1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 23 unsigned int open_flags, int opcode, 24 struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fm->fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 34 if (fm->fc->handle_killpriv_v2 && 35 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 36 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 37 } 38 39 args.opcode = opcode; 40 args.nodeid = nodeid; 41 args.in_numargs = 1; 42 args.in_args[0].size = sizeof(inarg); 43 args.in_args[0].value = &inarg; 44 args.out_numargs = 1; 45 args.out_args[0].size = sizeof(*outargp); 46 args.out_args[0].value = outargp; 47 48 return fuse_simple_request(fm, &args); 49 } 50 51 struct fuse_release_args { 52 struct fuse_args args; 53 struct fuse_release_in inarg; 54 struct inode *inode; 55 }; 56 57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm) 58 { 59 struct fuse_file *ff; 60 61 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 62 if (unlikely(!ff)) 63 return NULL; 64 65 ff->fm = fm; 66 ff->release_args = kzalloc(sizeof(*ff->release_args), 67 GFP_KERNEL_ACCOUNT); 68 if (!ff->release_args) { 69 kfree(ff); 70 return NULL; 71 } 72 73 INIT_LIST_HEAD(&ff->write_entry); 74 mutex_init(&ff->readdir.lock); 75 refcount_set(&ff->count, 1); 76 RB_CLEAR_NODE(&ff->polled_node); 77 init_waitqueue_head(&ff->poll_wait); 78 79 ff->kh = atomic64_inc_return(&fm->fc->khctr); 80 81 return ff; 82 } 83 84 void fuse_file_free(struct fuse_file *ff) 85 { 86 kfree(ff->release_args); 87 mutex_destroy(&ff->readdir.lock); 88 kfree(ff); 89 } 90 91 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 92 { 93 refcount_inc(&ff->count); 94 return ff; 95 } 96 97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 98 int error) 99 { 100 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 101 102 iput(ra->inode); 103 kfree(ra); 104 } 105 106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 107 { 108 if (refcount_dec_and_test(&ff->count)) { 109 struct fuse_args *args = &ff->release_args->args; 110 111 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) { 112 /* Do nothing when client does not implement 'open' */ 113 fuse_release_end(ff->fm, args, 0); 114 } else if (sync) { 115 fuse_simple_request(ff->fm, args); 116 fuse_release_end(ff->fm, args, 0); 117 } else { 118 args->end = fuse_release_end; 119 if (fuse_simple_background(ff->fm, args, 120 GFP_KERNEL | __GFP_NOFAIL)) 121 fuse_release_end(ff->fm, args, -ENOTCONN); 122 } 123 kfree(ff); 124 } 125 } 126 127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 128 unsigned int open_flags, bool isdir) 129 { 130 struct fuse_conn *fc = fm->fc; 131 struct fuse_file *ff; 132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 133 134 ff = fuse_file_alloc(fm); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (isdir ? !fc->no_opendir : !fc->no_open) { 142 struct fuse_open_out outarg; 143 int err; 144 145 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg); 146 if (!err) { 147 ff->fh = outarg.fh; 148 ff->open_flags = outarg.open_flags; 149 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 if (isdir) 155 fc->no_opendir = 1; 156 else 157 fc->no_open = 1; 158 } 159 } 160 161 if (isdir) 162 ff->open_flags &= ~FOPEN_DIRECT_IO; 163 164 ff->nodeid = nodeid; 165 166 return ff; 167 } 168 169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 170 bool isdir) 171 { 172 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 173 174 if (!IS_ERR(ff)) 175 file->private_data = ff; 176 177 return PTR_ERR_OR_ZERO(ff); 178 } 179 EXPORT_SYMBOL_GPL(fuse_do_open); 180 181 static void fuse_link_write_file(struct file *file) 182 { 183 struct inode *inode = file_inode(file); 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 struct fuse_file *ff = file->private_data; 186 /* 187 * file may be written through mmap, so chain it onto the 188 * inodes's write_file list 189 */ 190 spin_lock(&fi->lock); 191 if (list_empty(&ff->write_entry)) 192 list_add(&ff->write_entry, &fi->write_files); 193 spin_unlock(&fi->lock); 194 } 195 196 void fuse_finish_open(struct inode *inode, struct file *file) 197 { 198 struct fuse_file *ff = file->private_data; 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 201 if (ff->open_flags & FOPEN_STREAM) 202 stream_open(inode, file); 203 else if (ff->open_flags & FOPEN_NONSEEKABLE) 204 nonseekable_open(inode, file); 205 206 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 207 struct fuse_inode *fi = get_fuse_inode(inode); 208 209 spin_lock(&fi->lock); 210 fi->attr_version = atomic64_inc_return(&fc->attr_version); 211 i_size_write(inode, 0); 212 spin_unlock(&fi->lock); 213 truncate_pagecache(inode, 0); 214 file_update_time(file); 215 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 216 } else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) { 217 invalidate_inode_pages2(inode->i_mapping); 218 } 219 220 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 221 fuse_link_write_file(file); 222 } 223 224 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 225 { 226 struct fuse_mount *fm = get_fuse_mount(inode); 227 struct fuse_conn *fc = fm->fc; 228 int err; 229 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 230 fc->atomic_o_trunc && 231 fc->writeback_cache; 232 bool dax_truncate = (file->f_flags & O_TRUNC) && 233 fc->atomic_o_trunc && FUSE_IS_DAX(inode); 234 235 if (fuse_is_bad(inode)) 236 return -EIO; 237 238 err = generic_file_open(inode, file); 239 if (err) 240 return err; 241 242 if (is_wb_truncate || dax_truncate) { 243 inode_lock(inode); 244 fuse_set_nowrite(inode); 245 } 246 247 if (dax_truncate) { 248 filemap_invalidate_lock(inode->i_mapping); 249 err = fuse_dax_break_layouts(inode, 0, 0); 250 if (err) 251 goto out; 252 } 253 254 err = fuse_do_open(fm, get_node_id(inode), file, isdir); 255 if (!err) 256 fuse_finish_open(inode, file); 257 258 out: 259 if (dax_truncate) 260 filemap_invalidate_unlock(inode->i_mapping); 261 262 if (is_wb_truncate | dax_truncate) { 263 fuse_release_nowrite(inode); 264 inode_unlock(inode); 265 } 266 267 return err; 268 } 269 270 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 271 unsigned int flags, int opcode) 272 { 273 struct fuse_conn *fc = ff->fm->fc; 274 struct fuse_release_args *ra = ff->release_args; 275 276 /* Inode is NULL on error path of fuse_create_open() */ 277 if (likely(fi)) { 278 spin_lock(&fi->lock); 279 list_del(&ff->write_entry); 280 spin_unlock(&fi->lock); 281 } 282 spin_lock(&fc->lock); 283 if (!RB_EMPTY_NODE(&ff->polled_node)) 284 rb_erase(&ff->polled_node, &fc->polled_files); 285 spin_unlock(&fc->lock); 286 287 wake_up_interruptible_all(&ff->poll_wait); 288 289 ra->inarg.fh = ff->fh; 290 ra->inarg.flags = flags; 291 ra->args.in_numargs = 1; 292 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 293 ra->args.in_args[0].value = &ra->inarg; 294 ra->args.opcode = opcode; 295 ra->args.nodeid = ff->nodeid; 296 ra->args.force = true; 297 ra->args.nocreds = true; 298 } 299 300 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 301 unsigned int open_flags, fl_owner_t id, bool isdir) 302 { 303 struct fuse_inode *fi = get_fuse_inode(inode); 304 struct fuse_release_args *ra = ff->release_args; 305 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 306 307 fuse_prepare_release(fi, ff, open_flags, opcode); 308 309 if (ff->flock) { 310 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 311 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 312 } 313 /* Hold inode until release is finished */ 314 ra->inode = igrab(inode); 315 316 /* 317 * Normally this will send the RELEASE request, however if 318 * some asynchronous READ or WRITE requests are outstanding, 319 * the sending will be delayed. 320 * 321 * Make the release synchronous if this is a fuseblk mount, 322 * synchronous RELEASE is allowed (and desirable) in this case 323 * because the server can be trusted not to screw up. 324 */ 325 fuse_file_put(ff, ff->fm->fc->destroy, isdir); 326 } 327 328 void fuse_release_common(struct file *file, bool isdir) 329 { 330 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 331 (fl_owner_t) file, isdir); 332 } 333 334 static int fuse_open(struct inode *inode, struct file *file) 335 { 336 return fuse_open_common(inode, file, false); 337 } 338 339 static int fuse_release(struct inode *inode, struct file *file) 340 { 341 fuse_release_common(file, false); 342 343 /* return value is ignored by VFS */ 344 return 0; 345 } 346 347 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 348 unsigned int flags) 349 { 350 WARN_ON(refcount_read(&ff->count) > 1); 351 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 352 /* 353 * iput(NULL) is a no-op and since the refcount is 1 and everything's 354 * synchronous, we are fine with not doing igrab() here" 355 */ 356 fuse_file_put(ff, true, false); 357 } 358 EXPORT_SYMBOL_GPL(fuse_sync_release); 359 360 /* 361 * Scramble the ID space with XTEA, so that the value of the files_struct 362 * pointer is not exposed to userspace. 363 */ 364 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 365 { 366 u32 *k = fc->scramble_key; 367 u64 v = (unsigned long) id; 368 u32 v0 = v; 369 u32 v1 = v >> 32; 370 u32 sum = 0; 371 int i; 372 373 for (i = 0; i < 32; i++) { 374 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 375 sum += 0x9E3779B9; 376 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 377 } 378 379 return (u64) v0 + ((u64) v1 << 32); 380 } 381 382 struct fuse_writepage_args { 383 struct fuse_io_args ia; 384 struct rb_node writepages_entry; 385 struct list_head queue_entry; 386 struct fuse_writepage_args *next; 387 struct inode *inode; 388 struct fuse_sync_bucket *bucket; 389 }; 390 391 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 392 pgoff_t idx_from, pgoff_t idx_to) 393 { 394 struct rb_node *n; 395 396 n = fi->writepages.rb_node; 397 398 while (n) { 399 struct fuse_writepage_args *wpa; 400 pgoff_t curr_index; 401 402 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 403 WARN_ON(get_fuse_inode(wpa->inode) != fi); 404 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 405 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 406 n = n->rb_right; 407 else if (idx_to < curr_index) 408 n = n->rb_left; 409 else 410 return wpa; 411 } 412 return NULL; 413 } 414 415 /* 416 * Check if any page in a range is under writeback 417 * 418 * This is currently done by walking the list of writepage requests 419 * for the inode, which can be pretty inefficient. 420 */ 421 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 422 pgoff_t idx_to) 423 { 424 struct fuse_inode *fi = get_fuse_inode(inode); 425 bool found; 426 427 spin_lock(&fi->lock); 428 found = fuse_find_writeback(fi, idx_from, idx_to); 429 spin_unlock(&fi->lock); 430 431 return found; 432 } 433 434 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 435 { 436 return fuse_range_is_writeback(inode, index, index); 437 } 438 439 /* 440 * Wait for page writeback to be completed. 441 * 442 * Since fuse doesn't rely on the VM writeback tracking, this has to 443 * use some other means. 444 */ 445 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 446 { 447 struct fuse_inode *fi = get_fuse_inode(inode); 448 449 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 450 } 451 452 /* 453 * Wait for all pending writepages on the inode to finish. 454 * 455 * This is currently done by blocking further writes with FUSE_NOWRITE 456 * and waiting for all sent writes to complete. 457 * 458 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 459 * could conflict with truncation. 460 */ 461 static void fuse_sync_writes(struct inode *inode) 462 { 463 fuse_set_nowrite(inode); 464 fuse_release_nowrite(inode); 465 } 466 467 static int fuse_flush(struct file *file, fl_owner_t id) 468 { 469 struct inode *inode = file_inode(file); 470 struct fuse_mount *fm = get_fuse_mount(inode); 471 struct fuse_file *ff = file->private_data; 472 struct fuse_flush_in inarg; 473 FUSE_ARGS(args); 474 int err; 475 476 if (fuse_is_bad(inode)) 477 return -EIO; 478 479 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 480 return 0; 481 482 err = write_inode_now(inode, 1); 483 if (err) 484 return err; 485 486 inode_lock(inode); 487 fuse_sync_writes(inode); 488 inode_unlock(inode); 489 490 err = filemap_check_errors(file->f_mapping); 491 if (err) 492 return err; 493 494 err = 0; 495 if (fm->fc->no_flush) 496 goto inval_attr_out; 497 498 memset(&inarg, 0, sizeof(inarg)); 499 inarg.fh = ff->fh; 500 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 501 args.opcode = FUSE_FLUSH; 502 args.nodeid = get_node_id(inode); 503 args.in_numargs = 1; 504 args.in_args[0].size = sizeof(inarg); 505 args.in_args[0].value = &inarg; 506 args.force = true; 507 508 err = fuse_simple_request(fm, &args); 509 if (err == -ENOSYS) { 510 fm->fc->no_flush = 1; 511 err = 0; 512 } 513 514 inval_attr_out: 515 /* 516 * In memory i_blocks is not maintained by fuse, if writeback cache is 517 * enabled, i_blocks from cached attr may not be accurate. 518 */ 519 if (!err && fm->fc->writeback_cache) 520 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 521 return err; 522 } 523 524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 525 int datasync, int opcode) 526 { 527 struct inode *inode = file->f_mapping->host; 528 struct fuse_mount *fm = get_fuse_mount(inode); 529 struct fuse_file *ff = file->private_data; 530 FUSE_ARGS(args); 531 struct fuse_fsync_in inarg; 532 533 memset(&inarg, 0, sizeof(inarg)); 534 inarg.fh = ff->fh; 535 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 536 args.opcode = opcode; 537 args.nodeid = get_node_id(inode); 538 args.in_numargs = 1; 539 args.in_args[0].size = sizeof(inarg); 540 args.in_args[0].value = &inarg; 541 return fuse_simple_request(fm, &args); 542 } 543 544 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 545 int datasync) 546 { 547 struct inode *inode = file->f_mapping->host; 548 struct fuse_conn *fc = get_fuse_conn(inode); 549 int err; 550 551 if (fuse_is_bad(inode)) 552 return -EIO; 553 554 inode_lock(inode); 555 556 /* 557 * Start writeback against all dirty pages of the inode, then 558 * wait for all outstanding writes, before sending the FSYNC 559 * request. 560 */ 561 err = file_write_and_wait_range(file, start, end); 562 if (err) 563 goto out; 564 565 fuse_sync_writes(inode); 566 567 /* 568 * Due to implementation of fuse writeback 569 * file_write_and_wait_range() does not catch errors. 570 * We have to do this directly after fuse_sync_writes() 571 */ 572 err = file_check_and_advance_wb_err(file); 573 if (err) 574 goto out; 575 576 err = sync_inode_metadata(inode, 1); 577 if (err) 578 goto out; 579 580 if (fc->no_fsync) 581 goto out; 582 583 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 584 if (err == -ENOSYS) { 585 fc->no_fsync = 1; 586 err = 0; 587 } 588 out: 589 inode_unlock(inode); 590 591 return err; 592 } 593 594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 595 size_t count, int opcode) 596 { 597 struct fuse_file *ff = file->private_data; 598 struct fuse_args *args = &ia->ap.args; 599 600 ia->read.in.fh = ff->fh; 601 ia->read.in.offset = pos; 602 ia->read.in.size = count; 603 ia->read.in.flags = file->f_flags; 604 args->opcode = opcode; 605 args->nodeid = ff->nodeid; 606 args->in_numargs = 1; 607 args->in_args[0].size = sizeof(ia->read.in); 608 args->in_args[0].value = &ia->read.in; 609 args->out_argvar = true; 610 args->out_numargs = 1; 611 args->out_args[0].size = count; 612 } 613 614 static void fuse_release_user_pages(struct fuse_args_pages *ap, 615 bool should_dirty) 616 { 617 unsigned int i; 618 619 for (i = 0; i < ap->num_pages; i++) { 620 if (should_dirty) 621 set_page_dirty_lock(ap->pages[i]); 622 put_page(ap->pages[i]); 623 } 624 } 625 626 static void fuse_io_release(struct kref *kref) 627 { 628 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 629 } 630 631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 632 { 633 if (io->err) 634 return io->err; 635 636 if (io->bytes >= 0 && io->write) 637 return -EIO; 638 639 return io->bytes < 0 ? io->size : io->bytes; 640 } 641 642 /** 643 * In case of short read, the caller sets 'pos' to the position of 644 * actual end of fuse request in IO request. Otherwise, if bytes_requested 645 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 646 * 647 * An example: 648 * User requested DIO read of 64K. It was split into two 32K fuse requests, 649 * both submitted asynchronously. The first of them was ACKed by userspace as 650 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 651 * second request was ACKed as short, e.g. only 1K was read, resulting in 652 * pos == 33K. 653 * 654 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 655 * will be equal to the length of the longest contiguous fragment of 656 * transferred data starting from the beginning of IO request. 657 */ 658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 659 { 660 int left; 661 662 spin_lock(&io->lock); 663 if (err) 664 io->err = io->err ? : err; 665 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 666 io->bytes = pos; 667 668 left = --io->reqs; 669 if (!left && io->blocking) 670 complete(io->done); 671 spin_unlock(&io->lock); 672 673 if (!left && !io->blocking) { 674 ssize_t res = fuse_get_res_by_io(io); 675 676 if (res >= 0) { 677 struct inode *inode = file_inode(io->iocb->ki_filp); 678 struct fuse_conn *fc = get_fuse_conn(inode); 679 struct fuse_inode *fi = get_fuse_inode(inode); 680 681 spin_lock(&fi->lock); 682 fi->attr_version = atomic64_inc_return(&fc->attr_version); 683 spin_unlock(&fi->lock); 684 } 685 686 io->iocb->ki_complete(io->iocb, res); 687 } 688 689 kref_put(&io->refcnt, fuse_io_release); 690 } 691 692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 693 unsigned int npages) 694 { 695 struct fuse_io_args *ia; 696 697 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 698 if (ia) { 699 ia->io = io; 700 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 701 &ia->ap.descs); 702 if (!ia->ap.pages) { 703 kfree(ia); 704 ia = NULL; 705 } 706 } 707 return ia; 708 } 709 710 static void fuse_io_free(struct fuse_io_args *ia) 711 { 712 kfree(ia->ap.pages); 713 kfree(ia); 714 } 715 716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 717 int err) 718 { 719 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 720 struct fuse_io_priv *io = ia->io; 721 ssize_t pos = -1; 722 723 fuse_release_user_pages(&ia->ap, io->should_dirty); 724 725 if (err) { 726 /* Nothing */ 727 } else if (io->write) { 728 if (ia->write.out.size > ia->write.in.size) { 729 err = -EIO; 730 } else if (ia->write.in.size != ia->write.out.size) { 731 pos = ia->write.in.offset - io->offset + 732 ia->write.out.size; 733 } 734 } else { 735 u32 outsize = args->out_args[0].size; 736 737 if (ia->read.in.size != outsize) 738 pos = ia->read.in.offset - io->offset + outsize; 739 } 740 741 fuse_aio_complete(io, err, pos); 742 fuse_io_free(ia); 743 } 744 745 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 746 struct fuse_io_args *ia, size_t num_bytes) 747 { 748 ssize_t err; 749 struct fuse_io_priv *io = ia->io; 750 751 spin_lock(&io->lock); 752 kref_get(&io->refcnt); 753 io->size += num_bytes; 754 io->reqs++; 755 spin_unlock(&io->lock); 756 757 ia->ap.args.end = fuse_aio_complete_req; 758 ia->ap.args.may_block = io->should_dirty; 759 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 760 if (err) 761 fuse_aio_complete_req(fm, &ia->ap.args, err); 762 763 return num_bytes; 764 } 765 766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 767 fl_owner_t owner) 768 { 769 struct file *file = ia->io->iocb->ki_filp; 770 struct fuse_file *ff = file->private_data; 771 struct fuse_mount *fm = ff->fm; 772 773 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 774 if (owner != NULL) { 775 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 776 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 777 } 778 779 if (ia->io->async) 780 return fuse_async_req_send(fm, ia, count); 781 782 return fuse_simple_request(fm, &ia->ap.args); 783 } 784 785 static void fuse_read_update_size(struct inode *inode, loff_t size, 786 u64 attr_ver) 787 { 788 struct fuse_conn *fc = get_fuse_conn(inode); 789 struct fuse_inode *fi = get_fuse_inode(inode); 790 791 spin_lock(&fi->lock); 792 if (attr_ver >= fi->attr_version && size < inode->i_size && 793 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 794 fi->attr_version = atomic64_inc_return(&fc->attr_version); 795 i_size_write(inode, size); 796 } 797 spin_unlock(&fi->lock); 798 } 799 800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 801 struct fuse_args_pages *ap) 802 { 803 struct fuse_conn *fc = get_fuse_conn(inode); 804 805 /* 806 * If writeback_cache is enabled, a short read means there's a hole in 807 * the file. Some data after the hole is in page cache, but has not 808 * reached the client fs yet. So the hole is not present there. 809 */ 810 if (!fc->writeback_cache) { 811 loff_t pos = page_offset(ap->pages[0]) + num_read; 812 fuse_read_update_size(inode, pos, attr_ver); 813 } 814 } 815 816 static int fuse_do_readpage(struct file *file, struct page *page) 817 { 818 struct inode *inode = page->mapping->host; 819 struct fuse_mount *fm = get_fuse_mount(inode); 820 loff_t pos = page_offset(page); 821 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 822 struct fuse_io_args ia = { 823 .ap.args.page_zeroing = true, 824 .ap.args.out_pages = true, 825 .ap.num_pages = 1, 826 .ap.pages = &page, 827 .ap.descs = &desc, 828 }; 829 ssize_t res; 830 u64 attr_ver; 831 832 /* 833 * Page writeback can extend beyond the lifetime of the 834 * page-cache page, so make sure we read a properly synced 835 * page. 836 */ 837 fuse_wait_on_page_writeback(inode, page->index); 838 839 attr_ver = fuse_get_attr_version(fm->fc); 840 841 /* Don't overflow end offset */ 842 if (pos + (desc.length - 1) == LLONG_MAX) 843 desc.length--; 844 845 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 846 res = fuse_simple_request(fm, &ia.ap.args); 847 if (res < 0) 848 return res; 849 /* 850 * Short read means EOF. If file size is larger, truncate it 851 */ 852 if (res < desc.length) 853 fuse_short_read(inode, attr_ver, res, &ia.ap); 854 855 SetPageUptodate(page); 856 857 return 0; 858 } 859 860 static int fuse_readpage(struct file *file, struct page *page) 861 { 862 struct inode *inode = page->mapping->host; 863 int err; 864 865 err = -EIO; 866 if (fuse_is_bad(inode)) 867 goto out; 868 869 err = fuse_do_readpage(file, page); 870 fuse_invalidate_atime(inode); 871 out: 872 unlock_page(page); 873 return err; 874 } 875 876 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 877 int err) 878 { 879 int i; 880 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 881 struct fuse_args_pages *ap = &ia->ap; 882 size_t count = ia->read.in.size; 883 size_t num_read = args->out_args[0].size; 884 struct address_space *mapping = NULL; 885 886 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 887 mapping = ap->pages[i]->mapping; 888 889 if (mapping) { 890 struct inode *inode = mapping->host; 891 892 /* 893 * Short read means EOF. If file size is larger, truncate it 894 */ 895 if (!err && num_read < count) 896 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 897 898 fuse_invalidate_atime(inode); 899 } 900 901 for (i = 0; i < ap->num_pages; i++) { 902 struct page *page = ap->pages[i]; 903 904 if (!err) 905 SetPageUptodate(page); 906 else 907 SetPageError(page); 908 unlock_page(page); 909 put_page(page); 910 } 911 if (ia->ff) 912 fuse_file_put(ia->ff, false, false); 913 914 fuse_io_free(ia); 915 } 916 917 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 918 { 919 struct fuse_file *ff = file->private_data; 920 struct fuse_mount *fm = ff->fm; 921 struct fuse_args_pages *ap = &ia->ap; 922 loff_t pos = page_offset(ap->pages[0]); 923 size_t count = ap->num_pages << PAGE_SHIFT; 924 ssize_t res; 925 int err; 926 927 ap->args.out_pages = true; 928 ap->args.page_zeroing = true; 929 ap->args.page_replace = true; 930 931 /* Don't overflow end offset */ 932 if (pos + (count - 1) == LLONG_MAX) { 933 count--; 934 ap->descs[ap->num_pages - 1].length--; 935 } 936 WARN_ON((loff_t) (pos + count) < 0); 937 938 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 939 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 940 if (fm->fc->async_read) { 941 ia->ff = fuse_file_get(ff); 942 ap->args.end = fuse_readpages_end; 943 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 944 if (!err) 945 return; 946 } else { 947 res = fuse_simple_request(fm, &ap->args); 948 err = res < 0 ? res : 0; 949 } 950 fuse_readpages_end(fm, &ap->args, err); 951 } 952 953 static void fuse_readahead(struct readahead_control *rac) 954 { 955 struct inode *inode = rac->mapping->host; 956 struct fuse_conn *fc = get_fuse_conn(inode); 957 unsigned int i, max_pages, nr_pages = 0; 958 959 if (fuse_is_bad(inode)) 960 return; 961 962 max_pages = min_t(unsigned int, fc->max_pages, 963 fc->max_read / PAGE_SIZE); 964 965 for (;;) { 966 struct fuse_io_args *ia; 967 struct fuse_args_pages *ap; 968 969 nr_pages = readahead_count(rac) - nr_pages; 970 if (nr_pages > max_pages) 971 nr_pages = max_pages; 972 if (nr_pages == 0) 973 break; 974 ia = fuse_io_alloc(NULL, nr_pages); 975 if (!ia) 976 return; 977 ap = &ia->ap; 978 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 979 for (i = 0; i < nr_pages; i++) { 980 fuse_wait_on_page_writeback(inode, 981 readahead_index(rac) + i); 982 ap->descs[i].length = PAGE_SIZE; 983 } 984 ap->num_pages = nr_pages; 985 fuse_send_readpages(ia, rac->file); 986 } 987 } 988 989 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 990 { 991 struct inode *inode = iocb->ki_filp->f_mapping->host; 992 struct fuse_conn *fc = get_fuse_conn(inode); 993 994 /* 995 * In auto invalidate mode, always update attributes on read. 996 * Otherwise, only update if we attempt to read past EOF (to ensure 997 * i_size is up to date). 998 */ 999 if (fc->auto_inval_data || 1000 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1001 int err; 1002 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1003 if (err) 1004 return err; 1005 } 1006 1007 return generic_file_read_iter(iocb, to); 1008 } 1009 1010 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1011 loff_t pos, size_t count) 1012 { 1013 struct fuse_args *args = &ia->ap.args; 1014 1015 ia->write.in.fh = ff->fh; 1016 ia->write.in.offset = pos; 1017 ia->write.in.size = count; 1018 args->opcode = FUSE_WRITE; 1019 args->nodeid = ff->nodeid; 1020 args->in_numargs = 2; 1021 if (ff->fm->fc->minor < 9) 1022 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1023 else 1024 args->in_args[0].size = sizeof(ia->write.in); 1025 args->in_args[0].value = &ia->write.in; 1026 args->in_args[1].size = count; 1027 args->out_numargs = 1; 1028 args->out_args[0].size = sizeof(ia->write.out); 1029 args->out_args[0].value = &ia->write.out; 1030 } 1031 1032 static unsigned int fuse_write_flags(struct kiocb *iocb) 1033 { 1034 unsigned int flags = iocb->ki_filp->f_flags; 1035 1036 if (iocb->ki_flags & IOCB_DSYNC) 1037 flags |= O_DSYNC; 1038 if (iocb->ki_flags & IOCB_SYNC) 1039 flags |= O_SYNC; 1040 1041 return flags; 1042 } 1043 1044 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1045 size_t count, fl_owner_t owner) 1046 { 1047 struct kiocb *iocb = ia->io->iocb; 1048 struct file *file = iocb->ki_filp; 1049 struct fuse_file *ff = file->private_data; 1050 struct fuse_mount *fm = ff->fm; 1051 struct fuse_write_in *inarg = &ia->write.in; 1052 ssize_t err; 1053 1054 fuse_write_args_fill(ia, ff, pos, count); 1055 inarg->flags = fuse_write_flags(iocb); 1056 if (owner != NULL) { 1057 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1058 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1059 } 1060 1061 if (ia->io->async) 1062 return fuse_async_req_send(fm, ia, count); 1063 1064 err = fuse_simple_request(fm, &ia->ap.args); 1065 if (!err && ia->write.out.size > count) 1066 err = -EIO; 1067 1068 return err ?: ia->write.out.size; 1069 } 1070 1071 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1072 { 1073 struct fuse_conn *fc = get_fuse_conn(inode); 1074 struct fuse_inode *fi = get_fuse_inode(inode); 1075 bool ret = false; 1076 1077 spin_lock(&fi->lock); 1078 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1079 if (written > 0 && pos > inode->i_size) { 1080 i_size_write(inode, pos); 1081 ret = true; 1082 } 1083 spin_unlock(&fi->lock); 1084 1085 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1086 1087 return ret; 1088 } 1089 1090 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1091 struct kiocb *iocb, struct inode *inode, 1092 loff_t pos, size_t count) 1093 { 1094 struct fuse_args_pages *ap = &ia->ap; 1095 struct file *file = iocb->ki_filp; 1096 struct fuse_file *ff = file->private_data; 1097 struct fuse_mount *fm = ff->fm; 1098 unsigned int offset, i; 1099 bool short_write; 1100 int err; 1101 1102 for (i = 0; i < ap->num_pages; i++) 1103 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1104 1105 fuse_write_args_fill(ia, ff, pos, count); 1106 ia->write.in.flags = fuse_write_flags(iocb); 1107 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1108 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1109 1110 err = fuse_simple_request(fm, &ap->args); 1111 if (!err && ia->write.out.size > count) 1112 err = -EIO; 1113 1114 short_write = ia->write.out.size < count; 1115 offset = ap->descs[0].offset; 1116 count = ia->write.out.size; 1117 for (i = 0; i < ap->num_pages; i++) { 1118 struct page *page = ap->pages[i]; 1119 1120 if (err) { 1121 ClearPageUptodate(page); 1122 } else { 1123 if (count >= PAGE_SIZE - offset) 1124 count -= PAGE_SIZE - offset; 1125 else { 1126 if (short_write) 1127 ClearPageUptodate(page); 1128 count = 0; 1129 } 1130 offset = 0; 1131 } 1132 if (ia->write.page_locked && (i == ap->num_pages - 1)) 1133 unlock_page(page); 1134 put_page(page); 1135 } 1136 1137 return err; 1138 } 1139 1140 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1141 struct address_space *mapping, 1142 struct iov_iter *ii, loff_t pos, 1143 unsigned int max_pages) 1144 { 1145 struct fuse_args_pages *ap = &ia->ap; 1146 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1147 unsigned offset = pos & (PAGE_SIZE - 1); 1148 size_t count = 0; 1149 int err; 1150 1151 ap->args.in_pages = true; 1152 ap->descs[0].offset = offset; 1153 1154 do { 1155 size_t tmp; 1156 struct page *page; 1157 pgoff_t index = pos >> PAGE_SHIFT; 1158 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1159 iov_iter_count(ii)); 1160 1161 bytes = min_t(size_t, bytes, fc->max_write - count); 1162 1163 again: 1164 err = -EFAULT; 1165 if (fault_in_iov_iter_readable(ii, bytes)) 1166 break; 1167 1168 err = -ENOMEM; 1169 page = grab_cache_page_write_begin(mapping, index, 0); 1170 if (!page) 1171 break; 1172 1173 if (mapping_writably_mapped(mapping)) 1174 flush_dcache_page(page); 1175 1176 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii); 1177 flush_dcache_page(page); 1178 1179 if (!tmp) { 1180 unlock_page(page); 1181 put_page(page); 1182 goto again; 1183 } 1184 1185 err = 0; 1186 ap->pages[ap->num_pages] = page; 1187 ap->descs[ap->num_pages].length = tmp; 1188 ap->num_pages++; 1189 1190 count += tmp; 1191 pos += tmp; 1192 offset += tmp; 1193 if (offset == PAGE_SIZE) 1194 offset = 0; 1195 1196 /* If we copied full page, mark it uptodate */ 1197 if (tmp == PAGE_SIZE) 1198 SetPageUptodate(page); 1199 1200 if (PageUptodate(page)) { 1201 unlock_page(page); 1202 } else { 1203 ia->write.page_locked = true; 1204 break; 1205 } 1206 if (!fc->big_writes) 1207 break; 1208 } while (iov_iter_count(ii) && count < fc->max_write && 1209 ap->num_pages < max_pages && offset == 0); 1210 1211 return count > 0 ? count : err; 1212 } 1213 1214 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1215 unsigned int max_pages) 1216 { 1217 return min_t(unsigned int, 1218 ((pos + len - 1) >> PAGE_SHIFT) - 1219 (pos >> PAGE_SHIFT) + 1, 1220 max_pages); 1221 } 1222 1223 static ssize_t fuse_perform_write(struct kiocb *iocb, 1224 struct address_space *mapping, 1225 struct iov_iter *ii, loff_t pos) 1226 { 1227 struct inode *inode = mapping->host; 1228 struct fuse_conn *fc = get_fuse_conn(inode); 1229 struct fuse_inode *fi = get_fuse_inode(inode); 1230 int err = 0; 1231 ssize_t res = 0; 1232 1233 if (inode->i_size < pos + iov_iter_count(ii)) 1234 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1235 1236 do { 1237 ssize_t count; 1238 struct fuse_io_args ia = {}; 1239 struct fuse_args_pages *ap = &ia.ap; 1240 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1241 fc->max_pages); 1242 1243 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1244 if (!ap->pages) { 1245 err = -ENOMEM; 1246 break; 1247 } 1248 1249 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1250 if (count <= 0) { 1251 err = count; 1252 } else { 1253 err = fuse_send_write_pages(&ia, iocb, inode, 1254 pos, count); 1255 if (!err) { 1256 size_t num_written = ia.write.out.size; 1257 1258 res += num_written; 1259 pos += num_written; 1260 1261 /* break out of the loop on short write */ 1262 if (num_written != count) 1263 err = -EIO; 1264 } 1265 } 1266 kfree(ap->pages); 1267 } while (!err && iov_iter_count(ii)); 1268 1269 fuse_write_update_attr(inode, pos, res); 1270 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1271 1272 return res > 0 ? res : err; 1273 } 1274 1275 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1276 { 1277 struct file *file = iocb->ki_filp; 1278 struct address_space *mapping = file->f_mapping; 1279 ssize_t written = 0; 1280 ssize_t written_buffered = 0; 1281 struct inode *inode = mapping->host; 1282 ssize_t err; 1283 struct fuse_conn *fc = get_fuse_conn(inode); 1284 loff_t endbyte = 0; 1285 1286 if (fc->writeback_cache) { 1287 /* Update size (EOF optimization) and mode (SUID clearing) */ 1288 err = fuse_update_attributes(mapping->host, file, 1289 STATX_SIZE | STATX_MODE); 1290 if (err) 1291 return err; 1292 1293 if (fc->handle_killpriv_v2 && 1294 should_remove_suid(file_dentry(file))) { 1295 goto writethrough; 1296 } 1297 1298 return generic_file_write_iter(iocb, from); 1299 } 1300 1301 writethrough: 1302 inode_lock(inode); 1303 1304 /* We can write back this queue in page reclaim */ 1305 current->backing_dev_info = inode_to_bdi(inode); 1306 1307 err = generic_write_checks(iocb, from); 1308 if (err <= 0) 1309 goto out; 1310 1311 err = file_remove_privs(file); 1312 if (err) 1313 goto out; 1314 1315 err = file_update_time(file); 1316 if (err) 1317 goto out; 1318 1319 if (iocb->ki_flags & IOCB_DIRECT) { 1320 loff_t pos = iocb->ki_pos; 1321 written = generic_file_direct_write(iocb, from); 1322 if (written < 0 || !iov_iter_count(from)) 1323 goto out; 1324 1325 pos += written; 1326 1327 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1328 if (written_buffered < 0) { 1329 err = written_buffered; 1330 goto out; 1331 } 1332 endbyte = pos + written_buffered - 1; 1333 1334 err = filemap_write_and_wait_range(file->f_mapping, pos, 1335 endbyte); 1336 if (err) 1337 goto out; 1338 1339 invalidate_mapping_pages(file->f_mapping, 1340 pos >> PAGE_SHIFT, 1341 endbyte >> PAGE_SHIFT); 1342 1343 written += written_buffered; 1344 iocb->ki_pos = pos + written_buffered; 1345 } else { 1346 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1347 if (written >= 0) 1348 iocb->ki_pos += written; 1349 } 1350 out: 1351 current->backing_dev_info = NULL; 1352 inode_unlock(inode); 1353 if (written > 0) 1354 written = generic_write_sync(iocb, written); 1355 1356 return written ? written : err; 1357 } 1358 1359 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1360 { 1361 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1362 } 1363 1364 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1365 size_t max_size) 1366 { 1367 return min(iov_iter_single_seg_count(ii), max_size); 1368 } 1369 1370 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1371 size_t *nbytesp, int write, 1372 unsigned int max_pages) 1373 { 1374 size_t nbytes = 0; /* # bytes already packed in req */ 1375 ssize_t ret = 0; 1376 1377 /* Special case for kernel I/O: can copy directly into the buffer */ 1378 if (iov_iter_is_kvec(ii)) { 1379 unsigned long user_addr = fuse_get_user_addr(ii); 1380 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1381 1382 if (write) 1383 ap->args.in_args[1].value = (void *) user_addr; 1384 else 1385 ap->args.out_args[0].value = (void *) user_addr; 1386 1387 iov_iter_advance(ii, frag_size); 1388 *nbytesp = frag_size; 1389 return 0; 1390 } 1391 1392 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1393 unsigned npages; 1394 size_t start; 1395 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1396 *nbytesp - nbytes, 1397 max_pages - ap->num_pages, 1398 &start); 1399 if (ret < 0) 1400 break; 1401 1402 iov_iter_advance(ii, ret); 1403 nbytes += ret; 1404 1405 ret += start; 1406 npages = DIV_ROUND_UP(ret, PAGE_SIZE); 1407 1408 ap->descs[ap->num_pages].offset = start; 1409 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1410 1411 ap->num_pages += npages; 1412 ap->descs[ap->num_pages - 1].length -= 1413 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1414 } 1415 1416 ap->args.user_pages = true; 1417 if (write) 1418 ap->args.in_pages = true; 1419 else 1420 ap->args.out_pages = true; 1421 1422 *nbytesp = nbytes; 1423 1424 return ret < 0 ? ret : 0; 1425 } 1426 1427 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1428 loff_t *ppos, int flags) 1429 { 1430 int write = flags & FUSE_DIO_WRITE; 1431 int cuse = flags & FUSE_DIO_CUSE; 1432 struct file *file = io->iocb->ki_filp; 1433 struct inode *inode = file->f_mapping->host; 1434 struct fuse_file *ff = file->private_data; 1435 struct fuse_conn *fc = ff->fm->fc; 1436 size_t nmax = write ? fc->max_write : fc->max_read; 1437 loff_t pos = *ppos; 1438 size_t count = iov_iter_count(iter); 1439 pgoff_t idx_from = pos >> PAGE_SHIFT; 1440 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1441 ssize_t res = 0; 1442 int err = 0; 1443 struct fuse_io_args *ia; 1444 unsigned int max_pages; 1445 1446 max_pages = iov_iter_npages(iter, fc->max_pages); 1447 ia = fuse_io_alloc(io, max_pages); 1448 if (!ia) 1449 return -ENOMEM; 1450 1451 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1452 if (!write) 1453 inode_lock(inode); 1454 fuse_sync_writes(inode); 1455 if (!write) 1456 inode_unlock(inode); 1457 } 1458 1459 io->should_dirty = !write && iter_is_iovec(iter); 1460 while (count) { 1461 ssize_t nres; 1462 fl_owner_t owner = current->files; 1463 size_t nbytes = min(count, nmax); 1464 1465 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1466 max_pages); 1467 if (err && !nbytes) 1468 break; 1469 1470 if (write) { 1471 if (!capable(CAP_FSETID)) 1472 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1473 1474 nres = fuse_send_write(ia, pos, nbytes, owner); 1475 } else { 1476 nres = fuse_send_read(ia, pos, nbytes, owner); 1477 } 1478 1479 if (!io->async || nres < 0) { 1480 fuse_release_user_pages(&ia->ap, io->should_dirty); 1481 fuse_io_free(ia); 1482 } 1483 ia = NULL; 1484 if (nres < 0) { 1485 iov_iter_revert(iter, nbytes); 1486 err = nres; 1487 break; 1488 } 1489 WARN_ON(nres > nbytes); 1490 1491 count -= nres; 1492 res += nres; 1493 pos += nres; 1494 if (nres != nbytes) { 1495 iov_iter_revert(iter, nbytes - nres); 1496 break; 1497 } 1498 if (count) { 1499 max_pages = iov_iter_npages(iter, fc->max_pages); 1500 ia = fuse_io_alloc(io, max_pages); 1501 if (!ia) 1502 break; 1503 } 1504 } 1505 if (ia) 1506 fuse_io_free(ia); 1507 if (res > 0) 1508 *ppos = pos; 1509 1510 return res > 0 ? res : err; 1511 } 1512 EXPORT_SYMBOL_GPL(fuse_direct_io); 1513 1514 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1515 struct iov_iter *iter, 1516 loff_t *ppos) 1517 { 1518 ssize_t res; 1519 struct inode *inode = file_inode(io->iocb->ki_filp); 1520 1521 res = fuse_direct_io(io, iter, ppos, 0); 1522 1523 fuse_invalidate_atime(inode); 1524 1525 return res; 1526 } 1527 1528 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1529 1530 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1531 { 1532 ssize_t res; 1533 1534 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1535 res = fuse_direct_IO(iocb, to); 1536 } else { 1537 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1538 1539 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1540 } 1541 1542 return res; 1543 } 1544 1545 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1546 { 1547 struct inode *inode = file_inode(iocb->ki_filp); 1548 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1549 ssize_t res; 1550 1551 /* Don't allow parallel writes to the same file */ 1552 inode_lock(inode); 1553 res = generic_write_checks(iocb, from); 1554 if (res > 0) { 1555 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1556 res = fuse_direct_IO(iocb, from); 1557 } else { 1558 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1559 FUSE_DIO_WRITE); 1560 fuse_write_update_attr(inode, iocb->ki_pos, res); 1561 } 1562 } 1563 inode_unlock(inode); 1564 1565 return res; 1566 } 1567 1568 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1569 { 1570 struct file *file = iocb->ki_filp; 1571 struct fuse_file *ff = file->private_data; 1572 struct inode *inode = file_inode(file); 1573 1574 if (fuse_is_bad(inode)) 1575 return -EIO; 1576 1577 if (FUSE_IS_DAX(inode)) 1578 return fuse_dax_read_iter(iocb, to); 1579 1580 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1581 return fuse_cache_read_iter(iocb, to); 1582 else 1583 return fuse_direct_read_iter(iocb, to); 1584 } 1585 1586 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1587 { 1588 struct file *file = iocb->ki_filp; 1589 struct fuse_file *ff = file->private_data; 1590 struct inode *inode = file_inode(file); 1591 1592 if (fuse_is_bad(inode)) 1593 return -EIO; 1594 1595 if (FUSE_IS_DAX(inode)) 1596 return fuse_dax_write_iter(iocb, from); 1597 1598 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1599 return fuse_cache_write_iter(iocb, from); 1600 else 1601 return fuse_direct_write_iter(iocb, from); 1602 } 1603 1604 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1605 { 1606 struct fuse_args_pages *ap = &wpa->ia.ap; 1607 int i; 1608 1609 if (wpa->bucket) 1610 fuse_sync_bucket_dec(wpa->bucket); 1611 1612 for (i = 0; i < ap->num_pages; i++) 1613 __free_page(ap->pages[i]); 1614 1615 if (wpa->ia.ff) 1616 fuse_file_put(wpa->ia.ff, false, false); 1617 1618 kfree(ap->pages); 1619 kfree(wpa); 1620 } 1621 1622 static void fuse_writepage_finish(struct fuse_mount *fm, 1623 struct fuse_writepage_args *wpa) 1624 { 1625 struct fuse_args_pages *ap = &wpa->ia.ap; 1626 struct inode *inode = wpa->inode; 1627 struct fuse_inode *fi = get_fuse_inode(inode); 1628 struct backing_dev_info *bdi = inode_to_bdi(inode); 1629 int i; 1630 1631 for (i = 0; i < ap->num_pages; i++) { 1632 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1633 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1634 wb_writeout_inc(&bdi->wb); 1635 } 1636 wake_up(&fi->page_waitq); 1637 } 1638 1639 /* Called under fi->lock, may release and reacquire it */ 1640 static void fuse_send_writepage(struct fuse_mount *fm, 1641 struct fuse_writepage_args *wpa, loff_t size) 1642 __releases(fi->lock) 1643 __acquires(fi->lock) 1644 { 1645 struct fuse_writepage_args *aux, *next; 1646 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1647 struct fuse_write_in *inarg = &wpa->ia.write.in; 1648 struct fuse_args *args = &wpa->ia.ap.args; 1649 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1650 int err; 1651 1652 fi->writectr++; 1653 if (inarg->offset + data_size <= size) { 1654 inarg->size = data_size; 1655 } else if (inarg->offset < size) { 1656 inarg->size = size - inarg->offset; 1657 } else { 1658 /* Got truncated off completely */ 1659 goto out_free; 1660 } 1661 1662 args->in_args[1].size = inarg->size; 1663 args->force = true; 1664 args->nocreds = true; 1665 1666 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1667 if (err == -ENOMEM) { 1668 spin_unlock(&fi->lock); 1669 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1670 spin_lock(&fi->lock); 1671 } 1672 1673 /* Fails on broken connection only */ 1674 if (unlikely(err)) 1675 goto out_free; 1676 1677 return; 1678 1679 out_free: 1680 fi->writectr--; 1681 rb_erase(&wpa->writepages_entry, &fi->writepages); 1682 fuse_writepage_finish(fm, wpa); 1683 spin_unlock(&fi->lock); 1684 1685 /* After fuse_writepage_finish() aux request list is private */ 1686 for (aux = wpa->next; aux; aux = next) { 1687 next = aux->next; 1688 aux->next = NULL; 1689 fuse_writepage_free(aux); 1690 } 1691 1692 fuse_writepage_free(wpa); 1693 spin_lock(&fi->lock); 1694 } 1695 1696 /* 1697 * If fi->writectr is positive (no truncate or fsync going on) send 1698 * all queued writepage requests. 1699 * 1700 * Called with fi->lock 1701 */ 1702 void fuse_flush_writepages(struct inode *inode) 1703 __releases(fi->lock) 1704 __acquires(fi->lock) 1705 { 1706 struct fuse_mount *fm = get_fuse_mount(inode); 1707 struct fuse_inode *fi = get_fuse_inode(inode); 1708 loff_t crop = i_size_read(inode); 1709 struct fuse_writepage_args *wpa; 1710 1711 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1712 wpa = list_entry(fi->queued_writes.next, 1713 struct fuse_writepage_args, queue_entry); 1714 list_del_init(&wpa->queue_entry); 1715 fuse_send_writepage(fm, wpa, crop); 1716 } 1717 } 1718 1719 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1720 struct fuse_writepage_args *wpa) 1721 { 1722 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1723 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1724 struct rb_node **p = &root->rb_node; 1725 struct rb_node *parent = NULL; 1726 1727 WARN_ON(!wpa->ia.ap.num_pages); 1728 while (*p) { 1729 struct fuse_writepage_args *curr; 1730 pgoff_t curr_index; 1731 1732 parent = *p; 1733 curr = rb_entry(parent, struct fuse_writepage_args, 1734 writepages_entry); 1735 WARN_ON(curr->inode != wpa->inode); 1736 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1737 1738 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1739 p = &(*p)->rb_right; 1740 else if (idx_to < curr_index) 1741 p = &(*p)->rb_left; 1742 else 1743 return curr; 1744 } 1745 1746 rb_link_node(&wpa->writepages_entry, parent, p); 1747 rb_insert_color(&wpa->writepages_entry, root); 1748 return NULL; 1749 } 1750 1751 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1752 { 1753 WARN_ON(fuse_insert_writeback(root, wpa)); 1754 } 1755 1756 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1757 int error) 1758 { 1759 struct fuse_writepage_args *wpa = 1760 container_of(args, typeof(*wpa), ia.ap.args); 1761 struct inode *inode = wpa->inode; 1762 struct fuse_inode *fi = get_fuse_inode(inode); 1763 struct fuse_conn *fc = get_fuse_conn(inode); 1764 1765 mapping_set_error(inode->i_mapping, error); 1766 /* 1767 * A writeback finished and this might have updated mtime/ctime on 1768 * server making local mtime/ctime stale. Hence invalidate attrs. 1769 * Do this only if writeback_cache is not enabled. If writeback_cache 1770 * is enabled, we trust local ctime/mtime. 1771 */ 1772 if (!fc->writeback_cache) 1773 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 1774 spin_lock(&fi->lock); 1775 rb_erase(&wpa->writepages_entry, &fi->writepages); 1776 while (wpa->next) { 1777 struct fuse_mount *fm = get_fuse_mount(inode); 1778 struct fuse_write_in *inarg = &wpa->ia.write.in; 1779 struct fuse_writepage_args *next = wpa->next; 1780 1781 wpa->next = next->next; 1782 next->next = NULL; 1783 next->ia.ff = fuse_file_get(wpa->ia.ff); 1784 tree_insert(&fi->writepages, next); 1785 1786 /* 1787 * Skip fuse_flush_writepages() to make it easy to crop requests 1788 * based on primary request size. 1789 * 1790 * 1st case (trivial): there are no concurrent activities using 1791 * fuse_set/release_nowrite. Then we're on safe side because 1792 * fuse_flush_writepages() would call fuse_send_writepage() 1793 * anyway. 1794 * 1795 * 2nd case: someone called fuse_set_nowrite and it is waiting 1796 * now for completion of all in-flight requests. This happens 1797 * rarely and no more than once per page, so this should be 1798 * okay. 1799 * 1800 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1801 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1802 * that fuse_set_nowrite returned implies that all in-flight 1803 * requests were completed along with all of their secondary 1804 * requests. Further primary requests are blocked by negative 1805 * writectr. Hence there cannot be any in-flight requests and 1806 * no invocations of fuse_writepage_end() while we're in 1807 * fuse_set_nowrite..fuse_release_nowrite section. 1808 */ 1809 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 1810 } 1811 fi->writectr--; 1812 fuse_writepage_finish(fm, wpa); 1813 spin_unlock(&fi->lock); 1814 fuse_writepage_free(wpa); 1815 } 1816 1817 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 1818 { 1819 struct fuse_file *ff; 1820 1821 spin_lock(&fi->lock); 1822 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 1823 write_entry); 1824 if (ff) 1825 fuse_file_get(ff); 1826 spin_unlock(&fi->lock); 1827 1828 return ff; 1829 } 1830 1831 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 1832 { 1833 struct fuse_file *ff = __fuse_write_file_get(fi); 1834 WARN_ON(!ff); 1835 return ff; 1836 } 1837 1838 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1839 { 1840 struct fuse_inode *fi = get_fuse_inode(inode); 1841 struct fuse_file *ff; 1842 int err; 1843 1844 /* 1845 * Inode is always written before the last reference is dropped and 1846 * hence this should not be reached from reclaim. 1847 * 1848 * Writing back the inode from reclaim can deadlock if the request 1849 * processing itself needs an allocation. Allocations triggering 1850 * reclaim while serving a request can't be prevented, because it can 1851 * involve any number of unrelated userspace processes. 1852 */ 1853 WARN_ON(wbc->for_reclaim); 1854 1855 ff = __fuse_write_file_get(fi); 1856 err = fuse_flush_times(inode, ff); 1857 if (ff) 1858 fuse_file_put(ff, false, false); 1859 1860 return err; 1861 } 1862 1863 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1864 { 1865 struct fuse_writepage_args *wpa; 1866 struct fuse_args_pages *ap; 1867 1868 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1869 if (wpa) { 1870 ap = &wpa->ia.ap; 1871 ap->num_pages = 0; 1872 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1873 if (!ap->pages) { 1874 kfree(wpa); 1875 wpa = NULL; 1876 } 1877 } 1878 return wpa; 1879 1880 } 1881 1882 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 1883 struct fuse_writepage_args *wpa) 1884 { 1885 if (!fc->sync_fs) 1886 return; 1887 1888 rcu_read_lock(); 1889 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 1890 do { 1891 wpa->bucket = rcu_dereference(fc->curr_bucket); 1892 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 1893 rcu_read_unlock(); 1894 } 1895 1896 static int fuse_writepage_locked(struct page *page) 1897 { 1898 struct address_space *mapping = page->mapping; 1899 struct inode *inode = mapping->host; 1900 struct fuse_conn *fc = get_fuse_conn(inode); 1901 struct fuse_inode *fi = get_fuse_inode(inode); 1902 struct fuse_writepage_args *wpa; 1903 struct fuse_args_pages *ap; 1904 struct page *tmp_page; 1905 int error = -ENOMEM; 1906 1907 set_page_writeback(page); 1908 1909 wpa = fuse_writepage_args_alloc(); 1910 if (!wpa) 1911 goto err; 1912 ap = &wpa->ia.ap; 1913 1914 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1915 if (!tmp_page) 1916 goto err_free; 1917 1918 error = -EIO; 1919 wpa->ia.ff = fuse_write_file_get(fi); 1920 if (!wpa->ia.ff) 1921 goto err_nofile; 1922 1923 fuse_writepage_add_to_bucket(fc, wpa); 1924 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1925 1926 copy_highpage(tmp_page, page); 1927 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1928 wpa->next = NULL; 1929 ap->args.in_pages = true; 1930 ap->num_pages = 1; 1931 ap->pages[0] = tmp_page; 1932 ap->descs[0].offset = 0; 1933 ap->descs[0].length = PAGE_SIZE; 1934 ap->args.end = fuse_writepage_end; 1935 wpa->inode = inode; 1936 1937 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1938 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1939 1940 spin_lock(&fi->lock); 1941 tree_insert(&fi->writepages, wpa); 1942 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1943 fuse_flush_writepages(inode); 1944 spin_unlock(&fi->lock); 1945 1946 end_page_writeback(page); 1947 1948 return 0; 1949 1950 err_nofile: 1951 __free_page(tmp_page); 1952 err_free: 1953 kfree(wpa); 1954 err: 1955 mapping_set_error(page->mapping, error); 1956 end_page_writeback(page); 1957 return error; 1958 } 1959 1960 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1961 { 1962 int err; 1963 1964 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1965 /* 1966 * ->writepages() should be called for sync() and friends. We 1967 * should only get here on direct reclaim and then we are 1968 * allowed to skip a page which is already in flight 1969 */ 1970 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1971 1972 redirty_page_for_writepage(wbc, page); 1973 unlock_page(page); 1974 return 0; 1975 } 1976 1977 err = fuse_writepage_locked(page); 1978 unlock_page(page); 1979 1980 return err; 1981 } 1982 1983 struct fuse_fill_wb_data { 1984 struct fuse_writepage_args *wpa; 1985 struct fuse_file *ff; 1986 struct inode *inode; 1987 struct page **orig_pages; 1988 unsigned int max_pages; 1989 }; 1990 1991 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1992 { 1993 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1994 struct fuse_conn *fc = get_fuse_conn(data->inode); 1995 struct page **pages; 1996 struct fuse_page_desc *descs; 1997 unsigned int npages = min_t(unsigned int, 1998 max_t(unsigned int, data->max_pages * 2, 1999 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2000 fc->max_pages); 2001 WARN_ON(npages <= data->max_pages); 2002 2003 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 2004 if (!pages) 2005 return false; 2006 2007 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 2008 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 2009 kfree(ap->pages); 2010 ap->pages = pages; 2011 ap->descs = descs; 2012 data->max_pages = npages; 2013 2014 return true; 2015 } 2016 2017 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2018 { 2019 struct fuse_writepage_args *wpa = data->wpa; 2020 struct inode *inode = data->inode; 2021 struct fuse_inode *fi = get_fuse_inode(inode); 2022 int num_pages = wpa->ia.ap.num_pages; 2023 int i; 2024 2025 wpa->ia.ff = fuse_file_get(data->ff); 2026 spin_lock(&fi->lock); 2027 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2028 fuse_flush_writepages(inode); 2029 spin_unlock(&fi->lock); 2030 2031 for (i = 0; i < num_pages; i++) 2032 end_page_writeback(data->orig_pages[i]); 2033 } 2034 2035 /* 2036 * Check under fi->lock if the page is under writeback, and insert it onto the 2037 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2038 * one already added for a page at this offset. If there's none, then insert 2039 * this new request onto the auxiliary list, otherwise reuse the existing one by 2040 * swapping the new temp page with the old one. 2041 */ 2042 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2043 struct page *page) 2044 { 2045 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2046 struct fuse_writepage_args *tmp; 2047 struct fuse_writepage_args *old_wpa; 2048 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2049 2050 WARN_ON(new_ap->num_pages != 0); 2051 new_ap->num_pages = 1; 2052 2053 spin_lock(&fi->lock); 2054 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2055 if (!old_wpa) { 2056 spin_unlock(&fi->lock); 2057 return true; 2058 } 2059 2060 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2061 pgoff_t curr_index; 2062 2063 WARN_ON(tmp->inode != new_wpa->inode); 2064 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2065 if (curr_index == page->index) { 2066 WARN_ON(tmp->ia.ap.num_pages != 1); 2067 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 2068 break; 2069 } 2070 } 2071 2072 if (!tmp) { 2073 new_wpa->next = old_wpa->next; 2074 old_wpa->next = new_wpa; 2075 } 2076 2077 spin_unlock(&fi->lock); 2078 2079 if (tmp) { 2080 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2081 2082 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2083 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2084 wb_writeout_inc(&bdi->wb); 2085 fuse_writepage_free(new_wpa); 2086 } 2087 2088 return false; 2089 } 2090 2091 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2092 struct fuse_args_pages *ap, 2093 struct fuse_fill_wb_data *data) 2094 { 2095 WARN_ON(!ap->num_pages); 2096 2097 /* 2098 * Being under writeback is unlikely but possible. For example direct 2099 * read to an mmaped fuse file will set the page dirty twice; once when 2100 * the pages are faulted with get_user_pages(), and then after the read 2101 * completed. 2102 */ 2103 if (fuse_page_is_writeback(data->inode, page->index)) 2104 return true; 2105 2106 /* Reached max pages */ 2107 if (ap->num_pages == fc->max_pages) 2108 return true; 2109 2110 /* Reached max write bytes */ 2111 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2112 return true; 2113 2114 /* Discontinuity */ 2115 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2116 return true; 2117 2118 /* Need to grow the pages array? If so, did the expansion fail? */ 2119 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2120 return true; 2121 2122 return false; 2123 } 2124 2125 static int fuse_writepages_fill(struct page *page, 2126 struct writeback_control *wbc, void *_data) 2127 { 2128 struct fuse_fill_wb_data *data = _data; 2129 struct fuse_writepage_args *wpa = data->wpa; 2130 struct fuse_args_pages *ap = &wpa->ia.ap; 2131 struct inode *inode = data->inode; 2132 struct fuse_inode *fi = get_fuse_inode(inode); 2133 struct fuse_conn *fc = get_fuse_conn(inode); 2134 struct page *tmp_page; 2135 int err; 2136 2137 if (!data->ff) { 2138 err = -EIO; 2139 data->ff = fuse_write_file_get(fi); 2140 if (!data->ff) 2141 goto out_unlock; 2142 } 2143 2144 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) { 2145 fuse_writepages_send(data); 2146 data->wpa = NULL; 2147 } 2148 2149 err = -ENOMEM; 2150 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2151 if (!tmp_page) 2152 goto out_unlock; 2153 2154 /* 2155 * The page must not be redirtied until the writeout is completed 2156 * (i.e. userspace has sent a reply to the write request). Otherwise 2157 * there could be more than one temporary page instance for each real 2158 * page. 2159 * 2160 * This is ensured by holding the page lock in page_mkwrite() while 2161 * checking fuse_page_is_writeback(). We already hold the page lock 2162 * since clear_page_dirty_for_io() and keep it held until we add the 2163 * request to the fi->writepages list and increment ap->num_pages. 2164 * After this fuse_page_is_writeback() will indicate that the page is 2165 * under writeback, so we can release the page lock. 2166 */ 2167 if (data->wpa == NULL) { 2168 err = -ENOMEM; 2169 wpa = fuse_writepage_args_alloc(); 2170 if (!wpa) { 2171 __free_page(tmp_page); 2172 goto out_unlock; 2173 } 2174 fuse_writepage_add_to_bucket(fc, wpa); 2175 2176 data->max_pages = 1; 2177 2178 ap = &wpa->ia.ap; 2179 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2180 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2181 wpa->next = NULL; 2182 ap->args.in_pages = true; 2183 ap->args.end = fuse_writepage_end; 2184 ap->num_pages = 0; 2185 wpa->inode = inode; 2186 } 2187 set_page_writeback(page); 2188 2189 copy_highpage(tmp_page, page); 2190 ap->pages[ap->num_pages] = tmp_page; 2191 ap->descs[ap->num_pages].offset = 0; 2192 ap->descs[ap->num_pages].length = PAGE_SIZE; 2193 data->orig_pages[ap->num_pages] = page; 2194 2195 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2196 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2197 2198 err = 0; 2199 if (data->wpa) { 2200 /* 2201 * Protected by fi->lock against concurrent access by 2202 * fuse_page_is_writeback(). 2203 */ 2204 spin_lock(&fi->lock); 2205 ap->num_pages++; 2206 spin_unlock(&fi->lock); 2207 } else if (fuse_writepage_add(wpa, page)) { 2208 data->wpa = wpa; 2209 } else { 2210 end_page_writeback(page); 2211 } 2212 out_unlock: 2213 unlock_page(page); 2214 2215 return err; 2216 } 2217 2218 static int fuse_writepages(struct address_space *mapping, 2219 struct writeback_control *wbc) 2220 { 2221 struct inode *inode = mapping->host; 2222 struct fuse_conn *fc = get_fuse_conn(inode); 2223 struct fuse_fill_wb_data data; 2224 int err; 2225 2226 err = -EIO; 2227 if (fuse_is_bad(inode)) 2228 goto out; 2229 2230 data.inode = inode; 2231 data.wpa = NULL; 2232 data.ff = NULL; 2233 2234 err = -ENOMEM; 2235 data.orig_pages = kcalloc(fc->max_pages, 2236 sizeof(struct page *), 2237 GFP_NOFS); 2238 if (!data.orig_pages) 2239 goto out; 2240 2241 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2242 if (data.wpa) { 2243 WARN_ON(!data.wpa->ia.ap.num_pages); 2244 fuse_writepages_send(&data); 2245 } 2246 if (data.ff) 2247 fuse_file_put(data.ff, false, false); 2248 2249 kfree(data.orig_pages); 2250 out: 2251 return err; 2252 } 2253 2254 /* 2255 * It's worthy to make sure that space is reserved on disk for the write, 2256 * but how to implement it without killing performance need more thinking. 2257 */ 2258 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2259 loff_t pos, unsigned len, unsigned flags, 2260 struct page **pagep, void **fsdata) 2261 { 2262 pgoff_t index = pos >> PAGE_SHIFT; 2263 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2264 struct page *page; 2265 loff_t fsize; 2266 int err = -ENOMEM; 2267 2268 WARN_ON(!fc->writeback_cache); 2269 2270 page = grab_cache_page_write_begin(mapping, index, flags); 2271 if (!page) 2272 goto error; 2273 2274 fuse_wait_on_page_writeback(mapping->host, page->index); 2275 2276 if (PageUptodate(page) || len == PAGE_SIZE) 2277 goto success; 2278 /* 2279 * Check if the start this page comes after the end of file, in which 2280 * case the readpage can be optimized away. 2281 */ 2282 fsize = i_size_read(mapping->host); 2283 if (fsize <= (pos & PAGE_MASK)) { 2284 size_t off = pos & ~PAGE_MASK; 2285 if (off) 2286 zero_user_segment(page, 0, off); 2287 goto success; 2288 } 2289 err = fuse_do_readpage(file, page); 2290 if (err) 2291 goto cleanup; 2292 success: 2293 *pagep = page; 2294 return 0; 2295 2296 cleanup: 2297 unlock_page(page); 2298 put_page(page); 2299 error: 2300 return err; 2301 } 2302 2303 static int fuse_write_end(struct file *file, struct address_space *mapping, 2304 loff_t pos, unsigned len, unsigned copied, 2305 struct page *page, void *fsdata) 2306 { 2307 struct inode *inode = page->mapping->host; 2308 2309 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2310 if (!copied) 2311 goto unlock; 2312 2313 pos += copied; 2314 if (!PageUptodate(page)) { 2315 /* Zero any unwritten bytes at the end of the page */ 2316 size_t endoff = pos & ~PAGE_MASK; 2317 if (endoff) 2318 zero_user_segment(page, endoff, PAGE_SIZE); 2319 SetPageUptodate(page); 2320 } 2321 2322 if (pos > inode->i_size) 2323 i_size_write(inode, pos); 2324 2325 set_page_dirty(page); 2326 2327 unlock: 2328 unlock_page(page); 2329 put_page(page); 2330 2331 return copied; 2332 } 2333 2334 static int fuse_launder_page(struct page *page) 2335 { 2336 int err = 0; 2337 if (clear_page_dirty_for_io(page)) { 2338 struct inode *inode = page->mapping->host; 2339 2340 /* Serialize with pending writeback for the same page */ 2341 fuse_wait_on_page_writeback(inode, page->index); 2342 err = fuse_writepage_locked(page); 2343 if (!err) 2344 fuse_wait_on_page_writeback(inode, page->index); 2345 } 2346 return err; 2347 } 2348 2349 /* 2350 * Write back dirty data/metadata now (there may not be any suitable 2351 * open files later for data) 2352 */ 2353 static void fuse_vma_close(struct vm_area_struct *vma) 2354 { 2355 int err; 2356 2357 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2358 mapping_set_error(vma->vm_file->f_mapping, err); 2359 } 2360 2361 /* 2362 * Wait for writeback against this page to complete before allowing it 2363 * to be marked dirty again, and hence written back again, possibly 2364 * before the previous writepage completed. 2365 * 2366 * Block here, instead of in ->writepage(), so that the userspace fs 2367 * can only block processes actually operating on the filesystem. 2368 * 2369 * Otherwise unprivileged userspace fs would be able to block 2370 * unrelated: 2371 * 2372 * - page migration 2373 * - sync(2) 2374 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2375 */ 2376 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2377 { 2378 struct page *page = vmf->page; 2379 struct inode *inode = file_inode(vmf->vma->vm_file); 2380 2381 file_update_time(vmf->vma->vm_file); 2382 lock_page(page); 2383 if (page->mapping != inode->i_mapping) { 2384 unlock_page(page); 2385 return VM_FAULT_NOPAGE; 2386 } 2387 2388 fuse_wait_on_page_writeback(inode, page->index); 2389 return VM_FAULT_LOCKED; 2390 } 2391 2392 static const struct vm_operations_struct fuse_file_vm_ops = { 2393 .close = fuse_vma_close, 2394 .fault = filemap_fault, 2395 .map_pages = filemap_map_pages, 2396 .page_mkwrite = fuse_page_mkwrite, 2397 }; 2398 2399 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2400 { 2401 struct fuse_file *ff = file->private_data; 2402 2403 /* DAX mmap is superior to direct_io mmap */ 2404 if (FUSE_IS_DAX(file_inode(file))) 2405 return fuse_dax_mmap(file, vma); 2406 2407 if (ff->open_flags & FOPEN_DIRECT_IO) { 2408 /* Can't provide the coherency needed for MAP_SHARED */ 2409 if (vma->vm_flags & VM_MAYSHARE) 2410 return -ENODEV; 2411 2412 invalidate_inode_pages2(file->f_mapping); 2413 2414 return generic_file_mmap(file, vma); 2415 } 2416 2417 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2418 fuse_link_write_file(file); 2419 2420 file_accessed(file); 2421 vma->vm_ops = &fuse_file_vm_ops; 2422 return 0; 2423 } 2424 2425 static int convert_fuse_file_lock(struct fuse_conn *fc, 2426 const struct fuse_file_lock *ffl, 2427 struct file_lock *fl) 2428 { 2429 switch (ffl->type) { 2430 case F_UNLCK: 2431 break; 2432 2433 case F_RDLCK: 2434 case F_WRLCK: 2435 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2436 ffl->end < ffl->start) 2437 return -EIO; 2438 2439 fl->fl_start = ffl->start; 2440 fl->fl_end = ffl->end; 2441 2442 /* 2443 * Convert pid into init's pid namespace. The locks API will 2444 * translate it into the caller's pid namespace. 2445 */ 2446 rcu_read_lock(); 2447 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2448 rcu_read_unlock(); 2449 break; 2450 2451 default: 2452 return -EIO; 2453 } 2454 fl->fl_type = ffl->type; 2455 return 0; 2456 } 2457 2458 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2459 const struct file_lock *fl, int opcode, pid_t pid, 2460 int flock, struct fuse_lk_in *inarg) 2461 { 2462 struct inode *inode = file_inode(file); 2463 struct fuse_conn *fc = get_fuse_conn(inode); 2464 struct fuse_file *ff = file->private_data; 2465 2466 memset(inarg, 0, sizeof(*inarg)); 2467 inarg->fh = ff->fh; 2468 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2469 inarg->lk.start = fl->fl_start; 2470 inarg->lk.end = fl->fl_end; 2471 inarg->lk.type = fl->fl_type; 2472 inarg->lk.pid = pid; 2473 if (flock) 2474 inarg->lk_flags |= FUSE_LK_FLOCK; 2475 args->opcode = opcode; 2476 args->nodeid = get_node_id(inode); 2477 args->in_numargs = 1; 2478 args->in_args[0].size = sizeof(*inarg); 2479 args->in_args[0].value = inarg; 2480 } 2481 2482 static int fuse_getlk(struct file *file, struct file_lock *fl) 2483 { 2484 struct inode *inode = file_inode(file); 2485 struct fuse_mount *fm = get_fuse_mount(inode); 2486 FUSE_ARGS(args); 2487 struct fuse_lk_in inarg; 2488 struct fuse_lk_out outarg; 2489 int err; 2490 2491 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2492 args.out_numargs = 1; 2493 args.out_args[0].size = sizeof(outarg); 2494 args.out_args[0].value = &outarg; 2495 err = fuse_simple_request(fm, &args); 2496 if (!err) 2497 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2498 2499 return err; 2500 } 2501 2502 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2503 { 2504 struct inode *inode = file_inode(file); 2505 struct fuse_mount *fm = get_fuse_mount(inode); 2506 FUSE_ARGS(args); 2507 struct fuse_lk_in inarg; 2508 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2509 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2510 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2511 int err; 2512 2513 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2514 /* NLM needs asynchronous locks, which we don't support yet */ 2515 return -ENOLCK; 2516 } 2517 2518 /* Unlock on close is handled by the flush method */ 2519 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2520 return 0; 2521 2522 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2523 err = fuse_simple_request(fm, &args); 2524 2525 /* locking is restartable */ 2526 if (err == -EINTR) 2527 err = -ERESTARTSYS; 2528 2529 return err; 2530 } 2531 2532 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2533 { 2534 struct inode *inode = file_inode(file); 2535 struct fuse_conn *fc = get_fuse_conn(inode); 2536 int err; 2537 2538 if (cmd == F_CANCELLK) { 2539 err = 0; 2540 } else if (cmd == F_GETLK) { 2541 if (fc->no_lock) { 2542 posix_test_lock(file, fl); 2543 err = 0; 2544 } else 2545 err = fuse_getlk(file, fl); 2546 } else { 2547 if (fc->no_lock) 2548 err = posix_lock_file(file, fl, NULL); 2549 else 2550 err = fuse_setlk(file, fl, 0); 2551 } 2552 return err; 2553 } 2554 2555 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2556 { 2557 struct inode *inode = file_inode(file); 2558 struct fuse_conn *fc = get_fuse_conn(inode); 2559 int err; 2560 2561 if (fc->no_flock) { 2562 err = locks_lock_file_wait(file, fl); 2563 } else { 2564 struct fuse_file *ff = file->private_data; 2565 2566 /* emulate flock with POSIX locks */ 2567 ff->flock = true; 2568 err = fuse_setlk(file, fl, 1); 2569 } 2570 2571 return err; 2572 } 2573 2574 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2575 { 2576 struct inode *inode = mapping->host; 2577 struct fuse_mount *fm = get_fuse_mount(inode); 2578 FUSE_ARGS(args); 2579 struct fuse_bmap_in inarg; 2580 struct fuse_bmap_out outarg; 2581 int err; 2582 2583 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2584 return 0; 2585 2586 memset(&inarg, 0, sizeof(inarg)); 2587 inarg.block = block; 2588 inarg.blocksize = inode->i_sb->s_blocksize; 2589 args.opcode = FUSE_BMAP; 2590 args.nodeid = get_node_id(inode); 2591 args.in_numargs = 1; 2592 args.in_args[0].size = sizeof(inarg); 2593 args.in_args[0].value = &inarg; 2594 args.out_numargs = 1; 2595 args.out_args[0].size = sizeof(outarg); 2596 args.out_args[0].value = &outarg; 2597 err = fuse_simple_request(fm, &args); 2598 if (err == -ENOSYS) 2599 fm->fc->no_bmap = 1; 2600 2601 return err ? 0 : outarg.block; 2602 } 2603 2604 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2605 { 2606 struct inode *inode = file->f_mapping->host; 2607 struct fuse_mount *fm = get_fuse_mount(inode); 2608 struct fuse_file *ff = file->private_data; 2609 FUSE_ARGS(args); 2610 struct fuse_lseek_in inarg = { 2611 .fh = ff->fh, 2612 .offset = offset, 2613 .whence = whence 2614 }; 2615 struct fuse_lseek_out outarg; 2616 int err; 2617 2618 if (fm->fc->no_lseek) 2619 goto fallback; 2620 2621 args.opcode = FUSE_LSEEK; 2622 args.nodeid = ff->nodeid; 2623 args.in_numargs = 1; 2624 args.in_args[0].size = sizeof(inarg); 2625 args.in_args[0].value = &inarg; 2626 args.out_numargs = 1; 2627 args.out_args[0].size = sizeof(outarg); 2628 args.out_args[0].value = &outarg; 2629 err = fuse_simple_request(fm, &args); 2630 if (err) { 2631 if (err == -ENOSYS) { 2632 fm->fc->no_lseek = 1; 2633 goto fallback; 2634 } 2635 return err; 2636 } 2637 2638 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2639 2640 fallback: 2641 err = fuse_update_attributes(inode, file, STATX_SIZE); 2642 if (!err) 2643 return generic_file_llseek(file, offset, whence); 2644 else 2645 return err; 2646 } 2647 2648 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2649 { 2650 loff_t retval; 2651 struct inode *inode = file_inode(file); 2652 2653 switch (whence) { 2654 case SEEK_SET: 2655 case SEEK_CUR: 2656 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2657 retval = generic_file_llseek(file, offset, whence); 2658 break; 2659 case SEEK_END: 2660 inode_lock(inode); 2661 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2662 if (!retval) 2663 retval = generic_file_llseek(file, offset, whence); 2664 inode_unlock(inode); 2665 break; 2666 case SEEK_HOLE: 2667 case SEEK_DATA: 2668 inode_lock(inode); 2669 retval = fuse_lseek(file, offset, whence); 2670 inode_unlock(inode); 2671 break; 2672 default: 2673 retval = -EINVAL; 2674 } 2675 2676 return retval; 2677 } 2678 2679 /* 2680 * All files which have been polled are linked to RB tree 2681 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2682 * find the matching one. 2683 */ 2684 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2685 struct rb_node **parent_out) 2686 { 2687 struct rb_node **link = &fc->polled_files.rb_node; 2688 struct rb_node *last = NULL; 2689 2690 while (*link) { 2691 struct fuse_file *ff; 2692 2693 last = *link; 2694 ff = rb_entry(last, struct fuse_file, polled_node); 2695 2696 if (kh < ff->kh) 2697 link = &last->rb_left; 2698 else if (kh > ff->kh) 2699 link = &last->rb_right; 2700 else 2701 return link; 2702 } 2703 2704 if (parent_out) 2705 *parent_out = last; 2706 return link; 2707 } 2708 2709 /* 2710 * The file is about to be polled. Make sure it's on the polled_files 2711 * RB tree. Note that files once added to the polled_files tree are 2712 * not removed before the file is released. This is because a file 2713 * polled once is likely to be polled again. 2714 */ 2715 static void fuse_register_polled_file(struct fuse_conn *fc, 2716 struct fuse_file *ff) 2717 { 2718 spin_lock(&fc->lock); 2719 if (RB_EMPTY_NODE(&ff->polled_node)) { 2720 struct rb_node **link, *parent; 2721 2722 link = fuse_find_polled_node(fc, ff->kh, &parent); 2723 BUG_ON(*link); 2724 rb_link_node(&ff->polled_node, parent, link); 2725 rb_insert_color(&ff->polled_node, &fc->polled_files); 2726 } 2727 spin_unlock(&fc->lock); 2728 } 2729 2730 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2731 { 2732 struct fuse_file *ff = file->private_data; 2733 struct fuse_mount *fm = ff->fm; 2734 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2735 struct fuse_poll_out outarg; 2736 FUSE_ARGS(args); 2737 int err; 2738 2739 if (fm->fc->no_poll) 2740 return DEFAULT_POLLMASK; 2741 2742 poll_wait(file, &ff->poll_wait, wait); 2743 inarg.events = mangle_poll(poll_requested_events(wait)); 2744 2745 /* 2746 * Ask for notification iff there's someone waiting for it. 2747 * The client may ignore the flag and always notify. 2748 */ 2749 if (waitqueue_active(&ff->poll_wait)) { 2750 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2751 fuse_register_polled_file(fm->fc, ff); 2752 } 2753 2754 args.opcode = FUSE_POLL; 2755 args.nodeid = ff->nodeid; 2756 args.in_numargs = 1; 2757 args.in_args[0].size = sizeof(inarg); 2758 args.in_args[0].value = &inarg; 2759 args.out_numargs = 1; 2760 args.out_args[0].size = sizeof(outarg); 2761 args.out_args[0].value = &outarg; 2762 err = fuse_simple_request(fm, &args); 2763 2764 if (!err) 2765 return demangle_poll(outarg.revents); 2766 if (err == -ENOSYS) { 2767 fm->fc->no_poll = 1; 2768 return DEFAULT_POLLMASK; 2769 } 2770 return EPOLLERR; 2771 } 2772 EXPORT_SYMBOL_GPL(fuse_file_poll); 2773 2774 /* 2775 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2776 * wakes up the poll waiters. 2777 */ 2778 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2779 struct fuse_notify_poll_wakeup_out *outarg) 2780 { 2781 u64 kh = outarg->kh; 2782 struct rb_node **link; 2783 2784 spin_lock(&fc->lock); 2785 2786 link = fuse_find_polled_node(fc, kh, NULL); 2787 if (*link) { 2788 struct fuse_file *ff; 2789 2790 ff = rb_entry(*link, struct fuse_file, polled_node); 2791 wake_up_interruptible_sync(&ff->poll_wait); 2792 } 2793 2794 spin_unlock(&fc->lock); 2795 return 0; 2796 } 2797 2798 static void fuse_do_truncate(struct file *file) 2799 { 2800 struct inode *inode = file->f_mapping->host; 2801 struct iattr attr; 2802 2803 attr.ia_valid = ATTR_SIZE; 2804 attr.ia_size = i_size_read(inode); 2805 2806 attr.ia_file = file; 2807 attr.ia_valid |= ATTR_FILE; 2808 2809 fuse_do_setattr(file_dentry(file), &attr, file); 2810 } 2811 2812 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2813 { 2814 return round_up(off, fc->max_pages << PAGE_SHIFT); 2815 } 2816 2817 static ssize_t 2818 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2819 { 2820 DECLARE_COMPLETION_ONSTACK(wait); 2821 ssize_t ret = 0; 2822 struct file *file = iocb->ki_filp; 2823 struct fuse_file *ff = file->private_data; 2824 loff_t pos = 0; 2825 struct inode *inode; 2826 loff_t i_size; 2827 size_t count = iov_iter_count(iter), shortened = 0; 2828 loff_t offset = iocb->ki_pos; 2829 struct fuse_io_priv *io; 2830 2831 pos = offset; 2832 inode = file->f_mapping->host; 2833 i_size = i_size_read(inode); 2834 2835 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 2836 return 0; 2837 2838 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2839 if (!io) 2840 return -ENOMEM; 2841 spin_lock_init(&io->lock); 2842 kref_init(&io->refcnt); 2843 io->reqs = 1; 2844 io->bytes = -1; 2845 io->size = 0; 2846 io->offset = offset; 2847 io->write = (iov_iter_rw(iter) == WRITE); 2848 io->err = 0; 2849 /* 2850 * By default, we want to optimize all I/Os with async request 2851 * submission to the client filesystem if supported. 2852 */ 2853 io->async = ff->fm->fc->async_dio; 2854 io->iocb = iocb; 2855 io->blocking = is_sync_kiocb(iocb); 2856 2857 /* optimization for short read */ 2858 if (io->async && !io->write && offset + count > i_size) { 2859 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 2860 shortened = count - iov_iter_count(iter); 2861 count -= shortened; 2862 } 2863 2864 /* 2865 * We cannot asynchronously extend the size of a file. 2866 * In such case the aio will behave exactly like sync io. 2867 */ 2868 if ((offset + count > i_size) && io->write) 2869 io->blocking = true; 2870 2871 if (io->async && io->blocking) { 2872 /* 2873 * Additional reference to keep io around after 2874 * calling fuse_aio_complete() 2875 */ 2876 kref_get(&io->refcnt); 2877 io->done = &wait; 2878 } 2879 2880 if (iov_iter_rw(iter) == WRITE) { 2881 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2882 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 2883 } else { 2884 ret = __fuse_direct_read(io, iter, &pos); 2885 } 2886 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 2887 2888 if (io->async) { 2889 bool blocking = io->blocking; 2890 2891 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2892 2893 /* we have a non-extending, async request, so return */ 2894 if (!blocking) 2895 return -EIOCBQUEUED; 2896 2897 wait_for_completion(&wait); 2898 ret = fuse_get_res_by_io(io); 2899 } 2900 2901 kref_put(&io->refcnt, fuse_io_release); 2902 2903 if (iov_iter_rw(iter) == WRITE) { 2904 fuse_write_update_attr(inode, pos, ret); 2905 if (ret < 0 && offset + count > i_size) 2906 fuse_do_truncate(file); 2907 } 2908 2909 return ret; 2910 } 2911 2912 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 2913 { 2914 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 2915 2916 if (!err) 2917 fuse_sync_writes(inode); 2918 2919 return err; 2920 } 2921 2922 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2923 loff_t length) 2924 { 2925 struct fuse_file *ff = file->private_data; 2926 struct inode *inode = file_inode(file); 2927 struct fuse_inode *fi = get_fuse_inode(inode); 2928 struct fuse_mount *fm = ff->fm; 2929 FUSE_ARGS(args); 2930 struct fuse_fallocate_in inarg = { 2931 .fh = ff->fh, 2932 .offset = offset, 2933 .length = length, 2934 .mode = mode 2935 }; 2936 int err; 2937 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2938 (mode & (FALLOC_FL_PUNCH_HOLE | 2939 FALLOC_FL_ZERO_RANGE)); 2940 2941 bool block_faults = FUSE_IS_DAX(inode) && lock_inode; 2942 2943 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2944 FALLOC_FL_ZERO_RANGE)) 2945 return -EOPNOTSUPP; 2946 2947 if (fm->fc->no_fallocate) 2948 return -EOPNOTSUPP; 2949 2950 if (lock_inode) { 2951 inode_lock(inode); 2952 if (block_faults) { 2953 filemap_invalidate_lock(inode->i_mapping); 2954 err = fuse_dax_break_layouts(inode, 0, 0); 2955 if (err) 2956 goto out; 2957 } 2958 2959 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 2960 loff_t endbyte = offset + length - 1; 2961 2962 err = fuse_writeback_range(inode, offset, endbyte); 2963 if (err) 2964 goto out; 2965 } 2966 } 2967 2968 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2969 offset + length > i_size_read(inode)) { 2970 err = inode_newsize_ok(inode, offset + length); 2971 if (err) 2972 goto out; 2973 } 2974 2975 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2976 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2977 2978 args.opcode = FUSE_FALLOCATE; 2979 args.nodeid = ff->nodeid; 2980 args.in_numargs = 1; 2981 args.in_args[0].size = sizeof(inarg); 2982 args.in_args[0].value = &inarg; 2983 err = fuse_simple_request(fm, &args); 2984 if (err == -ENOSYS) { 2985 fm->fc->no_fallocate = 1; 2986 err = -EOPNOTSUPP; 2987 } 2988 if (err) 2989 goto out; 2990 2991 /* we could have extended the file */ 2992 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2993 if (fuse_write_update_attr(inode, offset + length, length)) 2994 file_update_time(file); 2995 } 2996 2997 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 2998 truncate_pagecache_range(inode, offset, offset + length - 1); 2999 3000 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3001 3002 out: 3003 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3004 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3005 3006 if (block_faults) 3007 filemap_invalidate_unlock(inode->i_mapping); 3008 3009 if (lock_inode) 3010 inode_unlock(inode); 3011 3012 fuse_flush_time_update(inode); 3013 3014 return err; 3015 } 3016 3017 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3018 struct file *file_out, loff_t pos_out, 3019 size_t len, unsigned int flags) 3020 { 3021 struct fuse_file *ff_in = file_in->private_data; 3022 struct fuse_file *ff_out = file_out->private_data; 3023 struct inode *inode_in = file_inode(file_in); 3024 struct inode *inode_out = file_inode(file_out); 3025 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3026 struct fuse_mount *fm = ff_in->fm; 3027 struct fuse_conn *fc = fm->fc; 3028 FUSE_ARGS(args); 3029 struct fuse_copy_file_range_in inarg = { 3030 .fh_in = ff_in->fh, 3031 .off_in = pos_in, 3032 .nodeid_out = ff_out->nodeid, 3033 .fh_out = ff_out->fh, 3034 .off_out = pos_out, 3035 .len = len, 3036 .flags = flags 3037 }; 3038 struct fuse_write_out outarg; 3039 ssize_t err; 3040 /* mark unstable when write-back is not used, and file_out gets 3041 * extended */ 3042 bool is_unstable = (!fc->writeback_cache) && 3043 ((pos_out + len) > inode_out->i_size); 3044 3045 if (fc->no_copy_file_range) 3046 return -EOPNOTSUPP; 3047 3048 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3049 return -EXDEV; 3050 3051 inode_lock(inode_in); 3052 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3053 inode_unlock(inode_in); 3054 if (err) 3055 return err; 3056 3057 inode_lock(inode_out); 3058 3059 err = file_modified(file_out); 3060 if (err) 3061 goto out; 3062 3063 /* 3064 * Write out dirty pages in the destination file before sending the COPY 3065 * request to userspace. After the request is completed, truncate off 3066 * pages (including partial ones) from the cache that have been copied, 3067 * since these contain stale data at that point. 3068 * 3069 * This should be mostly correct, but if the COPY writes to partial 3070 * pages (at the start or end) and the parts not covered by the COPY are 3071 * written through a memory map after calling fuse_writeback_range(), 3072 * then these partial page modifications will be lost on truncation. 3073 * 3074 * It is unlikely that someone would rely on such mixed style 3075 * modifications. Yet this does give less guarantees than if the 3076 * copying was performed with write(2). 3077 * 3078 * To fix this a mapping->invalidate_lock could be used to prevent new 3079 * faults while the copy is ongoing. 3080 */ 3081 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3082 if (err) 3083 goto out; 3084 3085 if (is_unstable) 3086 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3087 3088 args.opcode = FUSE_COPY_FILE_RANGE; 3089 args.nodeid = ff_in->nodeid; 3090 args.in_numargs = 1; 3091 args.in_args[0].size = sizeof(inarg); 3092 args.in_args[0].value = &inarg; 3093 args.out_numargs = 1; 3094 args.out_args[0].size = sizeof(outarg); 3095 args.out_args[0].value = &outarg; 3096 err = fuse_simple_request(fm, &args); 3097 if (err == -ENOSYS) { 3098 fc->no_copy_file_range = 1; 3099 err = -EOPNOTSUPP; 3100 } 3101 if (err) 3102 goto out; 3103 3104 truncate_inode_pages_range(inode_out->i_mapping, 3105 ALIGN_DOWN(pos_out, PAGE_SIZE), 3106 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3107 3108 file_update_time(file_out); 3109 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3110 3111 err = outarg.size; 3112 out: 3113 if (is_unstable) 3114 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3115 3116 inode_unlock(inode_out); 3117 file_accessed(file_in); 3118 3119 fuse_flush_time_update(inode_out); 3120 3121 return err; 3122 } 3123 3124 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3125 struct file *dst_file, loff_t dst_off, 3126 size_t len, unsigned int flags) 3127 { 3128 ssize_t ret; 3129 3130 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3131 len, flags); 3132 3133 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3134 ret = generic_copy_file_range(src_file, src_off, dst_file, 3135 dst_off, len, flags); 3136 return ret; 3137 } 3138 3139 static const struct file_operations fuse_file_operations = { 3140 .llseek = fuse_file_llseek, 3141 .read_iter = fuse_file_read_iter, 3142 .write_iter = fuse_file_write_iter, 3143 .mmap = fuse_file_mmap, 3144 .open = fuse_open, 3145 .flush = fuse_flush, 3146 .release = fuse_release, 3147 .fsync = fuse_fsync, 3148 .lock = fuse_file_lock, 3149 .get_unmapped_area = thp_get_unmapped_area, 3150 .flock = fuse_file_flock, 3151 .splice_read = generic_file_splice_read, 3152 .splice_write = iter_file_splice_write, 3153 .unlocked_ioctl = fuse_file_ioctl, 3154 .compat_ioctl = fuse_file_compat_ioctl, 3155 .poll = fuse_file_poll, 3156 .fallocate = fuse_file_fallocate, 3157 .copy_file_range = fuse_copy_file_range, 3158 }; 3159 3160 static const struct address_space_operations fuse_file_aops = { 3161 .readpage = fuse_readpage, 3162 .readahead = fuse_readahead, 3163 .writepage = fuse_writepage, 3164 .writepages = fuse_writepages, 3165 .launder_page = fuse_launder_page, 3166 .set_page_dirty = __set_page_dirty_nobuffers, 3167 .bmap = fuse_bmap, 3168 .direct_IO = fuse_direct_IO, 3169 .write_begin = fuse_write_begin, 3170 .write_end = fuse_write_end, 3171 }; 3172 3173 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3174 { 3175 struct fuse_inode *fi = get_fuse_inode(inode); 3176 3177 inode->i_fop = &fuse_file_operations; 3178 inode->i_data.a_ops = &fuse_file_aops; 3179 3180 INIT_LIST_HEAD(&fi->write_files); 3181 INIT_LIST_HEAD(&fi->queued_writes); 3182 fi->writectr = 0; 3183 init_waitqueue_head(&fi->page_waitq); 3184 fi->writepages = RB_ROOT; 3185 3186 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3187 fuse_dax_inode_init(inode, flags); 3188 } 3189