1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 #include <linux/filelock.h> 22 #include <linux/splice.h> 23 #include <linux/task_io_accounting_ops.h> 24 #include <linux/iomap.h> 25 26 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 27 unsigned int open_flags, int opcode, 28 struct fuse_open_out *outargp) 29 { 30 struct fuse_open_in inarg; 31 FUSE_ARGS(args); 32 33 memset(&inarg, 0, sizeof(inarg)); 34 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 35 if (!fm->fc->atomic_o_trunc) 36 inarg.flags &= ~O_TRUNC; 37 38 if (fm->fc->handle_killpriv_v2 && 39 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 40 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 41 } 42 43 args.opcode = opcode; 44 args.nodeid = nodeid; 45 args.in_numargs = 1; 46 args.in_args[0].size = sizeof(inarg); 47 args.in_args[0].value = &inarg; 48 args.out_numargs = 1; 49 args.out_args[0].size = sizeof(*outargp); 50 args.out_args[0].value = outargp; 51 52 return fuse_simple_request(fm, &args); 53 } 54 55 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release) 56 { 57 struct fuse_file *ff; 58 59 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 60 if (unlikely(!ff)) 61 return NULL; 62 63 ff->fm = fm; 64 if (release) { 65 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT); 66 if (!ff->args) { 67 kfree(ff); 68 return NULL; 69 } 70 } 71 72 INIT_LIST_HEAD(&ff->write_entry); 73 refcount_set(&ff->count, 1); 74 RB_CLEAR_NODE(&ff->polled_node); 75 init_waitqueue_head(&ff->poll_wait); 76 77 ff->kh = atomic64_inc_return(&fm->fc->khctr); 78 79 return ff; 80 } 81 82 void fuse_file_free(struct fuse_file *ff) 83 { 84 kfree(ff->args); 85 kfree(ff); 86 } 87 88 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 89 { 90 refcount_inc(&ff->count); 91 return ff; 92 } 93 94 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 95 int error) 96 { 97 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 98 99 iput(ra->inode); 100 kfree(ra); 101 } 102 103 static void fuse_file_put(struct fuse_file *ff, bool sync) 104 { 105 if (refcount_dec_and_test(&ff->count)) { 106 struct fuse_release_args *ra = &ff->args->release_args; 107 struct fuse_args *args = (ra ? &ra->args : NULL); 108 109 if (ra && ra->inode) 110 fuse_file_io_release(ff, ra->inode); 111 112 if (!args) { 113 /* Do nothing when server does not implement 'open' */ 114 } else if (sync) { 115 fuse_simple_request(ff->fm, args); 116 fuse_release_end(ff->fm, args, 0); 117 } else { 118 args->end = fuse_release_end; 119 if (fuse_simple_background(ff->fm, args, 120 GFP_KERNEL | __GFP_NOFAIL)) 121 fuse_release_end(ff->fm, args, -ENOTCONN); 122 } 123 kfree(ff); 124 } 125 } 126 127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 128 unsigned int open_flags, bool isdir) 129 { 130 struct fuse_conn *fc = fm->fc; 131 struct fuse_file *ff; 132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 133 bool open = isdir ? !fc->no_opendir : !fc->no_open; 134 135 ff = fuse_file_alloc(fm, open); 136 if (!ff) 137 return ERR_PTR(-ENOMEM); 138 139 ff->fh = 0; 140 /* Default for no-open */ 141 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 142 if (open) { 143 /* Store outarg for fuse_finish_open() */ 144 struct fuse_open_out *outargp = &ff->args->open_outarg; 145 int err; 146 147 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp); 148 if (!err) { 149 ff->fh = outargp->fh; 150 ff->open_flags = outargp->open_flags; 151 } else if (err != -ENOSYS) { 152 fuse_file_free(ff); 153 return ERR_PTR(err); 154 } else { 155 /* No release needed */ 156 kfree(ff->args); 157 ff->args = NULL; 158 if (isdir) 159 fc->no_opendir = 1; 160 else 161 fc->no_open = 1; 162 } 163 } 164 165 if (isdir) 166 ff->open_flags &= ~FOPEN_DIRECT_IO; 167 168 ff->nodeid = nodeid; 169 170 return ff; 171 } 172 173 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 174 bool isdir) 175 { 176 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 177 178 if (!IS_ERR(ff)) 179 file->private_data = ff; 180 181 return PTR_ERR_OR_ZERO(ff); 182 } 183 EXPORT_SYMBOL_GPL(fuse_do_open); 184 185 static void fuse_link_write_file(struct file *file) 186 { 187 struct inode *inode = file_inode(file); 188 struct fuse_inode *fi = get_fuse_inode(inode); 189 struct fuse_file *ff = file->private_data; 190 /* 191 * file may be written through mmap, so chain it onto the 192 * inodes's write_file list 193 */ 194 spin_lock(&fi->lock); 195 if (list_empty(&ff->write_entry)) 196 list_add(&ff->write_entry, &fi->write_files); 197 spin_unlock(&fi->lock); 198 } 199 200 int fuse_finish_open(struct inode *inode, struct file *file) 201 { 202 struct fuse_file *ff = file->private_data; 203 struct fuse_conn *fc = get_fuse_conn(inode); 204 int err; 205 206 err = fuse_file_io_open(file, inode); 207 if (err) 208 return err; 209 210 if (ff->open_flags & FOPEN_STREAM) 211 stream_open(inode, file); 212 else if (ff->open_flags & FOPEN_NONSEEKABLE) 213 nonseekable_open(inode, file); 214 215 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 216 fuse_link_write_file(file); 217 218 return 0; 219 } 220 221 static void fuse_truncate_update_attr(struct inode *inode, struct file *file) 222 { 223 struct fuse_conn *fc = get_fuse_conn(inode); 224 struct fuse_inode *fi = get_fuse_inode(inode); 225 226 spin_lock(&fi->lock); 227 fi->attr_version = atomic64_inc_return(&fc->attr_version); 228 i_size_write(inode, 0); 229 spin_unlock(&fi->lock); 230 file_update_time(file); 231 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 232 } 233 234 static int fuse_open(struct inode *inode, struct file *file) 235 { 236 struct fuse_mount *fm = get_fuse_mount(inode); 237 struct fuse_inode *fi = get_fuse_inode(inode); 238 struct fuse_conn *fc = fm->fc; 239 struct fuse_file *ff; 240 int err; 241 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc; 242 bool is_wb_truncate = is_truncate && fc->writeback_cache; 243 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode); 244 245 if (fuse_is_bad(inode)) 246 return -EIO; 247 248 err = generic_file_open(inode, file); 249 if (err) 250 return err; 251 252 if (is_wb_truncate || dax_truncate) 253 inode_lock(inode); 254 255 if (dax_truncate) { 256 filemap_invalidate_lock(inode->i_mapping); 257 err = fuse_dax_break_layouts(inode, 0, -1); 258 if (err) 259 goto out_inode_unlock; 260 } 261 262 if (is_wb_truncate || dax_truncate) 263 fuse_set_nowrite(inode); 264 265 err = fuse_do_open(fm, get_node_id(inode), file, false); 266 if (!err) { 267 ff = file->private_data; 268 err = fuse_finish_open(inode, file); 269 if (err) 270 fuse_sync_release(fi, ff, file->f_flags); 271 else if (is_truncate) 272 fuse_truncate_update_attr(inode, file); 273 } 274 275 if (is_wb_truncate || dax_truncate) 276 fuse_release_nowrite(inode); 277 if (!err) { 278 if (is_truncate) 279 truncate_pagecache(inode, 0); 280 else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 281 invalidate_inode_pages2(inode->i_mapping); 282 } 283 if (dax_truncate) 284 filemap_invalidate_unlock(inode->i_mapping); 285 out_inode_unlock: 286 if (is_wb_truncate || dax_truncate) 287 inode_unlock(inode); 288 289 return err; 290 } 291 292 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 293 unsigned int flags, int opcode, bool sync) 294 { 295 struct fuse_conn *fc = ff->fm->fc; 296 struct fuse_release_args *ra = &ff->args->release_args; 297 298 if (fuse_file_passthrough(ff)) 299 fuse_passthrough_release(ff, fuse_inode_backing(fi)); 300 301 /* Inode is NULL on error path of fuse_create_open() */ 302 if (likely(fi)) { 303 spin_lock(&fi->lock); 304 list_del(&ff->write_entry); 305 spin_unlock(&fi->lock); 306 } 307 spin_lock(&fc->lock); 308 if (!RB_EMPTY_NODE(&ff->polled_node)) 309 rb_erase(&ff->polled_node, &fc->polled_files); 310 spin_unlock(&fc->lock); 311 312 wake_up_interruptible_all(&ff->poll_wait); 313 314 if (!ra) 315 return; 316 317 /* ff->args was used for open outarg */ 318 memset(ff->args, 0, sizeof(*ff->args)); 319 ra->inarg.fh = ff->fh; 320 ra->inarg.flags = flags; 321 ra->args.in_numargs = 1; 322 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 323 ra->args.in_args[0].value = &ra->inarg; 324 ra->args.opcode = opcode; 325 ra->args.nodeid = ff->nodeid; 326 ra->args.force = true; 327 ra->args.nocreds = true; 328 329 /* 330 * Hold inode until release is finished. 331 * From fuse_sync_release() the refcount is 1 and everything's 332 * synchronous, so we are fine with not doing igrab() here. 333 */ 334 ra->inode = sync ? NULL : igrab(&fi->inode); 335 } 336 337 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 338 unsigned int open_flags, fl_owner_t id, bool isdir) 339 { 340 struct fuse_inode *fi = get_fuse_inode(inode); 341 struct fuse_release_args *ra = &ff->args->release_args; 342 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 343 344 fuse_prepare_release(fi, ff, open_flags, opcode, false); 345 346 if (ra && ff->flock) { 347 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 348 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 349 } 350 351 /* 352 * Normally this will send the RELEASE request, however if 353 * some asynchronous READ or WRITE requests are outstanding, 354 * the sending will be delayed. 355 * 356 * Make the release synchronous if this is a fuseblk mount, 357 * synchronous RELEASE is allowed (and desirable) in this case 358 * because the server can be trusted not to screw up. 359 * 360 * Always use the asynchronous file put because the current thread 361 * might be the fuse server. This can happen if a process starts some 362 * aio and closes the fd before the aio completes. Since aio takes its 363 * own ref to the file, the IO completion has to drop the ref, which is 364 * how the fuse server can end up closing its clients' files. 365 */ 366 fuse_file_put(ff, false); 367 } 368 369 void fuse_release_common(struct file *file, bool isdir) 370 { 371 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 372 (fl_owner_t) file, isdir); 373 } 374 375 static int fuse_release(struct inode *inode, struct file *file) 376 { 377 struct fuse_conn *fc = get_fuse_conn(inode); 378 379 /* 380 * Dirty pages might remain despite write_inode_now() call from 381 * fuse_flush() due to writes racing with the close. 382 */ 383 if (fc->writeback_cache) 384 write_inode_now(inode, 1); 385 386 fuse_release_common(file, false); 387 388 /* return value is ignored by VFS */ 389 return 0; 390 } 391 392 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 393 unsigned int flags) 394 { 395 WARN_ON(refcount_read(&ff->count) > 1); 396 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true); 397 fuse_file_put(ff, true); 398 } 399 EXPORT_SYMBOL_GPL(fuse_sync_release); 400 401 /* 402 * Scramble the ID space with XTEA, so that the value of the files_struct 403 * pointer is not exposed to userspace. 404 */ 405 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 406 { 407 u32 *k = fc->scramble_key; 408 u64 v = (unsigned long) id; 409 u32 v0 = v; 410 u32 v1 = v >> 32; 411 u32 sum = 0; 412 int i; 413 414 for (i = 0; i < 32; i++) { 415 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 416 sum += 0x9E3779B9; 417 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 418 } 419 420 return (u64) v0 + ((u64) v1 << 32); 421 } 422 423 struct fuse_writepage_args { 424 struct fuse_io_args ia; 425 struct list_head queue_entry; 426 struct inode *inode; 427 struct fuse_sync_bucket *bucket; 428 }; 429 430 /* 431 * Wait for all pending writepages on the inode to finish. 432 * 433 * This is currently done by blocking further writes with FUSE_NOWRITE 434 * and waiting for all sent writes to complete. 435 * 436 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 437 * could conflict with truncation. 438 */ 439 static void fuse_sync_writes(struct inode *inode) 440 { 441 fuse_set_nowrite(inode); 442 fuse_release_nowrite(inode); 443 } 444 445 static int fuse_flush(struct file *file, fl_owner_t id) 446 { 447 struct inode *inode = file_inode(file); 448 struct fuse_mount *fm = get_fuse_mount(inode); 449 struct fuse_file *ff = file->private_data; 450 struct fuse_flush_in inarg; 451 FUSE_ARGS(args); 452 int err; 453 454 if (fuse_is_bad(inode)) 455 return -EIO; 456 457 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 458 return 0; 459 460 err = write_inode_now(inode, 1); 461 if (err) 462 return err; 463 464 err = filemap_check_errors(file->f_mapping); 465 if (err) 466 return err; 467 468 err = 0; 469 if (fm->fc->no_flush) 470 goto inval_attr_out; 471 472 memset(&inarg, 0, sizeof(inarg)); 473 inarg.fh = ff->fh; 474 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 475 args.opcode = FUSE_FLUSH; 476 args.nodeid = get_node_id(inode); 477 args.in_numargs = 1; 478 args.in_args[0].size = sizeof(inarg); 479 args.in_args[0].value = &inarg; 480 args.force = true; 481 482 err = fuse_simple_request(fm, &args); 483 if (err == -ENOSYS) { 484 fm->fc->no_flush = 1; 485 err = 0; 486 } 487 488 inval_attr_out: 489 /* 490 * In memory i_blocks is not maintained by fuse, if writeback cache is 491 * enabled, i_blocks from cached attr may not be accurate. 492 */ 493 if (!err && fm->fc->writeback_cache) 494 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 495 return err; 496 } 497 498 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 499 int datasync, int opcode) 500 { 501 struct inode *inode = file->f_mapping->host; 502 struct fuse_mount *fm = get_fuse_mount(inode); 503 struct fuse_file *ff = file->private_data; 504 FUSE_ARGS(args); 505 struct fuse_fsync_in inarg; 506 507 memset(&inarg, 0, sizeof(inarg)); 508 inarg.fh = ff->fh; 509 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 510 args.opcode = opcode; 511 args.nodeid = get_node_id(inode); 512 args.in_numargs = 1; 513 args.in_args[0].size = sizeof(inarg); 514 args.in_args[0].value = &inarg; 515 return fuse_simple_request(fm, &args); 516 } 517 518 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 519 int datasync) 520 { 521 struct inode *inode = file->f_mapping->host; 522 struct fuse_conn *fc = get_fuse_conn(inode); 523 int err; 524 525 if (fuse_is_bad(inode)) 526 return -EIO; 527 528 inode_lock(inode); 529 530 /* 531 * Start writeback against all dirty pages of the inode, then 532 * wait for all outstanding writes, before sending the FSYNC 533 * request. 534 */ 535 err = file_write_and_wait_range(file, start, end); 536 if (err) 537 goto out; 538 539 fuse_sync_writes(inode); 540 541 /* 542 * Due to implementation of fuse writeback 543 * file_write_and_wait_range() does not catch errors. 544 * We have to do this directly after fuse_sync_writes() 545 */ 546 err = file_check_and_advance_wb_err(file); 547 if (err) 548 goto out; 549 550 err = sync_inode_metadata(inode, 1); 551 if (err) 552 goto out; 553 554 if (fc->no_fsync) 555 goto out; 556 557 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 558 if (err == -ENOSYS) { 559 fc->no_fsync = 1; 560 err = 0; 561 } 562 out: 563 inode_unlock(inode); 564 565 return err; 566 } 567 568 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 569 size_t count, int opcode) 570 { 571 struct fuse_file *ff = file->private_data; 572 struct fuse_args *args = &ia->ap.args; 573 574 ia->read.in.fh = ff->fh; 575 ia->read.in.offset = pos; 576 ia->read.in.size = count; 577 ia->read.in.flags = file->f_flags; 578 args->opcode = opcode; 579 args->nodeid = ff->nodeid; 580 args->in_numargs = 1; 581 args->in_args[0].size = sizeof(ia->read.in); 582 args->in_args[0].value = &ia->read.in; 583 args->out_argvar = true; 584 args->out_numargs = 1; 585 args->out_args[0].size = count; 586 } 587 588 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres, 589 bool should_dirty) 590 { 591 unsigned int i; 592 593 for (i = 0; i < ap->num_folios; i++) { 594 if (should_dirty) 595 folio_mark_dirty_lock(ap->folios[i]); 596 if (ap->args.is_pinned) 597 unpin_folio(ap->folios[i]); 598 } 599 600 if (nres > 0 && ap->args.invalidate_vmap) 601 invalidate_kernel_vmap_range(ap->args.vmap_base, nres); 602 } 603 604 static void fuse_io_release(struct kref *kref) 605 { 606 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 607 } 608 609 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 610 { 611 if (io->err) 612 return io->err; 613 614 if (io->bytes >= 0 && io->write) 615 return -EIO; 616 617 return io->bytes < 0 ? io->size : io->bytes; 618 } 619 620 /* 621 * In case of short read, the caller sets 'pos' to the position of 622 * actual end of fuse request in IO request. Otherwise, if bytes_requested 623 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 624 * 625 * An example: 626 * User requested DIO read of 64K. It was split into two 32K fuse requests, 627 * both submitted asynchronously. The first of them was ACKed by userspace as 628 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 629 * second request was ACKed as short, e.g. only 1K was read, resulting in 630 * pos == 33K. 631 * 632 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 633 * will be equal to the length of the longest contiguous fragment of 634 * transferred data starting from the beginning of IO request. 635 */ 636 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 637 { 638 int left; 639 640 spin_lock(&io->lock); 641 if (err) 642 io->err = io->err ? : err; 643 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 644 io->bytes = pos; 645 646 left = --io->reqs; 647 if (!left && io->blocking) 648 complete(io->done); 649 spin_unlock(&io->lock); 650 651 if (!left && !io->blocking) { 652 ssize_t res = fuse_get_res_by_io(io); 653 654 if (res >= 0) { 655 struct inode *inode = file_inode(io->iocb->ki_filp); 656 struct fuse_conn *fc = get_fuse_conn(inode); 657 struct fuse_inode *fi = get_fuse_inode(inode); 658 659 spin_lock(&fi->lock); 660 fi->attr_version = atomic64_inc_return(&fc->attr_version); 661 spin_unlock(&fi->lock); 662 } 663 664 io->iocb->ki_complete(io->iocb, res); 665 } 666 667 kref_put(&io->refcnt, fuse_io_release); 668 } 669 670 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 671 unsigned int nfolios) 672 { 673 struct fuse_io_args *ia; 674 675 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 676 if (ia) { 677 ia->io = io; 678 ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL, 679 &ia->ap.descs); 680 if (!ia->ap.folios) { 681 kfree(ia); 682 ia = NULL; 683 } 684 } 685 return ia; 686 } 687 688 static void fuse_io_free(struct fuse_io_args *ia) 689 { 690 kfree(ia->ap.folios); 691 kfree(ia); 692 } 693 694 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 695 int err) 696 { 697 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 698 struct fuse_io_priv *io = ia->io; 699 ssize_t pos = -1; 700 size_t nres; 701 702 if (err) { 703 /* Nothing */ 704 } else if (io->write) { 705 if (ia->write.out.size > ia->write.in.size) { 706 err = -EIO; 707 } else { 708 nres = ia->write.out.size; 709 if (ia->write.in.size != ia->write.out.size) 710 pos = ia->write.in.offset - io->offset + 711 ia->write.out.size; 712 } 713 } else { 714 u32 outsize = args->out_args[0].size; 715 716 nres = outsize; 717 if (ia->read.in.size != outsize) 718 pos = ia->read.in.offset - io->offset + outsize; 719 } 720 721 fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty); 722 723 fuse_aio_complete(io, err, pos); 724 fuse_io_free(ia); 725 } 726 727 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 728 struct fuse_io_args *ia, size_t num_bytes) 729 { 730 ssize_t err; 731 struct fuse_io_priv *io = ia->io; 732 733 spin_lock(&io->lock); 734 kref_get(&io->refcnt); 735 io->size += num_bytes; 736 io->reqs++; 737 spin_unlock(&io->lock); 738 739 ia->ap.args.end = fuse_aio_complete_req; 740 ia->ap.args.may_block = io->should_dirty; 741 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 742 if (err) 743 fuse_aio_complete_req(fm, &ia->ap.args, err); 744 745 return num_bytes; 746 } 747 748 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 749 fl_owner_t owner) 750 { 751 struct file *file = ia->io->iocb->ki_filp; 752 struct fuse_file *ff = file->private_data; 753 struct fuse_mount *fm = ff->fm; 754 755 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 756 if (owner != NULL) { 757 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 758 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 759 } 760 761 if (ia->io->async) 762 return fuse_async_req_send(fm, ia, count); 763 764 return fuse_simple_request(fm, &ia->ap.args); 765 } 766 767 static void fuse_read_update_size(struct inode *inode, loff_t size, 768 u64 attr_ver) 769 { 770 struct fuse_conn *fc = get_fuse_conn(inode); 771 struct fuse_inode *fi = get_fuse_inode(inode); 772 773 spin_lock(&fi->lock); 774 if (attr_ver >= fi->attr_version && size < inode->i_size && 775 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 776 fi->attr_version = atomic64_inc_return(&fc->attr_version); 777 i_size_write(inode, size); 778 } 779 spin_unlock(&fi->lock); 780 } 781 782 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 783 struct fuse_args_pages *ap) 784 { 785 struct fuse_conn *fc = get_fuse_conn(inode); 786 787 /* 788 * If writeback_cache is enabled, a short read means there's a hole in 789 * the file. Some data after the hole is in page cache, but has not 790 * reached the client fs yet. So the hole is not present there. 791 */ 792 if (!fc->writeback_cache) { 793 loff_t pos = folio_pos(ap->folios[0]) + num_read; 794 fuse_read_update_size(inode, pos, attr_ver); 795 } 796 } 797 798 static int fuse_do_readfolio(struct file *file, struct folio *folio, 799 size_t off, size_t len) 800 { 801 struct inode *inode = folio->mapping->host; 802 struct fuse_mount *fm = get_fuse_mount(inode); 803 loff_t pos = folio_pos(folio) + off; 804 struct fuse_folio_desc desc = { 805 .offset = off, 806 .length = len, 807 }; 808 struct fuse_io_args ia = { 809 .ap.args.page_zeroing = true, 810 .ap.args.out_pages = true, 811 .ap.num_folios = 1, 812 .ap.folios = &folio, 813 .ap.descs = &desc, 814 }; 815 ssize_t res; 816 u64 attr_ver; 817 818 attr_ver = fuse_get_attr_version(fm->fc); 819 820 /* Don't overflow end offset */ 821 if (pos + (desc.length - 1) == LLONG_MAX) 822 desc.length--; 823 824 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 825 res = fuse_simple_request(fm, &ia.ap.args); 826 if (res < 0) 827 return res; 828 /* 829 * Short read means EOF. If file size is larger, truncate it 830 */ 831 if (res < desc.length) 832 fuse_short_read(inode, attr_ver, res, &ia.ap); 833 834 return 0; 835 } 836 837 static int fuse_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 838 unsigned int flags, struct iomap *iomap, 839 struct iomap *srcmap) 840 { 841 iomap->type = IOMAP_MAPPED; 842 iomap->length = length; 843 iomap->offset = offset; 844 return 0; 845 } 846 847 static const struct iomap_ops fuse_iomap_ops = { 848 .iomap_begin = fuse_iomap_begin, 849 }; 850 851 struct fuse_fill_read_data { 852 struct file *file; 853 854 /* Fields below are used if sending the read request asynchronously */ 855 struct fuse_conn *fc; 856 struct fuse_io_args *ia; 857 unsigned int nr_bytes; 858 }; 859 860 /* forward declarations */ 861 static bool fuse_folios_need_send(struct fuse_conn *fc, loff_t pos, 862 unsigned len, struct fuse_args_pages *ap, 863 unsigned cur_bytes, bool write); 864 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file, 865 unsigned int count, bool async); 866 867 static int fuse_handle_readahead(struct folio *folio, 868 struct readahead_control *rac, 869 struct fuse_fill_read_data *data, loff_t pos, 870 size_t len) 871 { 872 struct fuse_io_args *ia = data->ia; 873 size_t off = offset_in_folio(folio, pos); 874 struct fuse_conn *fc = data->fc; 875 struct fuse_args_pages *ap; 876 unsigned int nr_pages; 877 878 if (ia && fuse_folios_need_send(fc, pos, len, &ia->ap, data->nr_bytes, 879 false)) { 880 fuse_send_readpages(ia, data->file, data->nr_bytes, 881 fc->async_read); 882 data->nr_bytes = 0; 883 data->ia = NULL; 884 ia = NULL; 885 } 886 if (!ia) { 887 if (fc->num_background >= fc->congestion_threshold && 888 rac->ra->async_size >= readahead_count(rac)) 889 /* 890 * Congested and only async pages left, so skip the 891 * rest. 892 */ 893 return -EAGAIN; 894 895 nr_pages = min(fc->max_pages, readahead_count(rac)); 896 data->ia = fuse_io_alloc(NULL, nr_pages); 897 if (!data->ia) 898 return -ENOMEM; 899 ia = data->ia; 900 } 901 folio_get(folio); 902 ap = &ia->ap; 903 ap->folios[ap->num_folios] = folio; 904 ap->descs[ap->num_folios].offset = off; 905 ap->descs[ap->num_folios].length = len; 906 data->nr_bytes += len; 907 ap->num_folios++; 908 909 return 0; 910 } 911 912 static int fuse_iomap_read_folio_range_async(const struct iomap_iter *iter, 913 struct iomap_read_folio_ctx *ctx, 914 size_t len) 915 { 916 struct fuse_fill_read_data *data = ctx->read_ctx; 917 struct folio *folio = ctx->cur_folio; 918 loff_t pos = iter->pos; 919 size_t off = offset_in_folio(folio, pos); 920 struct file *file = data->file; 921 int ret; 922 923 if (ctx->rac) { 924 ret = fuse_handle_readahead(folio, ctx->rac, data, pos, len); 925 } else { 926 /* 927 * for non-readahead read requests, do reads synchronously 928 * since it's not guaranteed that the server can handle 929 * out-of-order reads 930 */ 931 ret = fuse_do_readfolio(file, folio, off, len); 932 if (!ret) 933 iomap_finish_folio_read(folio, off, len, ret); 934 } 935 return ret; 936 } 937 938 static void fuse_iomap_read_submit(struct iomap_read_folio_ctx *ctx) 939 { 940 struct fuse_fill_read_data *data = ctx->read_ctx; 941 942 if (data->ia) 943 fuse_send_readpages(data->ia, data->file, data->nr_bytes, 944 data->fc->async_read); 945 } 946 947 static const struct iomap_read_ops fuse_iomap_read_ops = { 948 .read_folio_range = fuse_iomap_read_folio_range_async, 949 .submit_read = fuse_iomap_read_submit, 950 }; 951 952 static int fuse_read_folio(struct file *file, struct folio *folio) 953 { 954 struct inode *inode = folio->mapping->host; 955 struct fuse_fill_read_data data = { 956 .file = file, 957 }; 958 struct iomap_read_folio_ctx ctx = { 959 .cur_folio = folio, 960 .ops = &fuse_iomap_read_ops, 961 .read_ctx = &data, 962 963 }; 964 965 if (fuse_is_bad(inode)) { 966 folio_unlock(folio); 967 return -EIO; 968 } 969 970 iomap_read_folio(&fuse_iomap_ops, &ctx); 971 fuse_invalidate_atime(inode); 972 return 0; 973 } 974 975 static int fuse_iomap_read_folio_range(const struct iomap_iter *iter, 976 struct folio *folio, loff_t pos, 977 size_t len) 978 { 979 struct file *file = iter->private; 980 size_t off = offset_in_folio(folio, pos); 981 982 return fuse_do_readfolio(file, folio, off, len); 983 } 984 985 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 986 int err) 987 { 988 int i; 989 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 990 struct fuse_args_pages *ap = &ia->ap; 991 size_t count = ia->read.in.size; 992 size_t num_read = args->out_args[0].size; 993 struct address_space *mapping; 994 struct inode *inode; 995 996 WARN_ON_ONCE(!ap->num_folios); 997 mapping = ap->folios[0]->mapping; 998 inode = mapping->host; 999 1000 /* 1001 * Short read means EOF. If file size is larger, truncate it 1002 */ 1003 if (!err && num_read < count) 1004 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 1005 1006 fuse_invalidate_atime(inode); 1007 1008 for (i = 0; i < ap->num_folios; i++) { 1009 iomap_finish_folio_read(ap->folios[i], ap->descs[i].offset, 1010 ap->descs[i].length, err); 1011 folio_put(ap->folios[i]); 1012 } 1013 if (ia->ff) 1014 fuse_file_put(ia->ff, false); 1015 1016 fuse_io_free(ia); 1017 } 1018 1019 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file, 1020 unsigned int count, bool async) 1021 { 1022 struct fuse_file *ff = file->private_data; 1023 struct fuse_mount *fm = ff->fm; 1024 struct fuse_args_pages *ap = &ia->ap; 1025 loff_t pos = folio_pos(ap->folios[0]); 1026 ssize_t res; 1027 int err; 1028 1029 ap->args.out_pages = true; 1030 ap->args.page_zeroing = true; 1031 ap->args.page_replace = true; 1032 1033 /* Don't overflow end offset */ 1034 if (pos + (count - 1) == LLONG_MAX) { 1035 count--; 1036 ap->descs[ap->num_folios - 1].length--; 1037 } 1038 WARN_ON((loff_t) (pos + count) < 0); 1039 1040 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 1041 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 1042 if (async) { 1043 ia->ff = fuse_file_get(ff); 1044 ap->args.end = fuse_readpages_end; 1045 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 1046 if (!err) 1047 return; 1048 } else { 1049 res = fuse_simple_request(fm, &ap->args); 1050 err = res < 0 ? res : 0; 1051 } 1052 fuse_readpages_end(fm, &ap->args, err); 1053 } 1054 1055 static void fuse_readahead(struct readahead_control *rac) 1056 { 1057 struct inode *inode = rac->mapping->host; 1058 struct fuse_conn *fc = get_fuse_conn(inode); 1059 struct fuse_fill_read_data data = { 1060 .file = rac->file, 1061 .fc = fc, 1062 }; 1063 struct iomap_read_folio_ctx ctx = { 1064 .ops = &fuse_iomap_read_ops, 1065 .rac = rac, 1066 .read_ctx = &data 1067 }; 1068 1069 if (fuse_is_bad(inode)) 1070 return; 1071 1072 iomap_readahead(&fuse_iomap_ops, &ctx); 1073 } 1074 1075 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 1076 { 1077 struct inode *inode = iocb->ki_filp->f_mapping->host; 1078 struct fuse_conn *fc = get_fuse_conn(inode); 1079 1080 /* 1081 * In auto invalidate mode, always update attributes on read. 1082 * Otherwise, only update if we attempt to read past EOF (to ensure 1083 * i_size is up to date). 1084 */ 1085 if (fc->auto_inval_data || 1086 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1087 int err; 1088 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1089 if (err) 1090 return err; 1091 } 1092 1093 return generic_file_read_iter(iocb, to); 1094 } 1095 1096 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1097 loff_t pos, size_t count) 1098 { 1099 struct fuse_args *args = &ia->ap.args; 1100 1101 ia->write.in.fh = ff->fh; 1102 ia->write.in.offset = pos; 1103 ia->write.in.size = count; 1104 args->opcode = FUSE_WRITE; 1105 args->nodeid = ff->nodeid; 1106 args->in_numargs = 2; 1107 if (ff->fm->fc->minor < 9) 1108 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1109 else 1110 args->in_args[0].size = sizeof(ia->write.in); 1111 args->in_args[0].value = &ia->write.in; 1112 args->in_args[1].size = count; 1113 args->out_numargs = 1; 1114 args->out_args[0].size = sizeof(ia->write.out); 1115 args->out_args[0].value = &ia->write.out; 1116 } 1117 1118 static unsigned int fuse_write_flags(struct kiocb *iocb) 1119 { 1120 unsigned int flags = iocb->ki_filp->f_flags; 1121 1122 if (iocb_is_dsync(iocb)) 1123 flags |= O_DSYNC; 1124 if (iocb->ki_flags & IOCB_SYNC) 1125 flags |= O_SYNC; 1126 1127 return flags; 1128 } 1129 1130 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1131 size_t count, fl_owner_t owner) 1132 { 1133 struct kiocb *iocb = ia->io->iocb; 1134 struct file *file = iocb->ki_filp; 1135 struct fuse_file *ff = file->private_data; 1136 struct fuse_mount *fm = ff->fm; 1137 struct fuse_write_in *inarg = &ia->write.in; 1138 ssize_t err; 1139 1140 fuse_write_args_fill(ia, ff, pos, count); 1141 inarg->flags = fuse_write_flags(iocb); 1142 if (owner != NULL) { 1143 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1144 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1145 } 1146 1147 if (ia->io->async) 1148 return fuse_async_req_send(fm, ia, count); 1149 1150 err = fuse_simple_request(fm, &ia->ap.args); 1151 if (!err && ia->write.out.size > count) 1152 err = -EIO; 1153 1154 return err ?: ia->write.out.size; 1155 } 1156 1157 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1158 { 1159 struct fuse_conn *fc = get_fuse_conn(inode); 1160 struct fuse_inode *fi = get_fuse_inode(inode); 1161 bool ret = false; 1162 1163 spin_lock(&fi->lock); 1164 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1165 if (written > 0 && pos > inode->i_size) { 1166 i_size_write(inode, pos); 1167 ret = true; 1168 } 1169 spin_unlock(&fi->lock); 1170 1171 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1172 1173 return ret; 1174 } 1175 1176 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1177 struct kiocb *iocb, struct inode *inode, 1178 loff_t pos, size_t count) 1179 { 1180 struct fuse_args_pages *ap = &ia->ap; 1181 struct file *file = iocb->ki_filp; 1182 struct fuse_file *ff = file->private_data; 1183 struct fuse_mount *fm = ff->fm; 1184 unsigned int offset, i; 1185 bool short_write; 1186 int err; 1187 1188 for (i = 0; i < ap->num_folios; i++) 1189 folio_wait_writeback(ap->folios[i]); 1190 1191 fuse_write_args_fill(ia, ff, pos, count); 1192 ia->write.in.flags = fuse_write_flags(iocb); 1193 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1194 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1195 1196 err = fuse_simple_request(fm, &ap->args); 1197 if (!err && ia->write.out.size > count) 1198 err = -EIO; 1199 1200 short_write = ia->write.out.size < count; 1201 offset = ap->descs[0].offset; 1202 count = ia->write.out.size; 1203 for (i = 0; i < ap->num_folios; i++) { 1204 struct folio *folio = ap->folios[i]; 1205 1206 if (err) { 1207 folio_clear_uptodate(folio); 1208 } else { 1209 if (count >= folio_size(folio) - offset) 1210 count -= folio_size(folio) - offset; 1211 else { 1212 if (short_write) 1213 folio_clear_uptodate(folio); 1214 count = 0; 1215 } 1216 offset = 0; 1217 } 1218 if (ia->write.folio_locked && (i == ap->num_folios - 1)) 1219 folio_unlock(folio); 1220 folio_put(folio); 1221 } 1222 1223 return err; 1224 } 1225 1226 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1227 struct address_space *mapping, 1228 struct iov_iter *ii, loff_t pos, 1229 unsigned int max_folios) 1230 { 1231 struct fuse_args_pages *ap = &ia->ap; 1232 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1233 unsigned offset = pos & (PAGE_SIZE - 1); 1234 size_t count = 0; 1235 unsigned int num; 1236 int err = 0; 1237 1238 num = min(iov_iter_count(ii), fc->max_write); 1239 1240 ap->args.in_pages = true; 1241 1242 while (num && ap->num_folios < max_folios) { 1243 size_t tmp; 1244 struct folio *folio; 1245 pgoff_t index = pos >> PAGE_SHIFT; 1246 unsigned int bytes; 1247 unsigned int folio_offset; 1248 1249 again: 1250 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1251 mapping_gfp_mask(mapping)); 1252 if (IS_ERR(folio)) { 1253 err = PTR_ERR(folio); 1254 break; 1255 } 1256 1257 if (mapping_writably_mapped(mapping)) 1258 flush_dcache_folio(folio); 1259 1260 folio_offset = ((index - folio->index) << PAGE_SHIFT) + offset; 1261 bytes = min(folio_size(folio) - folio_offset, num); 1262 1263 tmp = copy_folio_from_iter_atomic(folio, folio_offset, bytes, ii); 1264 flush_dcache_folio(folio); 1265 1266 if (!tmp) { 1267 folio_unlock(folio); 1268 folio_put(folio); 1269 1270 /* 1271 * Ensure forward progress by faulting in 1272 * while not holding the folio lock: 1273 */ 1274 if (fault_in_iov_iter_readable(ii, bytes)) { 1275 err = -EFAULT; 1276 break; 1277 } 1278 1279 goto again; 1280 } 1281 1282 ap->folios[ap->num_folios] = folio; 1283 ap->descs[ap->num_folios].offset = folio_offset; 1284 ap->descs[ap->num_folios].length = tmp; 1285 ap->num_folios++; 1286 1287 count += tmp; 1288 pos += tmp; 1289 num -= tmp; 1290 offset += tmp; 1291 if (offset == folio_size(folio)) 1292 offset = 0; 1293 1294 /* If we copied full folio, mark it uptodate */ 1295 if (tmp == folio_size(folio)) 1296 folio_mark_uptodate(folio); 1297 1298 if (folio_test_uptodate(folio)) { 1299 folio_unlock(folio); 1300 } else { 1301 ia->write.folio_locked = true; 1302 break; 1303 } 1304 if (!fc->big_writes || offset != 0) 1305 break; 1306 } 1307 1308 return count > 0 ? count : err; 1309 } 1310 1311 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1312 unsigned int max_pages) 1313 { 1314 return min_t(unsigned int, 1315 ((pos + len - 1) >> PAGE_SHIFT) - 1316 (pos >> PAGE_SHIFT) + 1, 1317 max_pages); 1318 } 1319 1320 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii) 1321 { 1322 struct address_space *mapping = iocb->ki_filp->f_mapping; 1323 struct inode *inode = mapping->host; 1324 struct fuse_conn *fc = get_fuse_conn(inode); 1325 struct fuse_inode *fi = get_fuse_inode(inode); 1326 loff_t pos = iocb->ki_pos; 1327 int err = 0; 1328 ssize_t res = 0; 1329 1330 if (inode->i_size < pos + iov_iter_count(ii)) 1331 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1332 1333 do { 1334 ssize_t count; 1335 struct fuse_io_args ia = {}; 1336 struct fuse_args_pages *ap = &ia.ap; 1337 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1338 fc->max_pages); 1339 1340 ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1341 if (!ap->folios) { 1342 err = -ENOMEM; 1343 break; 1344 } 1345 1346 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1347 if (count <= 0) { 1348 err = count; 1349 } else { 1350 err = fuse_send_write_pages(&ia, iocb, inode, 1351 pos, count); 1352 if (!err) { 1353 size_t num_written = ia.write.out.size; 1354 1355 res += num_written; 1356 pos += num_written; 1357 1358 /* break out of the loop on short write */ 1359 if (num_written != count) 1360 err = -EIO; 1361 } 1362 } 1363 kfree(ap->folios); 1364 } while (!err && iov_iter_count(ii)); 1365 1366 fuse_write_update_attr(inode, pos, res); 1367 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1368 1369 if (!res) 1370 return err; 1371 iocb->ki_pos += res; 1372 return res; 1373 } 1374 1375 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter) 1376 { 1377 struct inode *inode = file_inode(iocb->ki_filp); 1378 1379 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode); 1380 } 1381 1382 /* 1383 * @return true if an exclusive lock for direct IO writes is needed 1384 */ 1385 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from) 1386 { 1387 struct file *file = iocb->ki_filp; 1388 struct fuse_file *ff = file->private_data; 1389 struct inode *inode = file_inode(iocb->ki_filp); 1390 struct fuse_inode *fi = get_fuse_inode(inode); 1391 1392 /* Server side has to advise that it supports parallel dio writes. */ 1393 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES)) 1394 return true; 1395 1396 /* 1397 * Append will need to know the eventual EOF - always needs an 1398 * exclusive lock. 1399 */ 1400 if (iocb->ki_flags & IOCB_APPEND) 1401 return true; 1402 1403 /* shared locks are not allowed with parallel page cache IO */ 1404 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state)) 1405 return true; 1406 1407 /* Parallel dio beyond EOF is not supported, at least for now. */ 1408 if (fuse_io_past_eof(iocb, from)) 1409 return true; 1410 1411 return false; 1412 } 1413 1414 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from, 1415 bool *exclusive) 1416 { 1417 struct inode *inode = file_inode(iocb->ki_filp); 1418 struct fuse_inode *fi = get_fuse_inode(inode); 1419 1420 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from); 1421 if (*exclusive) { 1422 inode_lock(inode); 1423 } else { 1424 inode_lock_shared(inode); 1425 /* 1426 * New parallal dio allowed only if inode is not in caching 1427 * mode and denies new opens in caching mode. This check 1428 * should be performed only after taking shared inode lock. 1429 * Previous past eof check was without inode lock and might 1430 * have raced, so check it again. 1431 */ 1432 if (fuse_io_past_eof(iocb, from) || 1433 fuse_inode_uncached_io_start(fi, NULL) != 0) { 1434 inode_unlock_shared(inode); 1435 inode_lock(inode); 1436 *exclusive = true; 1437 } 1438 } 1439 } 1440 1441 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive) 1442 { 1443 struct inode *inode = file_inode(iocb->ki_filp); 1444 struct fuse_inode *fi = get_fuse_inode(inode); 1445 1446 if (exclusive) { 1447 inode_unlock(inode); 1448 } else { 1449 /* Allow opens in caching mode after last parallel dio end */ 1450 fuse_inode_uncached_io_end(fi); 1451 inode_unlock_shared(inode); 1452 } 1453 } 1454 1455 static const struct iomap_write_ops fuse_iomap_write_ops = { 1456 .read_folio_range = fuse_iomap_read_folio_range, 1457 }; 1458 1459 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1460 { 1461 struct file *file = iocb->ki_filp; 1462 struct mnt_idmap *idmap = file_mnt_idmap(file); 1463 struct address_space *mapping = file->f_mapping; 1464 ssize_t written = 0; 1465 struct inode *inode = mapping->host; 1466 ssize_t err, count; 1467 struct fuse_conn *fc = get_fuse_conn(inode); 1468 bool writeback = false; 1469 1470 if (fc->writeback_cache) { 1471 /* Update size (EOF optimization) and mode (SUID clearing) */ 1472 err = fuse_update_attributes(mapping->host, file, 1473 STATX_SIZE | STATX_MODE); 1474 if (err) 1475 return err; 1476 1477 if (!fc->handle_killpriv_v2 || 1478 !setattr_should_drop_suidgid(idmap, file_inode(file))) 1479 writeback = true; 1480 } 1481 1482 inode_lock(inode); 1483 1484 err = count = generic_write_checks(iocb, from); 1485 if (err <= 0) 1486 goto out; 1487 1488 task_io_account_write(count); 1489 1490 err = kiocb_modified(iocb); 1491 if (err) 1492 goto out; 1493 1494 if (iocb->ki_flags & IOCB_DIRECT) { 1495 written = generic_file_direct_write(iocb, from); 1496 if (written < 0 || !iov_iter_count(from)) 1497 goto out; 1498 written = direct_write_fallback(iocb, from, written, 1499 fuse_perform_write(iocb, from)); 1500 } else if (writeback) { 1501 /* 1502 * Use iomap so that we can do granular uptodate reads 1503 * and granular dirty tracking for large folios. 1504 */ 1505 written = iomap_file_buffered_write(iocb, from, 1506 &fuse_iomap_ops, 1507 &fuse_iomap_write_ops, 1508 file); 1509 } else { 1510 written = fuse_perform_write(iocb, from); 1511 } 1512 out: 1513 inode_unlock(inode); 1514 if (written > 0) 1515 written = generic_write_sync(iocb, written); 1516 1517 return written ? written : err; 1518 } 1519 1520 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1521 { 1522 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset; 1523 } 1524 1525 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1526 size_t max_size) 1527 { 1528 return min(iov_iter_single_seg_count(ii), max_size); 1529 } 1530 1531 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1532 size_t *nbytesp, int write, 1533 unsigned int max_pages, 1534 bool use_pages_for_kvec_io) 1535 { 1536 bool flush_or_invalidate = false; 1537 unsigned int nr_pages = 0; 1538 size_t nbytes = 0; /* # bytes already packed in req */ 1539 ssize_t ret = 0; 1540 1541 /* Special case for kernel I/O: can copy directly into the buffer. 1542 * However if the implementation of fuse_conn requires pages instead of 1543 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead. 1544 */ 1545 if (iov_iter_is_kvec(ii)) { 1546 void *user_addr = (void *)fuse_get_user_addr(ii); 1547 1548 if (!use_pages_for_kvec_io) { 1549 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1550 1551 if (write) 1552 ap->args.in_args[1].value = user_addr; 1553 else 1554 ap->args.out_args[0].value = user_addr; 1555 1556 iov_iter_advance(ii, frag_size); 1557 *nbytesp = frag_size; 1558 return 0; 1559 } 1560 1561 if (is_vmalloc_addr(user_addr)) { 1562 ap->args.vmap_base = user_addr; 1563 flush_or_invalidate = true; 1564 } 1565 } 1566 1567 /* 1568 * Until there is support for iov_iter_extract_folios(), we have to 1569 * manually extract pages using iov_iter_extract_pages() and then 1570 * copy that to a folios array. 1571 */ 1572 struct page **pages = kzalloc(max_pages * sizeof(struct page *), 1573 GFP_KERNEL); 1574 if (!pages) { 1575 ret = -ENOMEM; 1576 goto out; 1577 } 1578 1579 while (nbytes < *nbytesp && nr_pages < max_pages) { 1580 unsigned nfolios, i; 1581 size_t start; 1582 1583 ret = iov_iter_extract_pages(ii, &pages, 1584 *nbytesp - nbytes, 1585 max_pages - nr_pages, 1586 0, &start); 1587 if (ret < 0) 1588 break; 1589 1590 nbytes += ret; 1591 1592 nfolios = DIV_ROUND_UP(ret + start, PAGE_SIZE); 1593 1594 for (i = 0; i < nfolios; i++) { 1595 struct folio *folio = page_folio(pages[i]); 1596 unsigned int offset = start + 1597 (folio_page_idx(folio, pages[i]) << PAGE_SHIFT); 1598 unsigned int len = min_t(unsigned int, ret, PAGE_SIZE - start); 1599 1600 ap->descs[ap->num_folios].offset = offset; 1601 ap->descs[ap->num_folios].length = len; 1602 ap->folios[ap->num_folios] = folio; 1603 start = 0; 1604 ret -= len; 1605 ap->num_folios++; 1606 } 1607 1608 nr_pages += nfolios; 1609 } 1610 kfree(pages); 1611 1612 if (write && flush_or_invalidate) 1613 flush_kernel_vmap_range(ap->args.vmap_base, nbytes); 1614 1615 ap->args.invalidate_vmap = !write && flush_or_invalidate; 1616 ap->args.is_pinned = iov_iter_extract_will_pin(ii); 1617 ap->args.user_pages = true; 1618 if (write) 1619 ap->args.in_pages = true; 1620 else 1621 ap->args.out_pages = true; 1622 1623 out: 1624 *nbytesp = nbytes; 1625 1626 return ret < 0 ? ret : 0; 1627 } 1628 1629 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1630 loff_t *ppos, int flags) 1631 { 1632 int write = flags & FUSE_DIO_WRITE; 1633 int cuse = flags & FUSE_DIO_CUSE; 1634 struct file *file = io->iocb->ki_filp; 1635 struct address_space *mapping = file->f_mapping; 1636 struct inode *inode = mapping->host; 1637 struct fuse_file *ff = file->private_data; 1638 struct fuse_conn *fc = ff->fm->fc; 1639 size_t nmax = write ? fc->max_write : fc->max_read; 1640 loff_t pos = *ppos; 1641 size_t count = iov_iter_count(iter); 1642 pgoff_t idx_from = pos >> PAGE_SHIFT; 1643 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1644 ssize_t res = 0; 1645 int err = 0; 1646 struct fuse_io_args *ia; 1647 unsigned int max_pages; 1648 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO; 1649 1650 max_pages = iov_iter_npages(iter, fc->max_pages); 1651 ia = fuse_io_alloc(io, max_pages); 1652 if (!ia) 1653 return -ENOMEM; 1654 1655 if (fopen_direct_io && fc->direct_io_allow_mmap) { 1656 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1); 1657 if (res) { 1658 fuse_io_free(ia); 1659 return res; 1660 } 1661 } 1662 if (!cuse && filemap_range_has_writeback(mapping, pos, (pos + count - 1))) { 1663 if (!write) 1664 inode_lock(inode); 1665 fuse_sync_writes(inode); 1666 if (!write) 1667 inode_unlock(inode); 1668 } 1669 1670 if (fopen_direct_io && write) { 1671 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to); 1672 if (res) { 1673 fuse_io_free(ia); 1674 return res; 1675 } 1676 } 1677 1678 io->should_dirty = !write && user_backed_iter(iter); 1679 while (count) { 1680 ssize_t nres; 1681 fl_owner_t owner = current->files; 1682 size_t nbytes = min(count, nmax); 1683 1684 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1685 max_pages, fc->use_pages_for_kvec_io); 1686 if (err && !nbytes) 1687 break; 1688 1689 if (write) { 1690 if (!capable(CAP_FSETID)) 1691 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1692 1693 nres = fuse_send_write(ia, pos, nbytes, owner); 1694 } else { 1695 nres = fuse_send_read(ia, pos, nbytes, owner); 1696 } 1697 1698 if (!io->async || nres < 0) { 1699 fuse_release_user_pages(&ia->ap, nres, io->should_dirty); 1700 fuse_io_free(ia); 1701 } 1702 ia = NULL; 1703 if (nres < 0) { 1704 iov_iter_revert(iter, nbytes); 1705 err = nres; 1706 break; 1707 } 1708 WARN_ON(nres > nbytes); 1709 1710 count -= nres; 1711 res += nres; 1712 pos += nres; 1713 if (nres != nbytes) { 1714 iov_iter_revert(iter, nbytes - nres); 1715 break; 1716 } 1717 if (count) { 1718 max_pages = iov_iter_npages(iter, fc->max_pages); 1719 ia = fuse_io_alloc(io, max_pages); 1720 if (!ia) 1721 break; 1722 } 1723 } 1724 if (ia) 1725 fuse_io_free(ia); 1726 if (res > 0) 1727 *ppos = pos; 1728 1729 return res > 0 ? res : err; 1730 } 1731 EXPORT_SYMBOL_GPL(fuse_direct_io); 1732 1733 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1734 struct iov_iter *iter, 1735 loff_t *ppos) 1736 { 1737 ssize_t res; 1738 struct inode *inode = file_inode(io->iocb->ki_filp); 1739 1740 res = fuse_direct_io(io, iter, ppos, 0); 1741 1742 fuse_invalidate_atime(inode); 1743 1744 return res; 1745 } 1746 1747 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1748 1749 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1750 { 1751 ssize_t res; 1752 1753 if (!is_sync_kiocb(iocb)) { 1754 res = fuse_direct_IO(iocb, to); 1755 } else { 1756 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1757 1758 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1759 } 1760 1761 return res; 1762 } 1763 1764 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1765 { 1766 struct inode *inode = file_inode(iocb->ki_filp); 1767 ssize_t res; 1768 bool exclusive; 1769 1770 fuse_dio_lock(iocb, from, &exclusive); 1771 res = generic_write_checks(iocb, from); 1772 if (res > 0) { 1773 task_io_account_write(res); 1774 if (!is_sync_kiocb(iocb)) { 1775 res = fuse_direct_IO(iocb, from); 1776 } else { 1777 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1778 1779 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1780 FUSE_DIO_WRITE); 1781 fuse_write_update_attr(inode, iocb->ki_pos, res); 1782 } 1783 } 1784 fuse_dio_unlock(iocb, exclusive); 1785 1786 return res; 1787 } 1788 1789 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1790 { 1791 struct file *file = iocb->ki_filp; 1792 struct fuse_file *ff = file->private_data; 1793 struct inode *inode = file_inode(file); 1794 1795 if (fuse_is_bad(inode)) 1796 return -EIO; 1797 1798 if (FUSE_IS_DAX(inode)) 1799 return fuse_dax_read_iter(iocb, to); 1800 1801 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1802 if (ff->open_flags & FOPEN_DIRECT_IO) 1803 return fuse_direct_read_iter(iocb, to); 1804 else if (fuse_file_passthrough(ff)) 1805 return fuse_passthrough_read_iter(iocb, to); 1806 else 1807 return fuse_cache_read_iter(iocb, to); 1808 } 1809 1810 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1811 { 1812 struct file *file = iocb->ki_filp; 1813 struct fuse_file *ff = file->private_data; 1814 struct inode *inode = file_inode(file); 1815 1816 if (fuse_is_bad(inode)) 1817 return -EIO; 1818 1819 if (FUSE_IS_DAX(inode)) 1820 return fuse_dax_write_iter(iocb, from); 1821 1822 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1823 if (ff->open_flags & FOPEN_DIRECT_IO) 1824 return fuse_direct_write_iter(iocb, from); 1825 else if (fuse_file_passthrough(ff)) 1826 return fuse_passthrough_write_iter(iocb, from); 1827 else 1828 return fuse_cache_write_iter(iocb, from); 1829 } 1830 1831 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos, 1832 struct pipe_inode_info *pipe, size_t len, 1833 unsigned int flags) 1834 { 1835 struct fuse_file *ff = in->private_data; 1836 1837 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1838 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1839 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags); 1840 else 1841 return filemap_splice_read(in, ppos, pipe, len, flags); 1842 } 1843 1844 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out, 1845 loff_t *ppos, size_t len, unsigned int flags) 1846 { 1847 struct fuse_file *ff = out->private_data; 1848 1849 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1850 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1851 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags); 1852 else 1853 return iter_file_splice_write(pipe, out, ppos, len, flags); 1854 } 1855 1856 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1857 { 1858 struct fuse_args_pages *ap = &wpa->ia.ap; 1859 1860 if (wpa->bucket) 1861 fuse_sync_bucket_dec(wpa->bucket); 1862 1863 fuse_file_put(wpa->ia.ff, false); 1864 1865 kfree(ap->folios); 1866 kfree(wpa); 1867 } 1868 1869 static void fuse_writepage_finish(struct fuse_writepage_args *wpa) 1870 { 1871 struct fuse_args_pages *ap = &wpa->ia.ap; 1872 struct inode *inode = wpa->inode; 1873 struct fuse_inode *fi = get_fuse_inode(inode); 1874 int i; 1875 1876 for (i = 0; i < ap->num_folios; i++) 1877 /* 1878 * Benchmarks showed that ending writeback within the 1879 * scope of the fi->lock alleviates xarray lock 1880 * contention and noticeably improves performance. 1881 */ 1882 iomap_finish_folio_write(inode, ap->folios[i], 1883 ap->descs[i].length); 1884 1885 wake_up(&fi->page_waitq); 1886 } 1887 1888 /* Called under fi->lock, may release and reacquire it */ 1889 static void fuse_send_writepage(struct fuse_mount *fm, 1890 struct fuse_writepage_args *wpa, loff_t size) 1891 __releases(fi->lock) 1892 __acquires(fi->lock) 1893 { 1894 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1895 struct fuse_args_pages *ap = &wpa->ia.ap; 1896 struct fuse_write_in *inarg = &wpa->ia.write.in; 1897 struct fuse_args *args = &ap->args; 1898 __u64 data_size = 0; 1899 int err, i; 1900 1901 for (i = 0; i < ap->num_folios; i++) 1902 data_size += ap->descs[i].length; 1903 1904 fi->writectr++; 1905 if (inarg->offset + data_size <= size) { 1906 inarg->size = data_size; 1907 } else if (inarg->offset < size) { 1908 inarg->size = size - inarg->offset; 1909 } else { 1910 /* Got truncated off completely */ 1911 goto out_free; 1912 } 1913 1914 args->in_args[1].size = inarg->size; 1915 args->force = true; 1916 args->nocreds = true; 1917 1918 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1919 if (err == -ENOMEM) { 1920 spin_unlock(&fi->lock); 1921 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1922 spin_lock(&fi->lock); 1923 } 1924 1925 /* Fails on broken connection only */ 1926 if (unlikely(err)) 1927 goto out_free; 1928 1929 return; 1930 1931 out_free: 1932 fi->writectr--; 1933 fuse_writepage_finish(wpa); 1934 spin_unlock(&fi->lock); 1935 fuse_writepage_free(wpa); 1936 spin_lock(&fi->lock); 1937 } 1938 1939 /* 1940 * If fi->writectr is positive (no truncate or fsync going on) send 1941 * all queued writepage requests. 1942 * 1943 * Called with fi->lock 1944 */ 1945 void fuse_flush_writepages(struct inode *inode) 1946 __releases(fi->lock) 1947 __acquires(fi->lock) 1948 { 1949 struct fuse_mount *fm = get_fuse_mount(inode); 1950 struct fuse_inode *fi = get_fuse_inode(inode); 1951 loff_t crop = i_size_read(inode); 1952 struct fuse_writepage_args *wpa; 1953 1954 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1955 wpa = list_entry(fi->queued_writes.next, 1956 struct fuse_writepage_args, queue_entry); 1957 list_del_init(&wpa->queue_entry); 1958 fuse_send_writepage(fm, wpa, crop); 1959 } 1960 } 1961 1962 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1963 int error) 1964 { 1965 struct fuse_writepage_args *wpa = 1966 container_of(args, typeof(*wpa), ia.ap.args); 1967 struct inode *inode = wpa->inode; 1968 struct fuse_inode *fi = get_fuse_inode(inode); 1969 struct fuse_conn *fc = get_fuse_conn(inode); 1970 1971 mapping_set_error(inode->i_mapping, error); 1972 /* 1973 * A writeback finished and this might have updated mtime/ctime on 1974 * server making local mtime/ctime stale. Hence invalidate attrs. 1975 * Do this only if writeback_cache is not enabled. If writeback_cache 1976 * is enabled, we trust local ctime/mtime. 1977 */ 1978 if (!fc->writeback_cache) 1979 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 1980 spin_lock(&fi->lock); 1981 fi->writectr--; 1982 fuse_writepage_finish(wpa); 1983 spin_unlock(&fi->lock); 1984 fuse_writepage_free(wpa); 1985 } 1986 1987 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 1988 { 1989 struct fuse_file *ff; 1990 1991 spin_lock(&fi->lock); 1992 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 1993 write_entry); 1994 if (ff) 1995 fuse_file_get(ff); 1996 spin_unlock(&fi->lock); 1997 1998 return ff; 1999 } 2000 2001 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 2002 { 2003 struct fuse_file *ff = __fuse_write_file_get(fi); 2004 WARN_ON(!ff); 2005 return ff; 2006 } 2007 2008 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 2009 { 2010 struct fuse_inode *fi = get_fuse_inode(inode); 2011 struct fuse_file *ff; 2012 int err; 2013 2014 ff = __fuse_write_file_get(fi); 2015 err = fuse_flush_times(inode, ff); 2016 if (ff) 2017 fuse_file_put(ff, false); 2018 2019 return err; 2020 } 2021 2022 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 2023 { 2024 struct fuse_writepage_args *wpa; 2025 struct fuse_args_pages *ap; 2026 2027 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 2028 if (wpa) { 2029 ap = &wpa->ia.ap; 2030 ap->num_folios = 0; 2031 ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs); 2032 if (!ap->folios) { 2033 kfree(wpa); 2034 wpa = NULL; 2035 } 2036 } 2037 return wpa; 2038 2039 } 2040 2041 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 2042 struct fuse_writepage_args *wpa) 2043 { 2044 if (!fc->sync_fs) 2045 return; 2046 2047 rcu_read_lock(); 2048 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 2049 do { 2050 wpa->bucket = rcu_dereference(fc->curr_bucket); 2051 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 2052 rcu_read_unlock(); 2053 } 2054 2055 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio, 2056 uint32_t folio_index, loff_t offset, unsigned len) 2057 { 2058 struct fuse_args_pages *ap = &wpa->ia.ap; 2059 2060 ap->folios[folio_index] = folio; 2061 ap->descs[folio_index].offset = offset; 2062 ap->descs[folio_index].length = len; 2063 } 2064 2065 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio, 2066 size_t offset, 2067 struct fuse_file *ff) 2068 { 2069 struct inode *inode = folio->mapping->host; 2070 struct fuse_conn *fc = get_fuse_conn(inode); 2071 struct fuse_writepage_args *wpa; 2072 struct fuse_args_pages *ap; 2073 2074 wpa = fuse_writepage_args_alloc(); 2075 if (!wpa) 2076 return NULL; 2077 2078 fuse_writepage_add_to_bucket(fc, wpa); 2079 fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio) + offset, 0); 2080 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2081 wpa->inode = inode; 2082 wpa->ia.ff = ff; 2083 2084 ap = &wpa->ia.ap; 2085 ap->args.in_pages = true; 2086 ap->args.end = fuse_writepage_end; 2087 2088 return wpa; 2089 } 2090 2091 struct fuse_fill_wb_data { 2092 struct fuse_writepage_args *wpa; 2093 struct fuse_file *ff; 2094 unsigned int max_folios; 2095 /* 2096 * nr_bytes won't overflow since fuse_folios_need_send() caps 2097 * wb requests to never exceed fc->max_pages (which has an upper bound 2098 * of U16_MAX). 2099 */ 2100 unsigned int nr_bytes; 2101 }; 2102 2103 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data, 2104 unsigned int max_pages) 2105 { 2106 struct fuse_args_pages *ap = &data->wpa->ia.ap; 2107 struct folio **folios; 2108 struct fuse_folio_desc *descs; 2109 unsigned int nfolios = min_t(unsigned int, 2110 max_t(unsigned int, data->max_folios * 2, 2111 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2112 max_pages); 2113 WARN_ON(nfolios <= data->max_folios); 2114 2115 folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs); 2116 if (!folios) 2117 return false; 2118 2119 memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios); 2120 memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios); 2121 kfree(ap->folios); 2122 ap->folios = folios; 2123 ap->descs = descs; 2124 data->max_folios = nfolios; 2125 2126 return true; 2127 } 2128 2129 static void fuse_writepages_send(struct inode *inode, 2130 struct fuse_fill_wb_data *data) 2131 { 2132 struct fuse_writepage_args *wpa = data->wpa; 2133 struct fuse_inode *fi = get_fuse_inode(inode); 2134 2135 spin_lock(&fi->lock); 2136 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2137 fuse_flush_writepages(inode); 2138 spin_unlock(&fi->lock); 2139 } 2140 2141 static bool fuse_folios_need_send(struct fuse_conn *fc, loff_t pos, 2142 unsigned len, struct fuse_args_pages *ap, 2143 unsigned cur_bytes, bool write) 2144 { 2145 struct folio *prev_folio; 2146 struct fuse_folio_desc prev_desc; 2147 unsigned bytes = cur_bytes + len; 2148 loff_t prev_pos; 2149 size_t max_bytes = write ? fc->max_write : fc->max_read; 2150 2151 WARN_ON(!ap->num_folios); 2152 2153 /* Reached max pages */ 2154 if ((bytes + PAGE_SIZE - 1) >> PAGE_SHIFT > fc->max_pages) 2155 return true; 2156 2157 if (bytes > max_bytes) 2158 return true; 2159 2160 /* Discontinuity */ 2161 prev_folio = ap->folios[ap->num_folios - 1]; 2162 prev_desc = ap->descs[ap->num_folios - 1]; 2163 prev_pos = folio_pos(prev_folio) + prev_desc.offset + prev_desc.length; 2164 if (prev_pos != pos) 2165 return true; 2166 2167 return false; 2168 } 2169 2170 static ssize_t fuse_iomap_writeback_range(struct iomap_writepage_ctx *wpc, 2171 struct folio *folio, u64 pos, 2172 unsigned len, u64 end_pos) 2173 { 2174 struct fuse_fill_wb_data *data = wpc->wb_ctx; 2175 struct fuse_writepage_args *wpa = data->wpa; 2176 struct fuse_args_pages *ap = &wpa->ia.ap; 2177 struct inode *inode = wpc->inode; 2178 struct fuse_inode *fi = get_fuse_inode(inode); 2179 struct fuse_conn *fc = get_fuse_conn(inode); 2180 loff_t offset = offset_in_folio(folio, pos); 2181 2182 WARN_ON_ONCE(!data); 2183 2184 if (!data->ff) { 2185 data->ff = fuse_write_file_get(fi); 2186 if (!data->ff) 2187 return -EIO; 2188 } 2189 2190 if (wpa) { 2191 bool send = fuse_folios_need_send(fc, pos, len, ap, 2192 data->nr_bytes, true); 2193 2194 if (!send) { 2195 /* 2196 * Need to grow the pages array? If so, did the 2197 * expansion fail? 2198 */ 2199 send = (ap->num_folios == data->max_folios) && 2200 !fuse_pages_realloc(data, fc->max_pages); 2201 } 2202 2203 if (send) { 2204 fuse_writepages_send(inode, data); 2205 data->wpa = NULL; 2206 data->nr_bytes = 0; 2207 } 2208 } 2209 2210 if (data->wpa == NULL) { 2211 wpa = fuse_writepage_args_setup(folio, offset, data->ff); 2212 if (!wpa) 2213 return -ENOMEM; 2214 fuse_file_get(wpa->ia.ff); 2215 data->max_folios = 1; 2216 ap = &wpa->ia.ap; 2217 } 2218 2219 fuse_writepage_args_page_fill(wpa, folio, ap->num_folios, 2220 offset, len); 2221 data->nr_bytes += len; 2222 2223 ap->num_folios++; 2224 if (!data->wpa) 2225 data->wpa = wpa; 2226 2227 return len; 2228 } 2229 2230 static int fuse_iomap_writeback_submit(struct iomap_writepage_ctx *wpc, 2231 int error) 2232 { 2233 struct fuse_fill_wb_data *data = wpc->wb_ctx; 2234 2235 WARN_ON_ONCE(!data); 2236 2237 if (data->wpa) { 2238 WARN_ON(!data->wpa->ia.ap.num_folios); 2239 fuse_writepages_send(wpc->inode, data); 2240 } 2241 2242 if (data->ff) 2243 fuse_file_put(data->ff, false); 2244 2245 return error; 2246 } 2247 2248 static const struct iomap_writeback_ops fuse_writeback_ops = { 2249 .writeback_range = fuse_iomap_writeback_range, 2250 .writeback_submit = fuse_iomap_writeback_submit, 2251 }; 2252 2253 static int fuse_writepages(struct address_space *mapping, 2254 struct writeback_control *wbc) 2255 { 2256 struct inode *inode = mapping->host; 2257 struct fuse_conn *fc = get_fuse_conn(inode); 2258 struct fuse_fill_wb_data data = {}; 2259 struct iomap_writepage_ctx wpc = { 2260 .inode = inode, 2261 .iomap.type = IOMAP_MAPPED, 2262 .wbc = wbc, 2263 .ops = &fuse_writeback_ops, 2264 .wb_ctx = &data, 2265 }; 2266 2267 if (fuse_is_bad(inode)) 2268 return -EIO; 2269 2270 if (wbc->sync_mode == WB_SYNC_NONE && 2271 fc->num_background >= fc->congestion_threshold) 2272 return 0; 2273 2274 return iomap_writepages(&wpc); 2275 } 2276 2277 static int fuse_launder_folio(struct folio *folio) 2278 { 2279 int err = 0; 2280 struct fuse_fill_wb_data data = {}; 2281 struct iomap_writepage_ctx wpc = { 2282 .inode = folio->mapping->host, 2283 .iomap.type = IOMAP_MAPPED, 2284 .ops = &fuse_writeback_ops, 2285 .wb_ctx = &data, 2286 }; 2287 2288 if (folio_clear_dirty_for_io(folio)) { 2289 err = iomap_writeback_folio(&wpc, folio); 2290 err = fuse_iomap_writeback_submit(&wpc, err); 2291 if (!err) 2292 folio_wait_writeback(folio); 2293 } 2294 return err; 2295 } 2296 2297 /* 2298 * Write back dirty data/metadata now (there may not be any suitable 2299 * open files later for data) 2300 */ 2301 static void fuse_vma_close(struct vm_area_struct *vma) 2302 { 2303 int err; 2304 2305 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2306 mapping_set_error(vma->vm_file->f_mapping, err); 2307 } 2308 2309 /* 2310 * Wait for writeback against this page to complete before allowing it 2311 * to be marked dirty again, and hence written back again, possibly 2312 * before the previous writepage completed. 2313 * 2314 * Block here, instead of in ->writepage(), so that the userspace fs 2315 * can only block processes actually operating on the filesystem. 2316 * 2317 * Otherwise unprivileged userspace fs would be able to block 2318 * unrelated: 2319 * 2320 * - page migration 2321 * - sync(2) 2322 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2323 */ 2324 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2325 { 2326 struct folio *folio = page_folio(vmf->page); 2327 struct inode *inode = file_inode(vmf->vma->vm_file); 2328 2329 file_update_time(vmf->vma->vm_file); 2330 folio_lock(folio); 2331 if (folio->mapping != inode->i_mapping) { 2332 folio_unlock(folio); 2333 return VM_FAULT_NOPAGE; 2334 } 2335 2336 folio_wait_writeback(folio); 2337 return VM_FAULT_LOCKED; 2338 } 2339 2340 static const struct vm_operations_struct fuse_file_vm_ops = { 2341 .close = fuse_vma_close, 2342 .fault = filemap_fault, 2343 .map_pages = filemap_map_pages, 2344 .page_mkwrite = fuse_page_mkwrite, 2345 }; 2346 2347 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2348 { 2349 struct fuse_file *ff = file->private_data; 2350 struct fuse_conn *fc = ff->fm->fc; 2351 struct inode *inode = file_inode(file); 2352 int rc; 2353 2354 /* DAX mmap is superior to direct_io mmap */ 2355 if (FUSE_IS_DAX(inode)) 2356 return fuse_dax_mmap(file, vma); 2357 2358 /* 2359 * If inode is in passthrough io mode, because it has some file open 2360 * in passthrough mode, either mmap to backing file or fail mmap, 2361 * because mixing cached mmap and passthrough io mode is not allowed. 2362 */ 2363 if (fuse_file_passthrough(ff)) 2364 return fuse_passthrough_mmap(file, vma); 2365 else if (fuse_inode_backing(get_fuse_inode(inode))) 2366 return -ENODEV; 2367 2368 /* 2369 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT, 2370 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP. 2371 */ 2372 if (ff->open_flags & FOPEN_DIRECT_IO) { 2373 /* 2374 * Can't provide the coherency needed for MAP_SHARED 2375 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set. 2376 */ 2377 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap) 2378 return -ENODEV; 2379 2380 invalidate_inode_pages2(file->f_mapping); 2381 2382 if (!(vma->vm_flags & VM_MAYSHARE)) { 2383 /* MAP_PRIVATE */ 2384 return generic_file_mmap(file, vma); 2385 } 2386 2387 /* 2388 * First mmap of direct_io file enters caching inode io mode. 2389 * Also waits for parallel dio writers to go into serial mode 2390 * (exclusive instead of shared lock). 2391 * After first mmap, the inode stays in caching io mode until 2392 * the direct_io file release. 2393 */ 2394 rc = fuse_file_cached_io_open(inode, ff); 2395 if (rc) 2396 return rc; 2397 } 2398 2399 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2400 fuse_link_write_file(file); 2401 2402 file_accessed(file); 2403 vma->vm_ops = &fuse_file_vm_ops; 2404 return 0; 2405 } 2406 2407 static int convert_fuse_file_lock(struct fuse_conn *fc, 2408 const struct fuse_file_lock *ffl, 2409 struct file_lock *fl) 2410 { 2411 switch (ffl->type) { 2412 case F_UNLCK: 2413 break; 2414 2415 case F_RDLCK: 2416 case F_WRLCK: 2417 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2418 ffl->end < ffl->start) 2419 return -EIO; 2420 2421 fl->fl_start = ffl->start; 2422 fl->fl_end = ffl->end; 2423 2424 /* 2425 * Convert pid into init's pid namespace. The locks API will 2426 * translate it into the caller's pid namespace. 2427 */ 2428 rcu_read_lock(); 2429 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2430 rcu_read_unlock(); 2431 break; 2432 2433 default: 2434 return -EIO; 2435 } 2436 fl->c.flc_type = ffl->type; 2437 return 0; 2438 } 2439 2440 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2441 const struct file_lock *fl, int opcode, pid_t pid, 2442 int flock, struct fuse_lk_in *inarg) 2443 { 2444 struct inode *inode = file_inode(file); 2445 struct fuse_conn *fc = get_fuse_conn(inode); 2446 struct fuse_file *ff = file->private_data; 2447 2448 memset(inarg, 0, sizeof(*inarg)); 2449 inarg->fh = ff->fh; 2450 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner); 2451 inarg->lk.start = fl->fl_start; 2452 inarg->lk.end = fl->fl_end; 2453 inarg->lk.type = fl->c.flc_type; 2454 inarg->lk.pid = pid; 2455 if (flock) 2456 inarg->lk_flags |= FUSE_LK_FLOCK; 2457 args->opcode = opcode; 2458 args->nodeid = get_node_id(inode); 2459 args->in_numargs = 1; 2460 args->in_args[0].size = sizeof(*inarg); 2461 args->in_args[0].value = inarg; 2462 } 2463 2464 static int fuse_getlk(struct file *file, struct file_lock *fl) 2465 { 2466 struct inode *inode = file_inode(file); 2467 struct fuse_mount *fm = get_fuse_mount(inode); 2468 FUSE_ARGS(args); 2469 struct fuse_lk_in inarg; 2470 struct fuse_lk_out outarg; 2471 int err; 2472 2473 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2474 args.out_numargs = 1; 2475 args.out_args[0].size = sizeof(outarg); 2476 args.out_args[0].value = &outarg; 2477 err = fuse_simple_request(fm, &args); 2478 if (!err) 2479 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2480 2481 return err; 2482 } 2483 2484 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2485 { 2486 struct inode *inode = file_inode(file); 2487 struct fuse_mount *fm = get_fuse_mount(inode); 2488 FUSE_ARGS(args); 2489 struct fuse_lk_in inarg; 2490 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2491 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL; 2492 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2493 int err; 2494 2495 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2496 /* NLM needs asynchronous locks, which we don't support yet */ 2497 return -ENOLCK; 2498 } 2499 2500 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2501 err = fuse_simple_request(fm, &args); 2502 2503 /* locking is restartable */ 2504 if (err == -EINTR) 2505 err = -ERESTARTSYS; 2506 2507 return err; 2508 } 2509 2510 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2511 { 2512 struct inode *inode = file_inode(file); 2513 struct fuse_conn *fc = get_fuse_conn(inode); 2514 int err; 2515 2516 if (cmd == F_CANCELLK) { 2517 err = 0; 2518 } else if (cmd == F_GETLK) { 2519 if (fc->no_lock) { 2520 posix_test_lock(file, fl); 2521 err = 0; 2522 } else 2523 err = fuse_getlk(file, fl); 2524 } else { 2525 if (fc->no_lock) 2526 err = posix_lock_file(file, fl, NULL); 2527 else 2528 err = fuse_setlk(file, fl, 0); 2529 } 2530 return err; 2531 } 2532 2533 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2534 { 2535 struct inode *inode = file_inode(file); 2536 struct fuse_conn *fc = get_fuse_conn(inode); 2537 int err; 2538 2539 if (fc->no_flock) { 2540 err = locks_lock_file_wait(file, fl); 2541 } else { 2542 struct fuse_file *ff = file->private_data; 2543 2544 /* emulate flock with POSIX locks */ 2545 ff->flock = true; 2546 err = fuse_setlk(file, fl, 1); 2547 } 2548 2549 return err; 2550 } 2551 2552 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2553 { 2554 struct inode *inode = mapping->host; 2555 struct fuse_mount *fm = get_fuse_mount(inode); 2556 FUSE_ARGS(args); 2557 struct fuse_bmap_in inarg; 2558 struct fuse_bmap_out outarg; 2559 int err; 2560 2561 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2562 return 0; 2563 2564 memset(&inarg, 0, sizeof(inarg)); 2565 inarg.block = block; 2566 inarg.blocksize = inode->i_sb->s_blocksize; 2567 args.opcode = FUSE_BMAP; 2568 args.nodeid = get_node_id(inode); 2569 args.in_numargs = 1; 2570 args.in_args[0].size = sizeof(inarg); 2571 args.in_args[0].value = &inarg; 2572 args.out_numargs = 1; 2573 args.out_args[0].size = sizeof(outarg); 2574 args.out_args[0].value = &outarg; 2575 err = fuse_simple_request(fm, &args); 2576 if (err == -ENOSYS) 2577 fm->fc->no_bmap = 1; 2578 2579 return err ? 0 : outarg.block; 2580 } 2581 2582 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2583 { 2584 struct inode *inode = file->f_mapping->host; 2585 struct fuse_mount *fm = get_fuse_mount(inode); 2586 struct fuse_file *ff = file->private_data; 2587 FUSE_ARGS(args); 2588 struct fuse_lseek_in inarg = { 2589 .fh = ff->fh, 2590 .offset = offset, 2591 .whence = whence 2592 }; 2593 struct fuse_lseek_out outarg; 2594 int err; 2595 2596 if (fm->fc->no_lseek) 2597 goto fallback; 2598 2599 args.opcode = FUSE_LSEEK; 2600 args.nodeid = ff->nodeid; 2601 args.in_numargs = 1; 2602 args.in_args[0].size = sizeof(inarg); 2603 args.in_args[0].value = &inarg; 2604 args.out_numargs = 1; 2605 args.out_args[0].size = sizeof(outarg); 2606 args.out_args[0].value = &outarg; 2607 err = fuse_simple_request(fm, &args); 2608 if (err) { 2609 if (err == -ENOSYS) { 2610 fm->fc->no_lseek = 1; 2611 goto fallback; 2612 } 2613 return err; 2614 } 2615 2616 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2617 2618 fallback: 2619 err = fuse_update_attributes(inode, file, STATX_SIZE); 2620 if (!err) 2621 return generic_file_llseek(file, offset, whence); 2622 else 2623 return err; 2624 } 2625 2626 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2627 { 2628 loff_t retval; 2629 struct inode *inode = file_inode(file); 2630 2631 switch (whence) { 2632 case SEEK_SET: 2633 case SEEK_CUR: 2634 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2635 retval = generic_file_llseek(file, offset, whence); 2636 break; 2637 case SEEK_END: 2638 inode_lock(inode); 2639 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2640 if (!retval) 2641 retval = generic_file_llseek(file, offset, whence); 2642 inode_unlock(inode); 2643 break; 2644 case SEEK_HOLE: 2645 case SEEK_DATA: 2646 inode_lock(inode); 2647 retval = fuse_lseek(file, offset, whence); 2648 inode_unlock(inode); 2649 break; 2650 default: 2651 retval = -EINVAL; 2652 } 2653 2654 return retval; 2655 } 2656 2657 /* 2658 * All files which have been polled are linked to RB tree 2659 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2660 * find the matching one. 2661 */ 2662 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2663 struct rb_node **parent_out) 2664 { 2665 struct rb_node **link = &fc->polled_files.rb_node; 2666 struct rb_node *last = NULL; 2667 2668 while (*link) { 2669 struct fuse_file *ff; 2670 2671 last = *link; 2672 ff = rb_entry(last, struct fuse_file, polled_node); 2673 2674 if (kh < ff->kh) 2675 link = &last->rb_left; 2676 else if (kh > ff->kh) 2677 link = &last->rb_right; 2678 else 2679 return link; 2680 } 2681 2682 if (parent_out) 2683 *parent_out = last; 2684 return link; 2685 } 2686 2687 /* 2688 * The file is about to be polled. Make sure it's on the polled_files 2689 * RB tree. Note that files once added to the polled_files tree are 2690 * not removed before the file is released. This is because a file 2691 * polled once is likely to be polled again. 2692 */ 2693 static void fuse_register_polled_file(struct fuse_conn *fc, 2694 struct fuse_file *ff) 2695 { 2696 spin_lock(&fc->lock); 2697 if (RB_EMPTY_NODE(&ff->polled_node)) { 2698 struct rb_node **link, *parent; 2699 2700 link = fuse_find_polled_node(fc, ff->kh, &parent); 2701 BUG_ON(*link); 2702 rb_link_node(&ff->polled_node, parent, link); 2703 rb_insert_color(&ff->polled_node, &fc->polled_files); 2704 } 2705 spin_unlock(&fc->lock); 2706 } 2707 2708 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2709 { 2710 struct fuse_file *ff = file->private_data; 2711 struct fuse_mount *fm = ff->fm; 2712 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2713 struct fuse_poll_out outarg; 2714 FUSE_ARGS(args); 2715 int err; 2716 2717 if (fm->fc->no_poll) 2718 return DEFAULT_POLLMASK; 2719 2720 poll_wait(file, &ff->poll_wait, wait); 2721 inarg.events = mangle_poll(poll_requested_events(wait)); 2722 2723 /* 2724 * Ask for notification iff there's someone waiting for it. 2725 * The client may ignore the flag and always notify. 2726 */ 2727 if (waitqueue_active(&ff->poll_wait)) { 2728 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2729 fuse_register_polled_file(fm->fc, ff); 2730 } 2731 2732 args.opcode = FUSE_POLL; 2733 args.nodeid = ff->nodeid; 2734 args.in_numargs = 1; 2735 args.in_args[0].size = sizeof(inarg); 2736 args.in_args[0].value = &inarg; 2737 args.out_numargs = 1; 2738 args.out_args[0].size = sizeof(outarg); 2739 args.out_args[0].value = &outarg; 2740 err = fuse_simple_request(fm, &args); 2741 2742 if (!err) 2743 return demangle_poll(outarg.revents); 2744 if (err == -ENOSYS) { 2745 fm->fc->no_poll = 1; 2746 return DEFAULT_POLLMASK; 2747 } 2748 return EPOLLERR; 2749 } 2750 EXPORT_SYMBOL_GPL(fuse_file_poll); 2751 2752 /* 2753 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2754 * wakes up the poll waiters. 2755 */ 2756 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2757 struct fuse_notify_poll_wakeup_out *outarg) 2758 { 2759 u64 kh = outarg->kh; 2760 struct rb_node **link; 2761 2762 spin_lock(&fc->lock); 2763 2764 link = fuse_find_polled_node(fc, kh, NULL); 2765 if (*link) { 2766 struct fuse_file *ff; 2767 2768 ff = rb_entry(*link, struct fuse_file, polled_node); 2769 wake_up_interruptible_sync(&ff->poll_wait); 2770 } 2771 2772 spin_unlock(&fc->lock); 2773 return 0; 2774 } 2775 2776 static void fuse_do_truncate(struct file *file) 2777 { 2778 struct inode *inode = file->f_mapping->host; 2779 struct iattr attr; 2780 2781 attr.ia_valid = ATTR_SIZE; 2782 attr.ia_size = i_size_read(inode); 2783 2784 attr.ia_file = file; 2785 attr.ia_valid |= ATTR_FILE; 2786 2787 fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file); 2788 } 2789 2790 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2791 { 2792 return round_up(off, fc->max_pages << PAGE_SHIFT); 2793 } 2794 2795 static ssize_t 2796 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2797 { 2798 DECLARE_COMPLETION_ONSTACK(wait); 2799 ssize_t ret = 0; 2800 struct file *file = iocb->ki_filp; 2801 struct fuse_file *ff = file->private_data; 2802 loff_t pos = 0; 2803 struct inode *inode; 2804 loff_t i_size; 2805 size_t count = iov_iter_count(iter), shortened = 0; 2806 loff_t offset = iocb->ki_pos; 2807 struct fuse_io_priv *io; 2808 2809 pos = offset; 2810 inode = file->f_mapping->host; 2811 i_size = i_size_read(inode); 2812 2813 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 2814 return 0; 2815 2816 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2817 if (!io) 2818 return -ENOMEM; 2819 spin_lock_init(&io->lock); 2820 kref_init(&io->refcnt); 2821 io->reqs = 1; 2822 io->bytes = -1; 2823 io->size = 0; 2824 io->offset = offset; 2825 io->write = (iov_iter_rw(iter) == WRITE); 2826 io->err = 0; 2827 /* 2828 * By default, we want to optimize all I/Os with async request 2829 * submission to the client filesystem if supported. 2830 */ 2831 io->async = ff->fm->fc->async_dio; 2832 io->iocb = iocb; 2833 io->blocking = is_sync_kiocb(iocb); 2834 2835 /* optimization for short read */ 2836 if (io->async && !io->write && offset + count > i_size) { 2837 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 2838 shortened = count - iov_iter_count(iter); 2839 count -= shortened; 2840 } 2841 2842 /* 2843 * We cannot asynchronously extend the size of a file. 2844 * In such case the aio will behave exactly like sync io. 2845 */ 2846 if ((offset + count > i_size) && io->write) 2847 io->blocking = true; 2848 2849 if (io->async && io->blocking) { 2850 /* 2851 * Additional reference to keep io around after 2852 * calling fuse_aio_complete() 2853 */ 2854 kref_get(&io->refcnt); 2855 io->done = &wait; 2856 } 2857 2858 if (iov_iter_rw(iter) == WRITE) { 2859 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2860 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 2861 } else { 2862 ret = __fuse_direct_read(io, iter, &pos); 2863 } 2864 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 2865 2866 if (io->async) { 2867 bool blocking = io->blocking; 2868 2869 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2870 2871 /* we have a non-extending, async request, so return */ 2872 if (!blocking) 2873 return -EIOCBQUEUED; 2874 2875 wait_for_completion(&wait); 2876 ret = fuse_get_res_by_io(io); 2877 } 2878 2879 kref_put(&io->refcnt, fuse_io_release); 2880 2881 if (iov_iter_rw(iter) == WRITE) { 2882 fuse_write_update_attr(inode, pos, ret); 2883 /* For extending writes we already hold exclusive lock */ 2884 if (ret < 0 && offset + count > i_size) 2885 fuse_do_truncate(file); 2886 } 2887 2888 return ret; 2889 } 2890 2891 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 2892 { 2893 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 2894 2895 if (!err) 2896 fuse_sync_writes(inode); 2897 2898 return err; 2899 } 2900 2901 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2902 loff_t length) 2903 { 2904 struct fuse_file *ff = file->private_data; 2905 struct inode *inode = file_inode(file); 2906 struct fuse_inode *fi = get_fuse_inode(inode); 2907 struct fuse_mount *fm = ff->fm; 2908 FUSE_ARGS(args); 2909 struct fuse_fallocate_in inarg = { 2910 .fh = ff->fh, 2911 .offset = offset, 2912 .length = length, 2913 .mode = mode 2914 }; 2915 int err; 2916 bool block_faults = FUSE_IS_DAX(inode) && 2917 (!(mode & FALLOC_FL_KEEP_SIZE) || 2918 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))); 2919 2920 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2921 FALLOC_FL_ZERO_RANGE)) 2922 return -EOPNOTSUPP; 2923 2924 if (fm->fc->no_fallocate) 2925 return -EOPNOTSUPP; 2926 2927 inode_lock(inode); 2928 if (block_faults) { 2929 filemap_invalidate_lock(inode->i_mapping); 2930 err = fuse_dax_break_layouts(inode, 0, -1); 2931 if (err) 2932 goto out; 2933 } 2934 2935 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 2936 loff_t endbyte = offset + length - 1; 2937 2938 err = fuse_writeback_range(inode, offset, endbyte); 2939 if (err) 2940 goto out; 2941 } 2942 2943 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2944 offset + length > i_size_read(inode)) { 2945 err = inode_newsize_ok(inode, offset + length); 2946 if (err) 2947 goto out; 2948 } 2949 2950 err = file_modified(file); 2951 if (err) 2952 goto out; 2953 2954 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2955 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2956 2957 args.opcode = FUSE_FALLOCATE; 2958 args.nodeid = ff->nodeid; 2959 args.in_numargs = 1; 2960 args.in_args[0].size = sizeof(inarg); 2961 args.in_args[0].value = &inarg; 2962 err = fuse_simple_request(fm, &args); 2963 if (err == -ENOSYS) { 2964 fm->fc->no_fallocate = 1; 2965 err = -EOPNOTSUPP; 2966 } 2967 if (err) 2968 goto out; 2969 2970 /* we could have extended the file */ 2971 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2972 if (fuse_write_update_attr(inode, offset + length, length)) 2973 file_update_time(file); 2974 } 2975 2976 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 2977 truncate_pagecache_range(inode, offset, offset + length - 1); 2978 2979 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 2980 2981 out: 2982 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2983 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2984 2985 if (block_faults) 2986 filemap_invalidate_unlock(inode->i_mapping); 2987 2988 inode_unlock(inode); 2989 2990 fuse_flush_time_update(inode); 2991 2992 return err; 2993 } 2994 2995 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 2996 struct file *file_out, loff_t pos_out, 2997 size_t len, unsigned int flags) 2998 { 2999 struct fuse_file *ff_in = file_in->private_data; 3000 struct fuse_file *ff_out = file_out->private_data; 3001 struct inode *inode_in = file_inode(file_in); 3002 struct inode *inode_out = file_inode(file_out); 3003 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3004 struct fuse_mount *fm = ff_in->fm; 3005 struct fuse_conn *fc = fm->fc; 3006 FUSE_ARGS(args); 3007 struct fuse_copy_file_range_in inarg = { 3008 .fh_in = ff_in->fh, 3009 .off_in = pos_in, 3010 .nodeid_out = ff_out->nodeid, 3011 .fh_out = ff_out->fh, 3012 .off_out = pos_out, 3013 .len = len, 3014 .flags = flags 3015 }; 3016 struct fuse_write_out outarg; 3017 struct fuse_copy_file_range_out outarg_64; 3018 u64 bytes_copied; 3019 ssize_t err; 3020 /* mark unstable when write-back is not used, and file_out gets 3021 * extended */ 3022 bool is_unstable = (!fc->writeback_cache) && 3023 ((pos_out + len) > inode_out->i_size); 3024 3025 if (fc->no_copy_file_range) 3026 return -EOPNOTSUPP; 3027 3028 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3029 return -EXDEV; 3030 3031 inode_lock(inode_in); 3032 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3033 inode_unlock(inode_in); 3034 if (err) 3035 return err; 3036 3037 inode_lock(inode_out); 3038 3039 err = file_modified(file_out); 3040 if (err) 3041 goto out; 3042 3043 /* 3044 * Write out dirty pages in the destination file before sending the COPY 3045 * request to userspace. After the request is completed, truncate off 3046 * pages (including partial ones) from the cache that have been copied, 3047 * since these contain stale data at that point. 3048 * 3049 * This should be mostly correct, but if the COPY writes to partial 3050 * pages (at the start or end) and the parts not covered by the COPY are 3051 * written through a memory map after calling fuse_writeback_range(), 3052 * then these partial page modifications will be lost on truncation. 3053 * 3054 * It is unlikely that someone would rely on such mixed style 3055 * modifications. Yet this does give less guarantees than if the 3056 * copying was performed with write(2). 3057 * 3058 * To fix this a mapping->invalidate_lock could be used to prevent new 3059 * faults while the copy is ongoing. 3060 */ 3061 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3062 if (err) 3063 goto out; 3064 3065 if (is_unstable) 3066 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3067 3068 args.opcode = FUSE_COPY_FILE_RANGE_64; 3069 args.nodeid = ff_in->nodeid; 3070 args.in_numargs = 1; 3071 args.in_args[0].size = sizeof(inarg); 3072 args.in_args[0].value = &inarg; 3073 args.out_numargs = 1; 3074 args.out_args[0].size = sizeof(outarg_64); 3075 args.out_args[0].value = &outarg_64; 3076 if (fc->no_copy_file_range_64) { 3077 fallback: 3078 /* Fall back to old op that can't handle large copy length */ 3079 args.opcode = FUSE_COPY_FILE_RANGE; 3080 args.out_args[0].size = sizeof(outarg); 3081 args.out_args[0].value = &outarg; 3082 inarg.len = len = min_t(size_t, len, UINT_MAX & PAGE_MASK); 3083 } 3084 err = fuse_simple_request(fm, &args); 3085 if (err == -ENOSYS) { 3086 if (fc->no_copy_file_range_64) { 3087 fc->no_copy_file_range = 1; 3088 err = -EOPNOTSUPP; 3089 } else { 3090 fc->no_copy_file_range_64 = 1; 3091 goto fallback; 3092 } 3093 } 3094 if (err) 3095 goto out; 3096 3097 bytes_copied = fc->no_copy_file_range_64 ? 3098 outarg.size : outarg_64.bytes_copied; 3099 3100 if (bytes_copied > len) { 3101 err = -EIO; 3102 goto out; 3103 } 3104 3105 truncate_inode_pages_range(inode_out->i_mapping, 3106 ALIGN_DOWN(pos_out, PAGE_SIZE), 3107 ALIGN(pos_out + bytes_copied, PAGE_SIZE) - 1); 3108 3109 file_update_time(file_out); 3110 fuse_write_update_attr(inode_out, pos_out + bytes_copied, bytes_copied); 3111 3112 err = bytes_copied; 3113 out: 3114 if (is_unstable) 3115 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3116 3117 inode_unlock(inode_out); 3118 file_accessed(file_in); 3119 3120 fuse_flush_time_update(inode_out); 3121 3122 return err; 3123 } 3124 3125 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3126 struct file *dst_file, loff_t dst_off, 3127 size_t len, unsigned int flags) 3128 { 3129 ssize_t ret; 3130 3131 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3132 len, flags); 3133 3134 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3135 ret = splice_copy_file_range(src_file, src_off, dst_file, 3136 dst_off, len); 3137 return ret; 3138 } 3139 3140 static const struct file_operations fuse_file_operations = { 3141 .llseek = fuse_file_llseek, 3142 .read_iter = fuse_file_read_iter, 3143 .write_iter = fuse_file_write_iter, 3144 .mmap = fuse_file_mmap, 3145 .open = fuse_open, 3146 .flush = fuse_flush, 3147 .release = fuse_release, 3148 .fsync = fuse_fsync, 3149 .lock = fuse_file_lock, 3150 .get_unmapped_area = thp_get_unmapped_area, 3151 .flock = fuse_file_flock, 3152 .splice_read = fuse_splice_read, 3153 .splice_write = fuse_splice_write, 3154 .unlocked_ioctl = fuse_file_ioctl, 3155 .compat_ioctl = fuse_file_compat_ioctl, 3156 .poll = fuse_file_poll, 3157 .fallocate = fuse_file_fallocate, 3158 .copy_file_range = fuse_copy_file_range, 3159 }; 3160 3161 static const struct address_space_operations fuse_file_aops = { 3162 .read_folio = fuse_read_folio, 3163 .readahead = fuse_readahead, 3164 .writepages = fuse_writepages, 3165 .launder_folio = fuse_launder_folio, 3166 .dirty_folio = iomap_dirty_folio, 3167 .release_folio = iomap_release_folio, 3168 .invalidate_folio = iomap_invalidate_folio, 3169 .is_partially_uptodate = iomap_is_partially_uptodate, 3170 .migrate_folio = filemap_migrate_folio, 3171 .bmap = fuse_bmap, 3172 .direct_IO = fuse_direct_IO, 3173 }; 3174 3175 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3176 { 3177 struct fuse_inode *fi = get_fuse_inode(inode); 3178 struct fuse_conn *fc = get_fuse_conn(inode); 3179 3180 inode->i_fop = &fuse_file_operations; 3181 inode->i_data.a_ops = &fuse_file_aops; 3182 if (fc->writeback_cache) 3183 mapping_set_writeback_may_deadlock_on_reclaim(&inode->i_data); 3184 3185 INIT_LIST_HEAD(&fi->write_files); 3186 INIT_LIST_HEAD(&fi->queued_writes); 3187 fi->writectr = 0; 3188 fi->iocachectr = 0; 3189 init_waitqueue_head(&fi->page_waitq); 3190 init_waitqueue_head(&fi->direct_io_waitq); 3191 3192 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3193 fuse_dax_inode_init(inode, flags); 3194 } 3195