362 if (io->async) 1363 req = fuse_get_req_for_background(fc, 1364 fuse_iter_npages(iter)); 1365 else 1366 req = fuse_get_req(fc, fuse_iter_npages(iter)); 1367 if (IS_ERR(req)) 1368 break; 1369 } 1370 } 1371 if (!IS_ERR(req)) 1372 fuse_put_request(fc, req); 1373 if (res > 0) 1374 *ppos = pos; 1375 1376 return res; 1377 } 1378 EXPORT_SYMBOL_GPL(fuse_direct_io); 1379 1380 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1381 struct iov_iter *iter, 1382 loff_t *ppos) 1383 { 1384 ssize_t res; 1385 struct file *file = io->file; 1386 struct inode *inode = file_inode(file); 1387 1388 if (is_bad_inode(inode)) 1389 return -EIO; 1390 1391 res = fuse_direct_io(io, iter, ppos, 0); 1392 1393 fuse_invalidate_attr(inode); 1394 1395 return res; 1396 } 1397 1398 static ssize_t fuse_direct_read(struct file *file, char __user *buf, 1399 size_t count, loff_t *ppos) 1400 { 1401 struct fuse_io_priv io = { .async = 0, .file = file }; 1402 struct iovec iov = { .iov_base = buf, .iov_len = count }; 1403 struct iov_iter ii; 1404 iov_iter_init(&ii, READ, &iov, 1, count); 1405 return __fuse_direct_read(&io, &ii, ppos); 1406 } 1407 1408 static ssize_t __fuse_direct_write(struct fuse_io_priv *io, 1409 struct iov_iter *iter, 1410 loff_t *ppos) 1411 { 1412 struct file *file = io->file; 1413 struct inode *inode = file_inode(file); 1414 size_t count = iov_iter_count(iter); 1415 ssize_t res; 1416 1417 1418 res = generic_write_checks(file, ppos, &count, 0); 1419 if (!res) { 1420 iov_iter_truncate(iter, count); 1421 res = fuse_direct_io(io, iter, ppos, FUSE_DIO_WRITE); 1422 } 1423 1424 fuse_invalidate_attr(inode); 1425 1426 return res; 1427 } 1428 1429 static ssize_t fuse_direct_write(struct file *file, const char __user *buf, 1430 size_t count, loff_t *ppos) 1431 { 1432 struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count }; 1433 struct inode *inode = file_inode(file); 1434 ssize_t res; 1435 struct fuse_io_priv io = { .async = 0, .file = file }; 1436 struct iov_iter ii; 1437 iov_iter_init(&ii, WRITE, &iov, 1, count); 1438 1439 if (is_bad_inode(inode)) 1440 return -EIO; 1441 1442 /* Don't allow parallel writes to the same file */ 1443 mutex_lock(&inode->i_mutex); 1444 res = __fuse_direct_write(&io, &ii, ppos); 1445 if (res > 0) 1446 fuse_write_update_size(inode, *ppos); 1447 mutex_unlock(&inode->i_mutex); 1448 1449 return res; 1450 } 1451 1452 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1453 { 1454 int i; 1455 1456 for (i = 0; i < req->num_pages; i++) 1457 __free_page(req->pages[i]); 1458 1459 if (req->ff) 1460 fuse_file_put(req->ff, false); 1461 } 1462 1463 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1464 { 1465 struct inode *inode = req->inode; 1466 struct fuse_inode *fi = get_fuse_inode(inode); 1467 struct backing_dev_info *bdi = inode_to_bdi(inode); 1468 int i; 1469 1470 list_del(&req->writepages_entry); 1471 for (i = 0; i < req->num_pages; i++) { 1472 dec_bdi_stat(bdi, BDI_WRITEBACK); 1473 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1474 bdi_writeout_inc(bdi); 1475 } 1476 wake_up(&fi->page_waitq); 1477 } 1478 1479 /* Called under fc->lock, may release and reacquire it */ 1480 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1481 loff_t size) 1482 __releases(fc->lock) 1483 __acquires(fc->lock) 1484 { 1485 struct fuse_inode *fi = get_fuse_inode(req->inode); 1486 struct fuse_write_in *inarg = &req->misc.write.in; 1487 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE; 1488 1489 if (!fc->connected) 1490 goto out_free; 1491 1492 if (inarg->offset + data_size <= size) { 1493 inarg->size = data_size; 1494 } else if (inarg->offset < size) { 1495 inarg->size = size - inarg->offset; 1496 } else { 1497 /* Got truncated off completely */ 1498 goto out_free; 1499 } 1500 1501 req->in.args[1].size = inarg->size; 1502 fi->writectr++; 1503 fuse_request_send_background_locked(fc, req); 1504 return; 1505 1506 out_free: 1507 fuse_writepage_finish(fc, req); 1508 spin_unlock(&fc->lock); 1509 fuse_writepage_free(fc, req); 1510 fuse_put_request(fc, req); 1511 spin_lock(&fc->lock); 1512 } 1513 1514 /* 1515 * If fi->writectr is positive (no truncate or fsync going on) send 1516 * all queued writepage requests. 1517 * 1518 * Called with fc->lock 1519 */ 1520 void fuse_flush_writepages(struct inode *inode) 1521 __releases(fc->lock) 1522 __acquires(fc->lock) 1523 { 1524 struct fuse_conn *fc = get_fuse_conn(inode); 1525 struct fuse_inode *fi = get_fuse_inode(inode); 1526 size_t crop = i_size_read(inode); 1527 struct fuse_req *req; 1528 1529 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1530 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1531 list_del_init(&req->list); 1532 fuse_send_writepage(fc, req, crop); 1533 } 1534 } 1535 1536 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1537 { 1538 struct inode *inode = req->inode; 1539 struct fuse_inode *fi = get_fuse_inode(inode); 1540 1541 mapping_set_error(inode->i_mapping, req->out.h.error); 1542 spin_lock(&fc->lock); 1543 while (req->misc.write.next) { 1544 struct fuse_conn *fc = get_fuse_conn(inode); 1545 struct fuse_write_in *inarg = &req->misc.write.in; 1546 struct fuse_req *next = req->misc.write.next; 1547 req->misc.write.next = next->misc.write.next; 1548 next->misc.write.next = NULL; 1549 next->ff = fuse_file_get(req->ff); 1550 list_add(&next->writepages_entry, &fi->writepages); 1551 1552 /* 1553 * Skip fuse_flush_writepages() to make it easy to crop requests 1554 * based on primary request size. 1555 * 1556 * 1st case (trivial): there are no concurrent activities using 1557 * fuse_set/release_nowrite. Then we're on safe side because 1558 * fuse_flush_writepages() would call fuse_send_writepage() 1559 * anyway. 1560 * 1561 * 2nd case: someone called fuse_set_nowrite and it is waiting 1562 * now for completion of all in-flight requests. This happens 1563 * rarely and no more than once per page, so this should be 1564 * okay. 1565 * 1566 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1567 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1568 * that fuse_set_nowrite returned implies that all in-flight 1569 * requests were completed along with all of their secondary 1570 * requests. Further primary requests are blocked by negative 1571 * writectr. Hence there cannot be any in-flight requests and 1572 * no invocations of fuse_writepage_end() while we're in 1573 * fuse_set_nowrite..fuse_release_nowrite section. 1574 */ 1575 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1576 } 1577 fi->writectr--; 1578 fuse_writepage_finish(fc, req); 1579 spin_unlock(&fc->lock); 1580 fuse_writepage_free(fc, req); 1581 } 1582 1583 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1584 struct fuse_inode *fi) 1585 { 1586 struct fuse_file *ff = NULL; 1587 1588 spin_lock(&fc->lock); 1589 if (!list_empty(&fi->write_files)) { 1590 ff = list_entry(fi->write_files.next, struct fuse_file, 1591 write_entry); 1592 fuse_file_get(ff); 1593 } 1594 spin_unlock(&fc->lock); 1595 1596 return ff; 1597 } 1598 1599 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1600 struct fuse_inode *fi) 1601 { 1602 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1603 WARN_ON(!ff); 1604 return ff; 1605 } 1606 1607 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1608 { 1609 struct fuse_conn *fc = get_fuse_conn(inode); 1610 struct fuse_inode *fi = get_fuse_inode(inode); 1611 struct fuse_file *ff; 1612 int err; 1613 1614 ff = __fuse_write_file_get(fc, fi); 1615 err = fuse_flush_times(inode, ff); 1616 if (ff) 1617 fuse_file_put(ff, 0); 1618 1619 return err; 1620 } 1621 1622 static int fuse_writepage_locked(struct page *page) 1623 { 1624 struct address_space *mapping = page->mapping; 1625 struct inode *inode = mapping->host; 1626 struct fuse_conn *fc = get_fuse_conn(inode); 1627 struct fuse_inode *fi = get_fuse_inode(inode); 1628 struct fuse_req *req; 1629 struct page *tmp_page; 1630 int error = -ENOMEM; 1631 1632 set_page_writeback(page); 1633 1634 req = fuse_request_alloc_nofs(1); 1635 if (!req) 1636 goto err; 1637 1638 req->background = 1; /* writeback always goes to bg_queue */ 1639 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1640 if (!tmp_page) 1641 goto err_free; 1642 1643 error = -EIO; 1644 req->ff = fuse_write_file_get(fc, fi); 1645 if (!req->ff) 1646 goto err_nofile; 1647 1648 fuse_write_fill(req, req->ff, page_offset(page), 0); 1649 1650 copy_highpage(tmp_page, page); 1651 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1652 req->misc.write.next = NULL; 1653 req->in.argpages = 1; 1654 req->num_pages = 1; 1655 req->pages[0] = tmp_page; 1656 req->page_descs[0].offset = 0; 1657 req->page_descs[0].length = PAGE_SIZE; 1658 req->end = fuse_writepage_end; 1659 req->inode = inode; 1660 1661 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK); 1662 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1663 1664 spin_lock(&fc->lock); 1665 list_add(&req->writepages_entry, &fi->writepages); 1666 list_add_tail(&req->list, &fi->queued_writes); 1667 fuse_flush_writepages(inode); 1668 spin_unlock(&fc->lock); 1669 1670 end_page_writeback(page); 1671 1672 return 0; 1673 1674 err_nofile: 1675 __free_page(tmp_page); 1676 err_free: 1677 fuse_request_free(req); 1678 err: 1679 end_page_writeback(page); 1680 return error; 1681 } 1682 1683 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1684 { 1685 int err; 1686 1687 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1688 /* 1689 * ->writepages() should be called for sync() and friends. We 1690 * should only get here on direct reclaim and then we are 1691 * allowed to skip a page which is already in flight 1692 */ 1693 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1694 1695 redirty_page_for_writepage(wbc, page); 1696 return 0; 1697 } 1698 1699 err = fuse_writepage_locked(page); 1700 unlock_page(page); 1701 1702 return err; 1703 } 1704 1705 struct fuse_fill_wb_data { 1706 struct fuse_req *req; 1707 struct fuse_file *ff; 1708 struct inode *inode; 1709 struct page **orig_pages; 1710 }; 1711 1712 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1713 { 1714 struct fuse_req *req = data->req; 1715 struct inode *inode = data->inode; 1716 struct fuse_conn *fc = get_fuse_conn(inode); 1717 struct fuse_inode *fi = get_fuse_inode(inode); 1718 int num_pages = req->num_pages; 1719 int i; 1720 1721 req->ff = fuse_file_get(data->ff); 1722 spin_lock(&fc->lock); 1723 list_add_tail(&req->list, &fi->queued_writes); 1724 fuse_flush_writepages(inode); 1725 spin_unlock(&fc->lock); 1726 1727 for (i = 0; i < num_pages; i++) 1728 end_page_writeback(data->orig_pages[i]); 1729 } 1730 1731 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1732 struct page *page) 1733 { 1734 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1735 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1736 struct fuse_req *tmp; 1737 struct fuse_req *old_req; 1738 bool found = false; 1739 pgoff_t curr_index; 1740 1741 BUG_ON(new_req->num_pages != 0); 1742 1743 spin_lock(&fc->lock); 1744 list_del(&new_req->writepages_entry); 1745 list_for_each_entry(old_req, &fi->writepages, writepages_entry) { 1746 BUG_ON(old_req->inode != new_req->inode); 1747 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1748 if (curr_index <= page->index && 1749 page->index < curr_index + old_req->num_pages) { 1750 found = true; 1751 break; 1752 } 1753 } 1754 if (!found) { 1755 list_add(&new_req->writepages_entry, &fi->writepages); 1756 goto out_unlock; 1757 } 1758 1759 new_req->num_pages = 1; 1760 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) { 1761 BUG_ON(tmp->inode != new_req->inode); 1762 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1763 if (tmp->num_pages == 1 && 1764 curr_index == page->index) { 1765 old_req = tmp; 1766 } 1767 } 1768 1769 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT || 1770 old_req->state == FUSE_REQ_PENDING)) { 1771 struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host); 1772 1773 copy_highpage(old_req->pages[0], page); 1774 spin_unlock(&fc->lock); 1775 1776 dec_bdi_stat(bdi, BDI_WRITEBACK); 1777 dec_zone_page_state(page, NR_WRITEBACK_TEMP); 1778 bdi_writeout_inc(bdi); 1779 fuse_writepage_free(fc, new_req); 1780 fuse_request_free(new_req); 1781 goto out; 1782 } else { 1783 new_req->misc.write.next = old_req->misc.write.next; 1784 old_req->misc.write.next = new_req; 1785 } 1786 out_unlock: 1787 spin_unlock(&fc->lock); 1788 out: 1789 return found; 1790 } 1791 1792 static int fuse_writepages_fill(struct page *page, 1793 struct writeback_control *wbc, void *_data) 1794 { 1795 struct fuse_fill_wb_data *data = _data; 1796 struct fuse_req *req = data->req; 1797 struct inode *inode = data->inode; 1798 struct fuse_conn *fc = get_fuse_conn(inode); 1799 struct page *tmp_page; 1800 bool is_writeback; 1801 int err; 1802 1803 if (!data->ff) { 1804 err = -EIO; 1805 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1806 if (!data->ff) 1807 goto out_unlock; 1808 } 1809 1810 /* 1811 * Being under writeback is unlikely but possible. For example direct 1812 * read to an mmaped fuse file will set the page dirty twice; once when 1813 * the pages are faulted with get_user_pages(), and then after the read 1814 * completed. 1815 */ 1816 is_writeback = fuse_page_is_writeback(inode, page->index); 1817 1818 if (req && req->num_pages && 1819 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ || 1820 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write || 1821 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1822 fuse_writepages_send(data); 1823 data->req = NULL; 1824 } 1825 err = -ENOMEM; 1826 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1827 if (!tmp_page) 1828 goto out_unlock; 1829 1830 /* 1831 * The page must not be redirtied until the writeout is completed 1832 * (i.e. userspace has sent a reply to the write request). Otherwise 1833 * there could be more than one temporary page instance for each real 1834 * page. 1835 * 1836 * This is ensured by holding the page lock in page_mkwrite() while 1837 * checking fuse_page_is_writeback(). We already hold the page lock 1838 * since clear_page_dirty_for_io() and keep it held until we add the 1839 * request to the fi->writepages list and increment req->num_pages. 1840 * After this fuse_page_is_writeback() will indicate that the page is 1841 * under writeback, so we can release the page lock. 1842 */ 1843 if (data->req == NULL) { 1844 struct fuse_inode *fi = get_fuse_inode(inode); 1845 1846 err = -ENOMEM; 1847 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ); 1848 if (!req) { 1849 __free_page(tmp_page); 1850 goto out_unlock; 1851 } 1852 1853 fuse_write_fill(req, data->ff, page_offset(page), 0); 1854 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1855 req->misc.write.next = NULL; 1856 req->in.argpages = 1; 1857 req->background = 1; 1858 req->num_pages = 0; 1859 req->end = fuse_writepage_end; 1860 req->inode = inode; 1861 1862 spin_lock(&fc->lock); 1863 list_add(&req->writepages_entry, &fi->writepages); 1864 spin_unlock(&fc->lock); 1865 1866 data->req = req; 1867 } 1868 set_page_writeback(page); 1869 1870 copy_highpage(tmp_page, page); 1871 req->pages[req->num_pages] = tmp_page; 1872 req->page_descs[req->num_pages].offset = 0; 1873 req->page_descs[req->num_pages].length = PAGE_SIZE; 1874 1875 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK); 1876 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1877 1878 err = 0; 1879 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1880 end_page_writeback(page); 1881 data->req = NULL; 1882 goto out_unlock; 1883 } 1884 data->orig_pages[req->num_pages] = page; 1885 1886 /* 1887 * Protected by fc->lock against concurrent access by 1888 * fuse_page_is_writeback(). 1889 */ 1890 spin_lock(&fc->lock); 1891 req->num_pages++; 1892 spin_unlock(&fc->lock); 1893 1894 out_unlock: 1895 unlock_page(page); 1896 1897 return err; 1898 } 1899 1900 static int fuse_writepages(struct address_space *mapping, 1901 struct writeback_control *wbc) 1902 { 1903 struct inode *inode = mapping->host; 1904 struct fuse_fill_wb_data data; 1905 int err; 1906 1907 err = -EIO; 1908 if (is_bad_inode(inode)) 1909 goto out; 1910 1911 data.inode = inode; 1912 data.req = NULL; 1913 data.ff = NULL; 1914 1915 err = -ENOMEM; 1916 data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, 1917 sizeof(struct page *), 1918 GFP_NOFS); 1919 if (!data.orig_pages) 1920 goto out; 1921 1922 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1923 if (data.req) { 1924 /* Ignore errors if we can write at least one page */ 1925 BUG_ON(!data.req->num_pages); 1926 fuse_writepages_send(&data); 1927 err = 0; 1928 } 1929 if (data.ff) 1930 fuse_file_put(data.ff, false); 1931 1932 kfree(data.orig_pages); 1933 out: 1934 return err; 1935 } 1936 1937 /* 1938 * It's worthy to make sure that space is reserved on disk for the write, 1939 * but how to implement it without killing performance need more thinking. 1940 */ 1941 static int fuse_write_begin(struct file *file, struct address_space *mapping, 1942 loff_t pos, unsigned len, unsigned flags, 1943 struct page **pagep, void **fsdata) 1944 { 1945 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1946 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 1947 struct page *page; 1948 loff_t fsize; 1949 int err = -ENOMEM; 1950 1951 WARN_ON(!fc->writeback_cache); 1952 1953 page = grab_cache_page_write_begin(mapping, index, flags); 1954 if (!page) 1955 goto error; 1956 1957 fuse_wait_on_page_writeback(mapping->host, page->index); 1958 1959 if (PageUptodate(page) || len == PAGE_CACHE_SIZE) 1960 goto success; 1961 /* 1962 * Check if the start this page comes after the end of file, in which 1963 * case the readpage can be optimized away. 1964 */ 1965 fsize = i_size_read(mapping->host); 1966 if (fsize <= (pos & PAGE_CACHE_MASK)) { 1967 size_t off = pos & ~PAGE_CACHE_MASK; 1968 if (off) 1969 zero_user_segment(page, 0, off); 1970 goto success; 1971 } 1972 err = fuse_do_readpage(file, page); 1973 if (err) 1974 goto cleanup; 1975 success: 1976 *pagep = page; 1977 return 0; 1978 1979 cleanup: 1980 unlock_page(page); 1981 page_cache_release(page); 1982 error: 1983 return err; 1984 } 1985 1986 static int fuse_write_end(struct file *file, struct address_space *mapping, 1987 loff_t pos, unsigned len, unsigned copied, 1988 struct page *page, void *fsdata) 1989 { 1990 struct inode *inode = page->mapping->host; 1991 1992 if (!PageUptodate(page)) { 1993 /* Zero any unwritten bytes at the end of the page */ 1994 size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK; 1995 if (endoff) 1996 zero_user_segment(page, endoff, PAGE_CACHE_SIZE); 1997 SetPageUptodate(page); 1998 } 1999 2000 fuse_write_update_size(inode, pos + copied); 2001 set_page_dirty(page); 2002 unlock_page(page); 2003 page_cache_release(page); 2004 2005 return copied; 2006 } 2007 2008 static int fuse_launder_page(struct page *page) 2009 { 2010 int err = 0; 2011 if (clear_page_dirty_for_io(page)) { 2012 struct inode *inode = page->mapping->host; 2013 err = fuse_writepage_locked(page); 2014 if (!err) 2015 fuse_wait_on_page_writeback(inode, page->index); 2016 } 2017 return err; 2018 } 2019 2020 /* 2021 * Write back dirty pages now, because there may not be any suitable 2022 * open files later 2023 */ 2024 static void fuse_vma_close(struct vm_area_struct *vma) 2025 { 2026 filemap_write_and_wait(vma->vm_file->f_mapping); 2027 } 2028 2029 /* 2030 * Wait for writeback against this page to complete before allowing it 2031 * to be marked dirty again, and hence written back again, possibly 2032 * before the previous writepage completed. 2033 * 2034 * Block here, instead of in ->writepage(), so that the userspace fs 2035 * can only block processes actually operating on the filesystem. 2036 * 2037 * Otherwise unprivileged userspace fs would be able to block 2038 * unrelated: 2039 * 2040 * - page migration 2041 * - sync(2) 2042 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2043 */ 2044 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2045 { 2046 struct page *page = vmf->page; 2047 struct inode *inode = file_inode(vma->vm_file); 2048 2049 file_update_time(vma->vm_file); 2050 lock_page(page); 2051 if (page->mapping != inode->i_mapping) { 2052 unlock_page(page); 2053 return VM_FAULT_NOPAGE; 2054 } 2055 2056 fuse_wait_on_page_writeback(inode, page->index); 2057 return VM_FAULT_LOCKED; 2058 } 2059 2060 static const struct vm_operations_struct fuse_file_vm_ops = { 2061 .close = fuse_vma_close, 2062 .fault = filemap_fault, 2063 .map_pages = filemap_map_pages, 2064 .page_mkwrite = fuse_page_mkwrite, 2065 }; 2066 2067 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2068 { 2069 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2070 fuse_link_write_file(file); 2071 2072 file_accessed(file); 2073 vma->vm_ops = &fuse_file_vm_ops; 2074 return 0; 2075 } 2076 2077 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 2078 { 2079 /* Can't provide the coherency needed for MAP_SHARED */ 2080 if (vma->vm_flags & VM_MAYSHARE) 2081 return -ENODEV; 2082 2083 invalidate_inode_pages2(file->f_mapping); 2084 2085 return generic_file_mmap(file, vma); 2086 } 2087 2088 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl, 2089 struct file_lock *fl) 2090 { 2091 switch (ffl->type) { 2092 case F_UNLCK: 2093 break; 2094 2095 case F_RDLCK: 2096 case F_WRLCK: 2097 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2098 ffl->end < ffl->start) 2099 return -EIO; 2100 2101 fl->fl_start = ffl->start; 2102 fl->fl_end = ffl->end; 2103 fl->fl_pid = ffl->pid; 2104 break; 2105 2106 default: 2107 return -EIO; 2108 } 2109 fl->fl_type = ffl->type; 2110 return 0; 2111 } 2112 2113 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2114 const struct file_lock *fl, int opcode, pid_t pid, 2115 int flock, struct fuse_lk_in *inarg) 2116 { 2117 struct inode *inode = file_inode(file); 2118 struct fuse_conn *fc = get_fuse_conn(inode); 2119 struct fuse_file *ff = file->private_data; 2120 2121 memset(inarg, 0, sizeof(*inarg)); 2122 inarg->fh = ff->fh; 2123 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2124 inarg->lk.start = fl->fl_start; 2125 inarg->lk.end = fl->fl_end; 2126 inarg->lk.type = fl->fl_type; 2127 inarg->lk.pid = pid; 2128 if (flock) 2129 inarg->lk_flags |= FUSE_LK_FLOCK; 2130 args->in.h.opcode = opcode; 2131 args->in.h.nodeid = get_node_id(inode); 2132 args->in.numargs = 1; 2133 args->in.args[0].size = sizeof(*inarg); 2134 args->in.args[0].value = inarg; 2135 } 2136 2137 static int fuse_getlk(struct file *file, struct file_lock *fl) 2138 { 2139 struct inode *inode = file_inode(file); 2140 struct fuse_conn *fc = get_fuse_conn(inode); 2141 FUSE_ARGS(args); 2142 struct fuse_lk_in inarg; 2143 struct fuse_lk_out outarg; 2144 int err; 2145 2146 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2147 args.out.numargs = 1; 2148 args.out.args[0].size = sizeof(outarg); 2149 args.out.args[0].value = &outarg; 2150 err = fuse_simple_request(fc, &args); 2151 if (!err) 2152 err = convert_fuse_file_lock(&outarg.lk, fl); 2153 2154 return err; 2155 } 2156 2157 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2158 { 2159 struct inode *inode = file_inode(file); 2160 struct fuse_conn *fc = get_fuse_conn(inode); 2161 FUSE_ARGS(args); 2162 struct fuse_lk_in inarg; 2163 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2164 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0; 2165 int err; 2166 2167 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2168 /* NLM needs asynchronous locks, which we don't support yet */ 2169 return -ENOLCK; 2170 } 2171 2172 /* Unlock on close is handled by the flush method */ 2173 if (fl->fl_flags & FL_CLOSE) 2174 return 0; 2175 2176 fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg); 2177 err = fuse_simple_request(fc, &args); 2178 2179 /* locking is restartable */ 2180 if (err == -EINTR) 2181 err = -ERESTARTSYS; 2182 2183 return err; 2184 } 2185 2186 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2187 { 2188 struct inode *inode = file_inode(file); 2189 struct fuse_conn *fc = get_fuse_conn(inode); 2190 int err; 2191 2192 if (cmd == F_CANCELLK) { 2193 err = 0; 2194 } else if (cmd == F_GETLK) { 2195 if (fc->no_lock) { 2196 posix_test_lock(file, fl); 2197 err = 0; 2198 } else 2199 err = fuse_getlk(file, fl); 2200 } else { 2201 if (fc->no_lock) 2202 err = posix_lock_file(file, fl, NULL); 2203 else 2204 err = fuse_setlk(file, fl, 0); 2205 } 2206 return err; 2207 } 2208 2209 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2210 { 2211 struct inode *inode = file_inode(file); 2212 struct fuse_conn *fc = get_fuse_conn(inode); 2213 int err; 2214 2215 if (fc->no_flock) { 2216 err = flock_lock_file_wait(file, fl); 2217 } else { 2218 struct fuse_file *ff = file->private_data; 2219 2220 /* emulate flock with POSIX locks */ 2221 ff->flock = true; 2222 err = fuse_setlk(file, fl, 1); 2223 } 2224 2225 return err; 2226 } 2227 2228 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2229 { 2230 struct inode *inode = mapping->host; 2231 struct fuse_conn *fc = get_fuse_conn(inode); 2232 FUSE_ARGS(args); 2233 struct fuse_bmap_in inarg; 2234 struct fuse_bmap_out outarg; 2235 int err; 2236 2237 if (!inode->i_sb->s_bdev || fc->no_bmap) 2238 return 0; 2239 2240 memset(&inarg, 0, sizeof(inarg)); 2241 inarg.block = block; 2242 inarg.blocksize = inode->i_sb->s_blocksize; 2243 args.in.h.opcode = FUSE_BMAP; 2244 args.in.h.nodeid = get_node_id(inode); 2245 args.in.numargs = 1; 2246 args.in.args[0].size = sizeof(inarg); 2247 args.in.args[0].value = &inarg; 2248 args.out.numargs = 1; 2249 args.out.args[0].size = sizeof(outarg); 2250 args.out.args[0].value = &outarg; 2251 err = fuse_simple_request(fc, &args); 2252 if (err == -ENOSYS) 2253 fc->no_bmap = 1; 2254 2255 return err ? 0 : outarg.block; 2256 } 2257 2258 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2259 { 2260 loff_t retval; 2261 struct inode *inode = file_inode(file); 2262 2263 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2264 if (whence == SEEK_CUR || whence == SEEK_SET) 2265 return generic_file_llseek(file, offset, whence); 2266 2267 mutex_lock(&inode->i_mutex); 2268 retval = fuse_update_attributes(inode, NULL, file, NULL); 2269 if (!retval) 2270 retval = generic_file_llseek(file, offset, whence); 2271 mutex_unlock(&inode->i_mutex); 2272 2273 return retval; 2274 } 2275 2276 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov, 2277 unsigned int nr_segs, size_t bytes, bool to_user) 2278 { 2279 struct iov_iter ii; 2280 int page_idx = 0; 2281 2282 if (!bytes) 2283 return 0; 2284 2285 iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes); 2286 2287 while (iov_iter_count(&ii)) { 2288 struct page *page = pages[page_idx++]; 2289 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii)); 2290 void *kaddr; 2291 2292 kaddr = kmap(page); 2293 2294 while (todo) { 2295 char __user *uaddr = ii.iov->iov_base + ii.iov_offset; 2296 size_t iov_len = ii.iov->iov_len - ii.iov_offset; 2297 size_t copy = min(todo, iov_len); 2298 size_t left; 2299 2300 if (!to_user) 2301 left = copy_from_user(kaddr, uaddr, copy); 2302 else 2303 left = copy_to_user(uaddr, kaddr, copy); 2304 2305 if (unlikely(left)) 2306 return -EFAULT; 2307 2308 iov_iter_advance(&ii, copy); 2309 todo -= copy; 2310 kaddr += copy; 2311 } 2312 2313 kunmap(page); 2314 } 2315 2316 return 0; 2317 } 2318 2319 /* 2320 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2321 * ABI was defined to be 'struct iovec' which is different on 32bit 2322 * and 64bit. Fortunately we can determine which structure the server 2323 * used from the size of the reply. 2324 */ 2325 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2326 size_t transferred, unsigned count, 2327 bool is_compat) 2328 { 2329 #ifdef CONFIG_COMPAT 2330 if (count * sizeof(struct compat_iovec) == transferred) { 2331 struct compat_iovec *ciov = src; 2332 unsigned i; 2333 2334 /* 2335 * With this interface a 32bit server cannot support 2336 * non-compat (i.e. ones coming from 64bit apps) ioctl 2337 * requests 2338 */ 2339 if (!is_compat) 2340 return -EINVAL; 2341 2342 for (i = 0; i < count; i++) { 2343 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2344 dst[i].iov_len = ciov[i].iov_len; 2345 } 2346 return 0; 2347 } 2348 #endif 2349 2350 if (count * sizeof(struct iovec) != transferred) 2351 return -EIO; 2352 2353 memcpy(dst, src, transferred); 2354 return 0; 2355 } 2356 2357 /* Make sure iov_length() won't overflow */ 2358 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count) 2359 { 2360 size_t n; 2361 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT; 2362 2363 for (n = 0; n < count; n++, iov++) { 2364 if (iov->iov_len > (size_t) max) 2365 return -ENOMEM; 2366 max -= iov->iov_len; 2367 } 2368 return 0; 2369 } 2370 2371 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2372 void *src, size_t transferred, unsigned count, 2373 bool is_compat) 2374 { 2375 unsigned i; 2376 struct fuse_ioctl_iovec *fiov = src; 2377 2378 if (fc->minor < 16) { 2379 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2380 count, is_compat); 2381 } 2382 2383 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2384 return -EIO; 2385 2386 for (i = 0; i < count; i++) { 2387 /* Did the server supply an inappropriate value? */ 2388 if (fiov[i].base != (unsigned long) fiov[i].base || 2389 fiov[i].len != (unsigned long) fiov[i].len) 2390 return -EIO; 2391 2392 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2393 dst[i].iov_len = (size_t) fiov[i].len; 2394 2395 #ifdef CONFIG_COMPAT 2396 if (is_compat && 2397 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2398 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2399 return -EIO; 2400 #endif 2401 } 2402 2403 return 0; 2404 } 2405 2406 2407 /* 2408 * For ioctls, there is no generic way to determine how much memory 2409 * needs to be read and/or written. Furthermore, ioctls are allowed 2410 * to dereference the passed pointer, so the parameter requires deep 2411 * copying but FUSE has no idea whatsoever about what to copy in or 2412 * out. 2413 * 2414 * This is solved by allowing FUSE server to retry ioctl with 2415 * necessary in/out iovecs. Let's assume the ioctl implementation 2416 * needs to read in the following structure. 2417 * 2418 * struct a { 2419 * char *buf; 2420 * size_t buflen; 2421 * } 2422 * 2423 * On the first callout to FUSE server, inarg->in_size and 2424 * inarg->out_size will be NULL; then, the server completes the ioctl 2425 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2426 * the actual iov array to 2427 * 2428 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2429 * 2430 * which tells FUSE to copy in the requested area and retry the ioctl. 2431 * On the second round, the server has access to the structure and 2432 * from that it can tell what to look for next, so on the invocation, 2433 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2434 * 2435 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2436 * { .iov_base = a.buf, .iov_len = a.buflen } } 2437 * 2438 * FUSE will copy both struct a and the pointed buffer from the 2439 * process doing the ioctl and retry ioctl with both struct a and the 2440 * buffer. 2441 * 2442 * This time, FUSE server has everything it needs and completes ioctl 2443 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2444 * 2445 * Copying data out works the same way. 2446 * 2447 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2448 * automatically initializes in and out iovs by decoding @cmd with 2449 * _IOC_* macros and the server is not allowed to request RETRY. This 2450 * limits ioctl data transfers to well-formed ioctls and is the forced 2451 * behavior for all FUSE servers. 2452 */ 2453 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2454 unsigned int flags) 2455 { 2456 struct fuse_file *ff = file->private_data; 2457 struct fuse_conn *fc = ff->fc; 2458 struct fuse_ioctl_in inarg = { 2459 .fh = ff->fh, 2460 .cmd = cmd, 2461 .arg = arg, 2462 .flags = flags 2463 }; 2464 struct fuse_ioctl_out outarg; 2465 struct fuse_req *req = NULL; 2466 struct page **pages = NULL; 2467 struct iovec *iov_page = NULL; 2468 struct iovec *in_iov = NULL, *out_iov = NULL; 2469 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2470 size_t in_size, out_size, transferred; 2471 int err; 2472 2473 #if BITS_PER_LONG == 32 2474 inarg.flags |= FUSE_IOCTL_32BIT; 2475 #else 2476 if (flags & FUSE_IOCTL_COMPAT) 2477 inarg.flags |= FUSE_IOCTL_32BIT; 2478 #endif 2479 2480 /* assume all the iovs returned by client always fits in a page */ 2481 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2482 2483 err = -ENOMEM; 2484 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL); 2485 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2486 if (!pages || !iov_page) 2487 goto out; 2488 2489 /* 2490 * If restricted, initialize IO parameters as encoded in @cmd. 2491 * RETRY from server is not allowed. 2492 */ 2493 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2494 struct iovec *iov = iov_page; 2495 2496 iov->iov_base = (void __user *)arg; 2497 iov->iov_len = _IOC_SIZE(cmd); 2498 2499 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2500 in_iov = iov; 2501 in_iovs = 1; 2502 } 2503 2504 if (_IOC_DIR(cmd) & _IOC_READ) { 2505 out_iov = iov; 2506 out_iovs = 1; 2507 } 2508 } 2509 2510 retry: 2511 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2512 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2513 2514 /* 2515 * Out data can be used either for actual out data or iovs, 2516 * make sure there always is at least one page. 2517 */ 2518 out_size = max_t(size_t, out_size, PAGE_SIZE); 2519 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2520 2521 /* make sure there are enough buffer pages and init request with them */ 2522 err = -ENOMEM; 2523 if (max_pages > FUSE_MAX_PAGES_PER_REQ) 2524 goto out; 2525 while (num_pages < max_pages) { 2526 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2527 if (!pages[num_pages]) 2528 goto out; 2529 num_pages++; 2530 } 2531 2532 req = fuse_get_req(fc, num_pages); 2533 if (IS_ERR(req)) { 2534 err = PTR_ERR(req); 2535 req = NULL; 2536 goto out; 2537 } 2538 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2539 req->num_pages = num_pages; 2540 fuse_page_descs_length_init(req, 0, req->num_pages); 2541 2542 /* okay, let's send it to the client */ 2543 req->in.h.opcode = FUSE_IOCTL; 2544 req->in.h.nodeid = ff->nodeid; 2545 req->in.numargs = 1; 2546 req->in.args[0].size = sizeof(inarg); 2547 req->in.args[0].value = &inarg; 2548 if (in_size) { 2549 req->in.numargs++; 2550 req->in.args[1].size = in_size; 2551 req->in.argpages = 1; 2552 2553 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size, 2554 false); 2555 if (err) 2556 goto out; 2557 } 2558 2559 req->out.numargs = 2; 2560 req->out.args[0].size = sizeof(outarg); 2561 req->out.args[0].value = &outarg; 2562 req->out.args[1].size = out_size; 2563 req->out.argpages = 1; 2564 req->out.argvar = 1; 2565 2566 fuse_request_send(fc, req); 2567 err = req->out.h.error; 2568 transferred = req->out.args[1].size; 2569 fuse_put_request(fc, req); 2570 req = NULL; 2571 if (err) 2572 goto out; 2573 2574 /* did it ask for retry? */ 2575 if (outarg.flags & FUSE_IOCTL_RETRY) { 2576 void *vaddr; 2577 2578 /* no retry if in restricted mode */ 2579 err = -EIO; 2580 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2581 goto out; 2582 2583 in_iovs = outarg.in_iovs; 2584 out_iovs = outarg.out_iovs; 2585 2586 /* 2587 * Make sure things are in boundary, separate checks 2588 * are to protect against overflow. 2589 */ 2590 err = -ENOMEM; 2591 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2592 out_iovs > FUSE_IOCTL_MAX_IOV || 2593 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2594 goto out; 2595 2596 vaddr = kmap_atomic(pages[0]); 2597 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2598 transferred, in_iovs + out_iovs, 2599 (flags & FUSE_IOCTL_COMPAT) != 0); 2600 kunmap_atomic(vaddr); 2601 if (err) 2602 goto out; 2603 2604 in_iov = iov_page; 2605 out_iov = in_iov + in_iovs; 2606 2607 err = fuse_verify_ioctl_iov(in_iov, in_iovs); 2608 if (err) 2609 goto out; 2610 2611 err = fuse_verify_ioctl_iov(out_iov, out_iovs); 2612 if (err) 2613 goto out; 2614 2615 goto retry; 2616 } 2617 2618 err = -EIO; 2619 if (transferred > inarg.out_size) 2620 goto out; 2621 2622 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true); 2623 out: 2624 if (req) 2625 fuse_put_request(fc, req); 2626 free_page((unsigned long) iov_page); 2627 while (num_pages) 2628 __free_page(pages[--num_pages]); 2629 kfree(pages); 2630 2631 return err ? err : outarg.result; 2632 } 2633 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2634 2635 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2636 unsigned long arg, unsigned int flags) 2637 { 2638 struct inode *inode = file_inode(file); 2639 struct fuse_conn *fc = get_fuse_conn(inode); 2640 2641 if (!fuse_allow_current_process(fc)) 2642 return -EACCES; 2643 2644 if (is_bad_inode(inode)) 2645 return -EIO; 2646 2647 return fuse_do_ioctl(file, cmd, arg, flags); 2648 } 2649 2650 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2651 unsigned long arg) 2652 { 2653 return fuse_ioctl_common(file, cmd, arg, 0); 2654 } 2655 2656 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2657 unsigned long arg) 2658 { 2659 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2660 } 2661 2662 /* 2663 * All files which have been polled are linked to RB tree 2664 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2665 * find the matching one. 2666 */ 2667 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2668 struct rb_node **parent_out) 2669 { 2670 struct rb_node **link = &fc->polled_files.rb_node; 2671 struct rb_node *last = NULL; 2672 2673 while (*link) { 2674 struct fuse_file *ff; 2675 2676 last = *link; 2677 ff = rb_entry(last, struct fuse_file, polled_node); 2678 2679 if (kh < ff->kh) 2680 link = &last->rb_left; 2681 else if (kh > ff->kh) 2682 link = &last->rb_right; 2683 else 2684 return link; 2685 } 2686 2687 if (parent_out) 2688 *parent_out = last; 2689 return link; 2690 } 2691 2692 /* 2693 * The file is about to be polled. Make sure it's on the polled_files 2694 * RB tree. Note that files once added to the polled_files tree are 2695 * not removed before the file is released. This is because a file 2696 * polled once is likely to be polled again. 2697 */ 2698 static void fuse_register_polled_file(struct fuse_conn *fc, 2699 struct fuse_file *ff) 2700 { 2701 spin_lock(&fc->lock); 2702 if (RB_EMPTY_NODE(&ff->polled_node)) { 2703 struct rb_node **link, *uninitialized_var(parent); 2704 2705 link = fuse_find_polled_node(fc, ff->kh, &parent); 2706 BUG_ON(*link); 2707 rb_link_node(&ff->polled_node, parent, link); 2708 rb_insert_color(&ff->polled_node, &fc->polled_files); 2709 } 2710 spin_unlock(&fc->lock); 2711 } 2712 2713 unsigned fuse_file_poll(struct file *file, poll_table *wait) 2714 { 2715 struct fuse_file *ff = file->private_data; 2716 struct fuse_conn *fc = ff->fc; 2717 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2718 struct fuse_poll_out outarg; 2719 FUSE_ARGS(args); 2720 int err; 2721 2722 if (fc->no_poll) 2723 return DEFAULT_POLLMASK; 2724 2725 poll_wait(file, &ff->poll_wait, wait); 2726 inarg.events = (__u32)poll_requested_events(wait); 2727 2728 /* 2729 * Ask for notification iff there's someone waiting for it. 2730 * The client may ignore the flag and always notify. 2731 */ 2732 if (waitqueue_active(&ff->poll_wait)) { 2733 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2734 fuse_register_polled_file(fc, ff); 2735 } 2736 2737 args.in.h.opcode = FUSE_POLL; 2738 args.in.h.nodeid = ff->nodeid; 2739 args.in.numargs = 1; 2740 args.in.args[0].size = sizeof(inarg); 2741 args.in.args[0].value = &inarg; 2742 args.out.numargs = 1; 2743 args.out.args[0].size = sizeof(outarg); 2744 args.out.args[0].value = &outarg; 2745 err = fuse_simple_request(fc, &args); 2746 2747 if (!err) 2748 return outarg.revents; 2749 if (err == -ENOSYS) { 2750 fc->no_poll = 1; 2751 return DEFAULT_POLLMASK; 2752 } 2753 return POLLERR; 2754 } 2755 EXPORT_SYMBOL_GPL(fuse_file_poll); 2756 2757 /* 2758 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2759 * wakes up the poll waiters. 2760 */ 2761 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2762 struct fuse_notify_poll_wakeup_out *outarg) 2763 { 2764 u64 kh = outarg->kh; 2765 struct rb_node **link; 2766 2767 spin_lock(&fc->lock); 2768 2769 link = fuse_find_polled_node(fc, kh, NULL); 2770 if (*link) { 2771 struct fuse_file *ff; 2772 2773 ff = rb_entry(*link, struct fuse_file, polled_node); 2774 wake_up_interruptible_sync(&ff->poll_wait); 2775 } 2776 2777 spin_unlock(&fc->lock); 2778 return 0; 2779 } 2780 2781 static void fuse_do_truncate(struct file *file) 2782 { 2783 struct inode *inode = file->f_mapping->host; 2784 struct iattr attr; 2785 2786 attr.ia_valid = ATTR_SIZE; 2787 attr.ia_size = i_size_read(inode); 2788 2789 attr.ia_file = file; 2790 attr.ia_valid |= ATTR_FILE; 2791 2792 fuse_do_setattr(inode, &attr, file); 2793 } 2794 2795 static inline loff_t fuse_round_up(loff_t off) 2796 { 2797 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT); 2798 } 2799 2800 static ssize_t 2801 fuse_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, 2802 loff_t offset) 2803 { 2804 ssize_t ret = 0; 2805 struct file *file = iocb->ki_filp; 2806 struct fuse_file *ff = file->private_data; 2807 bool async_dio = ff->fc->async_dio; 2808 loff_t pos = 0; 2809 struct inode *inode; 2810 loff_t i_size; 2811 size_t count = iov_iter_count(iter); 2812 struct fuse_io_priv *io; 2813 2814 pos = offset; 2815 inode = file->f_mapping->host; 2816 i_size = i_size_read(inode); 2817 2818 if ((rw == READ) && (offset > i_size)) 2819 return 0; 2820 2821 /* optimization for short read */ 2822 if (async_dio && rw != WRITE && offset + count > i_size) { 2823 if (offset >= i_size) 2824 return 0; 2825 count = min_t(loff_t, count, fuse_round_up(i_size - offset)); 2826 iov_iter_truncate(iter, count); 2827 } 2828 2829 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2830 if (!io) 2831 return -ENOMEM; 2832 spin_lock_init(&io->lock); 2833 io->reqs = 1; 2834 io->bytes = -1; 2835 io->size = 0; 2836 io->offset = offset; 2837 io->write = (rw == WRITE); 2838 io->err = 0; 2839 io->file = file; 2840 /* 2841 * By default, we want to optimize all I/Os with async request 2842 * submission to the client filesystem if supported. 2843 */ 2844 io->async = async_dio; 2845 io->iocb = iocb; 2846 2847 /* 2848 * We cannot asynchronously extend the size of a file. We have no method 2849 * to wait on real async I/O requests, so we must submit this request 2850 * synchronously. 2851 */ 2852 if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE) 2853 io->async = false; 2854 2855 if (rw == WRITE) 2856 ret = __fuse_direct_write(io, iter, &pos); 2857 else 2858 ret = __fuse_direct_read(io, iter, &pos); 2859 2860 if (io->async) { 2861 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2862 2863 /* we have a non-extending, async request, so return */ 2864 if (!is_sync_kiocb(iocb)) 2865 return -EIOCBQUEUED; 2866 2867 ret = wait_on_sync_kiocb(iocb); 2868 } else { 2869 kfree(io); 2870 } 2871 2872 if (rw == WRITE) { 2873 if (ret > 0) 2874 fuse_write_update_size(inode, pos); 2875 else if (ret < 0 && offset + count > i_size) 2876 fuse_do_truncate(file); 2877 } 2878 2879 return ret; 2880 } 2881 2882 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2883 loff_t length) 2884 { 2885 struct fuse_file *ff = file->private_data; 2886 struct inode *inode = file_inode(file); 2887 struct fuse_inode *fi = get_fuse_inode(inode); 2888 struct fuse_conn *fc = ff->fc; 2889 FUSE_ARGS(args); 2890 struct fuse_fallocate_in inarg = { 2891 .fh = ff->fh, 2892 .offset = offset, 2893 .length = length, 2894 .mode = mode 2895 }; 2896 int err; 2897 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2898 (mode & FALLOC_FL_PUNCH_HOLE); 2899 2900 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2901 return -EOPNOTSUPP; 2902 2903 if (fc->no_fallocate) 2904 return -EOPNOTSUPP; 2905 2906 if (lock_inode) { 2907 mutex_lock(&inode->i_mutex); 2908 if (mode & FALLOC_FL_PUNCH_HOLE) { 2909 loff_t endbyte = offset + length - 1; 2910 err = filemap_write_and_wait_range(inode->i_mapping, 2911 offset, endbyte); 2912 if (err) 2913 goto out; 2914 2915 fuse_sync_writes(inode); 2916 } 2917 } 2918 2919 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2920 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2921 2922 args.in.h.opcode = FUSE_FALLOCATE; 2923 args.in.h.nodeid = ff->nodeid; 2924 args.in.numargs = 1; 2925 args.in.args[0].size = sizeof(inarg); 2926 args.in.args[0].value = &inarg; 2927 err = fuse_simple_request(fc, &args); 2928 if (err == -ENOSYS) { 2929 fc->no_fallocate = 1; 2930 err = -EOPNOTSUPP; 2931 } 2932 if (err) 2933 goto out; 2934 2935 /* we could have extended the file */ 2936 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2937 bool changed = fuse_write_update_size(inode, offset + length); 2938 2939 if (changed && fc->writeback_cache) 2940 file_update_time(file); 2941 } 2942 2943 if (mode & FALLOC_FL_PUNCH_HOLE) 2944 truncate_pagecache_range(inode, offset, offset + length - 1); 2945 2946 fuse_invalidate_attr(inode); 2947 2948 out: 2949 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2950 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2951 2952 if (lock_inode) 2953 mutex_unlock(&inode->i_mutex); 2954 2955 return err; 2956 } 2957 2958 static const struct file_operations fuse_file_operations = { 2959 .llseek = fuse_file_llseek, 2960 .read = new_sync_read, 2961 .read_iter = fuse_file_read_iter, 2962 .write = new_sync_write, 2963 .write_iter = fuse_file_write_iter, 2964 .mmap = fuse_file_mmap, 2965 .open = fuse_open, 2966 .flush = fuse_flush, 2967 .release = fuse_release, 2968 .fsync = fuse_fsync, 2969 .lock = fuse_file_lock, 2970 .flock = fuse_file_flock, 2971 .splice_read = generic_file_splice_read, 2972 .unlocked_ioctl = fuse_file_ioctl, 2973 .compat_ioctl = fuse_file_compat_ioctl, 2974 .poll = fuse_file_poll, 2975 .fallocate = fuse_file_fallocate, 2976 }; 2977 2978 static const struct file_operations fuse_direct_io_file_operations = { 2979 .llseek = fuse_file_llseek, 2980 .read = fuse_direct_read, 2981 .write = fuse_direct_write, 2982 .mmap = fuse_direct_mmap, 2983 .open = fuse_open, 2984 .flush = fuse_flush, 2985 .release = fuse_release, 2986 .fsync = fuse_fsync, 2987 .lock = fuse_file_lock, 2988 .flock = fuse_file_flock, 2989 .unlocked_ioctl = fuse_file_ioctl, 2990 .compat_ioctl = fuse_file_compat_ioctl, 2991 .poll = fuse_file_poll, 2992 .fallocate = fuse_file_fallocate, 2993 /* no splice_read */ 2994 }; 2995 2996 static const struct address_space_operations fuse_file_aops = { 2997 .readpage = fuse_readpage, 2998 .writepage = fuse_writepage, 2999 .writepages = fuse_writepages, 3000 .launder_page = fuse_launder_page, 3001 .readpages = fuse_readpages, 3002 .set_page_dirty = __set_page_dirty_nobuffers, 3003 .bmap = fuse_bmap, 3004 .direct_IO = fuse_direct_IO, 3005 .write_begin = fuse_write_begin, 3006 .write_end = fuse_write_end, 3007 }; 3008 3009 void fuse_init_file_inode(struct inode *inode) 3010 { 3011 inode->i_fop = &fuse_file_operations; 3012 inode->i_data.a_ops = &fuse_file_aops; 3013 } 3014