xref: /linux/fs/fuse/file.c (revision b2e44430b6348f68f56e78e932e6312f12128778)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 
22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
23 			  unsigned int open_flags, int opcode,
24 			  struct fuse_open_out *outargp)
25 {
26 	struct fuse_open_in inarg;
27 	FUSE_ARGS(args);
28 
29 	memset(&inarg, 0, sizeof(inarg));
30 	inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
31 	if (!fm->fc->atomic_o_trunc)
32 		inarg.flags &= ~O_TRUNC;
33 
34 	if (fm->fc->handle_killpriv_v2 &&
35 	    (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
36 		inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
37 	}
38 
39 	args.opcode = opcode;
40 	args.nodeid = nodeid;
41 	args.in_numargs = 1;
42 	args.in_args[0].size = sizeof(inarg);
43 	args.in_args[0].value = &inarg;
44 	args.out_numargs = 1;
45 	args.out_args[0].size = sizeof(*outargp);
46 	args.out_args[0].value = outargp;
47 
48 	return fuse_simple_request(fm, &args);
49 }
50 
51 struct fuse_release_args {
52 	struct fuse_args args;
53 	struct fuse_release_in inarg;
54 	struct inode *inode;
55 };
56 
57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
58 {
59 	struct fuse_file *ff;
60 
61 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
62 	if (unlikely(!ff))
63 		return NULL;
64 
65 	ff->fm = fm;
66 	ff->release_args = kzalloc(sizeof(*ff->release_args),
67 				   GFP_KERNEL_ACCOUNT);
68 	if (!ff->release_args) {
69 		kfree(ff);
70 		return NULL;
71 	}
72 
73 	INIT_LIST_HEAD(&ff->write_entry);
74 	mutex_init(&ff->readdir.lock);
75 	refcount_set(&ff->count, 1);
76 	RB_CLEAR_NODE(&ff->polled_node);
77 	init_waitqueue_head(&ff->poll_wait);
78 
79 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
80 
81 	return ff;
82 }
83 
84 void fuse_file_free(struct fuse_file *ff)
85 {
86 	kfree(ff->release_args);
87 	mutex_destroy(&ff->readdir.lock);
88 	kfree(ff);
89 }
90 
91 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
92 {
93 	refcount_inc(&ff->count);
94 	return ff;
95 }
96 
97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
98 			     int error)
99 {
100 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
101 
102 	iput(ra->inode);
103 	kfree(ra);
104 }
105 
106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
107 {
108 	if (refcount_dec_and_test(&ff->count)) {
109 		struct fuse_args *args = &ff->release_args->args;
110 
111 		if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
112 			/* Do nothing when client does not implement 'open' */
113 			fuse_release_end(ff->fm, args, 0);
114 		} else if (sync) {
115 			fuse_simple_request(ff->fm, args);
116 			fuse_release_end(ff->fm, args, 0);
117 		} else {
118 			args->end = fuse_release_end;
119 			if (fuse_simple_background(ff->fm, args,
120 						   GFP_KERNEL | __GFP_NOFAIL))
121 				fuse_release_end(ff->fm, args, -ENOTCONN);
122 		}
123 		kfree(ff);
124 	}
125 }
126 
127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
128 				 unsigned int open_flags, bool isdir)
129 {
130 	struct fuse_conn *fc = fm->fc;
131 	struct fuse_file *ff;
132 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
133 
134 	ff = fuse_file_alloc(fm);
135 	if (!ff)
136 		return ERR_PTR(-ENOMEM);
137 
138 	ff->fh = 0;
139 	/* Default for no-open */
140 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 	if (isdir ? !fc->no_opendir : !fc->no_open) {
142 		struct fuse_open_out outarg;
143 		int err;
144 
145 		err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg);
146 		if (!err) {
147 			ff->fh = outarg.fh;
148 			ff->open_flags = outarg.open_flags;
149 
150 		} else if (err != -ENOSYS) {
151 			fuse_file_free(ff);
152 			return ERR_PTR(err);
153 		} else {
154 			if (isdir)
155 				fc->no_opendir = 1;
156 			else
157 				fc->no_open = 1;
158 		}
159 	}
160 
161 	if (isdir)
162 		ff->open_flags &= ~FOPEN_DIRECT_IO;
163 
164 	ff->nodeid = nodeid;
165 
166 	return ff;
167 }
168 
169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
170 		 bool isdir)
171 {
172 	struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
173 
174 	if (!IS_ERR(ff))
175 		file->private_data = ff;
176 
177 	return PTR_ERR_OR_ZERO(ff);
178 }
179 EXPORT_SYMBOL_GPL(fuse_do_open);
180 
181 static void fuse_link_write_file(struct file *file)
182 {
183 	struct inode *inode = file_inode(file);
184 	struct fuse_inode *fi = get_fuse_inode(inode);
185 	struct fuse_file *ff = file->private_data;
186 	/*
187 	 * file may be written through mmap, so chain it onto the
188 	 * inodes's write_file list
189 	 */
190 	spin_lock(&fi->lock);
191 	if (list_empty(&ff->write_entry))
192 		list_add(&ff->write_entry, &fi->write_files);
193 	spin_unlock(&fi->lock);
194 }
195 
196 void fuse_finish_open(struct inode *inode, struct file *file)
197 {
198 	struct fuse_file *ff = file->private_data;
199 	struct fuse_conn *fc = get_fuse_conn(inode);
200 
201 	if (ff->open_flags & FOPEN_STREAM)
202 		stream_open(inode, file);
203 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
204 		nonseekable_open(inode, file);
205 
206 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
207 		struct fuse_inode *fi = get_fuse_inode(inode);
208 
209 		spin_lock(&fi->lock);
210 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
211 		i_size_write(inode, 0);
212 		spin_unlock(&fi->lock);
213 		truncate_pagecache(inode, 0);
214 		file_update_time(file);
215 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
216 	} else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
217 		invalidate_inode_pages2(inode->i_mapping);
218 	}
219 
220 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
221 		fuse_link_write_file(file);
222 }
223 
224 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
225 {
226 	struct fuse_mount *fm = get_fuse_mount(inode);
227 	struct fuse_conn *fc = fm->fc;
228 	int err;
229 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
230 			  fc->atomic_o_trunc &&
231 			  fc->writeback_cache;
232 	bool dax_truncate = (file->f_flags & O_TRUNC) &&
233 			  fc->atomic_o_trunc && FUSE_IS_DAX(inode);
234 
235 	if (fuse_is_bad(inode))
236 		return -EIO;
237 
238 	err = generic_file_open(inode, file);
239 	if (err)
240 		return err;
241 
242 	if (is_wb_truncate || dax_truncate) {
243 		inode_lock(inode);
244 		fuse_set_nowrite(inode);
245 	}
246 
247 	if (dax_truncate) {
248 		filemap_invalidate_lock(inode->i_mapping);
249 		err = fuse_dax_break_layouts(inode, 0, 0);
250 		if (err)
251 			goto out;
252 	}
253 
254 	err = fuse_do_open(fm, get_node_id(inode), file, isdir);
255 	if (!err)
256 		fuse_finish_open(inode, file);
257 
258 out:
259 	if (dax_truncate)
260 		filemap_invalidate_unlock(inode->i_mapping);
261 
262 	if (is_wb_truncate | dax_truncate) {
263 		fuse_release_nowrite(inode);
264 		inode_unlock(inode);
265 	}
266 
267 	return err;
268 }
269 
270 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
271 				 unsigned int flags, int opcode)
272 {
273 	struct fuse_conn *fc = ff->fm->fc;
274 	struct fuse_release_args *ra = ff->release_args;
275 
276 	/* Inode is NULL on error path of fuse_create_open() */
277 	if (likely(fi)) {
278 		spin_lock(&fi->lock);
279 		list_del(&ff->write_entry);
280 		spin_unlock(&fi->lock);
281 	}
282 	spin_lock(&fc->lock);
283 	if (!RB_EMPTY_NODE(&ff->polled_node))
284 		rb_erase(&ff->polled_node, &fc->polled_files);
285 	spin_unlock(&fc->lock);
286 
287 	wake_up_interruptible_all(&ff->poll_wait);
288 
289 	ra->inarg.fh = ff->fh;
290 	ra->inarg.flags = flags;
291 	ra->args.in_numargs = 1;
292 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
293 	ra->args.in_args[0].value = &ra->inarg;
294 	ra->args.opcode = opcode;
295 	ra->args.nodeid = ff->nodeid;
296 	ra->args.force = true;
297 	ra->args.nocreds = true;
298 }
299 
300 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
301 		       unsigned int open_flags, fl_owner_t id, bool isdir)
302 {
303 	struct fuse_inode *fi = get_fuse_inode(inode);
304 	struct fuse_release_args *ra = ff->release_args;
305 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
306 
307 	fuse_prepare_release(fi, ff, open_flags, opcode);
308 
309 	if (ff->flock) {
310 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
311 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
312 	}
313 	/* Hold inode until release is finished */
314 	ra->inode = igrab(inode);
315 
316 	/*
317 	 * Normally this will send the RELEASE request, however if
318 	 * some asynchronous READ or WRITE requests are outstanding,
319 	 * the sending will be delayed.
320 	 *
321 	 * Make the release synchronous if this is a fuseblk mount,
322 	 * synchronous RELEASE is allowed (and desirable) in this case
323 	 * because the server can be trusted not to screw up.
324 	 */
325 	fuse_file_put(ff, ff->fm->fc->destroy, isdir);
326 }
327 
328 void fuse_release_common(struct file *file, bool isdir)
329 {
330 	fuse_file_release(file_inode(file), file->private_data, file->f_flags,
331 			  (fl_owner_t) file, isdir);
332 }
333 
334 static int fuse_open(struct inode *inode, struct file *file)
335 {
336 	return fuse_open_common(inode, file, false);
337 }
338 
339 static int fuse_release(struct inode *inode, struct file *file)
340 {
341 	fuse_release_common(file, false);
342 
343 	/* return value is ignored by VFS */
344 	return 0;
345 }
346 
347 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
348 		       unsigned int flags)
349 {
350 	WARN_ON(refcount_read(&ff->count) > 1);
351 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
352 	/*
353 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
354 	 * synchronous, we are fine with not doing igrab() here"
355 	 */
356 	fuse_file_put(ff, true, false);
357 }
358 EXPORT_SYMBOL_GPL(fuse_sync_release);
359 
360 /*
361  * Scramble the ID space with XTEA, so that the value of the files_struct
362  * pointer is not exposed to userspace.
363  */
364 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
365 {
366 	u32 *k = fc->scramble_key;
367 	u64 v = (unsigned long) id;
368 	u32 v0 = v;
369 	u32 v1 = v >> 32;
370 	u32 sum = 0;
371 	int i;
372 
373 	for (i = 0; i < 32; i++) {
374 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
375 		sum += 0x9E3779B9;
376 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
377 	}
378 
379 	return (u64) v0 + ((u64) v1 << 32);
380 }
381 
382 struct fuse_writepage_args {
383 	struct fuse_io_args ia;
384 	struct rb_node writepages_entry;
385 	struct list_head queue_entry;
386 	struct fuse_writepage_args *next;
387 	struct inode *inode;
388 	struct fuse_sync_bucket *bucket;
389 };
390 
391 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
392 					    pgoff_t idx_from, pgoff_t idx_to)
393 {
394 	struct rb_node *n;
395 
396 	n = fi->writepages.rb_node;
397 
398 	while (n) {
399 		struct fuse_writepage_args *wpa;
400 		pgoff_t curr_index;
401 
402 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
403 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
404 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
405 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
406 			n = n->rb_right;
407 		else if (idx_to < curr_index)
408 			n = n->rb_left;
409 		else
410 			return wpa;
411 	}
412 	return NULL;
413 }
414 
415 /*
416  * Check if any page in a range is under writeback
417  *
418  * This is currently done by walking the list of writepage requests
419  * for the inode, which can be pretty inefficient.
420  */
421 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
422 				   pgoff_t idx_to)
423 {
424 	struct fuse_inode *fi = get_fuse_inode(inode);
425 	bool found;
426 
427 	spin_lock(&fi->lock);
428 	found = fuse_find_writeback(fi, idx_from, idx_to);
429 	spin_unlock(&fi->lock);
430 
431 	return found;
432 }
433 
434 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
435 {
436 	return fuse_range_is_writeback(inode, index, index);
437 }
438 
439 /*
440  * Wait for page writeback to be completed.
441  *
442  * Since fuse doesn't rely on the VM writeback tracking, this has to
443  * use some other means.
444  */
445 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
446 {
447 	struct fuse_inode *fi = get_fuse_inode(inode);
448 
449 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
450 }
451 
452 /*
453  * Wait for all pending writepages on the inode to finish.
454  *
455  * This is currently done by blocking further writes with FUSE_NOWRITE
456  * and waiting for all sent writes to complete.
457  *
458  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
459  * could conflict with truncation.
460  */
461 static void fuse_sync_writes(struct inode *inode)
462 {
463 	fuse_set_nowrite(inode);
464 	fuse_release_nowrite(inode);
465 }
466 
467 static int fuse_flush(struct file *file, fl_owner_t id)
468 {
469 	struct inode *inode = file_inode(file);
470 	struct fuse_mount *fm = get_fuse_mount(inode);
471 	struct fuse_file *ff = file->private_data;
472 	struct fuse_flush_in inarg;
473 	FUSE_ARGS(args);
474 	int err;
475 
476 	if (fuse_is_bad(inode))
477 		return -EIO;
478 
479 	if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
480 		return 0;
481 
482 	err = write_inode_now(inode, 1);
483 	if (err)
484 		return err;
485 
486 	inode_lock(inode);
487 	fuse_sync_writes(inode);
488 	inode_unlock(inode);
489 
490 	err = filemap_check_errors(file->f_mapping);
491 	if (err)
492 		return err;
493 
494 	err = 0;
495 	if (fm->fc->no_flush)
496 		goto inval_attr_out;
497 
498 	memset(&inarg, 0, sizeof(inarg));
499 	inarg.fh = ff->fh;
500 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
501 	args.opcode = FUSE_FLUSH;
502 	args.nodeid = get_node_id(inode);
503 	args.in_numargs = 1;
504 	args.in_args[0].size = sizeof(inarg);
505 	args.in_args[0].value = &inarg;
506 	args.force = true;
507 
508 	err = fuse_simple_request(fm, &args);
509 	if (err == -ENOSYS) {
510 		fm->fc->no_flush = 1;
511 		err = 0;
512 	}
513 
514 inval_attr_out:
515 	/*
516 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
517 	 * enabled, i_blocks from cached attr may not be accurate.
518 	 */
519 	if (!err && fm->fc->writeback_cache)
520 		fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
521 	return err;
522 }
523 
524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
525 		      int datasync, int opcode)
526 {
527 	struct inode *inode = file->f_mapping->host;
528 	struct fuse_mount *fm = get_fuse_mount(inode);
529 	struct fuse_file *ff = file->private_data;
530 	FUSE_ARGS(args);
531 	struct fuse_fsync_in inarg;
532 
533 	memset(&inarg, 0, sizeof(inarg));
534 	inarg.fh = ff->fh;
535 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
536 	args.opcode = opcode;
537 	args.nodeid = get_node_id(inode);
538 	args.in_numargs = 1;
539 	args.in_args[0].size = sizeof(inarg);
540 	args.in_args[0].value = &inarg;
541 	return fuse_simple_request(fm, &args);
542 }
543 
544 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
545 		      int datasync)
546 {
547 	struct inode *inode = file->f_mapping->host;
548 	struct fuse_conn *fc = get_fuse_conn(inode);
549 	int err;
550 
551 	if (fuse_is_bad(inode))
552 		return -EIO;
553 
554 	inode_lock(inode);
555 
556 	/*
557 	 * Start writeback against all dirty pages of the inode, then
558 	 * wait for all outstanding writes, before sending the FSYNC
559 	 * request.
560 	 */
561 	err = file_write_and_wait_range(file, start, end);
562 	if (err)
563 		goto out;
564 
565 	fuse_sync_writes(inode);
566 
567 	/*
568 	 * Due to implementation of fuse writeback
569 	 * file_write_and_wait_range() does not catch errors.
570 	 * We have to do this directly after fuse_sync_writes()
571 	 */
572 	err = file_check_and_advance_wb_err(file);
573 	if (err)
574 		goto out;
575 
576 	err = sync_inode_metadata(inode, 1);
577 	if (err)
578 		goto out;
579 
580 	if (fc->no_fsync)
581 		goto out;
582 
583 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
584 	if (err == -ENOSYS) {
585 		fc->no_fsync = 1;
586 		err = 0;
587 	}
588 out:
589 	inode_unlock(inode);
590 
591 	return err;
592 }
593 
594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
595 			 size_t count, int opcode)
596 {
597 	struct fuse_file *ff = file->private_data;
598 	struct fuse_args *args = &ia->ap.args;
599 
600 	ia->read.in.fh = ff->fh;
601 	ia->read.in.offset = pos;
602 	ia->read.in.size = count;
603 	ia->read.in.flags = file->f_flags;
604 	args->opcode = opcode;
605 	args->nodeid = ff->nodeid;
606 	args->in_numargs = 1;
607 	args->in_args[0].size = sizeof(ia->read.in);
608 	args->in_args[0].value = &ia->read.in;
609 	args->out_argvar = true;
610 	args->out_numargs = 1;
611 	args->out_args[0].size = count;
612 }
613 
614 static void fuse_release_user_pages(struct fuse_args_pages *ap,
615 				    bool should_dirty)
616 {
617 	unsigned int i;
618 
619 	for (i = 0; i < ap->num_pages; i++) {
620 		if (should_dirty)
621 			set_page_dirty_lock(ap->pages[i]);
622 		put_page(ap->pages[i]);
623 	}
624 }
625 
626 static void fuse_io_release(struct kref *kref)
627 {
628 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
629 }
630 
631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
632 {
633 	if (io->err)
634 		return io->err;
635 
636 	if (io->bytes >= 0 && io->write)
637 		return -EIO;
638 
639 	return io->bytes < 0 ? io->size : io->bytes;
640 }
641 
642 /**
643  * In case of short read, the caller sets 'pos' to the position of
644  * actual end of fuse request in IO request. Otherwise, if bytes_requested
645  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
646  *
647  * An example:
648  * User requested DIO read of 64K. It was split into two 32K fuse requests,
649  * both submitted asynchronously. The first of them was ACKed by userspace as
650  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
651  * second request was ACKed as short, e.g. only 1K was read, resulting in
652  * pos == 33K.
653  *
654  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
655  * will be equal to the length of the longest contiguous fragment of
656  * transferred data starting from the beginning of IO request.
657  */
658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
659 {
660 	int left;
661 
662 	spin_lock(&io->lock);
663 	if (err)
664 		io->err = io->err ? : err;
665 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
666 		io->bytes = pos;
667 
668 	left = --io->reqs;
669 	if (!left && io->blocking)
670 		complete(io->done);
671 	spin_unlock(&io->lock);
672 
673 	if (!left && !io->blocking) {
674 		ssize_t res = fuse_get_res_by_io(io);
675 
676 		if (res >= 0) {
677 			struct inode *inode = file_inode(io->iocb->ki_filp);
678 			struct fuse_conn *fc = get_fuse_conn(inode);
679 			struct fuse_inode *fi = get_fuse_inode(inode);
680 
681 			spin_lock(&fi->lock);
682 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
683 			spin_unlock(&fi->lock);
684 		}
685 
686 		io->iocb->ki_complete(io->iocb, res);
687 	}
688 
689 	kref_put(&io->refcnt, fuse_io_release);
690 }
691 
692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
693 					  unsigned int npages)
694 {
695 	struct fuse_io_args *ia;
696 
697 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
698 	if (ia) {
699 		ia->io = io;
700 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
701 						&ia->ap.descs);
702 		if (!ia->ap.pages) {
703 			kfree(ia);
704 			ia = NULL;
705 		}
706 	}
707 	return ia;
708 }
709 
710 static void fuse_io_free(struct fuse_io_args *ia)
711 {
712 	kfree(ia->ap.pages);
713 	kfree(ia);
714 }
715 
716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
717 				  int err)
718 {
719 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
720 	struct fuse_io_priv *io = ia->io;
721 	ssize_t pos = -1;
722 
723 	fuse_release_user_pages(&ia->ap, io->should_dirty);
724 
725 	if (err) {
726 		/* Nothing */
727 	} else if (io->write) {
728 		if (ia->write.out.size > ia->write.in.size) {
729 			err = -EIO;
730 		} else if (ia->write.in.size != ia->write.out.size) {
731 			pos = ia->write.in.offset - io->offset +
732 				ia->write.out.size;
733 		}
734 	} else {
735 		u32 outsize = args->out_args[0].size;
736 
737 		if (ia->read.in.size != outsize)
738 			pos = ia->read.in.offset - io->offset + outsize;
739 	}
740 
741 	fuse_aio_complete(io, err, pos);
742 	fuse_io_free(ia);
743 }
744 
745 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
746 				   struct fuse_io_args *ia, size_t num_bytes)
747 {
748 	ssize_t err;
749 	struct fuse_io_priv *io = ia->io;
750 
751 	spin_lock(&io->lock);
752 	kref_get(&io->refcnt);
753 	io->size += num_bytes;
754 	io->reqs++;
755 	spin_unlock(&io->lock);
756 
757 	ia->ap.args.end = fuse_aio_complete_req;
758 	ia->ap.args.may_block = io->should_dirty;
759 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
760 	if (err)
761 		fuse_aio_complete_req(fm, &ia->ap.args, err);
762 
763 	return num_bytes;
764 }
765 
766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
767 			      fl_owner_t owner)
768 {
769 	struct file *file = ia->io->iocb->ki_filp;
770 	struct fuse_file *ff = file->private_data;
771 	struct fuse_mount *fm = ff->fm;
772 
773 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
774 	if (owner != NULL) {
775 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
776 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
777 	}
778 
779 	if (ia->io->async)
780 		return fuse_async_req_send(fm, ia, count);
781 
782 	return fuse_simple_request(fm, &ia->ap.args);
783 }
784 
785 static void fuse_read_update_size(struct inode *inode, loff_t size,
786 				  u64 attr_ver)
787 {
788 	struct fuse_conn *fc = get_fuse_conn(inode);
789 	struct fuse_inode *fi = get_fuse_inode(inode);
790 
791 	spin_lock(&fi->lock);
792 	if (attr_ver >= fi->attr_version && size < inode->i_size &&
793 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
794 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
795 		i_size_write(inode, size);
796 	}
797 	spin_unlock(&fi->lock);
798 }
799 
800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
801 			    struct fuse_args_pages *ap)
802 {
803 	struct fuse_conn *fc = get_fuse_conn(inode);
804 
805 	/*
806 	 * If writeback_cache is enabled, a short read means there's a hole in
807 	 * the file.  Some data after the hole is in page cache, but has not
808 	 * reached the client fs yet.  So the hole is not present there.
809 	 */
810 	if (!fc->writeback_cache) {
811 		loff_t pos = page_offset(ap->pages[0]) + num_read;
812 		fuse_read_update_size(inode, pos, attr_ver);
813 	}
814 }
815 
816 static int fuse_do_readpage(struct file *file, struct page *page)
817 {
818 	struct inode *inode = page->mapping->host;
819 	struct fuse_mount *fm = get_fuse_mount(inode);
820 	loff_t pos = page_offset(page);
821 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
822 	struct fuse_io_args ia = {
823 		.ap.args.page_zeroing = true,
824 		.ap.args.out_pages = true,
825 		.ap.num_pages = 1,
826 		.ap.pages = &page,
827 		.ap.descs = &desc,
828 	};
829 	ssize_t res;
830 	u64 attr_ver;
831 
832 	/*
833 	 * Page writeback can extend beyond the lifetime of the
834 	 * page-cache page, so make sure we read a properly synced
835 	 * page.
836 	 */
837 	fuse_wait_on_page_writeback(inode, page->index);
838 
839 	attr_ver = fuse_get_attr_version(fm->fc);
840 
841 	/* Don't overflow end offset */
842 	if (pos + (desc.length - 1) == LLONG_MAX)
843 		desc.length--;
844 
845 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
846 	res = fuse_simple_request(fm, &ia.ap.args);
847 	if (res < 0)
848 		return res;
849 	/*
850 	 * Short read means EOF.  If file size is larger, truncate it
851 	 */
852 	if (res < desc.length)
853 		fuse_short_read(inode, attr_ver, res, &ia.ap);
854 
855 	SetPageUptodate(page);
856 
857 	return 0;
858 }
859 
860 static int fuse_read_folio(struct file *file, struct folio *folio)
861 {
862 	struct page *page = &folio->page;
863 	struct inode *inode = page->mapping->host;
864 	int err;
865 
866 	err = -EIO;
867 	if (fuse_is_bad(inode))
868 		goto out;
869 
870 	err = fuse_do_readpage(file, page);
871 	fuse_invalidate_atime(inode);
872  out:
873 	unlock_page(page);
874 	return err;
875 }
876 
877 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
878 			       int err)
879 {
880 	int i;
881 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
882 	struct fuse_args_pages *ap = &ia->ap;
883 	size_t count = ia->read.in.size;
884 	size_t num_read = args->out_args[0].size;
885 	struct address_space *mapping = NULL;
886 
887 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
888 		mapping = ap->pages[i]->mapping;
889 
890 	if (mapping) {
891 		struct inode *inode = mapping->host;
892 
893 		/*
894 		 * Short read means EOF. If file size is larger, truncate it
895 		 */
896 		if (!err && num_read < count)
897 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
898 
899 		fuse_invalidate_atime(inode);
900 	}
901 
902 	for (i = 0; i < ap->num_pages; i++) {
903 		struct page *page = ap->pages[i];
904 
905 		if (!err)
906 			SetPageUptodate(page);
907 		else
908 			SetPageError(page);
909 		unlock_page(page);
910 		put_page(page);
911 	}
912 	if (ia->ff)
913 		fuse_file_put(ia->ff, false, false);
914 
915 	fuse_io_free(ia);
916 }
917 
918 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
919 {
920 	struct fuse_file *ff = file->private_data;
921 	struct fuse_mount *fm = ff->fm;
922 	struct fuse_args_pages *ap = &ia->ap;
923 	loff_t pos = page_offset(ap->pages[0]);
924 	size_t count = ap->num_pages << PAGE_SHIFT;
925 	ssize_t res;
926 	int err;
927 
928 	ap->args.out_pages = true;
929 	ap->args.page_zeroing = true;
930 	ap->args.page_replace = true;
931 
932 	/* Don't overflow end offset */
933 	if (pos + (count - 1) == LLONG_MAX) {
934 		count--;
935 		ap->descs[ap->num_pages - 1].length--;
936 	}
937 	WARN_ON((loff_t) (pos + count) < 0);
938 
939 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
940 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
941 	if (fm->fc->async_read) {
942 		ia->ff = fuse_file_get(ff);
943 		ap->args.end = fuse_readpages_end;
944 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
945 		if (!err)
946 			return;
947 	} else {
948 		res = fuse_simple_request(fm, &ap->args);
949 		err = res < 0 ? res : 0;
950 	}
951 	fuse_readpages_end(fm, &ap->args, err);
952 }
953 
954 static void fuse_readahead(struct readahead_control *rac)
955 {
956 	struct inode *inode = rac->mapping->host;
957 	struct fuse_conn *fc = get_fuse_conn(inode);
958 	unsigned int i, max_pages, nr_pages = 0;
959 
960 	if (fuse_is_bad(inode))
961 		return;
962 
963 	max_pages = min_t(unsigned int, fc->max_pages,
964 			fc->max_read / PAGE_SIZE);
965 
966 	for (;;) {
967 		struct fuse_io_args *ia;
968 		struct fuse_args_pages *ap;
969 
970 		if (fc->num_background >= fc->congestion_threshold &&
971 		    rac->ra->async_size >= readahead_count(rac))
972 			/*
973 			 * Congested and only async pages left, so skip the
974 			 * rest.
975 			 */
976 			break;
977 
978 		nr_pages = readahead_count(rac) - nr_pages;
979 		if (nr_pages > max_pages)
980 			nr_pages = max_pages;
981 		if (nr_pages == 0)
982 			break;
983 		ia = fuse_io_alloc(NULL, nr_pages);
984 		if (!ia)
985 			return;
986 		ap = &ia->ap;
987 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
988 		for (i = 0; i < nr_pages; i++) {
989 			fuse_wait_on_page_writeback(inode,
990 						    readahead_index(rac) + i);
991 			ap->descs[i].length = PAGE_SIZE;
992 		}
993 		ap->num_pages = nr_pages;
994 		fuse_send_readpages(ia, rac->file);
995 	}
996 }
997 
998 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
999 {
1000 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1001 	struct fuse_conn *fc = get_fuse_conn(inode);
1002 
1003 	/*
1004 	 * In auto invalidate mode, always update attributes on read.
1005 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1006 	 * i_size is up to date).
1007 	 */
1008 	if (fc->auto_inval_data ||
1009 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1010 		int err;
1011 		err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1012 		if (err)
1013 			return err;
1014 	}
1015 
1016 	return generic_file_read_iter(iocb, to);
1017 }
1018 
1019 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1020 				 loff_t pos, size_t count)
1021 {
1022 	struct fuse_args *args = &ia->ap.args;
1023 
1024 	ia->write.in.fh = ff->fh;
1025 	ia->write.in.offset = pos;
1026 	ia->write.in.size = count;
1027 	args->opcode = FUSE_WRITE;
1028 	args->nodeid = ff->nodeid;
1029 	args->in_numargs = 2;
1030 	if (ff->fm->fc->minor < 9)
1031 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1032 	else
1033 		args->in_args[0].size = sizeof(ia->write.in);
1034 	args->in_args[0].value = &ia->write.in;
1035 	args->in_args[1].size = count;
1036 	args->out_numargs = 1;
1037 	args->out_args[0].size = sizeof(ia->write.out);
1038 	args->out_args[0].value = &ia->write.out;
1039 }
1040 
1041 static unsigned int fuse_write_flags(struct kiocb *iocb)
1042 {
1043 	unsigned int flags = iocb->ki_filp->f_flags;
1044 
1045 	if (iocb->ki_flags & IOCB_DSYNC)
1046 		flags |= O_DSYNC;
1047 	if (iocb->ki_flags & IOCB_SYNC)
1048 		flags |= O_SYNC;
1049 
1050 	return flags;
1051 }
1052 
1053 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1054 			       size_t count, fl_owner_t owner)
1055 {
1056 	struct kiocb *iocb = ia->io->iocb;
1057 	struct file *file = iocb->ki_filp;
1058 	struct fuse_file *ff = file->private_data;
1059 	struct fuse_mount *fm = ff->fm;
1060 	struct fuse_write_in *inarg = &ia->write.in;
1061 	ssize_t err;
1062 
1063 	fuse_write_args_fill(ia, ff, pos, count);
1064 	inarg->flags = fuse_write_flags(iocb);
1065 	if (owner != NULL) {
1066 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1067 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1068 	}
1069 
1070 	if (ia->io->async)
1071 		return fuse_async_req_send(fm, ia, count);
1072 
1073 	err = fuse_simple_request(fm, &ia->ap.args);
1074 	if (!err && ia->write.out.size > count)
1075 		err = -EIO;
1076 
1077 	return err ?: ia->write.out.size;
1078 }
1079 
1080 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1081 {
1082 	struct fuse_conn *fc = get_fuse_conn(inode);
1083 	struct fuse_inode *fi = get_fuse_inode(inode);
1084 	bool ret = false;
1085 
1086 	spin_lock(&fi->lock);
1087 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1088 	if (written > 0 && pos > inode->i_size) {
1089 		i_size_write(inode, pos);
1090 		ret = true;
1091 	}
1092 	spin_unlock(&fi->lock);
1093 
1094 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1095 
1096 	return ret;
1097 }
1098 
1099 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1100 				     struct kiocb *iocb, struct inode *inode,
1101 				     loff_t pos, size_t count)
1102 {
1103 	struct fuse_args_pages *ap = &ia->ap;
1104 	struct file *file = iocb->ki_filp;
1105 	struct fuse_file *ff = file->private_data;
1106 	struct fuse_mount *fm = ff->fm;
1107 	unsigned int offset, i;
1108 	bool short_write;
1109 	int err;
1110 
1111 	for (i = 0; i < ap->num_pages; i++)
1112 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1113 
1114 	fuse_write_args_fill(ia, ff, pos, count);
1115 	ia->write.in.flags = fuse_write_flags(iocb);
1116 	if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1117 		ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1118 
1119 	err = fuse_simple_request(fm, &ap->args);
1120 	if (!err && ia->write.out.size > count)
1121 		err = -EIO;
1122 
1123 	short_write = ia->write.out.size < count;
1124 	offset = ap->descs[0].offset;
1125 	count = ia->write.out.size;
1126 	for (i = 0; i < ap->num_pages; i++) {
1127 		struct page *page = ap->pages[i];
1128 
1129 		if (err) {
1130 			ClearPageUptodate(page);
1131 		} else {
1132 			if (count >= PAGE_SIZE - offset)
1133 				count -= PAGE_SIZE - offset;
1134 			else {
1135 				if (short_write)
1136 					ClearPageUptodate(page);
1137 				count = 0;
1138 			}
1139 			offset = 0;
1140 		}
1141 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1142 			unlock_page(page);
1143 		put_page(page);
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1150 				     struct address_space *mapping,
1151 				     struct iov_iter *ii, loff_t pos,
1152 				     unsigned int max_pages)
1153 {
1154 	struct fuse_args_pages *ap = &ia->ap;
1155 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1156 	unsigned offset = pos & (PAGE_SIZE - 1);
1157 	size_t count = 0;
1158 	int err;
1159 
1160 	ap->args.in_pages = true;
1161 	ap->descs[0].offset = offset;
1162 
1163 	do {
1164 		size_t tmp;
1165 		struct page *page;
1166 		pgoff_t index = pos >> PAGE_SHIFT;
1167 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1168 				     iov_iter_count(ii));
1169 
1170 		bytes = min_t(size_t, bytes, fc->max_write - count);
1171 
1172  again:
1173 		err = -EFAULT;
1174 		if (fault_in_iov_iter_readable(ii, bytes))
1175 			break;
1176 
1177 		err = -ENOMEM;
1178 		page = grab_cache_page_write_begin(mapping, index);
1179 		if (!page)
1180 			break;
1181 
1182 		if (mapping_writably_mapped(mapping))
1183 			flush_dcache_page(page);
1184 
1185 		tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1186 		flush_dcache_page(page);
1187 
1188 		if (!tmp) {
1189 			unlock_page(page);
1190 			put_page(page);
1191 			goto again;
1192 		}
1193 
1194 		err = 0;
1195 		ap->pages[ap->num_pages] = page;
1196 		ap->descs[ap->num_pages].length = tmp;
1197 		ap->num_pages++;
1198 
1199 		count += tmp;
1200 		pos += tmp;
1201 		offset += tmp;
1202 		if (offset == PAGE_SIZE)
1203 			offset = 0;
1204 
1205 		/* If we copied full page, mark it uptodate */
1206 		if (tmp == PAGE_SIZE)
1207 			SetPageUptodate(page);
1208 
1209 		if (PageUptodate(page)) {
1210 			unlock_page(page);
1211 		} else {
1212 			ia->write.page_locked = true;
1213 			break;
1214 		}
1215 		if (!fc->big_writes)
1216 			break;
1217 	} while (iov_iter_count(ii) && count < fc->max_write &&
1218 		 ap->num_pages < max_pages && offset == 0);
1219 
1220 	return count > 0 ? count : err;
1221 }
1222 
1223 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1224 				     unsigned int max_pages)
1225 {
1226 	return min_t(unsigned int,
1227 		     ((pos + len - 1) >> PAGE_SHIFT) -
1228 		     (pos >> PAGE_SHIFT) + 1,
1229 		     max_pages);
1230 }
1231 
1232 static ssize_t fuse_perform_write(struct kiocb *iocb,
1233 				  struct address_space *mapping,
1234 				  struct iov_iter *ii, loff_t pos)
1235 {
1236 	struct inode *inode = mapping->host;
1237 	struct fuse_conn *fc = get_fuse_conn(inode);
1238 	struct fuse_inode *fi = get_fuse_inode(inode);
1239 	int err = 0;
1240 	ssize_t res = 0;
1241 
1242 	if (inode->i_size < pos + iov_iter_count(ii))
1243 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1244 
1245 	do {
1246 		ssize_t count;
1247 		struct fuse_io_args ia = {};
1248 		struct fuse_args_pages *ap = &ia.ap;
1249 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1250 						      fc->max_pages);
1251 
1252 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1253 		if (!ap->pages) {
1254 			err = -ENOMEM;
1255 			break;
1256 		}
1257 
1258 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1259 		if (count <= 0) {
1260 			err = count;
1261 		} else {
1262 			err = fuse_send_write_pages(&ia, iocb, inode,
1263 						    pos, count);
1264 			if (!err) {
1265 				size_t num_written = ia.write.out.size;
1266 
1267 				res += num_written;
1268 				pos += num_written;
1269 
1270 				/* break out of the loop on short write */
1271 				if (num_written != count)
1272 					err = -EIO;
1273 			}
1274 		}
1275 		kfree(ap->pages);
1276 	} while (!err && iov_iter_count(ii));
1277 
1278 	fuse_write_update_attr(inode, pos, res);
1279 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1280 
1281 	return res > 0 ? res : err;
1282 }
1283 
1284 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1285 {
1286 	struct file *file = iocb->ki_filp;
1287 	struct address_space *mapping = file->f_mapping;
1288 	ssize_t written = 0;
1289 	ssize_t written_buffered = 0;
1290 	struct inode *inode = mapping->host;
1291 	ssize_t err;
1292 	struct fuse_conn *fc = get_fuse_conn(inode);
1293 	loff_t endbyte = 0;
1294 
1295 	if (fc->writeback_cache) {
1296 		/* Update size (EOF optimization) and mode (SUID clearing) */
1297 		err = fuse_update_attributes(mapping->host, file,
1298 					     STATX_SIZE | STATX_MODE);
1299 		if (err)
1300 			return err;
1301 
1302 		if (fc->handle_killpriv_v2 &&
1303 		    should_remove_suid(file_dentry(file))) {
1304 			goto writethrough;
1305 		}
1306 
1307 		return generic_file_write_iter(iocb, from);
1308 	}
1309 
1310 writethrough:
1311 	inode_lock(inode);
1312 
1313 	/* We can write back this queue in page reclaim */
1314 	current->backing_dev_info = inode_to_bdi(inode);
1315 
1316 	err = generic_write_checks(iocb, from);
1317 	if (err <= 0)
1318 		goto out;
1319 
1320 	err = file_remove_privs(file);
1321 	if (err)
1322 		goto out;
1323 
1324 	err = file_update_time(file);
1325 	if (err)
1326 		goto out;
1327 
1328 	if (iocb->ki_flags & IOCB_DIRECT) {
1329 		loff_t pos = iocb->ki_pos;
1330 		written = generic_file_direct_write(iocb, from);
1331 		if (written < 0 || !iov_iter_count(from))
1332 			goto out;
1333 
1334 		pos += written;
1335 
1336 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1337 		if (written_buffered < 0) {
1338 			err = written_buffered;
1339 			goto out;
1340 		}
1341 		endbyte = pos + written_buffered - 1;
1342 
1343 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1344 						   endbyte);
1345 		if (err)
1346 			goto out;
1347 
1348 		invalidate_mapping_pages(file->f_mapping,
1349 					 pos >> PAGE_SHIFT,
1350 					 endbyte >> PAGE_SHIFT);
1351 
1352 		written += written_buffered;
1353 		iocb->ki_pos = pos + written_buffered;
1354 	} else {
1355 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1356 		if (written >= 0)
1357 			iocb->ki_pos += written;
1358 	}
1359 out:
1360 	current->backing_dev_info = NULL;
1361 	inode_unlock(inode);
1362 	if (written > 0)
1363 		written = generic_write_sync(iocb, written);
1364 
1365 	return written ? written : err;
1366 }
1367 
1368 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1369 {
1370 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1371 }
1372 
1373 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1374 					size_t max_size)
1375 {
1376 	return min(iov_iter_single_seg_count(ii), max_size);
1377 }
1378 
1379 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1380 			       size_t *nbytesp, int write,
1381 			       unsigned int max_pages)
1382 {
1383 	size_t nbytes = 0;  /* # bytes already packed in req */
1384 	ssize_t ret = 0;
1385 
1386 	/* Special case for kernel I/O: can copy directly into the buffer */
1387 	if (iov_iter_is_kvec(ii)) {
1388 		unsigned long user_addr = fuse_get_user_addr(ii);
1389 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1390 
1391 		if (write)
1392 			ap->args.in_args[1].value = (void *) user_addr;
1393 		else
1394 			ap->args.out_args[0].value = (void *) user_addr;
1395 
1396 		iov_iter_advance(ii, frag_size);
1397 		*nbytesp = frag_size;
1398 		return 0;
1399 	}
1400 
1401 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1402 		unsigned npages;
1403 		size_t start;
1404 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1405 					*nbytesp - nbytes,
1406 					max_pages - ap->num_pages,
1407 					&start);
1408 		if (ret < 0)
1409 			break;
1410 
1411 		iov_iter_advance(ii, ret);
1412 		nbytes += ret;
1413 
1414 		ret += start;
1415 		npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1416 
1417 		ap->descs[ap->num_pages].offset = start;
1418 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1419 
1420 		ap->num_pages += npages;
1421 		ap->descs[ap->num_pages - 1].length -=
1422 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1423 	}
1424 
1425 	ap->args.user_pages = true;
1426 	if (write)
1427 		ap->args.in_pages = true;
1428 	else
1429 		ap->args.out_pages = true;
1430 
1431 	*nbytesp = nbytes;
1432 
1433 	return ret < 0 ? ret : 0;
1434 }
1435 
1436 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1437 		       loff_t *ppos, int flags)
1438 {
1439 	int write = flags & FUSE_DIO_WRITE;
1440 	int cuse = flags & FUSE_DIO_CUSE;
1441 	struct file *file = io->iocb->ki_filp;
1442 	struct inode *inode = file->f_mapping->host;
1443 	struct fuse_file *ff = file->private_data;
1444 	struct fuse_conn *fc = ff->fm->fc;
1445 	size_t nmax = write ? fc->max_write : fc->max_read;
1446 	loff_t pos = *ppos;
1447 	size_t count = iov_iter_count(iter);
1448 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1449 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1450 	ssize_t res = 0;
1451 	int err = 0;
1452 	struct fuse_io_args *ia;
1453 	unsigned int max_pages;
1454 
1455 	max_pages = iov_iter_npages(iter, fc->max_pages);
1456 	ia = fuse_io_alloc(io, max_pages);
1457 	if (!ia)
1458 		return -ENOMEM;
1459 
1460 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1461 		if (!write)
1462 			inode_lock(inode);
1463 		fuse_sync_writes(inode);
1464 		if (!write)
1465 			inode_unlock(inode);
1466 	}
1467 
1468 	io->should_dirty = !write && iter_is_iovec(iter);
1469 	while (count) {
1470 		ssize_t nres;
1471 		fl_owner_t owner = current->files;
1472 		size_t nbytes = min(count, nmax);
1473 
1474 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1475 					  max_pages);
1476 		if (err && !nbytes)
1477 			break;
1478 
1479 		if (write) {
1480 			if (!capable(CAP_FSETID))
1481 				ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1482 
1483 			nres = fuse_send_write(ia, pos, nbytes, owner);
1484 		} else {
1485 			nres = fuse_send_read(ia, pos, nbytes, owner);
1486 		}
1487 
1488 		if (!io->async || nres < 0) {
1489 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1490 			fuse_io_free(ia);
1491 		}
1492 		ia = NULL;
1493 		if (nres < 0) {
1494 			iov_iter_revert(iter, nbytes);
1495 			err = nres;
1496 			break;
1497 		}
1498 		WARN_ON(nres > nbytes);
1499 
1500 		count -= nres;
1501 		res += nres;
1502 		pos += nres;
1503 		if (nres != nbytes) {
1504 			iov_iter_revert(iter, nbytes - nres);
1505 			break;
1506 		}
1507 		if (count) {
1508 			max_pages = iov_iter_npages(iter, fc->max_pages);
1509 			ia = fuse_io_alloc(io, max_pages);
1510 			if (!ia)
1511 				break;
1512 		}
1513 	}
1514 	if (ia)
1515 		fuse_io_free(ia);
1516 	if (res > 0)
1517 		*ppos = pos;
1518 
1519 	return res > 0 ? res : err;
1520 }
1521 EXPORT_SYMBOL_GPL(fuse_direct_io);
1522 
1523 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1524 				  struct iov_iter *iter,
1525 				  loff_t *ppos)
1526 {
1527 	ssize_t res;
1528 	struct inode *inode = file_inode(io->iocb->ki_filp);
1529 
1530 	res = fuse_direct_io(io, iter, ppos, 0);
1531 
1532 	fuse_invalidate_atime(inode);
1533 
1534 	return res;
1535 }
1536 
1537 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1538 
1539 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1540 {
1541 	ssize_t res;
1542 
1543 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1544 		res = fuse_direct_IO(iocb, to);
1545 	} else {
1546 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1547 
1548 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1549 	}
1550 
1551 	return res;
1552 }
1553 
1554 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1555 {
1556 	struct inode *inode = file_inode(iocb->ki_filp);
1557 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1558 	ssize_t res;
1559 
1560 	/* Don't allow parallel writes to the same file */
1561 	inode_lock(inode);
1562 	res = generic_write_checks(iocb, from);
1563 	if (res > 0) {
1564 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1565 			res = fuse_direct_IO(iocb, from);
1566 		} else {
1567 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1568 					     FUSE_DIO_WRITE);
1569 			fuse_write_update_attr(inode, iocb->ki_pos, res);
1570 		}
1571 	}
1572 	inode_unlock(inode);
1573 
1574 	return res;
1575 }
1576 
1577 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1578 {
1579 	struct file *file = iocb->ki_filp;
1580 	struct fuse_file *ff = file->private_data;
1581 	struct inode *inode = file_inode(file);
1582 
1583 	if (fuse_is_bad(inode))
1584 		return -EIO;
1585 
1586 	if (FUSE_IS_DAX(inode))
1587 		return fuse_dax_read_iter(iocb, to);
1588 
1589 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1590 		return fuse_cache_read_iter(iocb, to);
1591 	else
1592 		return fuse_direct_read_iter(iocb, to);
1593 }
1594 
1595 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1596 {
1597 	struct file *file = iocb->ki_filp;
1598 	struct fuse_file *ff = file->private_data;
1599 	struct inode *inode = file_inode(file);
1600 
1601 	if (fuse_is_bad(inode))
1602 		return -EIO;
1603 
1604 	if (FUSE_IS_DAX(inode))
1605 		return fuse_dax_write_iter(iocb, from);
1606 
1607 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1608 		return fuse_cache_write_iter(iocb, from);
1609 	else
1610 		return fuse_direct_write_iter(iocb, from);
1611 }
1612 
1613 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1614 {
1615 	struct fuse_args_pages *ap = &wpa->ia.ap;
1616 	int i;
1617 
1618 	if (wpa->bucket)
1619 		fuse_sync_bucket_dec(wpa->bucket);
1620 
1621 	for (i = 0; i < ap->num_pages; i++)
1622 		__free_page(ap->pages[i]);
1623 
1624 	if (wpa->ia.ff)
1625 		fuse_file_put(wpa->ia.ff, false, false);
1626 
1627 	kfree(ap->pages);
1628 	kfree(wpa);
1629 }
1630 
1631 static void fuse_writepage_finish(struct fuse_mount *fm,
1632 				  struct fuse_writepage_args *wpa)
1633 {
1634 	struct fuse_args_pages *ap = &wpa->ia.ap;
1635 	struct inode *inode = wpa->inode;
1636 	struct fuse_inode *fi = get_fuse_inode(inode);
1637 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1638 	int i;
1639 
1640 	for (i = 0; i < ap->num_pages; i++) {
1641 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1642 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1643 		wb_writeout_inc(&bdi->wb);
1644 	}
1645 	wake_up(&fi->page_waitq);
1646 }
1647 
1648 /* Called under fi->lock, may release and reacquire it */
1649 static void fuse_send_writepage(struct fuse_mount *fm,
1650 				struct fuse_writepage_args *wpa, loff_t size)
1651 __releases(fi->lock)
1652 __acquires(fi->lock)
1653 {
1654 	struct fuse_writepage_args *aux, *next;
1655 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1656 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1657 	struct fuse_args *args = &wpa->ia.ap.args;
1658 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1659 	int err;
1660 
1661 	fi->writectr++;
1662 	if (inarg->offset + data_size <= size) {
1663 		inarg->size = data_size;
1664 	} else if (inarg->offset < size) {
1665 		inarg->size = size - inarg->offset;
1666 	} else {
1667 		/* Got truncated off completely */
1668 		goto out_free;
1669 	}
1670 
1671 	args->in_args[1].size = inarg->size;
1672 	args->force = true;
1673 	args->nocreds = true;
1674 
1675 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1676 	if (err == -ENOMEM) {
1677 		spin_unlock(&fi->lock);
1678 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1679 		spin_lock(&fi->lock);
1680 	}
1681 
1682 	/* Fails on broken connection only */
1683 	if (unlikely(err))
1684 		goto out_free;
1685 
1686 	return;
1687 
1688  out_free:
1689 	fi->writectr--;
1690 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1691 	fuse_writepage_finish(fm, wpa);
1692 	spin_unlock(&fi->lock);
1693 
1694 	/* After fuse_writepage_finish() aux request list is private */
1695 	for (aux = wpa->next; aux; aux = next) {
1696 		next = aux->next;
1697 		aux->next = NULL;
1698 		fuse_writepage_free(aux);
1699 	}
1700 
1701 	fuse_writepage_free(wpa);
1702 	spin_lock(&fi->lock);
1703 }
1704 
1705 /*
1706  * If fi->writectr is positive (no truncate or fsync going on) send
1707  * all queued writepage requests.
1708  *
1709  * Called with fi->lock
1710  */
1711 void fuse_flush_writepages(struct inode *inode)
1712 __releases(fi->lock)
1713 __acquires(fi->lock)
1714 {
1715 	struct fuse_mount *fm = get_fuse_mount(inode);
1716 	struct fuse_inode *fi = get_fuse_inode(inode);
1717 	loff_t crop = i_size_read(inode);
1718 	struct fuse_writepage_args *wpa;
1719 
1720 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1721 		wpa = list_entry(fi->queued_writes.next,
1722 				 struct fuse_writepage_args, queue_entry);
1723 		list_del_init(&wpa->queue_entry);
1724 		fuse_send_writepage(fm, wpa, crop);
1725 	}
1726 }
1727 
1728 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1729 						struct fuse_writepage_args *wpa)
1730 {
1731 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1732 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1733 	struct rb_node **p = &root->rb_node;
1734 	struct rb_node  *parent = NULL;
1735 
1736 	WARN_ON(!wpa->ia.ap.num_pages);
1737 	while (*p) {
1738 		struct fuse_writepage_args *curr;
1739 		pgoff_t curr_index;
1740 
1741 		parent = *p;
1742 		curr = rb_entry(parent, struct fuse_writepage_args,
1743 				writepages_entry);
1744 		WARN_ON(curr->inode != wpa->inode);
1745 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1746 
1747 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1748 			p = &(*p)->rb_right;
1749 		else if (idx_to < curr_index)
1750 			p = &(*p)->rb_left;
1751 		else
1752 			return curr;
1753 	}
1754 
1755 	rb_link_node(&wpa->writepages_entry, parent, p);
1756 	rb_insert_color(&wpa->writepages_entry, root);
1757 	return NULL;
1758 }
1759 
1760 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1761 {
1762 	WARN_ON(fuse_insert_writeback(root, wpa));
1763 }
1764 
1765 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1766 			       int error)
1767 {
1768 	struct fuse_writepage_args *wpa =
1769 		container_of(args, typeof(*wpa), ia.ap.args);
1770 	struct inode *inode = wpa->inode;
1771 	struct fuse_inode *fi = get_fuse_inode(inode);
1772 	struct fuse_conn *fc = get_fuse_conn(inode);
1773 
1774 	mapping_set_error(inode->i_mapping, error);
1775 	/*
1776 	 * A writeback finished and this might have updated mtime/ctime on
1777 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1778 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1779 	 * is enabled, we trust local ctime/mtime.
1780 	 */
1781 	if (!fc->writeback_cache)
1782 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1783 	spin_lock(&fi->lock);
1784 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1785 	while (wpa->next) {
1786 		struct fuse_mount *fm = get_fuse_mount(inode);
1787 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1788 		struct fuse_writepage_args *next = wpa->next;
1789 
1790 		wpa->next = next->next;
1791 		next->next = NULL;
1792 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1793 		tree_insert(&fi->writepages, next);
1794 
1795 		/*
1796 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1797 		 * based on primary request size.
1798 		 *
1799 		 * 1st case (trivial): there are no concurrent activities using
1800 		 * fuse_set/release_nowrite.  Then we're on safe side because
1801 		 * fuse_flush_writepages() would call fuse_send_writepage()
1802 		 * anyway.
1803 		 *
1804 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1805 		 * now for completion of all in-flight requests.  This happens
1806 		 * rarely and no more than once per page, so this should be
1807 		 * okay.
1808 		 *
1809 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1810 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1811 		 * that fuse_set_nowrite returned implies that all in-flight
1812 		 * requests were completed along with all of their secondary
1813 		 * requests.  Further primary requests are blocked by negative
1814 		 * writectr.  Hence there cannot be any in-flight requests and
1815 		 * no invocations of fuse_writepage_end() while we're in
1816 		 * fuse_set_nowrite..fuse_release_nowrite section.
1817 		 */
1818 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1819 	}
1820 	fi->writectr--;
1821 	fuse_writepage_finish(fm, wpa);
1822 	spin_unlock(&fi->lock);
1823 	fuse_writepage_free(wpa);
1824 }
1825 
1826 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1827 {
1828 	struct fuse_file *ff;
1829 
1830 	spin_lock(&fi->lock);
1831 	ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1832 				      write_entry);
1833 	if (ff)
1834 		fuse_file_get(ff);
1835 	spin_unlock(&fi->lock);
1836 
1837 	return ff;
1838 }
1839 
1840 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1841 {
1842 	struct fuse_file *ff = __fuse_write_file_get(fi);
1843 	WARN_ON(!ff);
1844 	return ff;
1845 }
1846 
1847 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1848 {
1849 	struct fuse_inode *fi = get_fuse_inode(inode);
1850 	struct fuse_file *ff;
1851 	int err;
1852 
1853 	/*
1854 	 * Inode is always written before the last reference is dropped and
1855 	 * hence this should not be reached from reclaim.
1856 	 *
1857 	 * Writing back the inode from reclaim can deadlock if the request
1858 	 * processing itself needs an allocation.  Allocations triggering
1859 	 * reclaim while serving a request can't be prevented, because it can
1860 	 * involve any number of unrelated userspace processes.
1861 	 */
1862 	WARN_ON(wbc->for_reclaim);
1863 
1864 	ff = __fuse_write_file_get(fi);
1865 	err = fuse_flush_times(inode, ff);
1866 	if (ff)
1867 		fuse_file_put(ff, false, false);
1868 
1869 	return err;
1870 }
1871 
1872 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1873 {
1874 	struct fuse_writepage_args *wpa;
1875 	struct fuse_args_pages *ap;
1876 
1877 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1878 	if (wpa) {
1879 		ap = &wpa->ia.ap;
1880 		ap->num_pages = 0;
1881 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1882 		if (!ap->pages) {
1883 			kfree(wpa);
1884 			wpa = NULL;
1885 		}
1886 	}
1887 	return wpa;
1888 
1889 }
1890 
1891 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
1892 					 struct fuse_writepage_args *wpa)
1893 {
1894 	if (!fc->sync_fs)
1895 		return;
1896 
1897 	rcu_read_lock();
1898 	/* Prevent resurrection of dead bucket in unlikely race with syncfs */
1899 	do {
1900 		wpa->bucket = rcu_dereference(fc->curr_bucket);
1901 	} while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
1902 	rcu_read_unlock();
1903 }
1904 
1905 static int fuse_writepage_locked(struct page *page)
1906 {
1907 	struct address_space *mapping = page->mapping;
1908 	struct inode *inode = mapping->host;
1909 	struct fuse_conn *fc = get_fuse_conn(inode);
1910 	struct fuse_inode *fi = get_fuse_inode(inode);
1911 	struct fuse_writepage_args *wpa;
1912 	struct fuse_args_pages *ap;
1913 	struct page *tmp_page;
1914 	int error = -ENOMEM;
1915 
1916 	set_page_writeback(page);
1917 
1918 	wpa = fuse_writepage_args_alloc();
1919 	if (!wpa)
1920 		goto err;
1921 	ap = &wpa->ia.ap;
1922 
1923 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1924 	if (!tmp_page)
1925 		goto err_free;
1926 
1927 	error = -EIO;
1928 	wpa->ia.ff = fuse_write_file_get(fi);
1929 	if (!wpa->ia.ff)
1930 		goto err_nofile;
1931 
1932 	fuse_writepage_add_to_bucket(fc, wpa);
1933 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1934 
1935 	copy_highpage(tmp_page, page);
1936 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1937 	wpa->next = NULL;
1938 	ap->args.in_pages = true;
1939 	ap->num_pages = 1;
1940 	ap->pages[0] = tmp_page;
1941 	ap->descs[0].offset = 0;
1942 	ap->descs[0].length = PAGE_SIZE;
1943 	ap->args.end = fuse_writepage_end;
1944 	wpa->inode = inode;
1945 
1946 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1947 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1948 
1949 	spin_lock(&fi->lock);
1950 	tree_insert(&fi->writepages, wpa);
1951 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1952 	fuse_flush_writepages(inode);
1953 	spin_unlock(&fi->lock);
1954 
1955 	end_page_writeback(page);
1956 
1957 	return 0;
1958 
1959 err_nofile:
1960 	__free_page(tmp_page);
1961 err_free:
1962 	kfree(wpa);
1963 err:
1964 	mapping_set_error(page->mapping, error);
1965 	end_page_writeback(page);
1966 	return error;
1967 }
1968 
1969 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1970 {
1971 	struct fuse_conn *fc = get_fuse_conn(page->mapping->host);
1972 	int err;
1973 
1974 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1975 		/*
1976 		 * ->writepages() should be called for sync() and friends.  We
1977 		 * should only get here on direct reclaim and then we are
1978 		 * allowed to skip a page which is already in flight
1979 		 */
1980 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1981 
1982 		redirty_page_for_writepage(wbc, page);
1983 		unlock_page(page);
1984 		return 0;
1985 	}
1986 
1987 	if (wbc->sync_mode == WB_SYNC_NONE &&
1988 	    fc->num_background >= fc->congestion_threshold)
1989 		return AOP_WRITEPAGE_ACTIVATE;
1990 
1991 	err = fuse_writepage_locked(page);
1992 	unlock_page(page);
1993 
1994 	return err;
1995 }
1996 
1997 struct fuse_fill_wb_data {
1998 	struct fuse_writepage_args *wpa;
1999 	struct fuse_file *ff;
2000 	struct inode *inode;
2001 	struct page **orig_pages;
2002 	unsigned int max_pages;
2003 };
2004 
2005 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2006 {
2007 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
2008 	struct fuse_conn *fc = get_fuse_conn(data->inode);
2009 	struct page **pages;
2010 	struct fuse_page_desc *descs;
2011 	unsigned int npages = min_t(unsigned int,
2012 				    max_t(unsigned int, data->max_pages * 2,
2013 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2014 				    fc->max_pages);
2015 	WARN_ON(npages <= data->max_pages);
2016 
2017 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2018 	if (!pages)
2019 		return false;
2020 
2021 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2022 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2023 	kfree(ap->pages);
2024 	ap->pages = pages;
2025 	ap->descs = descs;
2026 	data->max_pages = npages;
2027 
2028 	return true;
2029 }
2030 
2031 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2032 {
2033 	struct fuse_writepage_args *wpa = data->wpa;
2034 	struct inode *inode = data->inode;
2035 	struct fuse_inode *fi = get_fuse_inode(inode);
2036 	int num_pages = wpa->ia.ap.num_pages;
2037 	int i;
2038 
2039 	wpa->ia.ff = fuse_file_get(data->ff);
2040 	spin_lock(&fi->lock);
2041 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2042 	fuse_flush_writepages(inode);
2043 	spin_unlock(&fi->lock);
2044 
2045 	for (i = 0; i < num_pages; i++)
2046 		end_page_writeback(data->orig_pages[i]);
2047 }
2048 
2049 /*
2050  * Check under fi->lock if the page is under writeback, and insert it onto the
2051  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2052  * one already added for a page at this offset.  If there's none, then insert
2053  * this new request onto the auxiliary list, otherwise reuse the existing one by
2054  * swapping the new temp page with the old one.
2055  */
2056 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2057 			       struct page *page)
2058 {
2059 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2060 	struct fuse_writepage_args *tmp;
2061 	struct fuse_writepage_args *old_wpa;
2062 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2063 
2064 	WARN_ON(new_ap->num_pages != 0);
2065 	new_ap->num_pages = 1;
2066 
2067 	spin_lock(&fi->lock);
2068 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2069 	if (!old_wpa) {
2070 		spin_unlock(&fi->lock);
2071 		return true;
2072 	}
2073 
2074 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2075 		pgoff_t curr_index;
2076 
2077 		WARN_ON(tmp->inode != new_wpa->inode);
2078 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2079 		if (curr_index == page->index) {
2080 			WARN_ON(tmp->ia.ap.num_pages != 1);
2081 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2082 			break;
2083 		}
2084 	}
2085 
2086 	if (!tmp) {
2087 		new_wpa->next = old_wpa->next;
2088 		old_wpa->next = new_wpa;
2089 	}
2090 
2091 	spin_unlock(&fi->lock);
2092 
2093 	if (tmp) {
2094 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2095 
2096 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2097 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2098 		wb_writeout_inc(&bdi->wb);
2099 		fuse_writepage_free(new_wpa);
2100 	}
2101 
2102 	return false;
2103 }
2104 
2105 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2106 				     struct fuse_args_pages *ap,
2107 				     struct fuse_fill_wb_data *data)
2108 {
2109 	WARN_ON(!ap->num_pages);
2110 
2111 	/*
2112 	 * Being under writeback is unlikely but possible.  For example direct
2113 	 * read to an mmaped fuse file will set the page dirty twice; once when
2114 	 * the pages are faulted with get_user_pages(), and then after the read
2115 	 * completed.
2116 	 */
2117 	if (fuse_page_is_writeback(data->inode, page->index))
2118 		return true;
2119 
2120 	/* Reached max pages */
2121 	if (ap->num_pages == fc->max_pages)
2122 		return true;
2123 
2124 	/* Reached max write bytes */
2125 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2126 		return true;
2127 
2128 	/* Discontinuity */
2129 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2130 		return true;
2131 
2132 	/* Need to grow the pages array?  If so, did the expansion fail? */
2133 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2134 		return true;
2135 
2136 	return false;
2137 }
2138 
2139 static int fuse_writepages_fill(struct page *page,
2140 		struct writeback_control *wbc, void *_data)
2141 {
2142 	struct fuse_fill_wb_data *data = _data;
2143 	struct fuse_writepage_args *wpa = data->wpa;
2144 	struct fuse_args_pages *ap = &wpa->ia.ap;
2145 	struct inode *inode = data->inode;
2146 	struct fuse_inode *fi = get_fuse_inode(inode);
2147 	struct fuse_conn *fc = get_fuse_conn(inode);
2148 	struct page *tmp_page;
2149 	int err;
2150 
2151 	if (!data->ff) {
2152 		err = -EIO;
2153 		data->ff = fuse_write_file_get(fi);
2154 		if (!data->ff)
2155 			goto out_unlock;
2156 	}
2157 
2158 	if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2159 		fuse_writepages_send(data);
2160 		data->wpa = NULL;
2161 	}
2162 
2163 	err = -ENOMEM;
2164 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2165 	if (!tmp_page)
2166 		goto out_unlock;
2167 
2168 	/*
2169 	 * The page must not be redirtied until the writeout is completed
2170 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2171 	 * there could be more than one temporary page instance for each real
2172 	 * page.
2173 	 *
2174 	 * This is ensured by holding the page lock in page_mkwrite() while
2175 	 * checking fuse_page_is_writeback().  We already hold the page lock
2176 	 * since clear_page_dirty_for_io() and keep it held until we add the
2177 	 * request to the fi->writepages list and increment ap->num_pages.
2178 	 * After this fuse_page_is_writeback() will indicate that the page is
2179 	 * under writeback, so we can release the page lock.
2180 	 */
2181 	if (data->wpa == NULL) {
2182 		err = -ENOMEM;
2183 		wpa = fuse_writepage_args_alloc();
2184 		if (!wpa) {
2185 			__free_page(tmp_page);
2186 			goto out_unlock;
2187 		}
2188 		fuse_writepage_add_to_bucket(fc, wpa);
2189 
2190 		data->max_pages = 1;
2191 
2192 		ap = &wpa->ia.ap;
2193 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2194 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2195 		wpa->next = NULL;
2196 		ap->args.in_pages = true;
2197 		ap->args.end = fuse_writepage_end;
2198 		ap->num_pages = 0;
2199 		wpa->inode = inode;
2200 	}
2201 	set_page_writeback(page);
2202 
2203 	copy_highpage(tmp_page, page);
2204 	ap->pages[ap->num_pages] = tmp_page;
2205 	ap->descs[ap->num_pages].offset = 0;
2206 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2207 	data->orig_pages[ap->num_pages] = page;
2208 
2209 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2210 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2211 
2212 	err = 0;
2213 	if (data->wpa) {
2214 		/*
2215 		 * Protected by fi->lock against concurrent access by
2216 		 * fuse_page_is_writeback().
2217 		 */
2218 		spin_lock(&fi->lock);
2219 		ap->num_pages++;
2220 		spin_unlock(&fi->lock);
2221 	} else if (fuse_writepage_add(wpa, page)) {
2222 		data->wpa = wpa;
2223 	} else {
2224 		end_page_writeback(page);
2225 	}
2226 out_unlock:
2227 	unlock_page(page);
2228 
2229 	return err;
2230 }
2231 
2232 static int fuse_writepages(struct address_space *mapping,
2233 			   struct writeback_control *wbc)
2234 {
2235 	struct inode *inode = mapping->host;
2236 	struct fuse_conn *fc = get_fuse_conn(inode);
2237 	struct fuse_fill_wb_data data;
2238 	int err;
2239 
2240 	err = -EIO;
2241 	if (fuse_is_bad(inode))
2242 		goto out;
2243 
2244 	if (wbc->sync_mode == WB_SYNC_NONE &&
2245 	    fc->num_background >= fc->congestion_threshold)
2246 		return 0;
2247 
2248 	data.inode = inode;
2249 	data.wpa = NULL;
2250 	data.ff = NULL;
2251 
2252 	err = -ENOMEM;
2253 	data.orig_pages = kcalloc(fc->max_pages,
2254 				  sizeof(struct page *),
2255 				  GFP_NOFS);
2256 	if (!data.orig_pages)
2257 		goto out;
2258 
2259 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2260 	if (data.wpa) {
2261 		WARN_ON(!data.wpa->ia.ap.num_pages);
2262 		fuse_writepages_send(&data);
2263 	}
2264 	if (data.ff)
2265 		fuse_file_put(data.ff, false, false);
2266 
2267 	kfree(data.orig_pages);
2268 out:
2269 	return err;
2270 }
2271 
2272 /*
2273  * It's worthy to make sure that space is reserved on disk for the write,
2274  * but how to implement it without killing performance need more thinking.
2275  */
2276 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2277 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
2278 {
2279 	pgoff_t index = pos >> PAGE_SHIFT;
2280 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2281 	struct page *page;
2282 	loff_t fsize;
2283 	int err = -ENOMEM;
2284 
2285 	WARN_ON(!fc->writeback_cache);
2286 
2287 	page = grab_cache_page_write_begin(mapping, index);
2288 	if (!page)
2289 		goto error;
2290 
2291 	fuse_wait_on_page_writeback(mapping->host, page->index);
2292 
2293 	if (PageUptodate(page) || len == PAGE_SIZE)
2294 		goto success;
2295 	/*
2296 	 * Check if the start this page comes after the end of file, in which
2297 	 * case the readpage can be optimized away.
2298 	 */
2299 	fsize = i_size_read(mapping->host);
2300 	if (fsize <= (pos & PAGE_MASK)) {
2301 		size_t off = pos & ~PAGE_MASK;
2302 		if (off)
2303 			zero_user_segment(page, 0, off);
2304 		goto success;
2305 	}
2306 	err = fuse_do_readpage(file, page);
2307 	if (err)
2308 		goto cleanup;
2309 success:
2310 	*pagep = page;
2311 	return 0;
2312 
2313 cleanup:
2314 	unlock_page(page);
2315 	put_page(page);
2316 error:
2317 	return err;
2318 }
2319 
2320 static int fuse_write_end(struct file *file, struct address_space *mapping,
2321 		loff_t pos, unsigned len, unsigned copied,
2322 		struct page *page, void *fsdata)
2323 {
2324 	struct inode *inode = page->mapping->host;
2325 
2326 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2327 	if (!copied)
2328 		goto unlock;
2329 
2330 	pos += copied;
2331 	if (!PageUptodate(page)) {
2332 		/* Zero any unwritten bytes at the end of the page */
2333 		size_t endoff = pos & ~PAGE_MASK;
2334 		if (endoff)
2335 			zero_user_segment(page, endoff, PAGE_SIZE);
2336 		SetPageUptodate(page);
2337 	}
2338 
2339 	if (pos > inode->i_size)
2340 		i_size_write(inode, pos);
2341 
2342 	set_page_dirty(page);
2343 
2344 unlock:
2345 	unlock_page(page);
2346 	put_page(page);
2347 
2348 	return copied;
2349 }
2350 
2351 static int fuse_launder_folio(struct folio *folio)
2352 {
2353 	int err = 0;
2354 	if (folio_clear_dirty_for_io(folio)) {
2355 		struct inode *inode = folio->mapping->host;
2356 
2357 		/* Serialize with pending writeback for the same page */
2358 		fuse_wait_on_page_writeback(inode, folio->index);
2359 		err = fuse_writepage_locked(&folio->page);
2360 		if (!err)
2361 			fuse_wait_on_page_writeback(inode, folio->index);
2362 	}
2363 	return err;
2364 }
2365 
2366 /*
2367  * Write back dirty data/metadata now (there may not be any suitable
2368  * open files later for data)
2369  */
2370 static void fuse_vma_close(struct vm_area_struct *vma)
2371 {
2372 	int err;
2373 
2374 	err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2375 	mapping_set_error(vma->vm_file->f_mapping, err);
2376 }
2377 
2378 /*
2379  * Wait for writeback against this page to complete before allowing it
2380  * to be marked dirty again, and hence written back again, possibly
2381  * before the previous writepage completed.
2382  *
2383  * Block here, instead of in ->writepage(), so that the userspace fs
2384  * can only block processes actually operating on the filesystem.
2385  *
2386  * Otherwise unprivileged userspace fs would be able to block
2387  * unrelated:
2388  *
2389  * - page migration
2390  * - sync(2)
2391  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2392  */
2393 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2394 {
2395 	struct page *page = vmf->page;
2396 	struct inode *inode = file_inode(vmf->vma->vm_file);
2397 
2398 	file_update_time(vmf->vma->vm_file);
2399 	lock_page(page);
2400 	if (page->mapping != inode->i_mapping) {
2401 		unlock_page(page);
2402 		return VM_FAULT_NOPAGE;
2403 	}
2404 
2405 	fuse_wait_on_page_writeback(inode, page->index);
2406 	return VM_FAULT_LOCKED;
2407 }
2408 
2409 static const struct vm_operations_struct fuse_file_vm_ops = {
2410 	.close		= fuse_vma_close,
2411 	.fault		= filemap_fault,
2412 	.map_pages	= filemap_map_pages,
2413 	.page_mkwrite	= fuse_page_mkwrite,
2414 };
2415 
2416 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2417 {
2418 	struct fuse_file *ff = file->private_data;
2419 
2420 	/* DAX mmap is superior to direct_io mmap */
2421 	if (FUSE_IS_DAX(file_inode(file)))
2422 		return fuse_dax_mmap(file, vma);
2423 
2424 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2425 		/* Can't provide the coherency needed for MAP_SHARED */
2426 		if (vma->vm_flags & VM_MAYSHARE)
2427 			return -ENODEV;
2428 
2429 		invalidate_inode_pages2(file->f_mapping);
2430 
2431 		return generic_file_mmap(file, vma);
2432 	}
2433 
2434 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2435 		fuse_link_write_file(file);
2436 
2437 	file_accessed(file);
2438 	vma->vm_ops = &fuse_file_vm_ops;
2439 	return 0;
2440 }
2441 
2442 static int convert_fuse_file_lock(struct fuse_conn *fc,
2443 				  const struct fuse_file_lock *ffl,
2444 				  struct file_lock *fl)
2445 {
2446 	switch (ffl->type) {
2447 	case F_UNLCK:
2448 		break;
2449 
2450 	case F_RDLCK:
2451 	case F_WRLCK:
2452 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2453 		    ffl->end < ffl->start)
2454 			return -EIO;
2455 
2456 		fl->fl_start = ffl->start;
2457 		fl->fl_end = ffl->end;
2458 
2459 		/*
2460 		 * Convert pid into init's pid namespace.  The locks API will
2461 		 * translate it into the caller's pid namespace.
2462 		 */
2463 		rcu_read_lock();
2464 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2465 		rcu_read_unlock();
2466 		break;
2467 
2468 	default:
2469 		return -EIO;
2470 	}
2471 	fl->fl_type = ffl->type;
2472 	return 0;
2473 }
2474 
2475 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2476 			 const struct file_lock *fl, int opcode, pid_t pid,
2477 			 int flock, struct fuse_lk_in *inarg)
2478 {
2479 	struct inode *inode = file_inode(file);
2480 	struct fuse_conn *fc = get_fuse_conn(inode);
2481 	struct fuse_file *ff = file->private_data;
2482 
2483 	memset(inarg, 0, sizeof(*inarg));
2484 	inarg->fh = ff->fh;
2485 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2486 	inarg->lk.start = fl->fl_start;
2487 	inarg->lk.end = fl->fl_end;
2488 	inarg->lk.type = fl->fl_type;
2489 	inarg->lk.pid = pid;
2490 	if (flock)
2491 		inarg->lk_flags |= FUSE_LK_FLOCK;
2492 	args->opcode = opcode;
2493 	args->nodeid = get_node_id(inode);
2494 	args->in_numargs = 1;
2495 	args->in_args[0].size = sizeof(*inarg);
2496 	args->in_args[0].value = inarg;
2497 }
2498 
2499 static int fuse_getlk(struct file *file, struct file_lock *fl)
2500 {
2501 	struct inode *inode = file_inode(file);
2502 	struct fuse_mount *fm = get_fuse_mount(inode);
2503 	FUSE_ARGS(args);
2504 	struct fuse_lk_in inarg;
2505 	struct fuse_lk_out outarg;
2506 	int err;
2507 
2508 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2509 	args.out_numargs = 1;
2510 	args.out_args[0].size = sizeof(outarg);
2511 	args.out_args[0].value = &outarg;
2512 	err = fuse_simple_request(fm, &args);
2513 	if (!err)
2514 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2515 
2516 	return err;
2517 }
2518 
2519 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2520 {
2521 	struct inode *inode = file_inode(file);
2522 	struct fuse_mount *fm = get_fuse_mount(inode);
2523 	FUSE_ARGS(args);
2524 	struct fuse_lk_in inarg;
2525 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2526 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2527 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2528 	int err;
2529 
2530 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2531 		/* NLM needs asynchronous locks, which we don't support yet */
2532 		return -ENOLCK;
2533 	}
2534 
2535 	/* Unlock on close is handled by the flush method */
2536 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2537 		return 0;
2538 
2539 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2540 	err = fuse_simple_request(fm, &args);
2541 
2542 	/* locking is restartable */
2543 	if (err == -EINTR)
2544 		err = -ERESTARTSYS;
2545 
2546 	return err;
2547 }
2548 
2549 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2550 {
2551 	struct inode *inode = file_inode(file);
2552 	struct fuse_conn *fc = get_fuse_conn(inode);
2553 	int err;
2554 
2555 	if (cmd == F_CANCELLK) {
2556 		err = 0;
2557 	} else if (cmd == F_GETLK) {
2558 		if (fc->no_lock) {
2559 			posix_test_lock(file, fl);
2560 			err = 0;
2561 		} else
2562 			err = fuse_getlk(file, fl);
2563 	} else {
2564 		if (fc->no_lock)
2565 			err = posix_lock_file(file, fl, NULL);
2566 		else
2567 			err = fuse_setlk(file, fl, 0);
2568 	}
2569 	return err;
2570 }
2571 
2572 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2573 {
2574 	struct inode *inode = file_inode(file);
2575 	struct fuse_conn *fc = get_fuse_conn(inode);
2576 	int err;
2577 
2578 	if (fc->no_flock) {
2579 		err = locks_lock_file_wait(file, fl);
2580 	} else {
2581 		struct fuse_file *ff = file->private_data;
2582 
2583 		/* emulate flock with POSIX locks */
2584 		ff->flock = true;
2585 		err = fuse_setlk(file, fl, 1);
2586 	}
2587 
2588 	return err;
2589 }
2590 
2591 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2592 {
2593 	struct inode *inode = mapping->host;
2594 	struct fuse_mount *fm = get_fuse_mount(inode);
2595 	FUSE_ARGS(args);
2596 	struct fuse_bmap_in inarg;
2597 	struct fuse_bmap_out outarg;
2598 	int err;
2599 
2600 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2601 		return 0;
2602 
2603 	memset(&inarg, 0, sizeof(inarg));
2604 	inarg.block = block;
2605 	inarg.blocksize = inode->i_sb->s_blocksize;
2606 	args.opcode = FUSE_BMAP;
2607 	args.nodeid = get_node_id(inode);
2608 	args.in_numargs = 1;
2609 	args.in_args[0].size = sizeof(inarg);
2610 	args.in_args[0].value = &inarg;
2611 	args.out_numargs = 1;
2612 	args.out_args[0].size = sizeof(outarg);
2613 	args.out_args[0].value = &outarg;
2614 	err = fuse_simple_request(fm, &args);
2615 	if (err == -ENOSYS)
2616 		fm->fc->no_bmap = 1;
2617 
2618 	return err ? 0 : outarg.block;
2619 }
2620 
2621 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2622 {
2623 	struct inode *inode = file->f_mapping->host;
2624 	struct fuse_mount *fm = get_fuse_mount(inode);
2625 	struct fuse_file *ff = file->private_data;
2626 	FUSE_ARGS(args);
2627 	struct fuse_lseek_in inarg = {
2628 		.fh = ff->fh,
2629 		.offset = offset,
2630 		.whence = whence
2631 	};
2632 	struct fuse_lseek_out outarg;
2633 	int err;
2634 
2635 	if (fm->fc->no_lseek)
2636 		goto fallback;
2637 
2638 	args.opcode = FUSE_LSEEK;
2639 	args.nodeid = ff->nodeid;
2640 	args.in_numargs = 1;
2641 	args.in_args[0].size = sizeof(inarg);
2642 	args.in_args[0].value = &inarg;
2643 	args.out_numargs = 1;
2644 	args.out_args[0].size = sizeof(outarg);
2645 	args.out_args[0].value = &outarg;
2646 	err = fuse_simple_request(fm, &args);
2647 	if (err) {
2648 		if (err == -ENOSYS) {
2649 			fm->fc->no_lseek = 1;
2650 			goto fallback;
2651 		}
2652 		return err;
2653 	}
2654 
2655 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2656 
2657 fallback:
2658 	err = fuse_update_attributes(inode, file, STATX_SIZE);
2659 	if (!err)
2660 		return generic_file_llseek(file, offset, whence);
2661 	else
2662 		return err;
2663 }
2664 
2665 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2666 {
2667 	loff_t retval;
2668 	struct inode *inode = file_inode(file);
2669 
2670 	switch (whence) {
2671 	case SEEK_SET:
2672 	case SEEK_CUR:
2673 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2674 		retval = generic_file_llseek(file, offset, whence);
2675 		break;
2676 	case SEEK_END:
2677 		inode_lock(inode);
2678 		retval = fuse_update_attributes(inode, file, STATX_SIZE);
2679 		if (!retval)
2680 			retval = generic_file_llseek(file, offset, whence);
2681 		inode_unlock(inode);
2682 		break;
2683 	case SEEK_HOLE:
2684 	case SEEK_DATA:
2685 		inode_lock(inode);
2686 		retval = fuse_lseek(file, offset, whence);
2687 		inode_unlock(inode);
2688 		break;
2689 	default:
2690 		retval = -EINVAL;
2691 	}
2692 
2693 	return retval;
2694 }
2695 
2696 /*
2697  * All files which have been polled are linked to RB tree
2698  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2699  * find the matching one.
2700  */
2701 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2702 					      struct rb_node **parent_out)
2703 {
2704 	struct rb_node **link = &fc->polled_files.rb_node;
2705 	struct rb_node *last = NULL;
2706 
2707 	while (*link) {
2708 		struct fuse_file *ff;
2709 
2710 		last = *link;
2711 		ff = rb_entry(last, struct fuse_file, polled_node);
2712 
2713 		if (kh < ff->kh)
2714 			link = &last->rb_left;
2715 		else if (kh > ff->kh)
2716 			link = &last->rb_right;
2717 		else
2718 			return link;
2719 	}
2720 
2721 	if (parent_out)
2722 		*parent_out = last;
2723 	return link;
2724 }
2725 
2726 /*
2727  * The file is about to be polled.  Make sure it's on the polled_files
2728  * RB tree.  Note that files once added to the polled_files tree are
2729  * not removed before the file is released.  This is because a file
2730  * polled once is likely to be polled again.
2731  */
2732 static void fuse_register_polled_file(struct fuse_conn *fc,
2733 				      struct fuse_file *ff)
2734 {
2735 	spin_lock(&fc->lock);
2736 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2737 		struct rb_node **link, *parent;
2738 
2739 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2740 		BUG_ON(*link);
2741 		rb_link_node(&ff->polled_node, parent, link);
2742 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2743 	}
2744 	spin_unlock(&fc->lock);
2745 }
2746 
2747 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2748 {
2749 	struct fuse_file *ff = file->private_data;
2750 	struct fuse_mount *fm = ff->fm;
2751 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2752 	struct fuse_poll_out outarg;
2753 	FUSE_ARGS(args);
2754 	int err;
2755 
2756 	if (fm->fc->no_poll)
2757 		return DEFAULT_POLLMASK;
2758 
2759 	poll_wait(file, &ff->poll_wait, wait);
2760 	inarg.events = mangle_poll(poll_requested_events(wait));
2761 
2762 	/*
2763 	 * Ask for notification iff there's someone waiting for it.
2764 	 * The client may ignore the flag and always notify.
2765 	 */
2766 	if (waitqueue_active(&ff->poll_wait)) {
2767 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2768 		fuse_register_polled_file(fm->fc, ff);
2769 	}
2770 
2771 	args.opcode = FUSE_POLL;
2772 	args.nodeid = ff->nodeid;
2773 	args.in_numargs = 1;
2774 	args.in_args[0].size = sizeof(inarg);
2775 	args.in_args[0].value = &inarg;
2776 	args.out_numargs = 1;
2777 	args.out_args[0].size = sizeof(outarg);
2778 	args.out_args[0].value = &outarg;
2779 	err = fuse_simple_request(fm, &args);
2780 
2781 	if (!err)
2782 		return demangle_poll(outarg.revents);
2783 	if (err == -ENOSYS) {
2784 		fm->fc->no_poll = 1;
2785 		return DEFAULT_POLLMASK;
2786 	}
2787 	return EPOLLERR;
2788 }
2789 EXPORT_SYMBOL_GPL(fuse_file_poll);
2790 
2791 /*
2792  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2793  * wakes up the poll waiters.
2794  */
2795 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2796 			    struct fuse_notify_poll_wakeup_out *outarg)
2797 {
2798 	u64 kh = outarg->kh;
2799 	struct rb_node **link;
2800 
2801 	spin_lock(&fc->lock);
2802 
2803 	link = fuse_find_polled_node(fc, kh, NULL);
2804 	if (*link) {
2805 		struct fuse_file *ff;
2806 
2807 		ff = rb_entry(*link, struct fuse_file, polled_node);
2808 		wake_up_interruptible_sync(&ff->poll_wait);
2809 	}
2810 
2811 	spin_unlock(&fc->lock);
2812 	return 0;
2813 }
2814 
2815 static void fuse_do_truncate(struct file *file)
2816 {
2817 	struct inode *inode = file->f_mapping->host;
2818 	struct iattr attr;
2819 
2820 	attr.ia_valid = ATTR_SIZE;
2821 	attr.ia_size = i_size_read(inode);
2822 
2823 	attr.ia_file = file;
2824 	attr.ia_valid |= ATTR_FILE;
2825 
2826 	fuse_do_setattr(file_dentry(file), &attr, file);
2827 }
2828 
2829 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2830 {
2831 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2832 }
2833 
2834 static ssize_t
2835 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2836 {
2837 	DECLARE_COMPLETION_ONSTACK(wait);
2838 	ssize_t ret = 0;
2839 	struct file *file = iocb->ki_filp;
2840 	struct fuse_file *ff = file->private_data;
2841 	loff_t pos = 0;
2842 	struct inode *inode;
2843 	loff_t i_size;
2844 	size_t count = iov_iter_count(iter), shortened = 0;
2845 	loff_t offset = iocb->ki_pos;
2846 	struct fuse_io_priv *io;
2847 
2848 	pos = offset;
2849 	inode = file->f_mapping->host;
2850 	i_size = i_size_read(inode);
2851 
2852 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
2853 		return 0;
2854 
2855 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2856 	if (!io)
2857 		return -ENOMEM;
2858 	spin_lock_init(&io->lock);
2859 	kref_init(&io->refcnt);
2860 	io->reqs = 1;
2861 	io->bytes = -1;
2862 	io->size = 0;
2863 	io->offset = offset;
2864 	io->write = (iov_iter_rw(iter) == WRITE);
2865 	io->err = 0;
2866 	/*
2867 	 * By default, we want to optimize all I/Os with async request
2868 	 * submission to the client filesystem if supported.
2869 	 */
2870 	io->async = ff->fm->fc->async_dio;
2871 	io->iocb = iocb;
2872 	io->blocking = is_sync_kiocb(iocb);
2873 
2874 	/* optimization for short read */
2875 	if (io->async && !io->write && offset + count > i_size) {
2876 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
2877 		shortened = count - iov_iter_count(iter);
2878 		count -= shortened;
2879 	}
2880 
2881 	/*
2882 	 * We cannot asynchronously extend the size of a file.
2883 	 * In such case the aio will behave exactly like sync io.
2884 	 */
2885 	if ((offset + count > i_size) && io->write)
2886 		io->blocking = true;
2887 
2888 	if (io->async && io->blocking) {
2889 		/*
2890 		 * Additional reference to keep io around after
2891 		 * calling fuse_aio_complete()
2892 		 */
2893 		kref_get(&io->refcnt);
2894 		io->done = &wait;
2895 	}
2896 
2897 	if (iov_iter_rw(iter) == WRITE) {
2898 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2899 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
2900 	} else {
2901 		ret = __fuse_direct_read(io, iter, &pos);
2902 	}
2903 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
2904 
2905 	if (io->async) {
2906 		bool blocking = io->blocking;
2907 
2908 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2909 
2910 		/* we have a non-extending, async request, so return */
2911 		if (!blocking)
2912 			return -EIOCBQUEUED;
2913 
2914 		wait_for_completion(&wait);
2915 		ret = fuse_get_res_by_io(io);
2916 	}
2917 
2918 	kref_put(&io->refcnt, fuse_io_release);
2919 
2920 	if (iov_iter_rw(iter) == WRITE) {
2921 		fuse_write_update_attr(inode, pos, ret);
2922 		if (ret < 0 && offset + count > i_size)
2923 			fuse_do_truncate(file);
2924 	}
2925 
2926 	return ret;
2927 }
2928 
2929 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
2930 {
2931 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
2932 
2933 	if (!err)
2934 		fuse_sync_writes(inode);
2935 
2936 	return err;
2937 }
2938 
2939 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2940 				loff_t length)
2941 {
2942 	struct fuse_file *ff = file->private_data;
2943 	struct inode *inode = file_inode(file);
2944 	struct fuse_inode *fi = get_fuse_inode(inode);
2945 	struct fuse_mount *fm = ff->fm;
2946 	FUSE_ARGS(args);
2947 	struct fuse_fallocate_in inarg = {
2948 		.fh = ff->fh,
2949 		.offset = offset,
2950 		.length = length,
2951 		.mode = mode
2952 	};
2953 	int err;
2954 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2955 			   (mode & (FALLOC_FL_PUNCH_HOLE |
2956 				    FALLOC_FL_ZERO_RANGE));
2957 
2958 	bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
2959 
2960 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2961 		     FALLOC_FL_ZERO_RANGE))
2962 		return -EOPNOTSUPP;
2963 
2964 	if (fm->fc->no_fallocate)
2965 		return -EOPNOTSUPP;
2966 
2967 	if (lock_inode) {
2968 		inode_lock(inode);
2969 		if (block_faults) {
2970 			filemap_invalidate_lock(inode->i_mapping);
2971 			err = fuse_dax_break_layouts(inode, 0, 0);
2972 			if (err)
2973 				goto out;
2974 		}
2975 
2976 		if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
2977 			loff_t endbyte = offset + length - 1;
2978 
2979 			err = fuse_writeback_range(inode, offset, endbyte);
2980 			if (err)
2981 				goto out;
2982 		}
2983 	}
2984 
2985 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2986 	    offset + length > i_size_read(inode)) {
2987 		err = inode_newsize_ok(inode, offset + length);
2988 		if (err)
2989 			goto out;
2990 	}
2991 
2992 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2993 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2994 
2995 	args.opcode = FUSE_FALLOCATE;
2996 	args.nodeid = ff->nodeid;
2997 	args.in_numargs = 1;
2998 	args.in_args[0].size = sizeof(inarg);
2999 	args.in_args[0].value = &inarg;
3000 	err = fuse_simple_request(fm, &args);
3001 	if (err == -ENOSYS) {
3002 		fm->fc->no_fallocate = 1;
3003 		err = -EOPNOTSUPP;
3004 	}
3005 	if (err)
3006 		goto out;
3007 
3008 	/* we could have extended the file */
3009 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3010 		if (fuse_write_update_attr(inode, offset + length, length))
3011 			file_update_time(file);
3012 	}
3013 
3014 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3015 		truncate_pagecache_range(inode, offset, offset + length - 1);
3016 
3017 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3018 
3019 out:
3020 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3021 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3022 
3023 	if (block_faults)
3024 		filemap_invalidate_unlock(inode->i_mapping);
3025 
3026 	if (lock_inode)
3027 		inode_unlock(inode);
3028 
3029 	fuse_flush_time_update(inode);
3030 
3031 	return err;
3032 }
3033 
3034 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3035 				      struct file *file_out, loff_t pos_out,
3036 				      size_t len, unsigned int flags)
3037 {
3038 	struct fuse_file *ff_in = file_in->private_data;
3039 	struct fuse_file *ff_out = file_out->private_data;
3040 	struct inode *inode_in = file_inode(file_in);
3041 	struct inode *inode_out = file_inode(file_out);
3042 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3043 	struct fuse_mount *fm = ff_in->fm;
3044 	struct fuse_conn *fc = fm->fc;
3045 	FUSE_ARGS(args);
3046 	struct fuse_copy_file_range_in inarg = {
3047 		.fh_in = ff_in->fh,
3048 		.off_in = pos_in,
3049 		.nodeid_out = ff_out->nodeid,
3050 		.fh_out = ff_out->fh,
3051 		.off_out = pos_out,
3052 		.len = len,
3053 		.flags = flags
3054 	};
3055 	struct fuse_write_out outarg;
3056 	ssize_t err;
3057 	/* mark unstable when write-back is not used, and file_out gets
3058 	 * extended */
3059 	bool is_unstable = (!fc->writeback_cache) &&
3060 			   ((pos_out + len) > inode_out->i_size);
3061 
3062 	if (fc->no_copy_file_range)
3063 		return -EOPNOTSUPP;
3064 
3065 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3066 		return -EXDEV;
3067 
3068 	inode_lock(inode_in);
3069 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3070 	inode_unlock(inode_in);
3071 	if (err)
3072 		return err;
3073 
3074 	inode_lock(inode_out);
3075 
3076 	err = file_modified(file_out);
3077 	if (err)
3078 		goto out;
3079 
3080 	/*
3081 	 * Write out dirty pages in the destination file before sending the COPY
3082 	 * request to userspace.  After the request is completed, truncate off
3083 	 * pages (including partial ones) from the cache that have been copied,
3084 	 * since these contain stale data at that point.
3085 	 *
3086 	 * This should be mostly correct, but if the COPY writes to partial
3087 	 * pages (at the start or end) and the parts not covered by the COPY are
3088 	 * written through a memory map after calling fuse_writeback_range(),
3089 	 * then these partial page modifications will be lost on truncation.
3090 	 *
3091 	 * It is unlikely that someone would rely on such mixed style
3092 	 * modifications.  Yet this does give less guarantees than if the
3093 	 * copying was performed with write(2).
3094 	 *
3095 	 * To fix this a mapping->invalidate_lock could be used to prevent new
3096 	 * faults while the copy is ongoing.
3097 	 */
3098 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3099 	if (err)
3100 		goto out;
3101 
3102 	if (is_unstable)
3103 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3104 
3105 	args.opcode = FUSE_COPY_FILE_RANGE;
3106 	args.nodeid = ff_in->nodeid;
3107 	args.in_numargs = 1;
3108 	args.in_args[0].size = sizeof(inarg);
3109 	args.in_args[0].value = &inarg;
3110 	args.out_numargs = 1;
3111 	args.out_args[0].size = sizeof(outarg);
3112 	args.out_args[0].value = &outarg;
3113 	err = fuse_simple_request(fm, &args);
3114 	if (err == -ENOSYS) {
3115 		fc->no_copy_file_range = 1;
3116 		err = -EOPNOTSUPP;
3117 	}
3118 	if (err)
3119 		goto out;
3120 
3121 	truncate_inode_pages_range(inode_out->i_mapping,
3122 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3123 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3124 
3125 	file_update_time(file_out);
3126 	fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3127 
3128 	err = outarg.size;
3129 out:
3130 	if (is_unstable)
3131 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3132 
3133 	inode_unlock(inode_out);
3134 	file_accessed(file_in);
3135 
3136 	fuse_flush_time_update(inode_out);
3137 
3138 	return err;
3139 }
3140 
3141 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3142 				    struct file *dst_file, loff_t dst_off,
3143 				    size_t len, unsigned int flags)
3144 {
3145 	ssize_t ret;
3146 
3147 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3148 				     len, flags);
3149 
3150 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3151 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3152 					      dst_off, len, flags);
3153 	return ret;
3154 }
3155 
3156 static const struct file_operations fuse_file_operations = {
3157 	.llseek		= fuse_file_llseek,
3158 	.read_iter	= fuse_file_read_iter,
3159 	.write_iter	= fuse_file_write_iter,
3160 	.mmap		= fuse_file_mmap,
3161 	.open		= fuse_open,
3162 	.flush		= fuse_flush,
3163 	.release	= fuse_release,
3164 	.fsync		= fuse_fsync,
3165 	.lock		= fuse_file_lock,
3166 	.get_unmapped_area = thp_get_unmapped_area,
3167 	.flock		= fuse_file_flock,
3168 	.splice_read	= generic_file_splice_read,
3169 	.splice_write	= iter_file_splice_write,
3170 	.unlocked_ioctl	= fuse_file_ioctl,
3171 	.compat_ioctl	= fuse_file_compat_ioctl,
3172 	.poll		= fuse_file_poll,
3173 	.fallocate	= fuse_file_fallocate,
3174 	.copy_file_range = fuse_copy_file_range,
3175 };
3176 
3177 static const struct address_space_operations fuse_file_aops  = {
3178 	.read_folio	= fuse_read_folio,
3179 	.readahead	= fuse_readahead,
3180 	.writepage	= fuse_writepage,
3181 	.writepages	= fuse_writepages,
3182 	.launder_folio	= fuse_launder_folio,
3183 	.dirty_folio	= filemap_dirty_folio,
3184 	.bmap		= fuse_bmap,
3185 	.direct_IO	= fuse_direct_IO,
3186 	.write_begin	= fuse_write_begin,
3187 	.write_end	= fuse_write_end,
3188 };
3189 
3190 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3191 {
3192 	struct fuse_inode *fi = get_fuse_inode(inode);
3193 
3194 	inode->i_fop = &fuse_file_operations;
3195 	inode->i_data.a_ops = &fuse_file_aops;
3196 
3197 	INIT_LIST_HEAD(&fi->write_files);
3198 	INIT_LIST_HEAD(&fi->queued_writes);
3199 	fi->writectr = 0;
3200 	init_waitqueue_head(&fi->page_waitq);
3201 	fi->writepages = RB_ROOT;
3202 
3203 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3204 		fuse_dax_inode_init(inode, flags);
3205 }
3206