xref: /linux/fs/fuse/file.c (revision d2a4a07190f42e4f82805daf58e708400b703f1c)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22 #include <linux/splice.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
26 			  unsigned int open_flags, int opcode,
27 			  struct fuse_open_out *outargp)
28 {
29 	struct fuse_open_in inarg;
30 	FUSE_ARGS(args);
31 
32 	memset(&inarg, 0, sizeof(inarg));
33 	inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
34 	if (!fm->fc->atomic_o_trunc)
35 		inarg.flags &= ~O_TRUNC;
36 
37 	if (fm->fc->handle_killpriv_v2 &&
38 	    (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
39 		inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
40 	}
41 
42 	args.opcode = opcode;
43 	args.nodeid = nodeid;
44 	args.in_numargs = 1;
45 	args.in_args[0].size = sizeof(inarg);
46 	args.in_args[0].value = &inarg;
47 	args.out_numargs = 1;
48 	args.out_args[0].size = sizeof(*outargp);
49 	args.out_args[0].value = outargp;
50 
51 	return fuse_simple_request(fm, &args);
52 }
53 
54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release)
55 {
56 	struct fuse_file *ff;
57 
58 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
59 	if (unlikely(!ff))
60 		return NULL;
61 
62 	ff->fm = fm;
63 	if (release) {
64 		ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT);
65 		if (!ff->args) {
66 			kfree(ff);
67 			return NULL;
68 		}
69 	}
70 
71 	INIT_LIST_HEAD(&ff->write_entry);
72 	refcount_set(&ff->count, 1);
73 	RB_CLEAR_NODE(&ff->polled_node);
74 	init_waitqueue_head(&ff->poll_wait);
75 
76 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
77 
78 	return ff;
79 }
80 
81 void fuse_file_free(struct fuse_file *ff)
82 {
83 	kfree(ff->args);
84 	kfree(ff);
85 }
86 
87 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
88 {
89 	refcount_inc(&ff->count);
90 	return ff;
91 }
92 
93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
94 			     int error)
95 {
96 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
97 
98 	iput(ra->inode);
99 	kfree(ra);
100 }
101 
102 static void fuse_file_put(struct fuse_file *ff, bool sync)
103 {
104 	if (refcount_dec_and_test(&ff->count)) {
105 		struct fuse_release_args *ra = &ff->args->release_args;
106 		struct fuse_args *args = (ra ? &ra->args : NULL);
107 
108 		if (ra && ra->inode)
109 			fuse_file_io_release(ff, ra->inode);
110 
111 		if (!args) {
112 			/* Do nothing when server does not implement 'open' */
113 		} else if (sync) {
114 			fuse_simple_request(ff->fm, args);
115 			fuse_release_end(ff->fm, args, 0);
116 		} else {
117 			args->end = fuse_release_end;
118 			if (fuse_simple_background(ff->fm, args,
119 						   GFP_KERNEL | __GFP_NOFAIL))
120 				fuse_release_end(ff->fm, args, -ENOTCONN);
121 		}
122 		kfree(ff);
123 	}
124 }
125 
126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
127 				 unsigned int open_flags, bool isdir)
128 {
129 	struct fuse_conn *fc = fm->fc;
130 	struct fuse_file *ff;
131 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
132 	bool open = isdir ? !fc->no_opendir : !fc->no_open;
133 
134 	ff = fuse_file_alloc(fm, open);
135 	if (!ff)
136 		return ERR_PTR(-ENOMEM);
137 
138 	ff->fh = 0;
139 	/* Default for no-open */
140 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 	if (open) {
142 		/* Store outarg for fuse_finish_open() */
143 		struct fuse_open_out *outargp = &ff->args->open_outarg;
144 		int err;
145 
146 		err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp);
147 		if (!err) {
148 			ff->fh = outargp->fh;
149 			ff->open_flags = outargp->open_flags;
150 		} else if (err != -ENOSYS) {
151 			fuse_file_free(ff);
152 			return ERR_PTR(err);
153 		} else {
154 			/* No release needed */
155 			kfree(ff->args);
156 			ff->args = NULL;
157 			if (isdir)
158 				fc->no_opendir = 1;
159 			else
160 				fc->no_open = 1;
161 		}
162 	}
163 
164 	if (isdir)
165 		ff->open_flags &= ~FOPEN_DIRECT_IO;
166 
167 	ff->nodeid = nodeid;
168 
169 	return ff;
170 }
171 
172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
173 		 bool isdir)
174 {
175 	struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
176 
177 	if (!IS_ERR(ff))
178 		file->private_data = ff;
179 
180 	return PTR_ERR_OR_ZERO(ff);
181 }
182 EXPORT_SYMBOL_GPL(fuse_do_open);
183 
184 static void fuse_link_write_file(struct file *file)
185 {
186 	struct inode *inode = file_inode(file);
187 	struct fuse_inode *fi = get_fuse_inode(inode);
188 	struct fuse_file *ff = file->private_data;
189 	/*
190 	 * file may be written through mmap, so chain it onto the
191 	 * inodes's write_file list
192 	 */
193 	spin_lock(&fi->lock);
194 	if (list_empty(&ff->write_entry))
195 		list_add(&ff->write_entry, &fi->write_files);
196 	spin_unlock(&fi->lock);
197 }
198 
199 int fuse_finish_open(struct inode *inode, struct file *file)
200 {
201 	struct fuse_file *ff = file->private_data;
202 	struct fuse_conn *fc = get_fuse_conn(inode);
203 	int err;
204 
205 	err = fuse_file_io_open(file, inode);
206 	if (err)
207 		return err;
208 
209 	if (ff->open_flags & FOPEN_STREAM)
210 		stream_open(inode, file);
211 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
212 		nonseekable_open(inode, file);
213 
214 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 		fuse_link_write_file(file);
216 
217 	return 0;
218 }
219 
220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file)
221 {
222 	struct fuse_conn *fc = get_fuse_conn(inode);
223 	struct fuse_inode *fi = get_fuse_inode(inode);
224 
225 	spin_lock(&fi->lock);
226 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
227 	i_size_write(inode, 0);
228 	spin_unlock(&fi->lock);
229 	file_update_time(file);
230 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
231 }
232 
233 static int fuse_open(struct inode *inode, struct file *file)
234 {
235 	struct fuse_mount *fm = get_fuse_mount(inode);
236 	struct fuse_inode *fi = get_fuse_inode(inode);
237 	struct fuse_conn *fc = fm->fc;
238 	struct fuse_file *ff;
239 	int err;
240 	bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc;
241 	bool is_wb_truncate = is_truncate && fc->writeback_cache;
242 	bool dax_truncate = is_truncate && FUSE_IS_DAX(inode);
243 
244 	if (fuse_is_bad(inode))
245 		return -EIO;
246 
247 	err = generic_file_open(inode, file);
248 	if (err)
249 		return err;
250 
251 	if (is_wb_truncate || dax_truncate)
252 		inode_lock(inode);
253 
254 	if (dax_truncate) {
255 		filemap_invalidate_lock(inode->i_mapping);
256 		err = fuse_dax_break_layouts(inode, 0, 0);
257 		if (err)
258 			goto out_inode_unlock;
259 	}
260 
261 	if (is_wb_truncate || dax_truncate)
262 		fuse_set_nowrite(inode);
263 
264 	err = fuse_do_open(fm, get_node_id(inode), file, false);
265 	if (!err) {
266 		ff = file->private_data;
267 		err = fuse_finish_open(inode, file);
268 		if (err)
269 			fuse_sync_release(fi, ff, file->f_flags);
270 		else if (is_truncate)
271 			fuse_truncate_update_attr(inode, file);
272 	}
273 
274 	if (is_wb_truncate || dax_truncate)
275 		fuse_release_nowrite(inode);
276 	if (!err) {
277 		if (is_truncate)
278 			truncate_pagecache(inode, 0);
279 		else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
280 			invalidate_inode_pages2(inode->i_mapping);
281 	}
282 	if (dax_truncate)
283 		filemap_invalidate_unlock(inode->i_mapping);
284 out_inode_unlock:
285 	if (is_wb_truncate || dax_truncate)
286 		inode_unlock(inode);
287 
288 	return err;
289 }
290 
291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
292 				 unsigned int flags, int opcode, bool sync)
293 {
294 	struct fuse_conn *fc = ff->fm->fc;
295 	struct fuse_release_args *ra = &ff->args->release_args;
296 
297 	if (fuse_file_passthrough(ff))
298 		fuse_passthrough_release(ff, fuse_inode_backing(fi));
299 
300 	/* Inode is NULL on error path of fuse_create_open() */
301 	if (likely(fi)) {
302 		spin_lock(&fi->lock);
303 		list_del(&ff->write_entry);
304 		spin_unlock(&fi->lock);
305 	}
306 	spin_lock(&fc->lock);
307 	if (!RB_EMPTY_NODE(&ff->polled_node))
308 		rb_erase(&ff->polled_node, &fc->polled_files);
309 	spin_unlock(&fc->lock);
310 
311 	wake_up_interruptible_all(&ff->poll_wait);
312 
313 	if (!ra)
314 		return;
315 
316 	/* ff->args was used for open outarg */
317 	memset(ff->args, 0, sizeof(*ff->args));
318 	ra->inarg.fh = ff->fh;
319 	ra->inarg.flags = flags;
320 	ra->args.in_numargs = 1;
321 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
322 	ra->args.in_args[0].value = &ra->inarg;
323 	ra->args.opcode = opcode;
324 	ra->args.nodeid = ff->nodeid;
325 	ra->args.force = true;
326 	ra->args.nocreds = true;
327 
328 	/*
329 	 * Hold inode until release is finished.
330 	 * From fuse_sync_release() the refcount is 1 and everything's
331 	 * synchronous, so we are fine with not doing igrab() here.
332 	 */
333 	ra->inode = sync ? NULL : igrab(&fi->inode);
334 }
335 
336 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
337 		       unsigned int open_flags, fl_owner_t id, bool isdir)
338 {
339 	struct fuse_inode *fi = get_fuse_inode(inode);
340 	struct fuse_release_args *ra = &ff->args->release_args;
341 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
342 
343 	fuse_prepare_release(fi, ff, open_flags, opcode, false);
344 
345 	if (ra && ff->flock) {
346 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
347 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
348 	}
349 
350 	/*
351 	 * Normally this will send the RELEASE request, however if
352 	 * some asynchronous READ or WRITE requests are outstanding,
353 	 * the sending will be delayed.
354 	 *
355 	 * Make the release synchronous if this is a fuseblk mount,
356 	 * synchronous RELEASE is allowed (and desirable) in this case
357 	 * because the server can be trusted not to screw up.
358 	 */
359 	fuse_file_put(ff, ff->fm->fc->destroy);
360 }
361 
362 void fuse_release_common(struct file *file, bool isdir)
363 {
364 	fuse_file_release(file_inode(file), file->private_data, file->f_flags,
365 			  (fl_owner_t) file, isdir);
366 }
367 
368 static int fuse_release(struct inode *inode, struct file *file)
369 {
370 	struct fuse_conn *fc = get_fuse_conn(inode);
371 
372 	/*
373 	 * Dirty pages might remain despite write_inode_now() call from
374 	 * fuse_flush() due to writes racing with the close.
375 	 */
376 	if (fc->writeback_cache)
377 		write_inode_now(inode, 1);
378 
379 	fuse_release_common(file, false);
380 
381 	/* return value is ignored by VFS */
382 	return 0;
383 }
384 
385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
386 		       unsigned int flags)
387 {
388 	WARN_ON(refcount_read(&ff->count) > 1);
389 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true);
390 	fuse_file_put(ff, true);
391 }
392 EXPORT_SYMBOL_GPL(fuse_sync_release);
393 
394 /*
395  * Scramble the ID space with XTEA, so that the value of the files_struct
396  * pointer is not exposed to userspace.
397  */
398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
399 {
400 	u32 *k = fc->scramble_key;
401 	u64 v = (unsigned long) id;
402 	u32 v0 = v;
403 	u32 v1 = v >> 32;
404 	u32 sum = 0;
405 	int i;
406 
407 	for (i = 0; i < 32; i++) {
408 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
409 		sum += 0x9E3779B9;
410 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
411 	}
412 
413 	return (u64) v0 + ((u64) v1 << 32);
414 }
415 
416 struct fuse_writepage_args {
417 	struct fuse_io_args ia;
418 	struct rb_node writepages_entry;
419 	struct list_head queue_entry;
420 	struct fuse_writepage_args *next;
421 	struct inode *inode;
422 	struct fuse_sync_bucket *bucket;
423 };
424 
425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
426 					    pgoff_t idx_from, pgoff_t idx_to)
427 {
428 	struct rb_node *n;
429 
430 	n = fi->writepages.rb_node;
431 
432 	while (n) {
433 		struct fuse_writepage_args *wpa;
434 		pgoff_t curr_index;
435 
436 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
437 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
438 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
439 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
440 			n = n->rb_right;
441 		else if (idx_to < curr_index)
442 			n = n->rb_left;
443 		else
444 			return wpa;
445 	}
446 	return NULL;
447 }
448 
449 /*
450  * Check if any page in a range is under writeback
451  *
452  * This is currently done by walking the list of writepage requests
453  * for the inode, which can be pretty inefficient.
454  */
455 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
456 				   pgoff_t idx_to)
457 {
458 	struct fuse_inode *fi = get_fuse_inode(inode);
459 	bool found;
460 
461 	spin_lock(&fi->lock);
462 	found = fuse_find_writeback(fi, idx_from, idx_to);
463 	spin_unlock(&fi->lock);
464 
465 	return found;
466 }
467 
468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
469 {
470 	return fuse_range_is_writeback(inode, index, index);
471 }
472 
473 /*
474  * Wait for page writeback to be completed.
475  *
476  * Since fuse doesn't rely on the VM writeback tracking, this has to
477  * use some other means.
478  */
479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
480 {
481 	struct fuse_inode *fi = get_fuse_inode(inode);
482 
483 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
484 }
485 
486 /*
487  * Wait for all pending writepages on the inode to finish.
488  *
489  * This is currently done by blocking further writes with FUSE_NOWRITE
490  * and waiting for all sent writes to complete.
491  *
492  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
493  * could conflict with truncation.
494  */
495 static void fuse_sync_writes(struct inode *inode)
496 {
497 	fuse_set_nowrite(inode);
498 	fuse_release_nowrite(inode);
499 }
500 
501 static int fuse_flush(struct file *file, fl_owner_t id)
502 {
503 	struct inode *inode = file_inode(file);
504 	struct fuse_mount *fm = get_fuse_mount(inode);
505 	struct fuse_file *ff = file->private_data;
506 	struct fuse_flush_in inarg;
507 	FUSE_ARGS(args);
508 	int err;
509 
510 	if (fuse_is_bad(inode))
511 		return -EIO;
512 
513 	if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
514 		return 0;
515 
516 	err = write_inode_now(inode, 1);
517 	if (err)
518 		return err;
519 
520 	inode_lock(inode);
521 	fuse_sync_writes(inode);
522 	inode_unlock(inode);
523 
524 	err = filemap_check_errors(file->f_mapping);
525 	if (err)
526 		return err;
527 
528 	err = 0;
529 	if (fm->fc->no_flush)
530 		goto inval_attr_out;
531 
532 	memset(&inarg, 0, sizeof(inarg));
533 	inarg.fh = ff->fh;
534 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
535 	args.opcode = FUSE_FLUSH;
536 	args.nodeid = get_node_id(inode);
537 	args.in_numargs = 1;
538 	args.in_args[0].size = sizeof(inarg);
539 	args.in_args[0].value = &inarg;
540 	args.force = true;
541 
542 	err = fuse_simple_request(fm, &args);
543 	if (err == -ENOSYS) {
544 		fm->fc->no_flush = 1;
545 		err = 0;
546 	}
547 
548 inval_attr_out:
549 	/*
550 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
551 	 * enabled, i_blocks from cached attr may not be accurate.
552 	 */
553 	if (!err && fm->fc->writeback_cache)
554 		fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
555 	return err;
556 }
557 
558 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
559 		      int datasync, int opcode)
560 {
561 	struct inode *inode = file->f_mapping->host;
562 	struct fuse_mount *fm = get_fuse_mount(inode);
563 	struct fuse_file *ff = file->private_data;
564 	FUSE_ARGS(args);
565 	struct fuse_fsync_in inarg;
566 
567 	memset(&inarg, 0, sizeof(inarg));
568 	inarg.fh = ff->fh;
569 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
570 	args.opcode = opcode;
571 	args.nodeid = get_node_id(inode);
572 	args.in_numargs = 1;
573 	args.in_args[0].size = sizeof(inarg);
574 	args.in_args[0].value = &inarg;
575 	return fuse_simple_request(fm, &args);
576 }
577 
578 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
579 		      int datasync)
580 {
581 	struct inode *inode = file->f_mapping->host;
582 	struct fuse_conn *fc = get_fuse_conn(inode);
583 	int err;
584 
585 	if (fuse_is_bad(inode))
586 		return -EIO;
587 
588 	inode_lock(inode);
589 
590 	/*
591 	 * Start writeback against all dirty pages of the inode, then
592 	 * wait for all outstanding writes, before sending the FSYNC
593 	 * request.
594 	 */
595 	err = file_write_and_wait_range(file, start, end);
596 	if (err)
597 		goto out;
598 
599 	fuse_sync_writes(inode);
600 
601 	/*
602 	 * Due to implementation of fuse writeback
603 	 * file_write_and_wait_range() does not catch errors.
604 	 * We have to do this directly after fuse_sync_writes()
605 	 */
606 	err = file_check_and_advance_wb_err(file);
607 	if (err)
608 		goto out;
609 
610 	err = sync_inode_metadata(inode, 1);
611 	if (err)
612 		goto out;
613 
614 	if (fc->no_fsync)
615 		goto out;
616 
617 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
618 	if (err == -ENOSYS) {
619 		fc->no_fsync = 1;
620 		err = 0;
621 	}
622 out:
623 	inode_unlock(inode);
624 
625 	return err;
626 }
627 
628 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
629 			 size_t count, int opcode)
630 {
631 	struct fuse_file *ff = file->private_data;
632 	struct fuse_args *args = &ia->ap.args;
633 
634 	ia->read.in.fh = ff->fh;
635 	ia->read.in.offset = pos;
636 	ia->read.in.size = count;
637 	ia->read.in.flags = file->f_flags;
638 	args->opcode = opcode;
639 	args->nodeid = ff->nodeid;
640 	args->in_numargs = 1;
641 	args->in_args[0].size = sizeof(ia->read.in);
642 	args->in_args[0].value = &ia->read.in;
643 	args->out_argvar = true;
644 	args->out_numargs = 1;
645 	args->out_args[0].size = count;
646 }
647 
648 static void fuse_release_user_pages(struct fuse_args_pages *ap,
649 				    bool should_dirty)
650 {
651 	unsigned int i;
652 
653 	for (i = 0; i < ap->num_pages; i++) {
654 		if (should_dirty)
655 			set_page_dirty_lock(ap->pages[i]);
656 		if (ap->args.is_pinned)
657 			unpin_user_page(ap->pages[i]);
658 	}
659 }
660 
661 static void fuse_io_release(struct kref *kref)
662 {
663 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
664 }
665 
666 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
667 {
668 	if (io->err)
669 		return io->err;
670 
671 	if (io->bytes >= 0 && io->write)
672 		return -EIO;
673 
674 	return io->bytes < 0 ? io->size : io->bytes;
675 }
676 
677 /*
678  * In case of short read, the caller sets 'pos' to the position of
679  * actual end of fuse request in IO request. Otherwise, if bytes_requested
680  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
681  *
682  * An example:
683  * User requested DIO read of 64K. It was split into two 32K fuse requests,
684  * both submitted asynchronously. The first of them was ACKed by userspace as
685  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
686  * second request was ACKed as short, e.g. only 1K was read, resulting in
687  * pos == 33K.
688  *
689  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
690  * will be equal to the length of the longest contiguous fragment of
691  * transferred data starting from the beginning of IO request.
692  */
693 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
694 {
695 	int left;
696 
697 	spin_lock(&io->lock);
698 	if (err)
699 		io->err = io->err ? : err;
700 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
701 		io->bytes = pos;
702 
703 	left = --io->reqs;
704 	if (!left && io->blocking)
705 		complete(io->done);
706 	spin_unlock(&io->lock);
707 
708 	if (!left && !io->blocking) {
709 		ssize_t res = fuse_get_res_by_io(io);
710 
711 		if (res >= 0) {
712 			struct inode *inode = file_inode(io->iocb->ki_filp);
713 			struct fuse_conn *fc = get_fuse_conn(inode);
714 			struct fuse_inode *fi = get_fuse_inode(inode);
715 
716 			spin_lock(&fi->lock);
717 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
718 			spin_unlock(&fi->lock);
719 		}
720 
721 		io->iocb->ki_complete(io->iocb, res);
722 	}
723 
724 	kref_put(&io->refcnt, fuse_io_release);
725 }
726 
727 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
728 					  unsigned int npages)
729 {
730 	struct fuse_io_args *ia;
731 
732 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
733 	if (ia) {
734 		ia->io = io;
735 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
736 						&ia->ap.descs);
737 		if (!ia->ap.pages) {
738 			kfree(ia);
739 			ia = NULL;
740 		}
741 	}
742 	return ia;
743 }
744 
745 static void fuse_io_free(struct fuse_io_args *ia)
746 {
747 	kfree(ia->ap.pages);
748 	kfree(ia);
749 }
750 
751 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
752 				  int err)
753 {
754 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
755 	struct fuse_io_priv *io = ia->io;
756 	ssize_t pos = -1;
757 
758 	fuse_release_user_pages(&ia->ap, io->should_dirty);
759 
760 	if (err) {
761 		/* Nothing */
762 	} else if (io->write) {
763 		if (ia->write.out.size > ia->write.in.size) {
764 			err = -EIO;
765 		} else if (ia->write.in.size != ia->write.out.size) {
766 			pos = ia->write.in.offset - io->offset +
767 				ia->write.out.size;
768 		}
769 	} else {
770 		u32 outsize = args->out_args[0].size;
771 
772 		if (ia->read.in.size != outsize)
773 			pos = ia->read.in.offset - io->offset + outsize;
774 	}
775 
776 	fuse_aio_complete(io, err, pos);
777 	fuse_io_free(ia);
778 }
779 
780 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
781 				   struct fuse_io_args *ia, size_t num_bytes)
782 {
783 	ssize_t err;
784 	struct fuse_io_priv *io = ia->io;
785 
786 	spin_lock(&io->lock);
787 	kref_get(&io->refcnt);
788 	io->size += num_bytes;
789 	io->reqs++;
790 	spin_unlock(&io->lock);
791 
792 	ia->ap.args.end = fuse_aio_complete_req;
793 	ia->ap.args.may_block = io->should_dirty;
794 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
795 	if (err)
796 		fuse_aio_complete_req(fm, &ia->ap.args, err);
797 
798 	return num_bytes;
799 }
800 
801 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
802 			      fl_owner_t owner)
803 {
804 	struct file *file = ia->io->iocb->ki_filp;
805 	struct fuse_file *ff = file->private_data;
806 	struct fuse_mount *fm = ff->fm;
807 
808 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
809 	if (owner != NULL) {
810 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
811 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
812 	}
813 
814 	if (ia->io->async)
815 		return fuse_async_req_send(fm, ia, count);
816 
817 	return fuse_simple_request(fm, &ia->ap.args);
818 }
819 
820 static void fuse_read_update_size(struct inode *inode, loff_t size,
821 				  u64 attr_ver)
822 {
823 	struct fuse_conn *fc = get_fuse_conn(inode);
824 	struct fuse_inode *fi = get_fuse_inode(inode);
825 
826 	spin_lock(&fi->lock);
827 	if (attr_ver >= fi->attr_version && size < inode->i_size &&
828 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
829 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
830 		i_size_write(inode, size);
831 	}
832 	spin_unlock(&fi->lock);
833 }
834 
835 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
836 			    struct fuse_args_pages *ap)
837 {
838 	struct fuse_conn *fc = get_fuse_conn(inode);
839 
840 	/*
841 	 * If writeback_cache is enabled, a short read means there's a hole in
842 	 * the file.  Some data after the hole is in page cache, but has not
843 	 * reached the client fs yet.  So the hole is not present there.
844 	 */
845 	if (!fc->writeback_cache) {
846 		loff_t pos = page_offset(ap->pages[0]) + num_read;
847 		fuse_read_update_size(inode, pos, attr_ver);
848 	}
849 }
850 
851 static int fuse_do_readpage(struct file *file, struct page *page)
852 {
853 	struct inode *inode = page->mapping->host;
854 	struct fuse_mount *fm = get_fuse_mount(inode);
855 	loff_t pos = page_offset(page);
856 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
857 	struct fuse_io_args ia = {
858 		.ap.args.page_zeroing = true,
859 		.ap.args.out_pages = true,
860 		.ap.num_pages = 1,
861 		.ap.pages = &page,
862 		.ap.descs = &desc,
863 	};
864 	ssize_t res;
865 	u64 attr_ver;
866 
867 	/*
868 	 * Page writeback can extend beyond the lifetime of the
869 	 * page-cache page, so make sure we read a properly synced
870 	 * page.
871 	 */
872 	fuse_wait_on_page_writeback(inode, page->index);
873 
874 	attr_ver = fuse_get_attr_version(fm->fc);
875 
876 	/* Don't overflow end offset */
877 	if (pos + (desc.length - 1) == LLONG_MAX)
878 		desc.length--;
879 
880 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
881 	res = fuse_simple_request(fm, &ia.ap.args);
882 	if (res < 0)
883 		return res;
884 	/*
885 	 * Short read means EOF.  If file size is larger, truncate it
886 	 */
887 	if (res < desc.length)
888 		fuse_short_read(inode, attr_ver, res, &ia.ap);
889 
890 	SetPageUptodate(page);
891 
892 	return 0;
893 }
894 
895 static int fuse_read_folio(struct file *file, struct folio *folio)
896 {
897 	struct page *page = &folio->page;
898 	struct inode *inode = page->mapping->host;
899 	int err;
900 
901 	err = -EIO;
902 	if (fuse_is_bad(inode))
903 		goto out;
904 
905 	err = fuse_do_readpage(file, page);
906 	fuse_invalidate_atime(inode);
907  out:
908 	unlock_page(page);
909 	return err;
910 }
911 
912 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
913 			       int err)
914 {
915 	int i;
916 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
917 	struct fuse_args_pages *ap = &ia->ap;
918 	size_t count = ia->read.in.size;
919 	size_t num_read = args->out_args[0].size;
920 	struct address_space *mapping = NULL;
921 
922 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
923 		mapping = ap->pages[i]->mapping;
924 
925 	if (mapping) {
926 		struct inode *inode = mapping->host;
927 
928 		/*
929 		 * Short read means EOF. If file size is larger, truncate it
930 		 */
931 		if (!err && num_read < count)
932 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
933 
934 		fuse_invalidate_atime(inode);
935 	}
936 
937 	for (i = 0; i < ap->num_pages; i++) {
938 		struct folio *folio = page_folio(ap->pages[i]);
939 
940 		folio_end_read(folio, !err);
941 		folio_put(folio);
942 	}
943 	if (ia->ff)
944 		fuse_file_put(ia->ff, false);
945 
946 	fuse_io_free(ia);
947 }
948 
949 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
950 {
951 	struct fuse_file *ff = file->private_data;
952 	struct fuse_mount *fm = ff->fm;
953 	struct fuse_args_pages *ap = &ia->ap;
954 	loff_t pos = page_offset(ap->pages[0]);
955 	size_t count = ap->num_pages << PAGE_SHIFT;
956 	ssize_t res;
957 	int err;
958 
959 	ap->args.out_pages = true;
960 	ap->args.page_zeroing = true;
961 	ap->args.page_replace = true;
962 
963 	/* Don't overflow end offset */
964 	if (pos + (count - 1) == LLONG_MAX) {
965 		count--;
966 		ap->descs[ap->num_pages - 1].length--;
967 	}
968 	WARN_ON((loff_t) (pos + count) < 0);
969 
970 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
971 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
972 	if (fm->fc->async_read) {
973 		ia->ff = fuse_file_get(ff);
974 		ap->args.end = fuse_readpages_end;
975 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
976 		if (!err)
977 			return;
978 	} else {
979 		res = fuse_simple_request(fm, &ap->args);
980 		err = res < 0 ? res : 0;
981 	}
982 	fuse_readpages_end(fm, &ap->args, err);
983 }
984 
985 static void fuse_readahead(struct readahead_control *rac)
986 {
987 	struct inode *inode = rac->mapping->host;
988 	struct fuse_conn *fc = get_fuse_conn(inode);
989 	unsigned int i, max_pages, nr_pages = 0;
990 
991 	if (fuse_is_bad(inode))
992 		return;
993 
994 	max_pages = min_t(unsigned int, fc->max_pages,
995 			fc->max_read / PAGE_SIZE);
996 
997 	for (;;) {
998 		struct fuse_io_args *ia;
999 		struct fuse_args_pages *ap;
1000 
1001 		if (fc->num_background >= fc->congestion_threshold &&
1002 		    rac->ra->async_size >= readahead_count(rac))
1003 			/*
1004 			 * Congested and only async pages left, so skip the
1005 			 * rest.
1006 			 */
1007 			break;
1008 
1009 		nr_pages = readahead_count(rac) - nr_pages;
1010 		if (nr_pages > max_pages)
1011 			nr_pages = max_pages;
1012 		if (nr_pages == 0)
1013 			break;
1014 		ia = fuse_io_alloc(NULL, nr_pages);
1015 		if (!ia)
1016 			return;
1017 		ap = &ia->ap;
1018 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
1019 		for (i = 0; i < nr_pages; i++) {
1020 			fuse_wait_on_page_writeback(inode,
1021 						    readahead_index(rac) + i);
1022 			ap->descs[i].length = PAGE_SIZE;
1023 		}
1024 		ap->num_pages = nr_pages;
1025 		fuse_send_readpages(ia, rac->file);
1026 	}
1027 }
1028 
1029 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1030 {
1031 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1032 	struct fuse_conn *fc = get_fuse_conn(inode);
1033 
1034 	/*
1035 	 * In auto invalidate mode, always update attributes on read.
1036 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1037 	 * i_size is up to date).
1038 	 */
1039 	if (fc->auto_inval_data ||
1040 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1041 		int err;
1042 		err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1043 		if (err)
1044 			return err;
1045 	}
1046 
1047 	return generic_file_read_iter(iocb, to);
1048 }
1049 
1050 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1051 				 loff_t pos, size_t count)
1052 {
1053 	struct fuse_args *args = &ia->ap.args;
1054 
1055 	ia->write.in.fh = ff->fh;
1056 	ia->write.in.offset = pos;
1057 	ia->write.in.size = count;
1058 	args->opcode = FUSE_WRITE;
1059 	args->nodeid = ff->nodeid;
1060 	args->in_numargs = 2;
1061 	if (ff->fm->fc->minor < 9)
1062 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1063 	else
1064 		args->in_args[0].size = sizeof(ia->write.in);
1065 	args->in_args[0].value = &ia->write.in;
1066 	args->in_args[1].size = count;
1067 	args->out_numargs = 1;
1068 	args->out_args[0].size = sizeof(ia->write.out);
1069 	args->out_args[0].value = &ia->write.out;
1070 }
1071 
1072 static unsigned int fuse_write_flags(struct kiocb *iocb)
1073 {
1074 	unsigned int flags = iocb->ki_filp->f_flags;
1075 
1076 	if (iocb_is_dsync(iocb))
1077 		flags |= O_DSYNC;
1078 	if (iocb->ki_flags & IOCB_SYNC)
1079 		flags |= O_SYNC;
1080 
1081 	return flags;
1082 }
1083 
1084 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1085 			       size_t count, fl_owner_t owner)
1086 {
1087 	struct kiocb *iocb = ia->io->iocb;
1088 	struct file *file = iocb->ki_filp;
1089 	struct fuse_file *ff = file->private_data;
1090 	struct fuse_mount *fm = ff->fm;
1091 	struct fuse_write_in *inarg = &ia->write.in;
1092 	ssize_t err;
1093 
1094 	fuse_write_args_fill(ia, ff, pos, count);
1095 	inarg->flags = fuse_write_flags(iocb);
1096 	if (owner != NULL) {
1097 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1098 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1099 	}
1100 
1101 	if (ia->io->async)
1102 		return fuse_async_req_send(fm, ia, count);
1103 
1104 	err = fuse_simple_request(fm, &ia->ap.args);
1105 	if (!err && ia->write.out.size > count)
1106 		err = -EIO;
1107 
1108 	return err ?: ia->write.out.size;
1109 }
1110 
1111 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1112 {
1113 	struct fuse_conn *fc = get_fuse_conn(inode);
1114 	struct fuse_inode *fi = get_fuse_inode(inode);
1115 	bool ret = false;
1116 
1117 	spin_lock(&fi->lock);
1118 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1119 	if (written > 0 && pos > inode->i_size) {
1120 		i_size_write(inode, pos);
1121 		ret = true;
1122 	}
1123 	spin_unlock(&fi->lock);
1124 
1125 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1126 
1127 	return ret;
1128 }
1129 
1130 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1131 				     struct kiocb *iocb, struct inode *inode,
1132 				     loff_t pos, size_t count)
1133 {
1134 	struct fuse_args_pages *ap = &ia->ap;
1135 	struct file *file = iocb->ki_filp;
1136 	struct fuse_file *ff = file->private_data;
1137 	struct fuse_mount *fm = ff->fm;
1138 	unsigned int offset, i;
1139 	bool short_write;
1140 	int err;
1141 
1142 	for (i = 0; i < ap->num_pages; i++)
1143 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1144 
1145 	fuse_write_args_fill(ia, ff, pos, count);
1146 	ia->write.in.flags = fuse_write_flags(iocb);
1147 	if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1148 		ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1149 
1150 	err = fuse_simple_request(fm, &ap->args);
1151 	if (!err && ia->write.out.size > count)
1152 		err = -EIO;
1153 
1154 	short_write = ia->write.out.size < count;
1155 	offset = ap->descs[0].offset;
1156 	count = ia->write.out.size;
1157 	for (i = 0; i < ap->num_pages; i++) {
1158 		struct page *page = ap->pages[i];
1159 
1160 		if (err) {
1161 			ClearPageUptodate(page);
1162 		} else {
1163 			if (count >= PAGE_SIZE - offset)
1164 				count -= PAGE_SIZE - offset;
1165 			else {
1166 				if (short_write)
1167 					ClearPageUptodate(page);
1168 				count = 0;
1169 			}
1170 			offset = 0;
1171 		}
1172 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1173 			unlock_page(page);
1174 		put_page(page);
1175 	}
1176 
1177 	return err;
1178 }
1179 
1180 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1181 				     struct address_space *mapping,
1182 				     struct iov_iter *ii, loff_t pos,
1183 				     unsigned int max_pages)
1184 {
1185 	struct fuse_args_pages *ap = &ia->ap;
1186 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1187 	unsigned offset = pos & (PAGE_SIZE - 1);
1188 	size_t count = 0;
1189 	int err;
1190 
1191 	ap->args.in_pages = true;
1192 	ap->descs[0].offset = offset;
1193 
1194 	do {
1195 		size_t tmp;
1196 		struct page *page;
1197 		pgoff_t index = pos >> PAGE_SHIFT;
1198 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1199 				     iov_iter_count(ii));
1200 
1201 		bytes = min_t(size_t, bytes, fc->max_write - count);
1202 
1203  again:
1204 		err = -EFAULT;
1205 		if (fault_in_iov_iter_readable(ii, bytes))
1206 			break;
1207 
1208 		err = -ENOMEM;
1209 		page = grab_cache_page_write_begin(mapping, index);
1210 		if (!page)
1211 			break;
1212 
1213 		if (mapping_writably_mapped(mapping))
1214 			flush_dcache_page(page);
1215 
1216 		tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1217 		flush_dcache_page(page);
1218 
1219 		if (!tmp) {
1220 			unlock_page(page);
1221 			put_page(page);
1222 			goto again;
1223 		}
1224 
1225 		err = 0;
1226 		ap->pages[ap->num_pages] = page;
1227 		ap->descs[ap->num_pages].length = tmp;
1228 		ap->num_pages++;
1229 
1230 		count += tmp;
1231 		pos += tmp;
1232 		offset += tmp;
1233 		if (offset == PAGE_SIZE)
1234 			offset = 0;
1235 
1236 		/* If we copied full page, mark it uptodate */
1237 		if (tmp == PAGE_SIZE)
1238 			SetPageUptodate(page);
1239 
1240 		if (PageUptodate(page)) {
1241 			unlock_page(page);
1242 		} else {
1243 			ia->write.page_locked = true;
1244 			break;
1245 		}
1246 		if (!fc->big_writes)
1247 			break;
1248 	} while (iov_iter_count(ii) && count < fc->max_write &&
1249 		 ap->num_pages < max_pages && offset == 0);
1250 
1251 	return count > 0 ? count : err;
1252 }
1253 
1254 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1255 				     unsigned int max_pages)
1256 {
1257 	return min_t(unsigned int,
1258 		     ((pos + len - 1) >> PAGE_SHIFT) -
1259 		     (pos >> PAGE_SHIFT) + 1,
1260 		     max_pages);
1261 }
1262 
1263 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1264 {
1265 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1266 	struct inode *inode = mapping->host;
1267 	struct fuse_conn *fc = get_fuse_conn(inode);
1268 	struct fuse_inode *fi = get_fuse_inode(inode);
1269 	loff_t pos = iocb->ki_pos;
1270 	int err = 0;
1271 	ssize_t res = 0;
1272 
1273 	if (inode->i_size < pos + iov_iter_count(ii))
1274 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1275 
1276 	do {
1277 		ssize_t count;
1278 		struct fuse_io_args ia = {};
1279 		struct fuse_args_pages *ap = &ia.ap;
1280 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1281 						      fc->max_pages);
1282 
1283 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1284 		if (!ap->pages) {
1285 			err = -ENOMEM;
1286 			break;
1287 		}
1288 
1289 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1290 		if (count <= 0) {
1291 			err = count;
1292 		} else {
1293 			err = fuse_send_write_pages(&ia, iocb, inode,
1294 						    pos, count);
1295 			if (!err) {
1296 				size_t num_written = ia.write.out.size;
1297 
1298 				res += num_written;
1299 				pos += num_written;
1300 
1301 				/* break out of the loop on short write */
1302 				if (num_written != count)
1303 					err = -EIO;
1304 			}
1305 		}
1306 		kfree(ap->pages);
1307 	} while (!err && iov_iter_count(ii));
1308 
1309 	fuse_write_update_attr(inode, pos, res);
1310 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1311 
1312 	if (!res)
1313 		return err;
1314 	iocb->ki_pos += res;
1315 	return res;
1316 }
1317 
1318 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter)
1319 {
1320 	struct inode *inode = file_inode(iocb->ki_filp);
1321 
1322 	return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1323 }
1324 
1325 /*
1326  * @return true if an exclusive lock for direct IO writes is needed
1327  */
1328 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from)
1329 {
1330 	struct file *file = iocb->ki_filp;
1331 	struct fuse_file *ff = file->private_data;
1332 	struct inode *inode = file_inode(iocb->ki_filp);
1333 	struct fuse_inode *fi = get_fuse_inode(inode);
1334 
1335 	/* Server side has to advise that it supports parallel dio writes. */
1336 	if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES))
1337 		return true;
1338 
1339 	/*
1340 	 * Append will need to know the eventual EOF - always needs an
1341 	 * exclusive lock.
1342 	 */
1343 	if (iocb->ki_flags & IOCB_APPEND)
1344 		return true;
1345 
1346 	/* shared locks are not allowed with parallel page cache IO */
1347 	if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state))
1348 		return false;
1349 
1350 	/* Parallel dio beyond EOF is not supported, at least for now. */
1351 	if (fuse_io_past_eof(iocb, from))
1352 		return true;
1353 
1354 	return false;
1355 }
1356 
1357 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from,
1358 			  bool *exclusive)
1359 {
1360 	struct inode *inode = file_inode(iocb->ki_filp);
1361 	struct fuse_inode *fi = get_fuse_inode(inode);
1362 
1363 	*exclusive = fuse_dio_wr_exclusive_lock(iocb, from);
1364 	if (*exclusive) {
1365 		inode_lock(inode);
1366 	} else {
1367 		inode_lock_shared(inode);
1368 		/*
1369 		 * New parallal dio allowed only if inode is not in caching
1370 		 * mode and denies new opens in caching mode. This check
1371 		 * should be performed only after taking shared inode lock.
1372 		 * Previous past eof check was without inode lock and might
1373 		 * have raced, so check it again.
1374 		 */
1375 		if (fuse_io_past_eof(iocb, from) ||
1376 		    fuse_inode_uncached_io_start(fi, NULL) != 0) {
1377 			inode_unlock_shared(inode);
1378 			inode_lock(inode);
1379 			*exclusive = true;
1380 		}
1381 	}
1382 }
1383 
1384 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive)
1385 {
1386 	struct inode *inode = file_inode(iocb->ki_filp);
1387 	struct fuse_inode *fi = get_fuse_inode(inode);
1388 
1389 	if (exclusive) {
1390 		inode_unlock(inode);
1391 	} else {
1392 		/* Allow opens in caching mode after last parallel dio end */
1393 		fuse_inode_uncached_io_end(fi);
1394 		inode_unlock_shared(inode);
1395 	}
1396 }
1397 
1398 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1399 {
1400 	struct file *file = iocb->ki_filp;
1401 	struct address_space *mapping = file->f_mapping;
1402 	ssize_t written = 0;
1403 	struct inode *inode = mapping->host;
1404 	ssize_t err, count;
1405 	struct fuse_conn *fc = get_fuse_conn(inode);
1406 
1407 	if (fc->writeback_cache) {
1408 		/* Update size (EOF optimization) and mode (SUID clearing) */
1409 		err = fuse_update_attributes(mapping->host, file,
1410 					     STATX_SIZE | STATX_MODE);
1411 		if (err)
1412 			return err;
1413 
1414 		if (fc->handle_killpriv_v2 &&
1415 		    setattr_should_drop_suidgid(&nop_mnt_idmap,
1416 						file_inode(file))) {
1417 			goto writethrough;
1418 		}
1419 
1420 		return generic_file_write_iter(iocb, from);
1421 	}
1422 
1423 writethrough:
1424 	inode_lock(inode);
1425 
1426 	err = count = generic_write_checks(iocb, from);
1427 	if (err <= 0)
1428 		goto out;
1429 
1430 	task_io_account_write(count);
1431 
1432 	err = file_remove_privs(file);
1433 	if (err)
1434 		goto out;
1435 
1436 	err = file_update_time(file);
1437 	if (err)
1438 		goto out;
1439 
1440 	if (iocb->ki_flags & IOCB_DIRECT) {
1441 		written = generic_file_direct_write(iocb, from);
1442 		if (written < 0 || !iov_iter_count(from))
1443 			goto out;
1444 		written = direct_write_fallback(iocb, from, written,
1445 				fuse_perform_write(iocb, from));
1446 	} else {
1447 		written = fuse_perform_write(iocb, from);
1448 	}
1449 out:
1450 	inode_unlock(inode);
1451 	if (written > 0)
1452 		written = generic_write_sync(iocb, written);
1453 
1454 	return written ? written : err;
1455 }
1456 
1457 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1458 {
1459 	return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1460 }
1461 
1462 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1463 					size_t max_size)
1464 {
1465 	return min(iov_iter_single_seg_count(ii), max_size);
1466 }
1467 
1468 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1469 			       size_t *nbytesp, int write,
1470 			       unsigned int max_pages)
1471 {
1472 	size_t nbytes = 0;  /* # bytes already packed in req */
1473 	ssize_t ret = 0;
1474 
1475 	/* Special case for kernel I/O: can copy directly into the buffer */
1476 	if (iov_iter_is_kvec(ii)) {
1477 		unsigned long user_addr = fuse_get_user_addr(ii);
1478 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1479 
1480 		if (write)
1481 			ap->args.in_args[1].value = (void *) user_addr;
1482 		else
1483 			ap->args.out_args[0].value = (void *) user_addr;
1484 
1485 		iov_iter_advance(ii, frag_size);
1486 		*nbytesp = frag_size;
1487 		return 0;
1488 	}
1489 
1490 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1491 		unsigned npages;
1492 		size_t start;
1493 		struct page **pt_pages;
1494 
1495 		pt_pages = &ap->pages[ap->num_pages];
1496 		ret = iov_iter_extract_pages(ii, &pt_pages,
1497 					     *nbytesp - nbytes,
1498 					     max_pages - ap->num_pages,
1499 					     0, &start);
1500 		if (ret < 0)
1501 			break;
1502 
1503 		nbytes += ret;
1504 
1505 		ret += start;
1506 		npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1507 
1508 		ap->descs[ap->num_pages].offset = start;
1509 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1510 
1511 		ap->num_pages += npages;
1512 		ap->descs[ap->num_pages - 1].length -=
1513 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1514 	}
1515 
1516 	ap->args.is_pinned = iov_iter_extract_will_pin(ii);
1517 	ap->args.user_pages = true;
1518 	if (write)
1519 		ap->args.in_pages = true;
1520 	else
1521 		ap->args.out_pages = true;
1522 
1523 	*nbytesp = nbytes;
1524 
1525 	return ret < 0 ? ret : 0;
1526 }
1527 
1528 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1529 		       loff_t *ppos, int flags)
1530 {
1531 	int write = flags & FUSE_DIO_WRITE;
1532 	int cuse = flags & FUSE_DIO_CUSE;
1533 	struct file *file = io->iocb->ki_filp;
1534 	struct address_space *mapping = file->f_mapping;
1535 	struct inode *inode = mapping->host;
1536 	struct fuse_file *ff = file->private_data;
1537 	struct fuse_conn *fc = ff->fm->fc;
1538 	size_t nmax = write ? fc->max_write : fc->max_read;
1539 	loff_t pos = *ppos;
1540 	size_t count = iov_iter_count(iter);
1541 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1542 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1543 	ssize_t res = 0;
1544 	int err = 0;
1545 	struct fuse_io_args *ia;
1546 	unsigned int max_pages;
1547 	bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO;
1548 
1549 	max_pages = iov_iter_npages(iter, fc->max_pages);
1550 	ia = fuse_io_alloc(io, max_pages);
1551 	if (!ia)
1552 		return -ENOMEM;
1553 
1554 	if (fopen_direct_io && fc->direct_io_allow_mmap) {
1555 		res = filemap_write_and_wait_range(mapping, pos, pos + count - 1);
1556 		if (res) {
1557 			fuse_io_free(ia);
1558 			return res;
1559 		}
1560 	}
1561 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1562 		if (!write)
1563 			inode_lock(inode);
1564 		fuse_sync_writes(inode);
1565 		if (!write)
1566 			inode_unlock(inode);
1567 	}
1568 
1569 	if (fopen_direct_io && write) {
1570 		res = invalidate_inode_pages2_range(mapping, idx_from, idx_to);
1571 		if (res) {
1572 			fuse_io_free(ia);
1573 			return res;
1574 		}
1575 	}
1576 
1577 	io->should_dirty = !write && user_backed_iter(iter);
1578 	while (count) {
1579 		ssize_t nres;
1580 		fl_owner_t owner = current->files;
1581 		size_t nbytes = min(count, nmax);
1582 
1583 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1584 					  max_pages);
1585 		if (err && !nbytes)
1586 			break;
1587 
1588 		if (write) {
1589 			if (!capable(CAP_FSETID))
1590 				ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1591 
1592 			nres = fuse_send_write(ia, pos, nbytes, owner);
1593 		} else {
1594 			nres = fuse_send_read(ia, pos, nbytes, owner);
1595 		}
1596 
1597 		if (!io->async || nres < 0) {
1598 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1599 			fuse_io_free(ia);
1600 		}
1601 		ia = NULL;
1602 		if (nres < 0) {
1603 			iov_iter_revert(iter, nbytes);
1604 			err = nres;
1605 			break;
1606 		}
1607 		WARN_ON(nres > nbytes);
1608 
1609 		count -= nres;
1610 		res += nres;
1611 		pos += nres;
1612 		if (nres != nbytes) {
1613 			iov_iter_revert(iter, nbytes - nres);
1614 			break;
1615 		}
1616 		if (count) {
1617 			max_pages = iov_iter_npages(iter, fc->max_pages);
1618 			ia = fuse_io_alloc(io, max_pages);
1619 			if (!ia)
1620 				break;
1621 		}
1622 	}
1623 	if (ia)
1624 		fuse_io_free(ia);
1625 	if (res > 0)
1626 		*ppos = pos;
1627 
1628 	return res > 0 ? res : err;
1629 }
1630 EXPORT_SYMBOL_GPL(fuse_direct_io);
1631 
1632 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1633 				  struct iov_iter *iter,
1634 				  loff_t *ppos)
1635 {
1636 	ssize_t res;
1637 	struct inode *inode = file_inode(io->iocb->ki_filp);
1638 
1639 	res = fuse_direct_io(io, iter, ppos, 0);
1640 
1641 	fuse_invalidate_atime(inode);
1642 
1643 	return res;
1644 }
1645 
1646 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1647 
1648 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1649 {
1650 	ssize_t res;
1651 
1652 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1653 		res = fuse_direct_IO(iocb, to);
1654 	} else {
1655 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1656 
1657 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1658 	}
1659 
1660 	return res;
1661 }
1662 
1663 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1664 {
1665 	struct inode *inode = file_inode(iocb->ki_filp);
1666 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1667 	ssize_t res;
1668 	bool exclusive;
1669 
1670 	fuse_dio_lock(iocb, from, &exclusive);
1671 	res = generic_write_checks(iocb, from);
1672 	if (res > 0) {
1673 		task_io_account_write(res);
1674 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1675 			res = fuse_direct_IO(iocb, from);
1676 		} else {
1677 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1678 					     FUSE_DIO_WRITE);
1679 			fuse_write_update_attr(inode, iocb->ki_pos, res);
1680 		}
1681 	}
1682 	fuse_dio_unlock(iocb, exclusive);
1683 
1684 	return res;
1685 }
1686 
1687 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1688 {
1689 	struct file *file = iocb->ki_filp;
1690 	struct fuse_file *ff = file->private_data;
1691 	struct inode *inode = file_inode(file);
1692 
1693 	if (fuse_is_bad(inode))
1694 		return -EIO;
1695 
1696 	if (FUSE_IS_DAX(inode))
1697 		return fuse_dax_read_iter(iocb, to);
1698 
1699 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1700 	if (ff->open_flags & FOPEN_DIRECT_IO)
1701 		return fuse_direct_read_iter(iocb, to);
1702 	else if (fuse_file_passthrough(ff))
1703 		return fuse_passthrough_read_iter(iocb, to);
1704 	else
1705 		return fuse_cache_read_iter(iocb, to);
1706 }
1707 
1708 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1709 {
1710 	struct file *file = iocb->ki_filp;
1711 	struct fuse_file *ff = file->private_data;
1712 	struct inode *inode = file_inode(file);
1713 
1714 	if (fuse_is_bad(inode))
1715 		return -EIO;
1716 
1717 	if (FUSE_IS_DAX(inode))
1718 		return fuse_dax_write_iter(iocb, from);
1719 
1720 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1721 	if (ff->open_flags & FOPEN_DIRECT_IO)
1722 		return fuse_direct_write_iter(iocb, from);
1723 	else if (fuse_file_passthrough(ff))
1724 		return fuse_passthrough_write_iter(iocb, from);
1725 	else
1726 		return fuse_cache_write_iter(iocb, from);
1727 }
1728 
1729 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos,
1730 				struct pipe_inode_info *pipe, size_t len,
1731 				unsigned int flags)
1732 {
1733 	struct fuse_file *ff = in->private_data;
1734 
1735 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1736 	if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1737 		return fuse_passthrough_splice_read(in, ppos, pipe, len, flags);
1738 	else
1739 		return filemap_splice_read(in, ppos, pipe, len, flags);
1740 }
1741 
1742 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out,
1743 				 loff_t *ppos, size_t len, unsigned int flags)
1744 {
1745 	struct fuse_file *ff = out->private_data;
1746 
1747 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1748 	if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1749 		return fuse_passthrough_splice_write(pipe, out, ppos, len, flags);
1750 	else
1751 		return iter_file_splice_write(pipe, out, ppos, len, flags);
1752 }
1753 
1754 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1755 {
1756 	struct fuse_args_pages *ap = &wpa->ia.ap;
1757 	int i;
1758 
1759 	if (wpa->bucket)
1760 		fuse_sync_bucket_dec(wpa->bucket);
1761 
1762 	for (i = 0; i < ap->num_pages; i++)
1763 		__free_page(ap->pages[i]);
1764 
1765 	if (wpa->ia.ff)
1766 		fuse_file_put(wpa->ia.ff, false);
1767 
1768 	kfree(ap->pages);
1769 	kfree(wpa);
1770 }
1771 
1772 static void fuse_writepage_finish(struct fuse_mount *fm,
1773 				  struct fuse_writepage_args *wpa)
1774 {
1775 	struct fuse_args_pages *ap = &wpa->ia.ap;
1776 	struct inode *inode = wpa->inode;
1777 	struct fuse_inode *fi = get_fuse_inode(inode);
1778 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1779 	int i;
1780 
1781 	for (i = 0; i < ap->num_pages; i++) {
1782 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1783 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1784 		wb_writeout_inc(&bdi->wb);
1785 	}
1786 	wake_up(&fi->page_waitq);
1787 }
1788 
1789 /* Called under fi->lock, may release and reacquire it */
1790 static void fuse_send_writepage(struct fuse_mount *fm,
1791 				struct fuse_writepage_args *wpa, loff_t size)
1792 __releases(fi->lock)
1793 __acquires(fi->lock)
1794 {
1795 	struct fuse_writepage_args *aux, *next;
1796 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1797 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1798 	struct fuse_args *args = &wpa->ia.ap.args;
1799 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1800 	int err;
1801 
1802 	fi->writectr++;
1803 	if (inarg->offset + data_size <= size) {
1804 		inarg->size = data_size;
1805 	} else if (inarg->offset < size) {
1806 		inarg->size = size - inarg->offset;
1807 	} else {
1808 		/* Got truncated off completely */
1809 		goto out_free;
1810 	}
1811 
1812 	args->in_args[1].size = inarg->size;
1813 	args->force = true;
1814 	args->nocreds = true;
1815 
1816 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1817 	if (err == -ENOMEM) {
1818 		spin_unlock(&fi->lock);
1819 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1820 		spin_lock(&fi->lock);
1821 	}
1822 
1823 	/* Fails on broken connection only */
1824 	if (unlikely(err))
1825 		goto out_free;
1826 
1827 	return;
1828 
1829  out_free:
1830 	fi->writectr--;
1831 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1832 	fuse_writepage_finish(fm, wpa);
1833 	spin_unlock(&fi->lock);
1834 
1835 	/* After fuse_writepage_finish() aux request list is private */
1836 	for (aux = wpa->next; aux; aux = next) {
1837 		next = aux->next;
1838 		aux->next = NULL;
1839 		fuse_writepage_free(aux);
1840 	}
1841 
1842 	fuse_writepage_free(wpa);
1843 	spin_lock(&fi->lock);
1844 }
1845 
1846 /*
1847  * If fi->writectr is positive (no truncate or fsync going on) send
1848  * all queued writepage requests.
1849  *
1850  * Called with fi->lock
1851  */
1852 void fuse_flush_writepages(struct inode *inode)
1853 __releases(fi->lock)
1854 __acquires(fi->lock)
1855 {
1856 	struct fuse_mount *fm = get_fuse_mount(inode);
1857 	struct fuse_inode *fi = get_fuse_inode(inode);
1858 	loff_t crop = i_size_read(inode);
1859 	struct fuse_writepage_args *wpa;
1860 
1861 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1862 		wpa = list_entry(fi->queued_writes.next,
1863 				 struct fuse_writepage_args, queue_entry);
1864 		list_del_init(&wpa->queue_entry);
1865 		fuse_send_writepage(fm, wpa, crop);
1866 	}
1867 }
1868 
1869 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1870 						struct fuse_writepage_args *wpa)
1871 {
1872 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1873 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1874 	struct rb_node **p = &root->rb_node;
1875 	struct rb_node  *parent = NULL;
1876 
1877 	WARN_ON(!wpa->ia.ap.num_pages);
1878 	while (*p) {
1879 		struct fuse_writepage_args *curr;
1880 		pgoff_t curr_index;
1881 
1882 		parent = *p;
1883 		curr = rb_entry(parent, struct fuse_writepage_args,
1884 				writepages_entry);
1885 		WARN_ON(curr->inode != wpa->inode);
1886 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1887 
1888 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1889 			p = &(*p)->rb_right;
1890 		else if (idx_to < curr_index)
1891 			p = &(*p)->rb_left;
1892 		else
1893 			return curr;
1894 	}
1895 
1896 	rb_link_node(&wpa->writepages_entry, parent, p);
1897 	rb_insert_color(&wpa->writepages_entry, root);
1898 	return NULL;
1899 }
1900 
1901 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1902 {
1903 	WARN_ON(fuse_insert_writeback(root, wpa));
1904 }
1905 
1906 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1907 			       int error)
1908 {
1909 	struct fuse_writepage_args *wpa =
1910 		container_of(args, typeof(*wpa), ia.ap.args);
1911 	struct inode *inode = wpa->inode;
1912 	struct fuse_inode *fi = get_fuse_inode(inode);
1913 	struct fuse_conn *fc = get_fuse_conn(inode);
1914 
1915 	mapping_set_error(inode->i_mapping, error);
1916 	/*
1917 	 * A writeback finished and this might have updated mtime/ctime on
1918 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1919 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1920 	 * is enabled, we trust local ctime/mtime.
1921 	 */
1922 	if (!fc->writeback_cache)
1923 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1924 	spin_lock(&fi->lock);
1925 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1926 	while (wpa->next) {
1927 		struct fuse_mount *fm = get_fuse_mount(inode);
1928 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1929 		struct fuse_writepage_args *next = wpa->next;
1930 
1931 		wpa->next = next->next;
1932 		next->next = NULL;
1933 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1934 		tree_insert(&fi->writepages, next);
1935 
1936 		/*
1937 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1938 		 * based on primary request size.
1939 		 *
1940 		 * 1st case (trivial): there are no concurrent activities using
1941 		 * fuse_set/release_nowrite.  Then we're on safe side because
1942 		 * fuse_flush_writepages() would call fuse_send_writepage()
1943 		 * anyway.
1944 		 *
1945 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1946 		 * now for completion of all in-flight requests.  This happens
1947 		 * rarely and no more than once per page, so this should be
1948 		 * okay.
1949 		 *
1950 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1951 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1952 		 * that fuse_set_nowrite returned implies that all in-flight
1953 		 * requests were completed along with all of their secondary
1954 		 * requests.  Further primary requests are blocked by negative
1955 		 * writectr.  Hence there cannot be any in-flight requests and
1956 		 * no invocations of fuse_writepage_end() while we're in
1957 		 * fuse_set_nowrite..fuse_release_nowrite section.
1958 		 */
1959 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1960 	}
1961 	fi->writectr--;
1962 	fuse_writepage_finish(fm, wpa);
1963 	spin_unlock(&fi->lock);
1964 	fuse_writepage_free(wpa);
1965 }
1966 
1967 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1968 {
1969 	struct fuse_file *ff;
1970 
1971 	spin_lock(&fi->lock);
1972 	ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1973 				      write_entry);
1974 	if (ff)
1975 		fuse_file_get(ff);
1976 	spin_unlock(&fi->lock);
1977 
1978 	return ff;
1979 }
1980 
1981 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1982 {
1983 	struct fuse_file *ff = __fuse_write_file_get(fi);
1984 	WARN_ON(!ff);
1985 	return ff;
1986 }
1987 
1988 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1989 {
1990 	struct fuse_inode *fi = get_fuse_inode(inode);
1991 	struct fuse_file *ff;
1992 	int err;
1993 
1994 	/*
1995 	 * Inode is always written before the last reference is dropped and
1996 	 * hence this should not be reached from reclaim.
1997 	 *
1998 	 * Writing back the inode from reclaim can deadlock if the request
1999 	 * processing itself needs an allocation.  Allocations triggering
2000 	 * reclaim while serving a request can't be prevented, because it can
2001 	 * involve any number of unrelated userspace processes.
2002 	 */
2003 	WARN_ON(wbc->for_reclaim);
2004 
2005 	ff = __fuse_write_file_get(fi);
2006 	err = fuse_flush_times(inode, ff);
2007 	if (ff)
2008 		fuse_file_put(ff, false);
2009 
2010 	return err;
2011 }
2012 
2013 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
2014 {
2015 	struct fuse_writepage_args *wpa;
2016 	struct fuse_args_pages *ap;
2017 
2018 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
2019 	if (wpa) {
2020 		ap = &wpa->ia.ap;
2021 		ap->num_pages = 0;
2022 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
2023 		if (!ap->pages) {
2024 			kfree(wpa);
2025 			wpa = NULL;
2026 		}
2027 	}
2028 	return wpa;
2029 
2030 }
2031 
2032 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
2033 					 struct fuse_writepage_args *wpa)
2034 {
2035 	if (!fc->sync_fs)
2036 		return;
2037 
2038 	rcu_read_lock();
2039 	/* Prevent resurrection of dead bucket in unlikely race with syncfs */
2040 	do {
2041 		wpa->bucket = rcu_dereference(fc->curr_bucket);
2042 	} while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
2043 	rcu_read_unlock();
2044 }
2045 
2046 static int fuse_writepage_locked(struct folio *folio)
2047 {
2048 	struct address_space *mapping = folio->mapping;
2049 	struct inode *inode = mapping->host;
2050 	struct fuse_conn *fc = get_fuse_conn(inode);
2051 	struct fuse_inode *fi = get_fuse_inode(inode);
2052 	struct fuse_writepage_args *wpa;
2053 	struct fuse_args_pages *ap;
2054 	struct folio *tmp_folio;
2055 	int error = -ENOMEM;
2056 
2057 	folio_start_writeback(folio);
2058 
2059 	wpa = fuse_writepage_args_alloc();
2060 	if (!wpa)
2061 		goto err;
2062 	ap = &wpa->ia.ap;
2063 
2064 	tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2065 	if (!tmp_folio)
2066 		goto err_free;
2067 
2068 	error = -EIO;
2069 	wpa->ia.ff = fuse_write_file_get(fi);
2070 	if (!wpa->ia.ff)
2071 		goto err_nofile;
2072 
2073 	fuse_writepage_add_to_bucket(fc, wpa);
2074 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, folio_pos(folio), 0);
2075 
2076 	folio_copy(tmp_folio, folio);
2077 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2078 	wpa->next = NULL;
2079 	ap->args.in_pages = true;
2080 	ap->num_pages = 1;
2081 	ap->pages[0] = &tmp_folio->page;
2082 	ap->descs[0].offset = 0;
2083 	ap->descs[0].length = PAGE_SIZE;
2084 	ap->args.end = fuse_writepage_end;
2085 	wpa->inode = inode;
2086 
2087 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2088 	node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP);
2089 
2090 	spin_lock(&fi->lock);
2091 	tree_insert(&fi->writepages, wpa);
2092 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2093 	fuse_flush_writepages(inode);
2094 	spin_unlock(&fi->lock);
2095 
2096 	folio_end_writeback(folio);
2097 
2098 	return 0;
2099 
2100 err_nofile:
2101 	folio_put(tmp_folio);
2102 err_free:
2103 	kfree(wpa);
2104 err:
2105 	mapping_set_error(folio->mapping, error);
2106 	folio_end_writeback(folio);
2107 	return error;
2108 }
2109 
2110 struct fuse_fill_wb_data {
2111 	struct fuse_writepage_args *wpa;
2112 	struct fuse_file *ff;
2113 	struct inode *inode;
2114 	struct page **orig_pages;
2115 	unsigned int max_pages;
2116 };
2117 
2118 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2119 {
2120 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
2121 	struct fuse_conn *fc = get_fuse_conn(data->inode);
2122 	struct page **pages;
2123 	struct fuse_page_desc *descs;
2124 	unsigned int npages = min_t(unsigned int,
2125 				    max_t(unsigned int, data->max_pages * 2,
2126 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2127 				    fc->max_pages);
2128 	WARN_ON(npages <= data->max_pages);
2129 
2130 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2131 	if (!pages)
2132 		return false;
2133 
2134 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2135 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2136 	kfree(ap->pages);
2137 	ap->pages = pages;
2138 	ap->descs = descs;
2139 	data->max_pages = npages;
2140 
2141 	return true;
2142 }
2143 
2144 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2145 {
2146 	struct fuse_writepage_args *wpa = data->wpa;
2147 	struct inode *inode = data->inode;
2148 	struct fuse_inode *fi = get_fuse_inode(inode);
2149 	int num_pages = wpa->ia.ap.num_pages;
2150 	int i;
2151 
2152 	wpa->ia.ff = fuse_file_get(data->ff);
2153 	spin_lock(&fi->lock);
2154 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2155 	fuse_flush_writepages(inode);
2156 	spin_unlock(&fi->lock);
2157 
2158 	for (i = 0; i < num_pages; i++)
2159 		end_page_writeback(data->orig_pages[i]);
2160 }
2161 
2162 /*
2163  * Check under fi->lock if the page is under writeback, and insert it onto the
2164  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2165  * one already added for a page at this offset.  If there's none, then insert
2166  * this new request onto the auxiliary list, otherwise reuse the existing one by
2167  * swapping the new temp page with the old one.
2168  */
2169 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2170 			       struct page *page)
2171 {
2172 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2173 	struct fuse_writepage_args *tmp;
2174 	struct fuse_writepage_args *old_wpa;
2175 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2176 
2177 	WARN_ON(new_ap->num_pages != 0);
2178 	new_ap->num_pages = 1;
2179 
2180 	spin_lock(&fi->lock);
2181 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2182 	if (!old_wpa) {
2183 		spin_unlock(&fi->lock);
2184 		return true;
2185 	}
2186 
2187 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2188 		pgoff_t curr_index;
2189 
2190 		WARN_ON(tmp->inode != new_wpa->inode);
2191 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2192 		if (curr_index == page->index) {
2193 			WARN_ON(tmp->ia.ap.num_pages != 1);
2194 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2195 			break;
2196 		}
2197 	}
2198 
2199 	if (!tmp) {
2200 		new_wpa->next = old_wpa->next;
2201 		old_wpa->next = new_wpa;
2202 	}
2203 
2204 	spin_unlock(&fi->lock);
2205 
2206 	if (tmp) {
2207 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2208 
2209 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2210 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2211 		wb_writeout_inc(&bdi->wb);
2212 		fuse_writepage_free(new_wpa);
2213 	}
2214 
2215 	return false;
2216 }
2217 
2218 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2219 				     struct fuse_args_pages *ap,
2220 				     struct fuse_fill_wb_data *data)
2221 {
2222 	WARN_ON(!ap->num_pages);
2223 
2224 	/*
2225 	 * Being under writeback is unlikely but possible.  For example direct
2226 	 * read to an mmaped fuse file will set the page dirty twice; once when
2227 	 * the pages are faulted with get_user_pages(), and then after the read
2228 	 * completed.
2229 	 */
2230 	if (fuse_page_is_writeback(data->inode, page->index))
2231 		return true;
2232 
2233 	/* Reached max pages */
2234 	if (ap->num_pages == fc->max_pages)
2235 		return true;
2236 
2237 	/* Reached max write bytes */
2238 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2239 		return true;
2240 
2241 	/* Discontinuity */
2242 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2243 		return true;
2244 
2245 	/* Need to grow the pages array?  If so, did the expansion fail? */
2246 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2247 		return true;
2248 
2249 	return false;
2250 }
2251 
2252 static int fuse_writepages_fill(struct folio *folio,
2253 		struct writeback_control *wbc, void *_data)
2254 {
2255 	struct fuse_fill_wb_data *data = _data;
2256 	struct fuse_writepage_args *wpa = data->wpa;
2257 	struct fuse_args_pages *ap = &wpa->ia.ap;
2258 	struct inode *inode = data->inode;
2259 	struct fuse_inode *fi = get_fuse_inode(inode);
2260 	struct fuse_conn *fc = get_fuse_conn(inode);
2261 	struct page *tmp_page;
2262 	int err;
2263 
2264 	if (!data->ff) {
2265 		err = -EIO;
2266 		data->ff = fuse_write_file_get(fi);
2267 		if (!data->ff)
2268 			goto out_unlock;
2269 	}
2270 
2271 	if (wpa && fuse_writepage_need_send(fc, &folio->page, ap, data)) {
2272 		fuse_writepages_send(data);
2273 		data->wpa = NULL;
2274 	}
2275 
2276 	err = -ENOMEM;
2277 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2278 	if (!tmp_page)
2279 		goto out_unlock;
2280 
2281 	/*
2282 	 * The page must not be redirtied until the writeout is completed
2283 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2284 	 * there could be more than one temporary page instance for each real
2285 	 * page.
2286 	 *
2287 	 * This is ensured by holding the page lock in page_mkwrite() while
2288 	 * checking fuse_page_is_writeback().  We already hold the page lock
2289 	 * since clear_page_dirty_for_io() and keep it held until we add the
2290 	 * request to the fi->writepages list and increment ap->num_pages.
2291 	 * After this fuse_page_is_writeback() will indicate that the page is
2292 	 * under writeback, so we can release the page lock.
2293 	 */
2294 	if (data->wpa == NULL) {
2295 		err = -ENOMEM;
2296 		wpa = fuse_writepage_args_alloc();
2297 		if (!wpa) {
2298 			__free_page(tmp_page);
2299 			goto out_unlock;
2300 		}
2301 		fuse_writepage_add_to_bucket(fc, wpa);
2302 
2303 		data->max_pages = 1;
2304 
2305 		ap = &wpa->ia.ap;
2306 		fuse_write_args_fill(&wpa->ia, data->ff, folio_pos(folio), 0);
2307 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2308 		wpa->next = NULL;
2309 		ap->args.in_pages = true;
2310 		ap->args.end = fuse_writepage_end;
2311 		ap->num_pages = 0;
2312 		wpa->inode = inode;
2313 	}
2314 	folio_start_writeback(folio);
2315 
2316 	copy_highpage(tmp_page, &folio->page);
2317 	ap->pages[ap->num_pages] = tmp_page;
2318 	ap->descs[ap->num_pages].offset = 0;
2319 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2320 	data->orig_pages[ap->num_pages] = &folio->page;
2321 
2322 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2323 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2324 
2325 	err = 0;
2326 	if (data->wpa) {
2327 		/*
2328 		 * Protected by fi->lock against concurrent access by
2329 		 * fuse_page_is_writeback().
2330 		 */
2331 		spin_lock(&fi->lock);
2332 		ap->num_pages++;
2333 		spin_unlock(&fi->lock);
2334 	} else if (fuse_writepage_add(wpa, &folio->page)) {
2335 		data->wpa = wpa;
2336 	} else {
2337 		folio_end_writeback(folio);
2338 	}
2339 out_unlock:
2340 	folio_unlock(folio);
2341 
2342 	return err;
2343 }
2344 
2345 static int fuse_writepages(struct address_space *mapping,
2346 			   struct writeback_control *wbc)
2347 {
2348 	struct inode *inode = mapping->host;
2349 	struct fuse_conn *fc = get_fuse_conn(inode);
2350 	struct fuse_fill_wb_data data;
2351 	int err;
2352 
2353 	err = -EIO;
2354 	if (fuse_is_bad(inode))
2355 		goto out;
2356 
2357 	if (wbc->sync_mode == WB_SYNC_NONE &&
2358 	    fc->num_background >= fc->congestion_threshold)
2359 		return 0;
2360 
2361 	data.inode = inode;
2362 	data.wpa = NULL;
2363 	data.ff = NULL;
2364 
2365 	err = -ENOMEM;
2366 	data.orig_pages = kcalloc(fc->max_pages,
2367 				  sizeof(struct page *),
2368 				  GFP_NOFS);
2369 	if (!data.orig_pages)
2370 		goto out;
2371 
2372 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2373 	if (data.wpa) {
2374 		WARN_ON(!data.wpa->ia.ap.num_pages);
2375 		fuse_writepages_send(&data);
2376 	}
2377 	if (data.ff)
2378 		fuse_file_put(data.ff, false);
2379 
2380 	kfree(data.orig_pages);
2381 out:
2382 	return err;
2383 }
2384 
2385 /*
2386  * It's worthy to make sure that space is reserved on disk for the write,
2387  * but how to implement it without killing performance need more thinking.
2388  */
2389 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2390 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
2391 {
2392 	pgoff_t index = pos >> PAGE_SHIFT;
2393 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2394 	struct page *page;
2395 	loff_t fsize;
2396 	int err = -ENOMEM;
2397 
2398 	WARN_ON(!fc->writeback_cache);
2399 
2400 	page = grab_cache_page_write_begin(mapping, index);
2401 	if (!page)
2402 		goto error;
2403 
2404 	fuse_wait_on_page_writeback(mapping->host, page->index);
2405 
2406 	if (PageUptodate(page) || len == PAGE_SIZE)
2407 		goto success;
2408 	/*
2409 	 * Check if the start this page comes after the end of file, in which
2410 	 * case the readpage can be optimized away.
2411 	 */
2412 	fsize = i_size_read(mapping->host);
2413 	if (fsize <= (pos & PAGE_MASK)) {
2414 		size_t off = pos & ~PAGE_MASK;
2415 		if (off)
2416 			zero_user_segment(page, 0, off);
2417 		goto success;
2418 	}
2419 	err = fuse_do_readpage(file, page);
2420 	if (err)
2421 		goto cleanup;
2422 success:
2423 	*pagep = page;
2424 	return 0;
2425 
2426 cleanup:
2427 	unlock_page(page);
2428 	put_page(page);
2429 error:
2430 	return err;
2431 }
2432 
2433 static int fuse_write_end(struct file *file, struct address_space *mapping,
2434 		loff_t pos, unsigned len, unsigned copied,
2435 		struct page *page, void *fsdata)
2436 {
2437 	struct inode *inode = page->mapping->host;
2438 
2439 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2440 	if (!copied)
2441 		goto unlock;
2442 
2443 	pos += copied;
2444 	if (!PageUptodate(page)) {
2445 		/* Zero any unwritten bytes at the end of the page */
2446 		size_t endoff = pos & ~PAGE_MASK;
2447 		if (endoff)
2448 			zero_user_segment(page, endoff, PAGE_SIZE);
2449 		SetPageUptodate(page);
2450 	}
2451 
2452 	if (pos > inode->i_size)
2453 		i_size_write(inode, pos);
2454 
2455 	set_page_dirty(page);
2456 
2457 unlock:
2458 	unlock_page(page);
2459 	put_page(page);
2460 
2461 	return copied;
2462 }
2463 
2464 static int fuse_launder_folio(struct folio *folio)
2465 {
2466 	int err = 0;
2467 	if (folio_clear_dirty_for_io(folio)) {
2468 		struct inode *inode = folio->mapping->host;
2469 
2470 		/* Serialize with pending writeback for the same page */
2471 		fuse_wait_on_page_writeback(inode, folio->index);
2472 		err = fuse_writepage_locked(folio);
2473 		if (!err)
2474 			fuse_wait_on_page_writeback(inode, folio->index);
2475 	}
2476 	return err;
2477 }
2478 
2479 /*
2480  * Write back dirty data/metadata now (there may not be any suitable
2481  * open files later for data)
2482  */
2483 static void fuse_vma_close(struct vm_area_struct *vma)
2484 {
2485 	int err;
2486 
2487 	err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2488 	mapping_set_error(vma->vm_file->f_mapping, err);
2489 }
2490 
2491 /*
2492  * Wait for writeback against this page to complete before allowing it
2493  * to be marked dirty again, and hence written back again, possibly
2494  * before the previous writepage completed.
2495  *
2496  * Block here, instead of in ->writepage(), so that the userspace fs
2497  * can only block processes actually operating on the filesystem.
2498  *
2499  * Otherwise unprivileged userspace fs would be able to block
2500  * unrelated:
2501  *
2502  * - page migration
2503  * - sync(2)
2504  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2505  */
2506 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2507 {
2508 	struct page *page = vmf->page;
2509 	struct inode *inode = file_inode(vmf->vma->vm_file);
2510 
2511 	file_update_time(vmf->vma->vm_file);
2512 	lock_page(page);
2513 	if (page->mapping != inode->i_mapping) {
2514 		unlock_page(page);
2515 		return VM_FAULT_NOPAGE;
2516 	}
2517 
2518 	fuse_wait_on_page_writeback(inode, page->index);
2519 	return VM_FAULT_LOCKED;
2520 }
2521 
2522 static const struct vm_operations_struct fuse_file_vm_ops = {
2523 	.close		= fuse_vma_close,
2524 	.fault		= filemap_fault,
2525 	.map_pages	= filemap_map_pages,
2526 	.page_mkwrite	= fuse_page_mkwrite,
2527 };
2528 
2529 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2530 {
2531 	struct fuse_file *ff = file->private_data;
2532 	struct fuse_conn *fc = ff->fm->fc;
2533 	struct inode *inode = file_inode(file);
2534 	int rc;
2535 
2536 	/* DAX mmap is superior to direct_io mmap */
2537 	if (FUSE_IS_DAX(inode))
2538 		return fuse_dax_mmap(file, vma);
2539 
2540 	/*
2541 	 * If inode is in passthrough io mode, because it has some file open
2542 	 * in passthrough mode, either mmap to backing file or fail mmap,
2543 	 * because mixing cached mmap and passthrough io mode is not allowed.
2544 	 */
2545 	if (fuse_file_passthrough(ff))
2546 		return fuse_passthrough_mmap(file, vma);
2547 	else if (fuse_inode_backing(get_fuse_inode(inode)))
2548 		return -ENODEV;
2549 
2550 	/*
2551 	 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT,
2552 	 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP.
2553 	 */
2554 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2555 		/*
2556 		 * Can't provide the coherency needed for MAP_SHARED
2557 		 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set.
2558 		 */
2559 		if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap)
2560 			return -ENODEV;
2561 
2562 		invalidate_inode_pages2(file->f_mapping);
2563 
2564 		if (!(vma->vm_flags & VM_MAYSHARE)) {
2565 			/* MAP_PRIVATE */
2566 			return generic_file_mmap(file, vma);
2567 		}
2568 
2569 		/*
2570 		 * First mmap of direct_io file enters caching inode io mode.
2571 		 * Also waits for parallel dio writers to go into serial mode
2572 		 * (exclusive instead of shared lock).
2573 		 * After first mmap, the inode stays in caching io mode until
2574 		 * the direct_io file release.
2575 		 */
2576 		rc = fuse_file_cached_io_open(inode, ff);
2577 		if (rc)
2578 			return rc;
2579 	}
2580 
2581 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2582 		fuse_link_write_file(file);
2583 
2584 	file_accessed(file);
2585 	vma->vm_ops = &fuse_file_vm_ops;
2586 	return 0;
2587 }
2588 
2589 static int convert_fuse_file_lock(struct fuse_conn *fc,
2590 				  const struct fuse_file_lock *ffl,
2591 				  struct file_lock *fl)
2592 {
2593 	switch (ffl->type) {
2594 	case F_UNLCK:
2595 		break;
2596 
2597 	case F_RDLCK:
2598 	case F_WRLCK:
2599 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2600 		    ffl->end < ffl->start)
2601 			return -EIO;
2602 
2603 		fl->fl_start = ffl->start;
2604 		fl->fl_end = ffl->end;
2605 
2606 		/*
2607 		 * Convert pid into init's pid namespace.  The locks API will
2608 		 * translate it into the caller's pid namespace.
2609 		 */
2610 		rcu_read_lock();
2611 		fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2612 		rcu_read_unlock();
2613 		break;
2614 
2615 	default:
2616 		return -EIO;
2617 	}
2618 	fl->c.flc_type = ffl->type;
2619 	return 0;
2620 }
2621 
2622 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2623 			 const struct file_lock *fl, int opcode, pid_t pid,
2624 			 int flock, struct fuse_lk_in *inarg)
2625 {
2626 	struct inode *inode = file_inode(file);
2627 	struct fuse_conn *fc = get_fuse_conn(inode);
2628 	struct fuse_file *ff = file->private_data;
2629 
2630 	memset(inarg, 0, sizeof(*inarg));
2631 	inarg->fh = ff->fh;
2632 	inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner);
2633 	inarg->lk.start = fl->fl_start;
2634 	inarg->lk.end = fl->fl_end;
2635 	inarg->lk.type = fl->c.flc_type;
2636 	inarg->lk.pid = pid;
2637 	if (flock)
2638 		inarg->lk_flags |= FUSE_LK_FLOCK;
2639 	args->opcode = opcode;
2640 	args->nodeid = get_node_id(inode);
2641 	args->in_numargs = 1;
2642 	args->in_args[0].size = sizeof(*inarg);
2643 	args->in_args[0].value = inarg;
2644 }
2645 
2646 static int fuse_getlk(struct file *file, struct file_lock *fl)
2647 {
2648 	struct inode *inode = file_inode(file);
2649 	struct fuse_mount *fm = get_fuse_mount(inode);
2650 	FUSE_ARGS(args);
2651 	struct fuse_lk_in inarg;
2652 	struct fuse_lk_out outarg;
2653 	int err;
2654 
2655 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2656 	args.out_numargs = 1;
2657 	args.out_args[0].size = sizeof(outarg);
2658 	args.out_args[0].value = &outarg;
2659 	err = fuse_simple_request(fm, &args);
2660 	if (!err)
2661 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2662 
2663 	return err;
2664 }
2665 
2666 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2667 {
2668 	struct inode *inode = file_inode(file);
2669 	struct fuse_mount *fm = get_fuse_mount(inode);
2670 	FUSE_ARGS(args);
2671 	struct fuse_lk_in inarg;
2672 	int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2673 	struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL;
2674 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2675 	int err;
2676 
2677 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2678 		/* NLM needs asynchronous locks, which we don't support yet */
2679 		return -ENOLCK;
2680 	}
2681 
2682 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2683 	err = fuse_simple_request(fm, &args);
2684 
2685 	/* locking is restartable */
2686 	if (err == -EINTR)
2687 		err = -ERESTARTSYS;
2688 
2689 	return err;
2690 }
2691 
2692 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2693 {
2694 	struct inode *inode = file_inode(file);
2695 	struct fuse_conn *fc = get_fuse_conn(inode);
2696 	int err;
2697 
2698 	if (cmd == F_CANCELLK) {
2699 		err = 0;
2700 	} else if (cmd == F_GETLK) {
2701 		if (fc->no_lock) {
2702 			posix_test_lock(file, fl);
2703 			err = 0;
2704 		} else
2705 			err = fuse_getlk(file, fl);
2706 	} else {
2707 		if (fc->no_lock)
2708 			err = posix_lock_file(file, fl, NULL);
2709 		else
2710 			err = fuse_setlk(file, fl, 0);
2711 	}
2712 	return err;
2713 }
2714 
2715 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2716 {
2717 	struct inode *inode = file_inode(file);
2718 	struct fuse_conn *fc = get_fuse_conn(inode);
2719 	int err;
2720 
2721 	if (fc->no_flock) {
2722 		err = locks_lock_file_wait(file, fl);
2723 	} else {
2724 		struct fuse_file *ff = file->private_data;
2725 
2726 		/* emulate flock with POSIX locks */
2727 		ff->flock = true;
2728 		err = fuse_setlk(file, fl, 1);
2729 	}
2730 
2731 	return err;
2732 }
2733 
2734 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2735 {
2736 	struct inode *inode = mapping->host;
2737 	struct fuse_mount *fm = get_fuse_mount(inode);
2738 	FUSE_ARGS(args);
2739 	struct fuse_bmap_in inarg;
2740 	struct fuse_bmap_out outarg;
2741 	int err;
2742 
2743 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2744 		return 0;
2745 
2746 	memset(&inarg, 0, sizeof(inarg));
2747 	inarg.block = block;
2748 	inarg.blocksize = inode->i_sb->s_blocksize;
2749 	args.opcode = FUSE_BMAP;
2750 	args.nodeid = get_node_id(inode);
2751 	args.in_numargs = 1;
2752 	args.in_args[0].size = sizeof(inarg);
2753 	args.in_args[0].value = &inarg;
2754 	args.out_numargs = 1;
2755 	args.out_args[0].size = sizeof(outarg);
2756 	args.out_args[0].value = &outarg;
2757 	err = fuse_simple_request(fm, &args);
2758 	if (err == -ENOSYS)
2759 		fm->fc->no_bmap = 1;
2760 
2761 	return err ? 0 : outarg.block;
2762 }
2763 
2764 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2765 {
2766 	struct inode *inode = file->f_mapping->host;
2767 	struct fuse_mount *fm = get_fuse_mount(inode);
2768 	struct fuse_file *ff = file->private_data;
2769 	FUSE_ARGS(args);
2770 	struct fuse_lseek_in inarg = {
2771 		.fh = ff->fh,
2772 		.offset = offset,
2773 		.whence = whence
2774 	};
2775 	struct fuse_lseek_out outarg;
2776 	int err;
2777 
2778 	if (fm->fc->no_lseek)
2779 		goto fallback;
2780 
2781 	args.opcode = FUSE_LSEEK;
2782 	args.nodeid = ff->nodeid;
2783 	args.in_numargs = 1;
2784 	args.in_args[0].size = sizeof(inarg);
2785 	args.in_args[0].value = &inarg;
2786 	args.out_numargs = 1;
2787 	args.out_args[0].size = sizeof(outarg);
2788 	args.out_args[0].value = &outarg;
2789 	err = fuse_simple_request(fm, &args);
2790 	if (err) {
2791 		if (err == -ENOSYS) {
2792 			fm->fc->no_lseek = 1;
2793 			goto fallback;
2794 		}
2795 		return err;
2796 	}
2797 
2798 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2799 
2800 fallback:
2801 	err = fuse_update_attributes(inode, file, STATX_SIZE);
2802 	if (!err)
2803 		return generic_file_llseek(file, offset, whence);
2804 	else
2805 		return err;
2806 }
2807 
2808 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2809 {
2810 	loff_t retval;
2811 	struct inode *inode = file_inode(file);
2812 
2813 	switch (whence) {
2814 	case SEEK_SET:
2815 	case SEEK_CUR:
2816 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2817 		retval = generic_file_llseek(file, offset, whence);
2818 		break;
2819 	case SEEK_END:
2820 		inode_lock(inode);
2821 		retval = fuse_update_attributes(inode, file, STATX_SIZE);
2822 		if (!retval)
2823 			retval = generic_file_llseek(file, offset, whence);
2824 		inode_unlock(inode);
2825 		break;
2826 	case SEEK_HOLE:
2827 	case SEEK_DATA:
2828 		inode_lock(inode);
2829 		retval = fuse_lseek(file, offset, whence);
2830 		inode_unlock(inode);
2831 		break;
2832 	default:
2833 		retval = -EINVAL;
2834 	}
2835 
2836 	return retval;
2837 }
2838 
2839 /*
2840  * All files which have been polled are linked to RB tree
2841  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2842  * find the matching one.
2843  */
2844 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2845 					      struct rb_node **parent_out)
2846 {
2847 	struct rb_node **link = &fc->polled_files.rb_node;
2848 	struct rb_node *last = NULL;
2849 
2850 	while (*link) {
2851 		struct fuse_file *ff;
2852 
2853 		last = *link;
2854 		ff = rb_entry(last, struct fuse_file, polled_node);
2855 
2856 		if (kh < ff->kh)
2857 			link = &last->rb_left;
2858 		else if (kh > ff->kh)
2859 			link = &last->rb_right;
2860 		else
2861 			return link;
2862 	}
2863 
2864 	if (parent_out)
2865 		*parent_out = last;
2866 	return link;
2867 }
2868 
2869 /*
2870  * The file is about to be polled.  Make sure it's on the polled_files
2871  * RB tree.  Note that files once added to the polled_files tree are
2872  * not removed before the file is released.  This is because a file
2873  * polled once is likely to be polled again.
2874  */
2875 static void fuse_register_polled_file(struct fuse_conn *fc,
2876 				      struct fuse_file *ff)
2877 {
2878 	spin_lock(&fc->lock);
2879 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2880 		struct rb_node **link, *parent;
2881 
2882 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2883 		BUG_ON(*link);
2884 		rb_link_node(&ff->polled_node, parent, link);
2885 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2886 	}
2887 	spin_unlock(&fc->lock);
2888 }
2889 
2890 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2891 {
2892 	struct fuse_file *ff = file->private_data;
2893 	struct fuse_mount *fm = ff->fm;
2894 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2895 	struct fuse_poll_out outarg;
2896 	FUSE_ARGS(args);
2897 	int err;
2898 
2899 	if (fm->fc->no_poll)
2900 		return DEFAULT_POLLMASK;
2901 
2902 	poll_wait(file, &ff->poll_wait, wait);
2903 	inarg.events = mangle_poll(poll_requested_events(wait));
2904 
2905 	/*
2906 	 * Ask for notification iff there's someone waiting for it.
2907 	 * The client may ignore the flag and always notify.
2908 	 */
2909 	if (waitqueue_active(&ff->poll_wait)) {
2910 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2911 		fuse_register_polled_file(fm->fc, ff);
2912 	}
2913 
2914 	args.opcode = FUSE_POLL;
2915 	args.nodeid = ff->nodeid;
2916 	args.in_numargs = 1;
2917 	args.in_args[0].size = sizeof(inarg);
2918 	args.in_args[0].value = &inarg;
2919 	args.out_numargs = 1;
2920 	args.out_args[0].size = sizeof(outarg);
2921 	args.out_args[0].value = &outarg;
2922 	err = fuse_simple_request(fm, &args);
2923 
2924 	if (!err)
2925 		return demangle_poll(outarg.revents);
2926 	if (err == -ENOSYS) {
2927 		fm->fc->no_poll = 1;
2928 		return DEFAULT_POLLMASK;
2929 	}
2930 	return EPOLLERR;
2931 }
2932 EXPORT_SYMBOL_GPL(fuse_file_poll);
2933 
2934 /*
2935  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2936  * wakes up the poll waiters.
2937  */
2938 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2939 			    struct fuse_notify_poll_wakeup_out *outarg)
2940 {
2941 	u64 kh = outarg->kh;
2942 	struct rb_node **link;
2943 
2944 	spin_lock(&fc->lock);
2945 
2946 	link = fuse_find_polled_node(fc, kh, NULL);
2947 	if (*link) {
2948 		struct fuse_file *ff;
2949 
2950 		ff = rb_entry(*link, struct fuse_file, polled_node);
2951 		wake_up_interruptible_sync(&ff->poll_wait);
2952 	}
2953 
2954 	spin_unlock(&fc->lock);
2955 	return 0;
2956 }
2957 
2958 static void fuse_do_truncate(struct file *file)
2959 {
2960 	struct inode *inode = file->f_mapping->host;
2961 	struct iattr attr;
2962 
2963 	attr.ia_valid = ATTR_SIZE;
2964 	attr.ia_size = i_size_read(inode);
2965 
2966 	attr.ia_file = file;
2967 	attr.ia_valid |= ATTR_FILE;
2968 
2969 	fuse_do_setattr(file_dentry(file), &attr, file);
2970 }
2971 
2972 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2973 {
2974 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2975 }
2976 
2977 static ssize_t
2978 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2979 {
2980 	DECLARE_COMPLETION_ONSTACK(wait);
2981 	ssize_t ret = 0;
2982 	struct file *file = iocb->ki_filp;
2983 	struct fuse_file *ff = file->private_data;
2984 	loff_t pos = 0;
2985 	struct inode *inode;
2986 	loff_t i_size;
2987 	size_t count = iov_iter_count(iter), shortened = 0;
2988 	loff_t offset = iocb->ki_pos;
2989 	struct fuse_io_priv *io;
2990 
2991 	pos = offset;
2992 	inode = file->f_mapping->host;
2993 	i_size = i_size_read(inode);
2994 
2995 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
2996 		return 0;
2997 
2998 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2999 	if (!io)
3000 		return -ENOMEM;
3001 	spin_lock_init(&io->lock);
3002 	kref_init(&io->refcnt);
3003 	io->reqs = 1;
3004 	io->bytes = -1;
3005 	io->size = 0;
3006 	io->offset = offset;
3007 	io->write = (iov_iter_rw(iter) == WRITE);
3008 	io->err = 0;
3009 	/*
3010 	 * By default, we want to optimize all I/Os with async request
3011 	 * submission to the client filesystem if supported.
3012 	 */
3013 	io->async = ff->fm->fc->async_dio;
3014 	io->iocb = iocb;
3015 	io->blocking = is_sync_kiocb(iocb);
3016 
3017 	/* optimization for short read */
3018 	if (io->async && !io->write && offset + count > i_size) {
3019 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3020 		shortened = count - iov_iter_count(iter);
3021 		count -= shortened;
3022 	}
3023 
3024 	/*
3025 	 * We cannot asynchronously extend the size of a file.
3026 	 * In such case the aio will behave exactly like sync io.
3027 	 */
3028 	if ((offset + count > i_size) && io->write)
3029 		io->blocking = true;
3030 
3031 	if (io->async && io->blocking) {
3032 		/*
3033 		 * Additional reference to keep io around after
3034 		 * calling fuse_aio_complete()
3035 		 */
3036 		kref_get(&io->refcnt);
3037 		io->done = &wait;
3038 	}
3039 
3040 	if (iov_iter_rw(iter) == WRITE) {
3041 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3042 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3043 	} else {
3044 		ret = __fuse_direct_read(io, iter, &pos);
3045 	}
3046 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3047 
3048 	if (io->async) {
3049 		bool blocking = io->blocking;
3050 
3051 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3052 
3053 		/* we have a non-extending, async request, so return */
3054 		if (!blocking)
3055 			return -EIOCBQUEUED;
3056 
3057 		wait_for_completion(&wait);
3058 		ret = fuse_get_res_by_io(io);
3059 	}
3060 
3061 	kref_put(&io->refcnt, fuse_io_release);
3062 
3063 	if (iov_iter_rw(iter) == WRITE) {
3064 		fuse_write_update_attr(inode, pos, ret);
3065 		/* For extending writes we already hold exclusive lock */
3066 		if (ret < 0 && offset + count > i_size)
3067 			fuse_do_truncate(file);
3068 	}
3069 
3070 	return ret;
3071 }
3072 
3073 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3074 {
3075 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3076 
3077 	if (!err)
3078 		fuse_sync_writes(inode);
3079 
3080 	return err;
3081 }
3082 
3083 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3084 				loff_t length)
3085 {
3086 	struct fuse_file *ff = file->private_data;
3087 	struct inode *inode = file_inode(file);
3088 	struct fuse_inode *fi = get_fuse_inode(inode);
3089 	struct fuse_mount *fm = ff->fm;
3090 	FUSE_ARGS(args);
3091 	struct fuse_fallocate_in inarg = {
3092 		.fh = ff->fh,
3093 		.offset = offset,
3094 		.length = length,
3095 		.mode = mode
3096 	};
3097 	int err;
3098 	bool block_faults = FUSE_IS_DAX(inode) &&
3099 		(!(mode & FALLOC_FL_KEEP_SIZE) ||
3100 		 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3101 
3102 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3103 		     FALLOC_FL_ZERO_RANGE))
3104 		return -EOPNOTSUPP;
3105 
3106 	if (fm->fc->no_fallocate)
3107 		return -EOPNOTSUPP;
3108 
3109 	inode_lock(inode);
3110 	if (block_faults) {
3111 		filemap_invalidate_lock(inode->i_mapping);
3112 		err = fuse_dax_break_layouts(inode, 0, 0);
3113 		if (err)
3114 			goto out;
3115 	}
3116 
3117 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3118 		loff_t endbyte = offset + length - 1;
3119 
3120 		err = fuse_writeback_range(inode, offset, endbyte);
3121 		if (err)
3122 			goto out;
3123 	}
3124 
3125 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3126 	    offset + length > i_size_read(inode)) {
3127 		err = inode_newsize_ok(inode, offset + length);
3128 		if (err)
3129 			goto out;
3130 	}
3131 
3132 	err = file_modified(file);
3133 	if (err)
3134 		goto out;
3135 
3136 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3137 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3138 
3139 	args.opcode = FUSE_FALLOCATE;
3140 	args.nodeid = ff->nodeid;
3141 	args.in_numargs = 1;
3142 	args.in_args[0].size = sizeof(inarg);
3143 	args.in_args[0].value = &inarg;
3144 	err = fuse_simple_request(fm, &args);
3145 	if (err == -ENOSYS) {
3146 		fm->fc->no_fallocate = 1;
3147 		err = -EOPNOTSUPP;
3148 	}
3149 	if (err)
3150 		goto out;
3151 
3152 	/* we could have extended the file */
3153 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3154 		if (fuse_write_update_attr(inode, offset + length, length))
3155 			file_update_time(file);
3156 	}
3157 
3158 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3159 		truncate_pagecache_range(inode, offset, offset + length - 1);
3160 
3161 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3162 
3163 out:
3164 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3165 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3166 
3167 	if (block_faults)
3168 		filemap_invalidate_unlock(inode->i_mapping);
3169 
3170 	inode_unlock(inode);
3171 
3172 	fuse_flush_time_update(inode);
3173 
3174 	return err;
3175 }
3176 
3177 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3178 				      struct file *file_out, loff_t pos_out,
3179 				      size_t len, unsigned int flags)
3180 {
3181 	struct fuse_file *ff_in = file_in->private_data;
3182 	struct fuse_file *ff_out = file_out->private_data;
3183 	struct inode *inode_in = file_inode(file_in);
3184 	struct inode *inode_out = file_inode(file_out);
3185 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3186 	struct fuse_mount *fm = ff_in->fm;
3187 	struct fuse_conn *fc = fm->fc;
3188 	FUSE_ARGS(args);
3189 	struct fuse_copy_file_range_in inarg = {
3190 		.fh_in = ff_in->fh,
3191 		.off_in = pos_in,
3192 		.nodeid_out = ff_out->nodeid,
3193 		.fh_out = ff_out->fh,
3194 		.off_out = pos_out,
3195 		.len = len,
3196 		.flags = flags
3197 	};
3198 	struct fuse_write_out outarg;
3199 	ssize_t err;
3200 	/* mark unstable when write-back is not used, and file_out gets
3201 	 * extended */
3202 	bool is_unstable = (!fc->writeback_cache) &&
3203 			   ((pos_out + len) > inode_out->i_size);
3204 
3205 	if (fc->no_copy_file_range)
3206 		return -EOPNOTSUPP;
3207 
3208 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3209 		return -EXDEV;
3210 
3211 	inode_lock(inode_in);
3212 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3213 	inode_unlock(inode_in);
3214 	if (err)
3215 		return err;
3216 
3217 	inode_lock(inode_out);
3218 
3219 	err = file_modified(file_out);
3220 	if (err)
3221 		goto out;
3222 
3223 	/*
3224 	 * Write out dirty pages in the destination file before sending the COPY
3225 	 * request to userspace.  After the request is completed, truncate off
3226 	 * pages (including partial ones) from the cache that have been copied,
3227 	 * since these contain stale data at that point.
3228 	 *
3229 	 * This should be mostly correct, but if the COPY writes to partial
3230 	 * pages (at the start or end) and the parts not covered by the COPY are
3231 	 * written through a memory map after calling fuse_writeback_range(),
3232 	 * then these partial page modifications will be lost on truncation.
3233 	 *
3234 	 * It is unlikely that someone would rely on such mixed style
3235 	 * modifications.  Yet this does give less guarantees than if the
3236 	 * copying was performed with write(2).
3237 	 *
3238 	 * To fix this a mapping->invalidate_lock could be used to prevent new
3239 	 * faults while the copy is ongoing.
3240 	 */
3241 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3242 	if (err)
3243 		goto out;
3244 
3245 	if (is_unstable)
3246 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3247 
3248 	args.opcode = FUSE_COPY_FILE_RANGE;
3249 	args.nodeid = ff_in->nodeid;
3250 	args.in_numargs = 1;
3251 	args.in_args[0].size = sizeof(inarg);
3252 	args.in_args[0].value = &inarg;
3253 	args.out_numargs = 1;
3254 	args.out_args[0].size = sizeof(outarg);
3255 	args.out_args[0].value = &outarg;
3256 	err = fuse_simple_request(fm, &args);
3257 	if (err == -ENOSYS) {
3258 		fc->no_copy_file_range = 1;
3259 		err = -EOPNOTSUPP;
3260 	}
3261 	if (err)
3262 		goto out;
3263 
3264 	truncate_inode_pages_range(inode_out->i_mapping,
3265 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3266 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3267 
3268 	file_update_time(file_out);
3269 	fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3270 
3271 	err = outarg.size;
3272 out:
3273 	if (is_unstable)
3274 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3275 
3276 	inode_unlock(inode_out);
3277 	file_accessed(file_in);
3278 
3279 	fuse_flush_time_update(inode_out);
3280 
3281 	return err;
3282 }
3283 
3284 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3285 				    struct file *dst_file, loff_t dst_off,
3286 				    size_t len, unsigned int flags)
3287 {
3288 	ssize_t ret;
3289 
3290 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3291 				     len, flags);
3292 
3293 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3294 		ret = splice_copy_file_range(src_file, src_off, dst_file,
3295 					     dst_off, len);
3296 	return ret;
3297 }
3298 
3299 static const struct file_operations fuse_file_operations = {
3300 	.llseek		= fuse_file_llseek,
3301 	.read_iter	= fuse_file_read_iter,
3302 	.write_iter	= fuse_file_write_iter,
3303 	.mmap		= fuse_file_mmap,
3304 	.open		= fuse_open,
3305 	.flush		= fuse_flush,
3306 	.release	= fuse_release,
3307 	.fsync		= fuse_fsync,
3308 	.lock		= fuse_file_lock,
3309 	.get_unmapped_area = thp_get_unmapped_area,
3310 	.flock		= fuse_file_flock,
3311 	.splice_read	= fuse_splice_read,
3312 	.splice_write	= fuse_splice_write,
3313 	.unlocked_ioctl	= fuse_file_ioctl,
3314 	.compat_ioctl	= fuse_file_compat_ioctl,
3315 	.poll		= fuse_file_poll,
3316 	.fallocate	= fuse_file_fallocate,
3317 	.copy_file_range = fuse_copy_file_range,
3318 };
3319 
3320 static const struct address_space_operations fuse_file_aops  = {
3321 	.read_folio	= fuse_read_folio,
3322 	.readahead	= fuse_readahead,
3323 	.writepages	= fuse_writepages,
3324 	.launder_folio	= fuse_launder_folio,
3325 	.dirty_folio	= filemap_dirty_folio,
3326 	.migrate_folio	= filemap_migrate_folio,
3327 	.bmap		= fuse_bmap,
3328 	.direct_IO	= fuse_direct_IO,
3329 	.write_begin	= fuse_write_begin,
3330 	.write_end	= fuse_write_end,
3331 };
3332 
3333 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3334 {
3335 	struct fuse_inode *fi = get_fuse_inode(inode);
3336 
3337 	inode->i_fop = &fuse_file_operations;
3338 	inode->i_data.a_ops = &fuse_file_aops;
3339 
3340 	INIT_LIST_HEAD(&fi->write_files);
3341 	INIT_LIST_HEAD(&fi->queued_writes);
3342 	fi->writectr = 0;
3343 	fi->iocachectr = 0;
3344 	init_waitqueue_head(&fi->page_waitq);
3345 	init_waitqueue_head(&fi->direct_io_waitq);
3346 	fi->writepages = RB_ROOT;
3347 
3348 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3349 		fuse_dax_inode_init(inode, flags);
3350 }
3351