1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 #include <linux/filelock.h> 22 #include <linux/splice.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 26 unsigned int open_flags, int opcode, 27 struct fuse_open_out *outargp) 28 { 29 struct fuse_open_in inarg; 30 FUSE_ARGS(args); 31 32 memset(&inarg, 0, sizeof(inarg)); 33 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 34 if (!fm->fc->atomic_o_trunc) 35 inarg.flags &= ~O_TRUNC; 36 37 if (fm->fc->handle_killpriv_v2 && 38 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 39 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 40 } 41 42 args.opcode = opcode; 43 args.nodeid = nodeid; 44 args.in_numargs = 1; 45 args.in_args[0].size = sizeof(inarg); 46 args.in_args[0].value = &inarg; 47 args.out_numargs = 1; 48 args.out_args[0].size = sizeof(*outargp); 49 args.out_args[0].value = outargp; 50 51 return fuse_simple_request(fm, &args); 52 } 53 54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release) 55 { 56 struct fuse_file *ff; 57 58 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 59 if (unlikely(!ff)) 60 return NULL; 61 62 ff->fm = fm; 63 if (release) { 64 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT); 65 if (!ff->args) { 66 kfree(ff); 67 return NULL; 68 } 69 } 70 71 INIT_LIST_HEAD(&ff->write_entry); 72 refcount_set(&ff->count, 1); 73 RB_CLEAR_NODE(&ff->polled_node); 74 init_waitqueue_head(&ff->poll_wait); 75 76 ff->kh = atomic64_inc_return(&fm->fc->khctr); 77 78 return ff; 79 } 80 81 void fuse_file_free(struct fuse_file *ff) 82 { 83 kfree(ff->args); 84 kfree(ff); 85 } 86 87 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 88 { 89 refcount_inc(&ff->count); 90 return ff; 91 } 92 93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 94 int error) 95 { 96 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 97 98 iput(ra->inode); 99 kfree(ra); 100 } 101 102 static void fuse_file_put(struct fuse_file *ff, bool sync) 103 { 104 if (refcount_dec_and_test(&ff->count)) { 105 struct fuse_release_args *ra = &ff->args->release_args; 106 struct fuse_args *args = (ra ? &ra->args : NULL); 107 108 if (ra && ra->inode) 109 fuse_file_io_release(ff, ra->inode); 110 111 if (!args) { 112 /* Do nothing when server does not implement 'open' */ 113 } else if (sync) { 114 fuse_simple_request(ff->fm, args); 115 fuse_release_end(ff->fm, args, 0); 116 } else { 117 args->end = fuse_release_end; 118 if (fuse_simple_background(ff->fm, args, 119 GFP_KERNEL | __GFP_NOFAIL)) 120 fuse_release_end(ff->fm, args, -ENOTCONN); 121 } 122 kfree(ff); 123 } 124 } 125 126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 127 unsigned int open_flags, bool isdir) 128 { 129 struct fuse_conn *fc = fm->fc; 130 struct fuse_file *ff; 131 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 132 bool open = isdir ? !fc->no_opendir : !fc->no_open; 133 134 ff = fuse_file_alloc(fm, open); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (open) { 142 /* Store outarg for fuse_finish_open() */ 143 struct fuse_open_out *outargp = &ff->args->open_outarg; 144 int err; 145 146 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp); 147 if (!err) { 148 ff->fh = outargp->fh; 149 ff->open_flags = outargp->open_flags; 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 /* No release needed */ 155 kfree(ff->args); 156 ff->args = NULL; 157 if (isdir) 158 fc->no_opendir = 1; 159 else 160 fc->no_open = 1; 161 } 162 } 163 164 if (isdir) 165 ff->open_flags &= ~FOPEN_DIRECT_IO; 166 167 ff->nodeid = nodeid; 168 169 return ff; 170 } 171 172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 173 bool isdir) 174 { 175 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 176 177 if (!IS_ERR(ff)) 178 file->private_data = ff; 179 180 return PTR_ERR_OR_ZERO(ff); 181 } 182 EXPORT_SYMBOL_GPL(fuse_do_open); 183 184 static void fuse_link_write_file(struct file *file) 185 { 186 struct inode *inode = file_inode(file); 187 struct fuse_inode *fi = get_fuse_inode(inode); 188 struct fuse_file *ff = file->private_data; 189 /* 190 * file may be written through mmap, so chain it onto the 191 * inodes's write_file list 192 */ 193 spin_lock(&fi->lock); 194 if (list_empty(&ff->write_entry)) 195 list_add(&ff->write_entry, &fi->write_files); 196 spin_unlock(&fi->lock); 197 } 198 199 int fuse_finish_open(struct inode *inode, struct file *file) 200 { 201 struct fuse_file *ff = file->private_data; 202 struct fuse_conn *fc = get_fuse_conn(inode); 203 int err; 204 205 err = fuse_file_io_open(file, inode); 206 if (err) 207 return err; 208 209 if (ff->open_flags & FOPEN_STREAM) 210 stream_open(inode, file); 211 else if (ff->open_flags & FOPEN_NONSEEKABLE) 212 nonseekable_open(inode, file); 213 214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 215 fuse_link_write_file(file); 216 217 return 0; 218 } 219 220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file) 221 { 222 struct fuse_conn *fc = get_fuse_conn(inode); 223 struct fuse_inode *fi = get_fuse_inode(inode); 224 225 spin_lock(&fi->lock); 226 fi->attr_version = atomic64_inc_return(&fc->attr_version); 227 i_size_write(inode, 0); 228 spin_unlock(&fi->lock); 229 file_update_time(file); 230 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 231 } 232 233 static int fuse_open(struct inode *inode, struct file *file) 234 { 235 struct fuse_mount *fm = get_fuse_mount(inode); 236 struct fuse_inode *fi = get_fuse_inode(inode); 237 struct fuse_conn *fc = fm->fc; 238 struct fuse_file *ff; 239 int err; 240 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc; 241 bool is_wb_truncate = is_truncate && fc->writeback_cache; 242 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode); 243 244 if (fuse_is_bad(inode)) 245 return -EIO; 246 247 err = generic_file_open(inode, file); 248 if (err) 249 return err; 250 251 if (is_wb_truncate || dax_truncate) 252 inode_lock(inode); 253 254 if (dax_truncate) { 255 filemap_invalidate_lock(inode->i_mapping); 256 err = fuse_dax_break_layouts(inode, 0, 0); 257 if (err) 258 goto out_inode_unlock; 259 } 260 261 if (is_wb_truncate || dax_truncate) 262 fuse_set_nowrite(inode); 263 264 err = fuse_do_open(fm, get_node_id(inode), file, false); 265 if (!err) { 266 ff = file->private_data; 267 err = fuse_finish_open(inode, file); 268 if (err) 269 fuse_sync_release(fi, ff, file->f_flags); 270 else if (is_truncate) 271 fuse_truncate_update_attr(inode, file); 272 } 273 274 if (is_wb_truncate || dax_truncate) 275 fuse_release_nowrite(inode); 276 if (!err) { 277 if (is_truncate) 278 truncate_pagecache(inode, 0); 279 else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 280 invalidate_inode_pages2(inode->i_mapping); 281 } 282 if (dax_truncate) 283 filemap_invalidate_unlock(inode->i_mapping); 284 out_inode_unlock: 285 if (is_wb_truncate || dax_truncate) 286 inode_unlock(inode); 287 288 return err; 289 } 290 291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 292 unsigned int flags, int opcode, bool sync) 293 { 294 struct fuse_conn *fc = ff->fm->fc; 295 struct fuse_release_args *ra = &ff->args->release_args; 296 297 if (fuse_file_passthrough(ff)) 298 fuse_passthrough_release(ff, fuse_inode_backing(fi)); 299 300 /* Inode is NULL on error path of fuse_create_open() */ 301 if (likely(fi)) { 302 spin_lock(&fi->lock); 303 list_del(&ff->write_entry); 304 spin_unlock(&fi->lock); 305 } 306 spin_lock(&fc->lock); 307 if (!RB_EMPTY_NODE(&ff->polled_node)) 308 rb_erase(&ff->polled_node, &fc->polled_files); 309 spin_unlock(&fc->lock); 310 311 wake_up_interruptible_all(&ff->poll_wait); 312 313 if (!ra) 314 return; 315 316 /* ff->args was used for open outarg */ 317 memset(ff->args, 0, sizeof(*ff->args)); 318 ra->inarg.fh = ff->fh; 319 ra->inarg.flags = flags; 320 ra->args.in_numargs = 1; 321 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 322 ra->args.in_args[0].value = &ra->inarg; 323 ra->args.opcode = opcode; 324 ra->args.nodeid = ff->nodeid; 325 ra->args.force = true; 326 ra->args.nocreds = true; 327 328 /* 329 * Hold inode until release is finished. 330 * From fuse_sync_release() the refcount is 1 and everything's 331 * synchronous, so we are fine with not doing igrab() here. 332 */ 333 ra->inode = sync ? NULL : igrab(&fi->inode); 334 } 335 336 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 337 unsigned int open_flags, fl_owner_t id, bool isdir) 338 { 339 struct fuse_inode *fi = get_fuse_inode(inode); 340 struct fuse_release_args *ra = &ff->args->release_args; 341 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 342 343 fuse_prepare_release(fi, ff, open_flags, opcode, false); 344 345 if (ra && ff->flock) { 346 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 347 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 348 } 349 350 /* 351 * Normally this will send the RELEASE request, however if 352 * some asynchronous READ or WRITE requests are outstanding, 353 * the sending will be delayed. 354 * 355 * Make the release synchronous if this is a fuseblk mount, 356 * synchronous RELEASE is allowed (and desirable) in this case 357 * because the server can be trusted not to screw up. 358 */ 359 fuse_file_put(ff, ff->fm->fc->destroy); 360 } 361 362 void fuse_release_common(struct file *file, bool isdir) 363 { 364 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 365 (fl_owner_t) file, isdir); 366 } 367 368 static int fuse_release(struct inode *inode, struct file *file) 369 { 370 struct fuse_conn *fc = get_fuse_conn(inode); 371 372 /* 373 * Dirty pages might remain despite write_inode_now() call from 374 * fuse_flush() due to writes racing with the close. 375 */ 376 if (fc->writeback_cache) 377 write_inode_now(inode, 1); 378 379 fuse_release_common(file, false); 380 381 /* return value is ignored by VFS */ 382 return 0; 383 } 384 385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 386 unsigned int flags) 387 { 388 WARN_ON(refcount_read(&ff->count) > 1); 389 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true); 390 fuse_file_put(ff, true); 391 } 392 EXPORT_SYMBOL_GPL(fuse_sync_release); 393 394 /* 395 * Scramble the ID space with XTEA, so that the value of the files_struct 396 * pointer is not exposed to userspace. 397 */ 398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 399 { 400 u32 *k = fc->scramble_key; 401 u64 v = (unsigned long) id; 402 u32 v0 = v; 403 u32 v1 = v >> 32; 404 u32 sum = 0; 405 int i; 406 407 for (i = 0; i < 32; i++) { 408 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 409 sum += 0x9E3779B9; 410 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 411 } 412 413 return (u64) v0 + ((u64) v1 << 32); 414 } 415 416 struct fuse_writepage_args { 417 struct fuse_io_args ia; 418 struct rb_node writepages_entry; 419 struct list_head queue_entry; 420 struct fuse_writepage_args *next; 421 struct inode *inode; 422 struct fuse_sync_bucket *bucket; 423 }; 424 425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 426 pgoff_t idx_from, pgoff_t idx_to) 427 { 428 struct rb_node *n; 429 430 n = fi->writepages.rb_node; 431 432 while (n) { 433 struct fuse_writepage_args *wpa; 434 pgoff_t curr_index; 435 436 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 437 WARN_ON(get_fuse_inode(wpa->inode) != fi); 438 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 439 if (idx_from >= curr_index + wpa->ia.ap.num_folios) 440 n = n->rb_right; 441 else if (idx_to < curr_index) 442 n = n->rb_left; 443 else 444 return wpa; 445 } 446 return NULL; 447 } 448 449 /* 450 * Check if any page in a range is under writeback 451 */ 452 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 453 pgoff_t idx_to) 454 { 455 struct fuse_inode *fi = get_fuse_inode(inode); 456 bool found; 457 458 if (RB_EMPTY_ROOT(&fi->writepages)) 459 return false; 460 461 spin_lock(&fi->lock); 462 found = fuse_find_writeback(fi, idx_from, idx_to); 463 spin_unlock(&fi->lock); 464 465 return found; 466 } 467 468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 469 { 470 return fuse_range_is_writeback(inode, index, index); 471 } 472 473 /* 474 * Wait for page writeback to be completed. 475 * 476 * Since fuse doesn't rely on the VM writeback tracking, this has to 477 * use some other means. 478 */ 479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 480 { 481 struct fuse_inode *fi = get_fuse_inode(inode); 482 483 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 484 } 485 486 static inline bool fuse_folio_is_writeback(struct inode *inode, 487 struct folio *folio) 488 { 489 pgoff_t last = folio_next_index(folio) - 1; 490 return fuse_range_is_writeback(inode, folio_index(folio), last); 491 } 492 493 static void fuse_wait_on_folio_writeback(struct inode *inode, 494 struct folio *folio) 495 { 496 struct fuse_inode *fi = get_fuse_inode(inode); 497 498 wait_event(fi->page_waitq, !fuse_folio_is_writeback(inode, folio)); 499 } 500 501 /* 502 * Wait for all pending writepages on the inode to finish. 503 * 504 * This is currently done by blocking further writes with FUSE_NOWRITE 505 * and waiting for all sent writes to complete. 506 * 507 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 508 * could conflict with truncation. 509 */ 510 static void fuse_sync_writes(struct inode *inode) 511 { 512 fuse_set_nowrite(inode); 513 fuse_release_nowrite(inode); 514 } 515 516 static int fuse_flush(struct file *file, fl_owner_t id) 517 { 518 struct inode *inode = file_inode(file); 519 struct fuse_mount *fm = get_fuse_mount(inode); 520 struct fuse_file *ff = file->private_data; 521 struct fuse_flush_in inarg; 522 FUSE_ARGS(args); 523 int err; 524 525 if (fuse_is_bad(inode)) 526 return -EIO; 527 528 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 529 return 0; 530 531 err = write_inode_now(inode, 1); 532 if (err) 533 return err; 534 535 inode_lock(inode); 536 fuse_sync_writes(inode); 537 inode_unlock(inode); 538 539 err = filemap_check_errors(file->f_mapping); 540 if (err) 541 return err; 542 543 err = 0; 544 if (fm->fc->no_flush) 545 goto inval_attr_out; 546 547 memset(&inarg, 0, sizeof(inarg)); 548 inarg.fh = ff->fh; 549 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 550 args.opcode = FUSE_FLUSH; 551 args.nodeid = get_node_id(inode); 552 args.in_numargs = 1; 553 args.in_args[0].size = sizeof(inarg); 554 args.in_args[0].value = &inarg; 555 args.force = true; 556 557 err = fuse_simple_request(fm, &args); 558 if (err == -ENOSYS) { 559 fm->fc->no_flush = 1; 560 err = 0; 561 } 562 563 inval_attr_out: 564 /* 565 * In memory i_blocks is not maintained by fuse, if writeback cache is 566 * enabled, i_blocks from cached attr may not be accurate. 567 */ 568 if (!err && fm->fc->writeback_cache) 569 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 570 return err; 571 } 572 573 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 574 int datasync, int opcode) 575 { 576 struct inode *inode = file->f_mapping->host; 577 struct fuse_mount *fm = get_fuse_mount(inode); 578 struct fuse_file *ff = file->private_data; 579 FUSE_ARGS(args); 580 struct fuse_fsync_in inarg; 581 582 memset(&inarg, 0, sizeof(inarg)); 583 inarg.fh = ff->fh; 584 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 585 args.opcode = opcode; 586 args.nodeid = get_node_id(inode); 587 args.in_numargs = 1; 588 args.in_args[0].size = sizeof(inarg); 589 args.in_args[0].value = &inarg; 590 return fuse_simple_request(fm, &args); 591 } 592 593 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 594 int datasync) 595 { 596 struct inode *inode = file->f_mapping->host; 597 struct fuse_conn *fc = get_fuse_conn(inode); 598 int err; 599 600 if (fuse_is_bad(inode)) 601 return -EIO; 602 603 inode_lock(inode); 604 605 /* 606 * Start writeback against all dirty pages of the inode, then 607 * wait for all outstanding writes, before sending the FSYNC 608 * request. 609 */ 610 err = file_write_and_wait_range(file, start, end); 611 if (err) 612 goto out; 613 614 fuse_sync_writes(inode); 615 616 /* 617 * Due to implementation of fuse writeback 618 * file_write_and_wait_range() does not catch errors. 619 * We have to do this directly after fuse_sync_writes() 620 */ 621 err = file_check_and_advance_wb_err(file); 622 if (err) 623 goto out; 624 625 err = sync_inode_metadata(inode, 1); 626 if (err) 627 goto out; 628 629 if (fc->no_fsync) 630 goto out; 631 632 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 633 if (err == -ENOSYS) { 634 fc->no_fsync = 1; 635 err = 0; 636 } 637 out: 638 inode_unlock(inode); 639 640 return err; 641 } 642 643 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 644 size_t count, int opcode) 645 { 646 struct fuse_file *ff = file->private_data; 647 struct fuse_args *args = &ia->ap.args; 648 649 ia->read.in.fh = ff->fh; 650 ia->read.in.offset = pos; 651 ia->read.in.size = count; 652 ia->read.in.flags = file->f_flags; 653 args->opcode = opcode; 654 args->nodeid = ff->nodeid; 655 args->in_numargs = 1; 656 args->in_args[0].size = sizeof(ia->read.in); 657 args->in_args[0].value = &ia->read.in; 658 args->out_argvar = true; 659 args->out_numargs = 1; 660 args->out_args[0].size = count; 661 } 662 663 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres, 664 bool should_dirty) 665 { 666 unsigned int i; 667 668 for (i = 0; i < ap->num_folios; i++) { 669 if (should_dirty) 670 folio_mark_dirty_lock(ap->folios[i]); 671 if (ap->args.is_pinned) 672 unpin_folio(ap->folios[i]); 673 } 674 675 if (nres > 0 && ap->args.invalidate_vmap) 676 invalidate_kernel_vmap_range(ap->args.vmap_base, nres); 677 } 678 679 static void fuse_io_release(struct kref *kref) 680 { 681 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 682 } 683 684 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 685 { 686 if (io->err) 687 return io->err; 688 689 if (io->bytes >= 0 && io->write) 690 return -EIO; 691 692 return io->bytes < 0 ? io->size : io->bytes; 693 } 694 695 /* 696 * In case of short read, the caller sets 'pos' to the position of 697 * actual end of fuse request in IO request. Otherwise, if bytes_requested 698 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 699 * 700 * An example: 701 * User requested DIO read of 64K. It was split into two 32K fuse requests, 702 * both submitted asynchronously. The first of them was ACKed by userspace as 703 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 704 * second request was ACKed as short, e.g. only 1K was read, resulting in 705 * pos == 33K. 706 * 707 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 708 * will be equal to the length of the longest contiguous fragment of 709 * transferred data starting from the beginning of IO request. 710 */ 711 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 712 { 713 int left; 714 715 spin_lock(&io->lock); 716 if (err) 717 io->err = io->err ? : err; 718 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 719 io->bytes = pos; 720 721 left = --io->reqs; 722 if (!left && io->blocking) 723 complete(io->done); 724 spin_unlock(&io->lock); 725 726 if (!left && !io->blocking) { 727 ssize_t res = fuse_get_res_by_io(io); 728 729 if (res >= 0) { 730 struct inode *inode = file_inode(io->iocb->ki_filp); 731 struct fuse_conn *fc = get_fuse_conn(inode); 732 struct fuse_inode *fi = get_fuse_inode(inode); 733 734 spin_lock(&fi->lock); 735 fi->attr_version = atomic64_inc_return(&fc->attr_version); 736 spin_unlock(&fi->lock); 737 } 738 739 io->iocb->ki_complete(io->iocb, res); 740 } 741 742 kref_put(&io->refcnt, fuse_io_release); 743 } 744 745 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 746 unsigned int nfolios) 747 { 748 struct fuse_io_args *ia; 749 750 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 751 if (ia) { 752 ia->io = io; 753 ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL, 754 &ia->ap.descs); 755 if (!ia->ap.folios) { 756 kfree(ia); 757 ia = NULL; 758 } 759 } 760 return ia; 761 } 762 763 static void fuse_io_free(struct fuse_io_args *ia) 764 { 765 kfree(ia->ap.folios); 766 kfree(ia); 767 } 768 769 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 770 int err) 771 { 772 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 773 struct fuse_io_priv *io = ia->io; 774 ssize_t pos = -1; 775 size_t nres; 776 777 if (err) { 778 /* Nothing */ 779 } else if (io->write) { 780 if (ia->write.out.size > ia->write.in.size) { 781 err = -EIO; 782 } else { 783 nres = ia->write.out.size; 784 if (ia->write.in.size != ia->write.out.size) 785 pos = ia->write.in.offset - io->offset + 786 ia->write.out.size; 787 } 788 } else { 789 u32 outsize = args->out_args[0].size; 790 791 nres = outsize; 792 if (ia->read.in.size != outsize) 793 pos = ia->read.in.offset - io->offset + outsize; 794 } 795 796 fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty); 797 798 fuse_aio_complete(io, err, pos); 799 fuse_io_free(ia); 800 } 801 802 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 803 struct fuse_io_args *ia, size_t num_bytes) 804 { 805 ssize_t err; 806 struct fuse_io_priv *io = ia->io; 807 808 spin_lock(&io->lock); 809 kref_get(&io->refcnt); 810 io->size += num_bytes; 811 io->reqs++; 812 spin_unlock(&io->lock); 813 814 ia->ap.args.end = fuse_aio_complete_req; 815 ia->ap.args.may_block = io->should_dirty; 816 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 817 if (err) 818 fuse_aio_complete_req(fm, &ia->ap.args, err); 819 820 return num_bytes; 821 } 822 823 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 824 fl_owner_t owner) 825 { 826 struct file *file = ia->io->iocb->ki_filp; 827 struct fuse_file *ff = file->private_data; 828 struct fuse_mount *fm = ff->fm; 829 830 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 831 if (owner != NULL) { 832 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 833 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 834 } 835 836 if (ia->io->async) 837 return fuse_async_req_send(fm, ia, count); 838 839 return fuse_simple_request(fm, &ia->ap.args); 840 } 841 842 static void fuse_read_update_size(struct inode *inode, loff_t size, 843 u64 attr_ver) 844 { 845 struct fuse_conn *fc = get_fuse_conn(inode); 846 struct fuse_inode *fi = get_fuse_inode(inode); 847 848 spin_lock(&fi->lock); 849 if (attr_ver >= fi->attr_version && size < inode->i_size && 850 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 851 fi->attr_version = atomic64_inc_return(&fc->attr_version); 852 i_size_write(inode, size); 853 } 854 spin_unlock(&fi->lock); 855 } 856 857 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 858 struct fuse_args_pages *ap) 859 { 860 struct fuse_conn *fc = get_fuse_conn(inode); 861 862 /* 863 * If writeback_cache is enabled, a short read means there's a hole in 864 * the file. Some data after the hole is in page cache, but has not 865 * reached the client fs yet. So the hole is not present there. 866 */ 867 if (!fc->writeback_cache) { 868 loff_t pos = folio_pos(ap->folios[0]) + num_read; 869 fuse_read_update_size(inode, pos, attr_ver); 870 } 871 } 872 873 static int fuse_do_readfolio(struct file *file, struct folio *folio) 874 { 875 struct inode *inode = folio->mapping->host; 876 struct fuse_mount *fm = get_fuse_mount(inode); 877 loff_t pos = folio_pos(folio); 878 struct fuse_folio_desc desc = { .length = PAGE_SIZE }; 879 struct fuse_io_args ia = { 880 .ap.args.page_zeroing = true, 881 .ap.args.out_pages = true, 882 .ap.num_folios = 1, 883 .ap.folios = &folio, 884 .ap.descs = &desc, 885 }; 886 ssize_t res; 887 u64 attr_ver; 888 889 /* 890 * With the temporary pages that are used to complete writeback, we can 891 * have writeback that extends beyond the lifetime of the folio. So 892 * make sure we read a properly synced folio. 893 */ 894 fuse_wait_on_folio_writeback(inode, folio); 895 896 attr_ver = fuse_get_attr_version(fm->fc); 897 898 /* Don't overflow end offset */ 899 if (pos + (desc.length - 1) == LLONG_MAX) 900 desc.length--; 901 902 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 903 res = fuse_simple_request(fm, &ia.ap.args); 904 if (res < 0) 905 return res; 906 /* 907 * Short read means EOF. If file size is larger, truncate it 908 */ 909 if (res < desc.length) 910 fuse_short_read(inode, attr_ver, res, &ia.ap); 911 912 folio_mark_uptodate(folio); 913 914 return 0; 915 } 916 917 static int fuse_read_folio(struct file *file, struct folio *folio) 918 { 919 struct inode *inode = folio->mapping->host; 920 int err; 921 922 err = -EIO; 923 if (fuse_is_bad(inode)) 924 goto out; 925 926 err = fuse_do_readfolio(file, folio); 927 fuse_invalidate_atime(inode); 928 out: 929 folio_unlock(folio); 930 return err; 931 } 932 933 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 934 int err) 935 { 936 int i; 937 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 938 struct fuse_args_pages *ap = &ia->ap; 939 size_t count = ia->read.in.size; 940 size_t num_read = args->out_args[0].size; 941 struct address_space *mapping = NULL; 942 943 for (i = 0; mapping == NULL && i < ap->num_folios; i++) 944 mapping = ap->folios[i]->mapping; 945 946 if (mapping) { 947 struct inode *inode = mapping->host; 948 949 /* 950 * Short read means EOF. If file size is larger, truncate it 951 */ 952 if (!err && num_read < count) 953 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 954 955 fuse_invalidate_atime(inode); 956 } 957 958 for (i = 0; i < ap->num_folios; i++) 959 folio_end_read(ap->folios[i], !err); 960 if (ia->ff) 961 fuse_file_put(ia->ff, false); 962 963 fuse_io_free(ia); 964 } 965 966 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 967 { 968 struct fuse_file *ff = file->private_data; 969 struct fuse_mount *fm = ff->fm; 970 struct fuse_args_pages *ap = &ia->ap; 971 loff_t pos = folio_pos(ap->folios[0]); 972 /* Currently, all folios in FUSE are one page */ 973 size_t count = ap->num_folios << PAGE_SHIFT; 974 ssize_t res; 975 int err; 976 977 ap->args.out_pages = true; 978 ap->args.page_zeroing = true; 979 ap->args.page_replace = true; 980 981 /* Don't overflow end offset */ 982 if (pos + (count - 1) == LLONG_MAX) { 983 count--; 984 ap->descs[ap->num_folios - 1].length--; 985 } 986 WARN_ON((loff_t) (pos + count) < 0); 987 988 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 989 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 990 if (fm->fc->async_read) { 991 ia->ff = fuse_file_get(ff); 992 ap->args.end = fuse_readpages_end; 993 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 994 if (!err) 995 return; 996 } else { 997 res = fuse_simple_request(fm, &ap->args); 998 err = res < 0 ? res : 0; 999 } 1000 fuse_readpages_end(fm, &ap->args, err); 1001 } 1002 1003 static void fuse_readahead(struct readahead_control *rac) 1004 { 1005 struct inode *inode = rac->mapping->host; 1006 struct fuse_inode *fi = get_fuse_inode(inode); 1007 struct fuse_conn *fc = get_fuse_conn(inode); 1008 unsigned int max_pages, nr_pages; 1009 pgoff_t first = readahead_index(rac); 1010 pgoff_t last = first + readahead_count(rac) - 1; 1011 1012 if (fuse_is_bad(inode)) 1013 return; 1014 1015 wait_event(fi->page_waitq, !fuse_range_is_writeback(inode, first, last)); 1016 1017 max_pages = min_t(unsigned int, fc->max_pages, 1018 fc->max_read / PAGE_SIZE); 1019 1020 /* 1021 * This is only accurate the first time through, since readahead_folio() 1022 * doesn't update readahead_count() from the previous folio until the 1023 * next call. Grab nr_pages here so we know how many pages we're going 1024 * to have to process. This means that we will exit here with 1025 * readahead_count() == folio_nr_pages(last_folio), but we will have 1026 * consumed all of the folios, and read_pages() will call 1027 * readahead_folio() again which will clean up the rac. 1028 */ 1029 nr_pages = readahead_count(rac); 1030 1031 while (nr_pages) { 1032 struct fuse_io_args *ia; 1033 struct fuse_args_pages *ap; 1034 struct folio *folio; 1035 unsigned cur_pages = min(max_pages, nr_pages); 1036 1037 if (fc->num_background >= fc->congestion_threshold && 1038 rac->ra->async_size >= readahead_count(rac)) 1039 /* 1040 * Congested and only async pages left, so skip the 1041 * rest. 1042 */ 1043 break; 1044 1045 ia = fuse_io_alloc(NULL, cur_pages); 1046 if (!ia) 1047 return; 1048 ap = &ia->ap; 1049 1050 while (ap->num_folios < cur_pages) { 1051 folio = readahead_folio(rac); 1052 ap->folios[ap->num_folios] = folio; 1053 ap->descs[ap->num_folios].length = folio_size(folio); 1054 ap->num_folios++; 1055 } 1056 fuse_send_readpages(ia, rac->file); 1057 nr_pages -= cur_pages; 1058 } 1059 } 1060 1061 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 1062 { 1063 struct inode *inode = iocb->ki_filp->f_mapping->host; 1064 struct fuse_conn *fc = get_fuse_conn(inode); 1065 1066 /* 1067 * In auto invalidate mode, always update attributes on read. 1068 * Otherwise, only update if we attempt to read past EOF (to ensure 1069 * i_size is up to date). 1070 */ 1071 if (fc->auto_inval_data || 1072 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1073 int err; 1074 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1075 if (err) 1076 return err; 1077 } 1078 1079 return generic_file_read_iter(iocb, to); 1080 } 1081 1082 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1083 loff_t pos, size_t count) 1084 { 1085 struct fuse_args *args = &ia->ap.args; 1086 1087 ia->write.in.fh = ff->fh; 1088 ia->write.in.offset = pos; 1089 ia->write.in.size = count; 1090 args->opcode = FUSE_WRITE; 1091 args->nodeid = ff->nodeid; 1092 args->in_numargs = 2; 1093 if (ff->fm->fc->minor < 9) 1094 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1095 else 1096 args->in_args[0].size = sizeof(ia->write.in); 1097 args->in_args[0].value = &ia->write.in; 1098 args->in_args[1].size = count; 1099 args->out_numargs = 1; 1100 args->out_args[0].size = sizeof(ia->write.out); 1101 args->out_args[0].value = &ia->write.out; 1102 } 1103 1104 static unsigned int fuse_write_flags(struct kiocb *iocb) 1105 { 1106 unsigned int flags = iocb->ki_filp->f_flags; 1107 1108 if (iocb_is_dsync(iocb)) 1109 flags |= O_DSYNC; 1110 if (iocb->ki_flags & IOCB_SYNC) 1111 flags |= O_SYNC; 1112 1113 return flags; 1114 } 1115 1116 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1117 size_t count, fl_owner_t owner) 1118 { 1119 struct kiocb *iocb = ia->io->iocb; 1120 struct file *file = iocb->ki_filp; 1121 struct fuse_file *ff = file->private_data; 1122 struct fuse_mount *fm = ff->fm; 1123 struct fuse_write_in *inarg = &ia->write.in; 1124 ssize_t err; 1125 1126 fuse_write_args_fill(ia, ff, pos, count); 1127 inarg->flags = fuse_write_flags(iocb); 1128 if (owner != NULL) { 1129 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1130 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1131 } 1132 1133 if (ia->io->async) 1134 return fuse_async_req_send(fm, ia, count); 1135 1136 err = fuse_simple_request(fm, &ia->ap.args); 1137 if (!err && ia->write.out.size > count) 1138 err = -EIO; 1139 1140 return err ?: ia->write.out.size; 1141 } 1142 1143 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1144 { 1145 struct fuse_conn *fc = get_fuse_conn(inode); 1146 struct fuse_inode *fi = get_fuse_inode(inode); 1147 bool ret = false; 1148 1149 spin_lock(&fi->lock); 1150 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1151 if (written > 0 && pos > inode->i_size) { 1152 i_size_write(inode, pos); 1153 ret = true; 1154 } 1155 spin_unlock(&fi->lock); 1156 1157 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1158 1159 return ret; 1160 } 1161 1162 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1163 struct kiocb *iocb, struct inode *inode, 1164 loff_t pos, size_t count) 1165 { 1166 struct fuse_args_pages *ap = &ia->ap; 1167 struct file *file = iocb->ki_filp; 1168 struct fuse_file *ff = file->private_data; 1169 struct fuse_mount *fm = ff->fm; 1170 unsigned int offset, i; 1171 bool short_write; 1172 int err; 1173 1174 for (i = 0; i < ap->num_folios; i++) 1175 fuse_wait_on_folio_writeback(inode, ap->folios[i]); 1176 1177 fuse_write_args_fill(ia, ff, pos, count); 1178 ia->write.in.flags = fuse_write_flags(iocb); 1179 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1180 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1181 1182 err = fuse_simple_request(fm, &ap->args); 1183 if (!err && ia->write.out.size > count) 1184 err = -EIO; 1185 1186 short_write = ia->write.out.size < count; 1187 offset = ap->descs[0].offset; 1188 count = ia->write.out.size; 1189 for (i = 0; i < ap->num_folios; i++) { 1190 struct folio *folio = ap->folios[i]; 1191 1192 if (err) { 1193 folio_clear_uptodate(folio); 1194 } else { 1195 if (count >= folio_size(folio) - offset) 1196 count -= folio_size(folio) - offset; 1197 else { 1198 if (short_write) 1199 folio_clear_uptodate(folio); 1200 count = 0; 1201 } 1202 offset = 0; 1203 } 1204 if (ia->write.folio_locked && (i == ap->num_folios - 1)) 1205 folio_unlock(folio); 1206 folio_put(folio); 1207 } 1208 1209 return err; 1210 } 1211 1212 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1213 struct address_space *mapping, 1214 struct iov_iter *ii, loff_t pos, 1215 unsigned int max_pages) 1216 { 1217 struct fuse_args_pages *ap = &ia->ap; 1218 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1219 unsigned offset = pos & (PAGE_SIZE - 1); 1220 unsigned int nr_pages = 0; 1221 size_t count = 0; 1222 int err; 1223 1224 ap->args.in_pages = true; 1225 ap->descs[0].offset = offset; 1226 1227 do { 1228 size_t tmp; 1229 struct folio *folio; 1230 pgoff_t index = pos >> PAGE_SHIFT; 1231 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1232 iov_iter_count(ii)); 1233 1234 bytes = min_t(size_t, bytes, fc->max_write - count); 1235 1236 again: 1237 err = -EFAULT; 1238 if (fault_in_iov_iter_readable(ii, bytes)) 1239 break; 1240 1241 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1242 mapping_gfp_mask(mapping)); 1243 if (IS_ERR(folio)) { 1244 err = PTR_ERR(folio); 1245 break; 1246 } 1247 1248 if (mapping_writably_mapped(mapping)) 1249 flush_dcache_folio(folio); 1250 1251 tmp = copy_folio_from_iter_atomic(folio, offset, bytes, ii); 1252 flush_dcache_folio(folio); 1253 1254 if (!tmp) { 1255 folio_unlock(folio); 1256 folio_put(folio); 1257 goto again; 1258 } 1259 1260 err = 0; 1261 ap->folios[ap->num_folios] = folio; 1262 ap->descs[ap->num_folios].length = tmp; 1263 ap->num_folios++; 1264 nr_pages++; 1265 1266 count += tmp; 1267 pos += tmp; 1268 offset += tmp; 1269 if (offset == PAGE_SIZE) 1270 offset = 0; 1271 1272 /* If we copied full page, mark it uptodate */ 1273 if (tmp == PAGE_SIZE) 1274 folio_mark_uptodate(folio); 1275 1276 if (folio_test_uptodate(folio)) { 1277 folio_unlock(folio); 1278 } else { 1279 ia->write.folio_locked = true; 1280 break; 1281 } 1282 if (!fc->big_writes) 1283 break; 1284 } while (iov_iter_count(ii) && count < fc->max_write && 1285 nr_pages < max_pages && offset == 0); 1286 1287 return count > 0 ? count : err; 1288 } 1289 1290 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1291 unsigned int max_pages) 1292 { 1293 return min_t(unsigned int, 1294 ((pos + len - 1) >> PAGE_SHIFT) - 1295 (pos >> PAGE_SHIFT) + 1, 1296 max_pages); 1297 } 1298 1299 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii) 1300 { 1301 struct address_space *mapping = iocb->ki_filp->f_mapping; 1302 struct inode *inode = mapping->host; 1303 struct fuse_conn *fc = get_fuse_conn(inode); 1304 struct fuse_inode *fi = get_fuse_inode(inode); 1305 loff_t pos = iocb->ki_pos; 1306 int err = 0; 1307 ssize_t res = 0; 1308 1309 if (inode->i_size < pos + iov_iter_count(ii)) 1310 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1311 1312 do { 1313 ssize_t count; 1314 struct fuse_io_args ia = {}; 1315 struct fuse_args_pages *ap = &ia.ap; 1316 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1317 fc->max_pages); 1318 1319 ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1320 if (!ap->folios) { 1321 err = -ENOMEM; 1322 break; 1323 } 1324 1325 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1326 if (count <= 0) { 1327 err = count; 1328 } else { 1329 err = fuse_send_write_pages(&ia, iocb, inode, 1330 pos, count); 1331 if (!err) { 1332 size_t num_written = ia.write.out.size; 1333 1334 res += num_written; 1335 pos += num_written; 1336 1337 /* break out of the loop on short write */ 1338 if (num_written != count) 1339 err = -EIO; 1340 } 1341 } 1342 kfree(ap->folios); 1343 } while (!err && iov_iter_count(ii)); 1344 1345 fuse_write_update_attr(inode, pos, res); 1346 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1347 1348 if (!res) 1349 return err; 1350 iocb->ki_pos += res; 1351 return res; 1352 } 1353 1354 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter) 1355 { 1356 struct inode *inode = file_inode(iocb->ki_filp); 1357 1358 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode); 1359 } 1360 1361 /* 1362 * @return true if an exclusive lock for direct IO writes is needed 1363 */ 1364 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from) 1365 { 1366 struct file *file = iocb->ki_filp; 1367 struct fuse_file *ff = file->private_data; 1368 struct inode *inode = file_inode(iocb->ki_filp); 1369 struct fuse_inode *fi = get_fuse_inode(inode); 1370 1371 /* Server side has to advise that it supports parallel dio writes. */ 1372 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES)) 1373 return true; 1374 1375 /* 1376 * Append will need to know the eventual EOF - always needs an 1377 * exclusive lock. 1378 */ 1379 if (iocb->ki_flags & IOCB_APPEND) 1380 return true; 1381 1382 /* shared locks are not allowed with parallel page cache IO */ 1383 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state)) 1384 return true; 1385 1386 /* Parallel dio beyond EOF is not supported, at least for now. */ 1387 if (fuse_io_past_eof(iocb, from)) 1388 return true; 1389 1390 return false; 1391 } 1392 1393 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from, 1394 bool *exclusive) 1395 { 1396 struct inode *inode = file_inode(iocb->ki_filp); 1397 struct fuse_inode *fi = get_fuse_inode(inode); 1398 1399 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from); 1400 if (*exclusive) { 1401 inode_lock(inode); 1402 } else { 1403 inode_lock_shared(inode); 1404 /* 1405 * New parallal dio allowed only if inode is not in caching 1406 * mode and denies new opens in caching mode. This check 1407 * should be performed only after taking shared inode lock. 1408 * Previous past eof check was without inode lock and might 1409 * have raced, so check it again. 1410 */ 1411 if (fuse_io_past_eof(iocb, from) || 1412 fuse_inode_uncached_io_start(fi, NULL) != 0) { 1413 inode_unlock_shared(inode); 1414 inode_lock(inode); 1415 *exclusive = true; 1416 } 1417 } 1418 } 1419 1420 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive) 1421 { 1422 struct inode *inode = file_inode(iocb->ki_filp); 1423 struct fuse_inode *fi = get_fuse_inode(inode); 1424 1425 if (exclusive) { 1426 inode_unlock(inode); 1427 } else { 1428 /* Allow opens in caching mode after last parallel dio end */ 1429 fuse_inode_uncached_io_end(fi); 1430 inode_unlock_shared(inode); 1431 } 1432 } 1433 1434 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1435 { 1436 struct file *file = iocb->ki_filp; 1437 struct mnt_idmap *idmap = file_mnt_idmap(file); 1438 struct address_space *mapping = file->f_mapping; 1439 ssize_t written = 0; 1440 struct inode *inode = mapping->host; 1441 ssize_t err, count; 1442 struct fuse_conn *fc = get_fuse_conn(inode); 1443 1444 if (fc->writeback_cache) { 1445 /* Update size (EOF optimization) and mode (SUID clearing) */ 1446 err = fuse_update_attributes(mapping->host, file, 1447 STATX_SIZE | STATX_MODE); 1448 if (err) 1449 return err; 1450 1451 if (fc->handle_killpriv_v2 && 1452 setattr_should_drop_suidgid(idmap, 1453 file_inode(file))) { 1454 goto writethrough; 1455 } 1456 1457 return generic_file_write_iter(iocb, from); 1458 } 1459 1460 writethrough: 1461 inode_lock(inode); 1462 1463 err = count = generic_write_checks(iocb, from); 1464 if (err <= 0) 1465 goto out; 1466 1467 task_io_account_write(count); 1468 1469 err = kiocb_modified(iocb); 1470 if (err) 1471 goto out; 1472 1473 if (iocb->ki_flags & IOCB_DIRECT) { 1474 written = generic_file_direct_write(iocb, from); 1475 if (written < 0 || !iov_iter_count(from)) 1476 goto out; 1477 written = direct_write_fallback(iocb, from, written, 1478 fuse_perform_write(iocb, from)); 1479 } else { 1480 written = fuse_perform_write(iocb, from); 1481 } 1482 out: 1483 inode_unlock(inode); 1484 if (written > 0) 1485 written = generic_write_sync(iocb, written); 1486 1487 return written ? written : err; 1488 } 1489 1490 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1491 { 1492 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset; 1493 } 1494 1495 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1496 size_t max_size) 1497 { 1498 return min(iov_iter_single_seg_count(ii), max_size); 1499 } 1500 1501 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1502 size_t *nbytesp, int write, 1503 unsigned int max_pages, 1504 bool use_pages_for_kvec_io) 1505 { 1506 bool flush_or_invalidate = false; 1507 unsigned int nr_pages = 0; 1508 size_t nbytes = 0; /* # bytes already packed in req */ 1509 ssize_t ret = 0; 1510 1511 /* Special case for kernel I/O: can copy directly into the buffer. 1512 * However if the implementation of fuse_conn requires pages instead of 1513 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead. 1514 */ 1515 if (iov_iter_is_kvec(ii)) { 1516 void *user_addr = (void *)fuse_get_user_addr(ii); 1517 1518 if (!use_pages_for_kvec_io) { 1519 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1520 1521 if (write) 1522 ap->args.in_args[1].value = user_addr; 1523 else 1524 ap->args.out_args[0].value = user_addr; 1525 1526 iov_iter_advance(ii, frag_size); 1527 *nbytesp = frag_size; 1528 return 0; 1529 } 1530 1531 if (is_vmalloc_addr(user_addr)) { 1532 ap->args.vmap_base = user_addr; 1533 flush_or_invalidate = true; 1534 } 1535 } 1536 1537 /* 1538 * Until there is support for iov_iter_extract_folios(), we have to 1539 * manually extract pages using iov_iter_extract_pages() and then 1540 * copy that to a folios array. 1541 */ 1542 struct page **pages = kzalloc(max_pages * sizeof(struct page *), 1543 GFP_KERNEL); 1544 if (!pages) 1545 return -ENOMEM; 1546 1547 while (nbytes < *nbytesp && nr_pages < max_pages) { 1548 unsigned nfolios, i; 1549 size_t start; 1550 1551 ret = iov_iter_extract_pages(ii, &pages, 1552 *nbytesp - nbytes, 1553 max_pages - nr_pages, 1554 0, &start); 1555 if (ret < 0) 1556 break; 1557 1558 nbytes += ret; 1559 1560 ret += start; 1561 /* Currently, all folios in FUSE are one page */ 1562 nfolios = DIV_ROUND_UP(ret, PAGE_SIZE); 1563 1564 ap->descs[ap->num_folios].offset = start; 1565 fuse_folio_descs_length_init(ap->descs, ap->num_folios, nfolios); 1566 for (i = 0; i < nfolios; i++) 1567 ap->folios[i + ap->num_folios] = page_folio(pages[i]); 1568 1569 ap->num_folios += nfolios; 1570 ap->descs[ap->num_folios - 1].length -= 1571 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1572 nr_pages += nfolios; 1573 } 1574 kfree(pages); 1575 1576 if (write && flush_or_invalidate) 1577 flush_kernel_vmap_range(ap->args.vmap_base, nbytes); 1578 1579 ap->args.invalidate_vmap = !write && flush_or_invalidate; 1580 ap->args.is_pinned = iov_iter_extract_will_pin(ii); 1581 ap->args.user_pages = true; 1582 if (write) 1583 ap->args.in_pages = true; 1584 else 1585 ap->args.out_pages = true; 1586 1587 *nbytesp = nbytes; 1588 1589 return ret < 0 ? ret : 0; 1590 } 1591 1592 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1593 loff_t *ppos, int flags) 1594 { 1595 int write = flags & FUSE_DIO_WRITE; 1596 int cuse = flags & FUSE_DIO_CUSE; 1597 struct file *file = io->iocb->ki_filp; 1598 struct address_space *mapping = file->f_mapping; 1599 struct inode *inode = mapping->host; 1600 struct fuse_file *ff = file->private_data; 1601 struct fuse_conn *fc = ff->fm->fc; 1602 size_t nmax = write ? fc->max_write : fc->max_read; 1603 loff_t pos = *ppos; 1604 size_t count = iov_iter_count(iter); 1605 pgoff_t idx_from = pos >> PAGE_SHIFT; 1606 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1607 ssize_t res = 0; 1608 int err = 0; 1609 struct fuse_io_args *ia; 1610 unsigned int max_pages; 1611 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO; 1612 1613 max_pages = iov_iter_npages(iter, fc->max_pages); 1614 ia = fuse_io_alloc(io, max_pages); 1615 if (!ia) 1616 return -ENOMEM; 1617 1618 if (fopen_direct_io && fc->direct_io_allow_mmap) { 1619 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1); 1620 if (res) { 1621 fuse_io_free(ia); 1622 return res; 1623 } 1624 } 1625 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1626 if (!write) 1627 inode_lock(inode); 1628 fuse_sync_writes(inode); 1629 if (!write) 1630 inode_unlock(inode); 1631 } 1632 1633 if (fopen_direct_io && write) { 1634 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to); 1635 if (res) { 1636 fuse_io_free(ia); 1637 return res; 1638 } 1639 } 1640 1641 io->should_dirty = !write && user_backed_iter(iter); 1642 while (count) { 1643 ssize_t nres; 1644 fl_owner_t owner = current->files; 1645 size_t nbytes = min(count, nmax); 1646 1647 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1648 max_pages, fc->use_pages_for_kvec_io); 1649 if (err && !nbytes) 1650 break; 1651 1652 if (write) { 1653 if (!capable(CAP_FSETID)) 1654 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1655 1656 nres = fuse_send_write(ia, pos, nbytes, owner); 1657 } else { 1658 nres = fuse_send_read(ia, pos, nbytes, owner); 1659 } 1660 1661 if (!io->async || nres < 0) { 1662 fuse_release_user_pages(&ia->ap, nres, io->should_dirty); 1663 fuse_io_free(ia); 1664 } 1665 ia = NULL; 1666 if (nres < 0) { 1667 iov_iter_revert(iter, nbytes); 1668 err = nres; 1669 break; 1670 } 1671 WARN_ON(nres > nbytes); 1672 1673 count -= nres; 1674 res += nres; 1675 pos += nres; 1676 if (nres != nbytes) { 1677 iov_iter_revert(iter, nbytes - nres); 1678 break; 1679 } 1680 if (count) { 1681 max_pages = iov_iter_npages(iter, fc->max_pages); 1682 ia = fuse_io_alloc(io, max_pages); 1683 if (!ia) 1684 break; 1685 } 1686 } 1687 if (ia) 1688 fuse_io_free(ia); 1689 if (res > 0) 1690 *ppos = pos; 1691 1692 return res > 0 ? res : err; 1693 } 1694 EXPORT_SYMBOL_GPL(fuse_direct_io); 1695 1696 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1697 struct iov_iter *iter, 1698 loff_t *ppos) 1699 { 1700 ssize_t res; 1701 struct inode *inode = file_inode(io->iocb->ki_filp); 1702 1703 res = fuse_direct_io(io, iter, ppos, 0); 1704 1705 fuse_invalidate_atime(inode); 1706 1707 return res; 1708 } 1709 1710 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1711 1712 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1713 { 1714 ssize_t res; 1715 1716 if (!is_sync_kiocb(iocb)) { 1717 res = fuse_direct_IO(iocb, to); 1718 } else { 1719 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1720 1721 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1722 } 1723 1724 return res; 1725 } 1726 1727 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1728 { 1729 struct inode *inode = file_inode(iocb->ki_filp); 1730 ssize_t res; 1731 bool exclusive; 1732 1733 fuse_dio_lock(iocb, from, &exclusive); 1734 res = generic_write_checks(iocb, from); 1735 if (res > 0) { 1736 task_io_account_write(res); 1737 if (!is_sync_kiocb(iocb)) { 1738 res = fuse_direct_IO(iocb, from); 1739 } else { 1740 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1741 1742 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1743 FUSE_DIO_WRITE); 1744 fuse_write_update_attr(inode, iocb->ki_pos, res); 1745 } 1746 } 1747 fuse_dio_unlock(iocb, exclusive); 1748 1749 return res; 1750 } 1751 1752 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1753 { 1754 struct file *file = iocb->ki_filp; 1755 struct fuse_file *ff = file->private_data; 1756 struct inode *inode = file_inode(file); 1757 1758 if (fuse_is_bad(inode)) 1759 return -EIO; 1760 1761 if (FUSE_IS_DAX(inode)) 1762 return fuse_dax_read_iter(iocb, to); 1763 1764 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1765 if (ff->open_flags & FOPEN_DIRECT_IO) 1766 return fuse_direct_read_iter(iocb, to); 1767 else if (fuse_file_passthrough(ff)) 1768 return fuse_passthrough_read_iter(iocb, to); 1769 else 1770 return fuse_cache_read_iter(iocb, to); 1771 } 1772 1773 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1774 { 1775 struct file *file = iocb->ki_filp; 1776 struct fuse_file *ff = file->private_data; 1777 struct inode *inode = file_inode(file); 1778 1779 if (fuse_is_bad(inode)) 1780 return -EIO; 1781 1782 if (FUSE_IS_DAX(inode)) 1783 return fuse_dax_write_iter(iocb, from); 1784 1785 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1786 if (ff->open_flags & FOPEN_DIRECT_IO) 1787 return fuse_direct_write_iter(iocb, from); 1788 else if (fuse_file_passthrough(ff)) 1789 return fuse_passthrough_write_iter(iocb, from); 1790 else 1791 return fuse_cache_write_iter(iocb, from); 1792 } 1793 1794 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos, 1795 struct pipe_inode_info *pipe, size_t len, 1796 unsigned int flags) 1797 { 1798 struct fuse_file *ff = in->private_data; 1799 1800 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1801 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1802 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags); 1803 else 1804 return filemap_splice_read(in, ppos, pipe, len, flags); 1805 } 1806 1807 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out, 1808 loff_t *ppos, size_t len, unsigned int flags) 1809 { 1810 struct fuse_file *ff = out->private_data; 1811 1812 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1813 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1814 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags); 1815 else 1816 return iter_file_splice_write(pipe, out, ppos, len, flags); 1817 } 1818 1819 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1820 { 1821 struct fuse_args_pages *ap = &wpa->ia.ap; 1822 int i; 1823 1824 if (wpa->bucket) 1825 fuse_sync_bucket_dec(wpa->bucket); 1826 1827 for (i = 0; i < ap->num_folios; i++) 1828 folio_put(ap->folios[i]); 1829 1830 fuse_file_put(wpa->ia.ff, false); 1831 1832 kfree(ap->folios); 1833 kfree(wpa); 1834 } 1835 1836 static void fuse_writepage_finish_stat(struct inode *inode, struct folio *folio) 1837 { 1838 struct backing_dev_info *bdi = inode_to_bdi(inode); 1839 1840 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1841 node_stat_sub_folio(folio, NR_WRITEBACK_TEMP); 1842 wb_writeout_inc(&bdi->wb); 1843 } 1844 1845 static void fuse_writepage_finish(struct fuse_writepage_args *wpa) 1846 { 1847 struct fuse_args_pages *ap = &wpa->ia.ap; 1848 struct inode *inode = wpa->inode; 1849 struct fuse_inode *fi = get_fuse_inode(inode); 1850 int i; 1851 1852 for (i = 0; i < ap->num_folios; i++) 1853 fuse_writepage_finish_stat(inode, ap->folios[i]); 1854 1855 wake_up(&fi->page_waitq); 1856 } 1857 1858 /* Called under fi->lock, may release and reacquire it */ 1859 static void fuse_send_writepage(struct fuse_mount *fm, 1860 struct fuse_writepage_args *wpa, loff_t size) 1861 __releases(fi->lock) 1862 __acquires(fi->lock) 1863 { 1864 struct fuse_writepage_args *aux, *next; 1865 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1866 struct fuse_write_in *inarg = &wpa->ia.write.in; 1867 struct fuse_args *args = &wpa->ia.ap.args; 1868 /* Currently, all folios in FUSE are one page */ 1869 __u64 data_size = wpa->ia.ap.num_folios * PAGE_SIZE; 1870 int err; 1871 1872 fi->writectr++; 1873 if (inarg->offset + data_size <= size) { 1874 inarg->size = data_size; 1875 } else if (inarg->offset < size) { 1876 inarg->size = size - inarg->offset; 1877 } else { 1878 /* Got truncated off completely */ 1879 goto out_free; 1880 } 1881 1882 args->in_args[1].size = inarg->size; 1883 args->force = true; 1884 args->nocreds = true; 1885 1886 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1887 if (err == -ENOMEM) { 1888 spin_unlock(&fi->lock); 1889 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1890 spin_lock(&fi->lock); 1891 } 1892 1893 /* Fails on broken connection only */ 1894 if (unlikely(err)) 1895 goto out_free; 1896 1897 return; 1898 1899 out_free: 1900 fi->writectr--; 1901 rb_erase(&wpa->writepages_entry, &fi->writepages); 1902 fuse_writepage_finish(wpa); 1903 spin_unlock(&fi->lock); 1904 1905 /* After rb_erase() aux request list is private */ 1906 for (aux = wpa->next; aux; aux = next) { 1907 next = aux->next; 1908 aux->next = NULL; 1909 fuse_writepage_finish_stat(aux->inode, 1910 aux->ia.ap.folios[0]); 1911 fuse_writepage_free(aux); 1912 } 1913 1914 fuse_writepage_free(wpa); 1915 spin_lock(&fi->lock); 1916 } 1917 1918 /* 1919 * If fi->writectr is positive (no truncate or fsync going on) send 1920 * all queued writepage requests. 1921 * 1922 * Called with fi->lock 1923 */ 1924 void fuse_flush_writepages(struct inode *inode) 1925 __releases(fi->lock) 1926 __acquires(fi->lock) 1927 { 1928 struct fuse_mount *fm = get_fuse_mount(inode); 1929 struct fuse_inode *fi = get_fuse_inode(inode); 1930 loff_t crop = i_size_read(inode); 1931 struct fuse_writepage_args *wpa; 1932 1933 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1934 wpa = list_entry(fi->queued_writes.next, 1935 struct fuse_writepage_args, queue_entry); 1936 list_del_init(&wpa->queue_entry); 1937 fuse_send_writepage(fm, wpa, crop); 1938 } 1939 } 1940 1941 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1942 struct fuse_writepage_args *wpa) 1943 { 1944 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1945 pgoff_t idx_to = idx_from + wpa->ia.ap.num_folios - 1; 1946 struct rb_node **p = &root->rb_node; 1947 struct rb_node *parent = NULL; 1948 1949 WARN_ON(!wpa->ia.ap.num_folios); 1950 while (*p) { 1951 struct fuse_writepage_args *curr; 1952 pgoff_t curr_index; 1953 1954 parent = *p; 1955 curr = rb_entry(parent, struct fuse_writepage_args, 1956 writepages_entry); 1957 WARN_ON(curr->inode != wpa->inode); 1958 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1959 1960 if (idx_from >= curr_index + curr->ia.ap.num_folios) 1961 p = &(*p)->rb_right; 1962 else if (idx_to < curr_index) 1963 p = &(*p)->rb_left; 1964 else 1965 return curr; 1966 } 1967 1968 rb_link_node(&wpa->writepages_entry, parent, p); 1969 rb_insert_color(&wpa->writepages_entry, root); 1970 return NULL; 1971 } 1972 1973 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1974 { 1975 WARN_ON(fuse_insert_writeback(root, wpa)); 1976 } 1977 1978 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1979 int error) 1980 { 1981 struct fuse_writepage_args *wpa = 1982 container_of(args, typeof(*wpa), ia.ap.args); 1983 struct inode *inode = wpa->inode; 1984 struct fuse_inode *fi = get_fuse_inode(inode); 1985 struct fuse_conn *fc = get_fuse_conn(inode); 1986 1987 mapping_set_error(inode->i_mapping, error); 1988 /* 1989 * A writeback finished and this might have updated mtime/ctime on 1990 * server making local mtime/ctime stale. Hence invalidate attrs. 1991 * Do this only if writeback_cache is not enabled. If writeback_cache 1992 * is enabled, we trust local ctime/mtime. 1993 */ 1994 if (!fc->writeback_cache) 1995 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 1996 spin_lock(&fi->lock); 1997 rb_erase(&wpa->writepages_entry, &fi->writepages); 1998 while (wpa->next) { 1999 struct fuse_mount *fm = get_fuse_mount(inode); 2000 struct fuse_write_in *inarg = &wpa->ia.write.in; 2001 struct fuse_writepage_args *next = wpa->next; 2002 2003 wpa->next = next->next; 2004 next->next = NULL; 2005 tree_insert(&fi->writepages, next); 2006 2007 /* 2008 * Skip fuse_flush_writepages() to make it easy to crop requests 2009 * based on primary request size. 2010 * 2011 * 1st case (trivial): there are no concurrent activities using 2012 * fuse_set/release_nowrite. Then we're on safe side because 2013 * fuse_flush_writepages() would call fuse_send_writepage() 2014 * anyway. 2015 * 2016 * 2nd case: someone called fuse_set_nowrite and it is waiting 2017 * now for completion of all in-flight requests. This happens 2018 * rarely and no more than once per page, so this should be 2019 * okay. 2020 * 2021 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 2022 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 2023 * that fuse_set_nowrite returned implies that all in-flight 2024 * requests were completed along with all of their secondary 2025 * requests. Further primary requests are blocked by negative 2026 * writectr. Hence there cannot be any in-flight requests and 2027 * no invocations of fuse_writepage_end() while we're in 2028 * fuse_set_nowrite..fuse_release_nowrite section. 2029 */ 2030 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 2031 } 2032 fi->writectr--; 2033 fuse_writepage_finish(wpa); 2034 spin_unlock(&fi->lock); 2035 fuse_writepage_free(wpa); 2036 } 2037 2038 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 2039 { 2040 struct fuse_file *ff; 2041 2042 spin_lock(&fi->lock); 2043 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 2044 write_entry); 2045 if (ff) 2046 fuse_file_get(ff); 2047 spin_unlock(&fi->lock); 2048 2049 return ff; 2050 } 2051 2052 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 2053 { 2054 struct fuse_file *ff = __fuse_write_file_get(fi); 2055 WARN_ON(!ff); 2056 return ff; 2057 } 2058 2059 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 2060 { 2061 struct fuse_inode *fi = get_fuse_inode(inode); 2062 struct fuse_file *ff; 2063 int err; 2064 2065 /* 2066 * Inode is always written before the last reference is dropped and 2067 * hence this should not be reached from reclaim. 2068 * 2069 * Writing back the inode from reclaim can deadlock if the request 2070 * processing itself needs an allocation. Allocations triggering 2071 * reclaim while serving a request can't be prevented, because it can 2072 * involve any number of unrelated userspace processes. 2073 */ 2074 WARN_ON(wbc->for_reclaim); 2075 2076 ff = __fuse_write_file_get(fi); 2077 err = fuse_flush_times(inode, ff); 2078 if (ff) 2079 fuse_file_put(ff, false); 2080 2081 return err; 2082 } 2083 2084 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 2085 { 2086 struct fuse_writepage_args *wpa; 2087 struct fuse_args_pages *ap; 2088 2089 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 2090 if (wpa) { 2091 ap = &wpa->ia.ap; 2092 ap->num_folios = 0; 2093 ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs); 2094 if (!ap->folios) { 2095 kfree(wpa); 2096 wpa = NULL; 2097 } 2098 } 2099 return wpa; 2100 2101 } 2102 2103 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 2104 struct fuse_writepage_args *wpa) 2105 { 2106 if (!fc->sync_fs) 2107 return; 2108 2109 rcu_read_lock(); 2110 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 2111 do { 2112 wpa->bucket = rcu_dereference(fc->curr_bucket); 2113 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 2114 rcu_read_unlock(); 2115 } 2116 2117 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio, 2118 struct folio *tmp_folio, uint32_t folio_index) 2119 { 2120 struct inode *inode = folio->mapping->host; 2121 struct fuse_args_pages *ap = &wpa->ia.ap; 2122 2123 folio_copy(tmp_folio, folio); 2124 2125 ap->folios[folio_index] = tmp_folio; 2126 ap->descs[folio_index].offset = 0; 2127 ap->descs[folio_index].length = PAGE_SIZE; 2128 2129 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2130 node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP); 2131 } 2132 2133 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio, 2134 struct fuse_file *ff) 2135 { 2136 struct inode *inode = folio->mapping->host; 2137 struct fuse_conn *fc = get_fuse_conn(inode); 2138 struct fuse_writepage_args *wpa; 2139 struct fuse_args_pages *ap; 2140 2141 wpa = fuse_writepage_args_alloc(); 2142 if (!wpa) 2143 return NULL; 2144 2145 fuse_writepage_add_to_bucket(fc, wpa); 2146 fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio), 0); 2147 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2148 wpa->inode = inode; 2149 wpa->ia.ff = ff; 2150 2151 ap = &wpa->ia.ap; 2152 ap->args.in_pages = true; 2153 ap->args.end = fuse_writepage_end; 2154 2155 return wpa; 2156 } 2157 2158 static int fuse_writepage_locked(struct folio *folio) 2159 { 2160 struct address_space *mapping = folio->mapping; 2161 struct inode *inode = mapping->host; 2162 struct fuse_inode *fi = get_fuse_inode(inode); 2163 struct fuse_writepage_args *wpa; 2164 struct fuse_args_pages *ap; 2165 struct folio *tmp_folio; 2166 struct fuse_file *ff; 2167 int error = -ENOMEM; 2168 2169 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2170 if (!tmp_folio) 2171 goto err; 2172 2173 error = -EIO; 2174 ff = fuse_write_file_get(fi); 2175 if (!ff) 2176 goto err_nofile; 2177 2178 wpa = fuse_writepage_args_setup(folio, ff); 2179 error = -ENOMEM; 2180 if (!wpa) 2181 goto err_writepage_args; 2182 2183 ap = &wpa->ia.ap; 2184 ap->num_folios = 1; 2185 2186 folio_start_writeback(folio); 2187 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, 0); 2188 2189 spin_lock(&fi->lock); 2190 tree_insert(&fi->writepages, wpa); 2191 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2192 fuse_flush_writepages(inode); 2193 spin_unlock(&fi->lock); 2194 2195 folio_end_writeback(folio); 2196 2197 return 0; 2198 2199 err_writepage_args: 2200 fuse_file_put(ff, false); 2201 err_nofile: 2202 folio_put(tmp_folio); 2203 err: 2204 mapping_set_error(folio->mapping, error); 2205 return error; 2206 } 2207 2208 struct fuse_fill_wb_data { 2209 struct fuse_writepage_args *wpa; 2210 struct fuse_file *ff; 2211 struct inode *inode; 2212 struct folio **orig_folios; 2213 unsigned int max_folios; 2214 }; 2215 2216 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 2217 { 2218 struct fuse_args_pages *ap = &data->wpa->ia.ap; 2219 struct fuse_conn *fc = get_fuse_conn(data->inode); 2220 struct folio **folios; 2221 struct fuse_folio_desc *descs; 2222 unsigned int nfolios = min_t(unsigned int, 2223 max_t(unsigned int, data->max_folios * 2, 2224 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2225 fc->max_pages); 2226 WARN_ON(nfolios <= data->max_folios); 2227 2228 folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs); 2229 if (!folios) 2230 return false; 2231 2232 memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios); 2233 memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios); 2234 kfree(ap->folios); 2235 ap->folios = folios; 2236 ap->descs = descs; 2237 data->max_folios = nfolios; 2238 2239 return true; 2240 } 2241 2242 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2243 { 2244 struct fuse_writepage_args *wpa = data->wpa; 2245 struct inode *inode = data->inode; 2246 struct fuse_inode *fi = get_fuse_inode(inode); 2247 int num_folios = wpa->ia.ap.num_folios; 2248 int i; 2249 2250 spin_lock(&fi->lock); 2251 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2252 fuse_flush_writepages(inode); 2253 spin_unlock(&fi->lock); 2254 2255 for (i = 0; i < num_folios; i++) 2256 folio_end_writeback(data->orig_folios[i]); 2257 } 2258 2259 /* 2260 * Check under fi->lock if the page is under writeback, and insert it onto the 2261 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2262 * one already added for a page at this offset. If there's none, then insert 2263 * this new request onto the auxiliary list, otherwise reuse the existing one by 2264 * swapping the new temp page with the old one. 2265 */ 2266 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2267 struct folio *folio) 2268 { 2269 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2270 struct fuse_writepage_args *tmp; 2271 struct fuse_writepage_args *old_wpa; 2272 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2273 2274 WARN_ON(new_ap->num_folios != 0); 2275 new_ap->num_folios = 1; 2276 2277 spin_lock(&fi->lock); 2278 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2279 if (!old_wpa) { 2280 spin_unlock(&fi->lock); 2281 return true; 2282 } 2283 2284 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2285 pgoff_t curr_index; 2286 2287 WARN_ON(tmp->inode != new_wpa->inode); 2288 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2289 if (curr_index == folio->index) { 2290 WARN_ON(tmp->ia.ap.num_folios != 1); 2291 swap(tmp->ia.ap.folios[0], new_ap->folios[0]); 2292 break; 2293 } 2294 } 2295 2296 if (!tmp) { 2297 new_wpa->next = old_wpa->next; 2298 old_wpa->next = new_wpa; 2299 } 2300 2301 spin_unlock(&fi->lock); 2302 2303 if (tmp) { 2304 fuse_writepage_finish_stat(new_wpa->inode, 2305 folio); 2306 fuse_writepage_free(new_wpa); 2307 } 2308 2309 return false; 2310 } 2311 2312 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct folio *folio, 2313 struct fuse_args_pages *ap, 2314 struct fuse_fill_wb_data *data) 2315 { 2316 WARN_ON(!ap->num_folios); 2317 2318 /* 2319 * Being under writeback is unlikely but possible. For example direct 2320 * read to an mmaped fuse file will set the page dirty twice; once when 2321 * the pages are faulted with get_user_pages(), and then after the read 2322 * completed. 2323 */ 2324 if (fuse_folio_is_writeback(data->inode, folio)) 2325 return true; 2326 2327 /* Reached max pages */ 2328 if (ap->num_folios == fc->max_pages) 2329 return true; 2330 2331 /* Reached max write bytes */ 2332 if ((ap->num_folios + 1) * PAGE_SIZE > fc->max_write) 2333 return true; 2334 2335 /* Discontinuity */ 2336 if (data->orig_folios[ap->num_folios - 1]->index + 1 != folio_index(folio)) 2337 return true; 2338 2339 /* Need to grow the pages array? If so, did the expansion fail? */ 2340 if (ap->num_folios == data->max_folios && !fuse_pages_realloc(data)) 2341 return true; 2342 2343 return false; 2344 } 2345 2346 static int fuse_writepages_fill(struct folio *folio, 2347 struct writeback_control *wbc, void *_data) 2348 { 2349 struct fuse_fill_wb_data *data = _data; 2350 struct fuse_writepage_args *wpa = data->wpa; 2351 struct fuse_args_pages *ap = &wpa->ia.ap; 2352 struct inode *inode = data->inode; 2353 struct fuse_inode *fi = get_fuse_inode(inode); 2354 struct fuse_conn *fc = get_fuse_conn(inode); 2355 struct folio *tmp_folio; 2356 int err; 2357 2358 if (!data->ff) { 2359 err = -EIO; 2360 data->ff = fuse_write_file_get(fi); 2361 if (!data->ff) 2362 goto out_unlock; 2363 } 2364 2365 if (wpa && fuse_writepage_need_send(fc, folio, ap, data)) { 2366 fuse_writepages_send(data); 2367 data->wpa = NULL; 2368 } 2369 2370 err = -ENOMEM; 2371 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2372 if (!tmp_folio) 2373 goto out_unlock; 2374 2375 /* 2376 * The page must not be redirtied until the writeout is completed 2377 * (i.e. userspace has sent a reply to the write request). Otherwise 2378 * there could be more than one temporary page instance for each real 2379 * page. 2380 * 2381 * This is ensured by holding the page lock in page_mkwrite() while 2382 * checking fuse_page_is_writeback(). We already hold the page lock 2383 * since clear_page_dirty_for_io() and keep it held until we add the 2384 * request to the fi->writepages list and increment ap->num_folios. 2385 * After this fuse_page_is_writeback() will indicate that the page is 2386 * under writeback, so we can release the page lock. 2387 */ 2388 if (data->wpa == NULL) { 2389 err = -ENOMEM; 2390 wpa = fuse_writepage_args_setup(folio, data->ff); 2391 if (!wpa) { 2392 folio_put(tmp_folio); 2393 goto out_unlock; 2394 } 2395 fuse_file_get(wpa->ia.ff); 2396 data->max_folios = 1; 2397 ap = &wpa->ia.ap; 2398 } 2399 folio_start_writeback(folio); 2400 2401 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, ap->num_folios); 2402 data->orig_folios[ap->num_folios] = folio; 2403 2404 err = 0; 2405 if (data->wpa) { 2406 /* 2407 * Protected by fi->lock against concurrent access by 2408 * fuse_page_is_writeback(). 2409 */ 2410 spin_lock(&fi->lock); 2411 ap->num_folios++; 2412 spin_unlock(&fi->lock); 2413 } else if (fuse_writepage_add(wpa, folio)) { 2414 data->wpa = wpa; 2415 } else { 2416 folio_end_writeback(folio); 2417 } 2418 out_unlock: 2419 folio_unlock(folio); 2420 2421 return err; 2422 } 2423 2424 static int fuse_writepages(struct address_space *mapping, 2425 struct writeback_control *wbc) 2426 { 2427 struct inode *inode = mapping->host; 2428 struct fuse_conn *fc = get_fuse_conn(inode); 2429 struct fuse_fill_wb_data data; 2430 int err; 2431 2432 err = -EIO; 2433 if (fuse_is_bad(inode)) 2434 goto out; 2435 2436 if (wbc->sync_mode == WB_SYNC_NONE && 2437 fc->num_background >= fc->congestion_threshold) 2438 return 0; 2439 2440 data.inode = inode; 2441 data.wpa = NULL; 2442 data.ff = NULL; 2443 2444 err = -ENOMEM; 2445 data.orig_folios = kcalloc(fc->max_pages, 2446 sizeof(struct folio *), 2447 GFP_NOFS); 2448 if (!data.orig_folios) 2449 goto out; 2450 2451 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2452 if (data.wpa) { 2453 WARN_ON(!data.wpa->ia.ap.num_folios); 2454 fuse_writepages_send(&data); 2455 } 2456 if (data.ff) 2457 fuse_file_put(data.ff, false); 2458 2459 kfree(data.orig_folios); 2460 out: 2461 return err; 2462 } 2463 2464 /* 2465 * It's worthy to make sure that space is reserved on disk for the write, 2466 * but how to implement it without killing performance need more thinking. 2467 */ 2468 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2469 loff_t pos, unsigned len, struct folio **foliop, void **fsdata) 2470 { 2471 pgoff_t index = pos >> PAGE_SHIFT; 2472 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2473 struct folio *folio; 2474 loff_t fsize; 2475 int err = -ENOMEM; 2476 2477 WARN_ON(!fc->writeback_cache); 2478 2479 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2480 mapping_gfp_mask(mapping)); 2481 if (IS_ERR(folio)) 2482 goto error; 2483 2484 fuse_wait_on_page_writeback(mapping->host, folio->index); 2485 2486 if (folio_test_uptodate(folio) || len >= folio_size(folio)) 2487 goto success; 2488 /* 2489 * Check if the start of this folio comes after the end of file, 2490 * in which case the readpage can be optimized away. 2491 */ 2492 fsize = i_size_read(mapping->host); 2493 if (fsize <= folio_pos(folio)) { 2494 size_t off = offset_in_folio(folio, pos); 2495 if (off) 2496 folio_zero_segment(folio, 0, off); 2497 goto success; 2498 } 2499 err = fuse_do_readfolio(file, folio); 2500 if (err) 2501 goto cleanup; 2502 success: 2503 *foliop = folio; 2504 return 0; 2505 2506 cleanup: 2507 folio_unlock(folio); 2508 folio_put(folio); 2509 error: 2510 return err; 2511 } 2512 2513 static int fuse_write_end(struct file *file, struct address_space *mapping, 2514 loff_t pos, unsigned len, unsigned copied, 2515 struct folio *folio, void *fsdata) 2516 { 2517 struct inode *inode = folio->mapping->host; 2518 2519 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2520 if (!copied) 2521 goto unlock; 2522 2523 pos += copied; 2524 if (!folio_test_uptodate(folio)) { 2525 /* Zero any unwritten bytes at the end of the page */ 2526 size_t endoff = pos & ~PAGE_MASK; 2527 if (endoff) 2528 folio_zero_segment(folio, endoff, PAGE_SIZE); 2529 folio_mark_uptodate(folio); 2530 } 2531 2532 if (pos > inode->i_size) 2533 i_size_write(inode, pos); 2534 2535 folio_mark_dirty(folio); 2536 2537 unlock: 2538 folio_unlock(folio); 2539 folio_put(folio); 2540 2541 return copied; 2542 } 2543 2544 static int fuse_launder_folio(struct folio *folio) 2545 { 2546 int err = 0; 2547 if (folio_clear_dirty_for_io(folio)) { 2548 struct inode *inode = folio->mapping->host; 2549 2550 /* Serialize with pending writeback for the same page */ 2551 fuse_wait_on_page_writeback(inode, folio->index); 2552 err = fuse_writepage_locked(folio); 2553 if (!err) 2554 fuse_wait_on_page_writeback(inode, folio->index); 2555 } 2556 return err; 2557 } 2558 2559 /* 2560 * Write back dirty data/metadata now (there may not be any suitable 2561 * open files later for data) 2562 */ 2563 static void fuse_vma_close(struct vm_area_struct *vma) 2564 { 2565 int err; 2566 2567 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2568 mapping_set_error(vma->vm_file->f_mapping, err); 2569 } 2570 2571 /* 2572 * Wait for writeback against this page to complete before allowing it 2573 * to be marked dirty again, and hence written back again, possibly 2574 * before the previous writepage completed. 2575 * 2576 * Block here, instead of in ->writepage(), so that the userspace fs 2577 * can only block processes actually operating on the filesystem. 2578 * 2579 * Otherwise unprivileged userspace fs would be able to block 2580 * unrelated: 2581 * 2582 * - page migration 2583 * - sync(2) 2584 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2585 */ 2586 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2587 { 2588 struct folio *folio = page_folio(vmf->page); 2589 struct inode *inode = file_inode(vmf->vma->vm_file); 2590 2591 file_update_time(vmf->vma->vm_file); 2592 folio_lock(folio); 2593 if (folio->mapping != inode->i_mapping) { 2594 folio_unlock(folio); 2595 return VM_FAULT_NOPAGE; 2596 } 2597 2598 fuse_wait_on_folio_writeback(inode, folio); 2599 return VM_FAULT_LOCKED; 2600 } 2601 2602 static const struct vm_operations_struct fuse_file_vm_ops = { 2603 .close = fuse_vma_close, 2604 .fault = filemap_fault, 2605 .map_pages = filemap_map_pages, 2606 .page_mkwrite = fuse_page_mkwrite, 2607 }; 2608 2609 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2610 { 2611 struct fuse_file *ff = file->private_data; 2612 struct fuse_conn *fc = ff->fm->fc; 2613 struct inode *inode = file_inode(file); 2614 int rc; 2615 2616 /* DAX mmap is superior to direct_io mmap */ 2617 if (FUSE_IS_DAX(inode)) 2618 return fuse_dax_mmap(file, vma); 2619 2620 /* 2621 * If inode is in passthrough io mode, because it has some file open 2622 * in passthrough mode, either mmap to backing file or fail mmap, 2623 * because mixing cached mmap and passthrough io mode is not allowed. 2624 */ 2625 if (fuse_file_passthrough(ff)) 2626 return fuse_passthrough_mmap(file, vma); 2627 else if (fuse_inode_backing(get_fuse_inode(inode))) 2628 return -ENODEV; 2629 2630 /* 2631 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT, 2632 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP. 2633 */ 2634 if (ff->open_flags & FOPEN_DIRECT_IO) { 2635 /* 2636 * Can't provide the coherency needed for MAP_SHARED 2637 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set. 2638 */ 2639 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap) 2640 return -ENODEV; 2641 2642 invalidate_inode_pages2(file->f_mapping); 2643 2644 if (!(vma->vm_flags & VM_MAYSHARE)) { 2645 /* MAP_PRIVATE */ 2646 return generic_file_mmap(file, vma); 2647 } 2648 2649 /* 2650 * First mmap of direct_io file enters caching inode io mode. 2651 * Also waits for parallel dio writers to go into serial mode 2652 * (exclusive instead of shared lock). 2653 * After first mmap, the inode stays in caching io mode until 2654 * the direct_io file release. 2655 */ 2656 rc = fuse_file_cached_io_open(inode, ff); 2657 if (rc) 2658 return rc; 2659 } 2660 2661 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2662 fuse_link_write_file(file); 2663 2664 file_accessed(file); 2665 vma->vm_ops = &fuse_file_vm_ops; 2666 return 0; 2667 } 2668 2669 static int convert_fuse_file_lock(struct fuse_conn *fc, 2670 const struct fuse_file_lock *ffl, 2671 struct file_lock *fl) 2672 { 2673 switch (ffl->type) { 2674 case F_UNLCK: 2675 break; 2676 2677 case F_RDLCK: 2678 case F_WRLCK: 2679 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2680 ffl->end < ffl->start) 2681 return -EIO; 2682 2683 fl->fl_start = ffl->start; 2684 fl->fl_end = ffl->end; 2685 2686 /* 2687 * Convert pid into init's pid namespace. The locks API will 2688 * translate it into the caller's pid namespace. 2689 */ 2690 rcu_read_lock(); 2691 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2692 rcu_read_unlock(); 2693 break; 2694 2695 default: 2696 return -EIO; 2697 } 2698 fl->c.flc_type = ffl->type; 2699 return 0; 2700 } 2701 2702 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2703 const struct file_lock *fl, int opcode, pid_t pid, 2704 int flock, struct fuse_lk_in *inarg) 2705 { 2706 struct inode *inode = file_inode(file); 2707 struct fuse_conn *fc = get_fuse_conn(inode); 2708 struct fuse_file *ff = file->private_data; 2709 2710 memset(inarg, 0, sizeof(*inarg)); 2711 inarg->fh = ff->fh; 2712 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner); 2713 inarg->lk.start = fl->fl_start; 2714 inarg->lk.end = fl->fl_end; 2715 inarg->lk.type = fl->c.flc_type; 2716 inarg->lk.pid = pid; 2717 if (flock) 2718 inarg->lk_flags |= FUSE_LK_FLOCK; 2719 args->opcode = opcode; 2720 args->nodeid = get_node_id(inode); 2721 args->in_numargs = 1; 2722 args->in_args[0].size = sizeof(*inarg); 2723 args->in_args[0].value = inarg; 2724 } 2725 2726 static int fuse_getlk(struct file *file, struct file_lock *fl) 2727 { 2728 struct inode *inode = file_inode(file); 2729 struct fuse_mount *fm = get_fuse_mount(inode); 2730 FUSE_ARGS(args); 2731 struct fuse_lk_in inarg; 2732 struct fuse_lk_out outarg; 2733 int err; 2734 2735 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2736 args.out_numargs = 1; 2737 args.out_args[0].size = sizeof(outarg); 2738 args.out_args[0].value = &outarg; 2739 err = fuse_simple_request(fm, &args); 2740 if (!err) 2741 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2742 2743 return err; 2744 } 2745 2746 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2747 { 2748 struct inode *inode = file_inode(file); 2749 struct fuse_mount *fm = get_fuse_mount(inode); 2750 FUSE_ARGS(args); 2751 struct fuse_lk_in inarg; 2752 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2753 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL; 2754 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2755 int err; 2756 2757 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2758 /* NLM needs asynchronous locks, which we don't support yet */ 2759 return -ENOLCK; 2760 } 2761 2762 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2763 err = fuse_simple_request(fm, &args); 2764 2765 /* locking is restartable */ 2766 if (err == -EINTR) 2767 err = -ERESTARTSYS; 2768 2769 return err; 2770 } 2771 2772 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2773 { 2774 struct inode *inode = file_inode(file); 2775 struct fuse_conn *fc = get_fuse_conn(inode); 2776 int err; 2777 2778 if (cmd == F_CANCELLK) { 2779 err = 0; 2780 } else if (cmd == F_GETLK) { 2781 if (fc->no_lock) { 2782 posix_test_lock(file, fl); 2783 err = 0; 2784 } else 2785 err = fuse_getlk(file, fl); 2786 } else { 2787 if (fc->no_lock) 2788 err = posix_lock_file(file, fl, NULL); 2789 else 2790 err = fuse_setlk(file, fl, 0); 2791 } 2792 return err; 2793 } 2794 2795 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2796 { 2797 struct inode *inode = file_inode(file); 2798 struct fuse_conn *fc = get_fuse_conn(inode); 2799 int err; 2800 2801 if (fc->no_flock) { 2802 err = locks_lock_file_wait(file, fl); 2803 } else { 2804 struct fuse_file *ff = file->private_data; 2805 2806 /* emulate flock with POSIX locks */ 2807 ff->flock = true; 2808 err = fuse_setlk(file, fl, 1); 2809 } 2810 2811 return err; 2812 } 2813 2814 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2815 { 2816 struct inode *inode = mapping->host; 2817 struct fuse_mount *fm = get_fuse_mount(inode); 2818 FUSE_ARGS(args); 2819 struct fuse_bmap_in inarg; 2820 struct fuse_bmap_out outarg; 2821 int err; 2822 2823 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2824 return 0; 2825 2826 memset(&inarg, 0, sizeof(inarg)); 2827 inarg.block = block; 2828 inarg.blocksize = inode->i_sb->s_blocksize; 2829 args.opcode = FUSE_BMAP; 2830 args.nodeid = get_node_id(inode); 2831 args.in_numargs = 1; 2832 args.in_args[0].size = sizeof(inarg); 2833 args.in_args[0].value = &inarg; 2834 args.out_numargs = 1; 2835 args.out_args[0].size = sizeof(outarg); 2836 args.out_args[0].value = &outarg; 2837 err = fuse_simple_request(fm, &args); 2838 if (err == -ENOSYS) 2839 fm->fc->no_bmap = 1; 2840 2841 return err ? 0 : outarg.block; 2842 } 2843 2844 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2845 { 2846 struct inode *inode = file->f_mapping->host; 2847 struct fuse_mount *fm = get_fuse_mount(inode); 2848 struct fuse_file *ff = file->private_data; 2849 FUSE_ARGS(args); 2850 struct fuse_lseek_in inarg = { 2851 .fh = ff->fh, 2852 .offset = offset, 2853 .whence = whence 2854 }; 2855 struct fuse_lseek_out outarg; 2856 int err; 2857 2858 if (fm->fc->no_lseek) 2859 goto fallback; 2860 2861 args.opcode = FUSE_LSEEK; 2862 args.nodeid = ff->nodeid; 2863 args.in_numargs = 1; 2864 args.in_args[0].size = sizeof(inarg); 2865 args.in_args[0].value = &inarg; 2866 args.out_numargs = 1; 2867 args.out_args[0].size = sizeof(outarg); 2868 args.out_args[0].value = &outarg; 2869 err = fuse_simple_request(fm, &args); 2870 if (err) { 2871 if (err == -ENOSYS) { 2872 fm->fc->no_lseek = 1; 2873 goto fallback; 2874 } 2875 return err; 2876 } 2877 2878 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2879 2880 fallback: 2881 err = fuse_update_attributes(inode, file, STATX_SIZE); 2882 if (!err) 2883 return generic_file_llseek(file, offset, whence); 2884 else 2885 return err; 2886 } 2887 2888 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2889 { 2890 loff_t retval; 2891 struct inode *inode = file_inode(file); 2892 2893 switch (whence) { 2894 case SEEK_SET: 2895 case SEEK_CUR: 2896 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2897 retval = generic_file_llseek(file, offset, whence); 2898 break; 2899 case SEEK_END: 2900 inode_lock(inode); 2901 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2902 if (!retval) 2903 retval = generic_file_llseek(file, offset, whence); 2904 inode_unlock(inode); 2905 break; 2906 case SEEK_HOLE: 2907 case SEEK_DATA: 2908 inode_lock(inode); 2909 retval = fuse_lseek(file, offset, whence); 2910 inode_unlock(inode); 2911 break; 2912 default: 2913 retval = -EINVAL; 2914 } 2915 2916 return retval; 2917 } 2918 2919 /* 2920 * All files which have been polled are linked to RB tree 2921 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2922 * find the matching one. 2923 */ 2924 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2925 struct rb_node **parent_out) 2926 { 2927 struct rb_node **link = &fc->polled_files.rb_node; 2928 struct rb_node *last = NULL; 2929 2930 while (*link) { 2931 struct fuse_file *ff; 2932 2933 last = *link; 2934 ff = rb_entry(last, struct fuse_file, polled_node); 2935 2936 if (kh < ff->kh) 2937 link = &last->rb_left; 2938 else if (kh > ff->kh) 2939 link = &last->rb_right; 2940 else 2941 return link; 2942 } 2943 2944 if (parent_out) 2945 *parent_out = last; 2946 return link; 2947 } 2948 2949 /* 2950 * The file is about to be polled. Make sure it's on the polled_files 2951 * RB tree. Note that files once added to the polled_files tree are 2952 * not removed before the file is released. This is because a file 2953 * polled once is likely to be polled again. 2954 */ 2955 static void fuse_register_polled_file(struct fuse_conn *fc, 2956 struct fuse_file *ff) 2957 { 2958 spin_lock(&fc->lock); 2959 if (RB_EMPTY_NODE(&ff->polled_node)) { 2960 struct rb_node **link, *parent; 2961 2962 link = fuse_find_polled_node(fc, ff->kh, &parent); 2963 BUG_ON(*link); 2964 rb_link_node(&ff->polled_node, parent, link); 2965 rb_insert_color(&ff->polled_node, &fc->polled_files); 2966 } 2967 spin_unlock(&fc->lock); 2968 } 2969 2970 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2971 { 2972 struct fuse_file *ff = file->private_data; 2973 struct fuse_mount *fm = ff->fm; 2974 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2975 struct fuse_poll_out outarg; 2976 FUSE_ARGS(args); 2977 int err; 2978 2979 if (fm->fc->no_poll) 2980 return DEFAULT_POLLMASK; 2981 2982 poll_wait(file, &ff->poll_wait, wait); 2983 inarg.events = mangle_poll(poll_requested_events(wait)); 2984 2985 /* 2986 * Ask for notification iff there's someone waiting for it. 2987 * The client may ignore the flag and always notify. 2988 */ 2989 if (waitqueue_active(&ff->poll_wait)) { 2990 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2991 fuse_register_polled_file(fm->fc, ff); 2992 } 2993 2994 args.opcode = FUSE_POLL; 2995 args.nodeid = ff->nodeid; 2996 args.in_numargs = 1; 2997 args.in_args[0].size = sizeof(inarg); 2998 args.in_args[0].value = &inarg; 2999 args.out_numargs = 1; 3000 args.out_args[0].size = sizeof(outarg); 3001 args.out_args[0].value = &outarg; 3002 err = fuse_simple_request(fm, &args); 3003 3004 if (!err) 3005 return demangle_poll(outarg.revents); 3006 if (err == -ENOSYS) { 3007 fm->fc->no_poll = 1; 3008 return DEFAULT_POLLMASK; 3009 } 3010 return EPOLLERR; 3011 } 3012 EXPORT_SYMBOL_GPL(fuse_file_poll); 3013 3014 /* 3015 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 3016 * wakes up the poll waiters. 3017 */ 3018 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3019 struct fuse_notify_poll_wakeup_out *outarg) 3020 { 3021 u64 kh = outarg->kh; 3022 struct rb_node **link; 3023 3024 spin_lock(&fc->lock); 3025 3026 link = fuse_find_polled_node(fc, kh, NULL); 3027 if (*link) { 3028 struct fuse_file *ff; 3029 3030 ff = rb_entry(*link, struct fuse_file, polled_node); 3031 wake_up_interruptible_sync(&ff->poll_wait); 3032 } 3033 3034 spin_unlock(&fc->lock); 3035 return 0; 3036 } 3037 3038 static void fuse_do_truncate(struct file *file) 3039 { 3040 struct inode *inode = file->f_mapping->host; 3041 struct iattr attr; 3042 3043 attr.ia_valid = ATTR_SIZE; 3044 attr.ia_size = i_size_read(inode); 3045 3046 attr.ia_file = file; 3047 attr.ia_valid |= ATTR_FILE; 3048 3049 fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file); 3050 } 3051 3052 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3053 { 3054 return round_up(off, fc->max_pages << PAGE_SHIFT); 3055 } 3056 3057 static ssize_t 3058 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3059 { 3060 DECLARE_COMPLETION_ONSTACK(wait); 3061 ssize_t ret = 0; 3062 struct file *file = iocb->ki_filp; 3063 struct fuse_file *ff = file->private_data; 3064 loff_t pos = 0; 3065 struct inode *inode; 3066 loff_t i_size; 3067 size_t count = iov_iter_count(iter), shortened = 0; 3068 loff_t offset = iocb->ki_pos; 3069 struct fuse_io_priv *io; 3070 3071 pos = offset; 3072 inode = file->f_mapping->host; 3073 i_size = i_size_read(inode); 3074 3075 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 3076 return 0; 3077 3078 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3079 if (!io) 3080 return -ENOMEM; 3081 spin_lock_init(&io->lock); 3082 kref_init(&io->refcnt); 3083 io->reqs = 1; 3084 io->bytes = -1; 3085 io->size = 0; 3086 io->offset = offset; 3087 io->write = (iov_iter_rw(iter) == WRITE); 3088 io->err = 0; 3089 /* 3090 * By default, we want to optimize all I/Os with async request 3091 * submission to the client filesystem if supported. 3092 */ 3093 io->async = ff->fm->fc->async_dio; 3094 io->iocb = iocb; 3095 io->blocking = is_sync_kiocb(iocb); 3096 3097 /* optimization for short read */ 3098 if (io->async && !io->write && offset + count > i_size) { 3099 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 3100 shortened = count - iov_iter_count(iter); 3101 count -= shortened; 3102 } 3103 3104 /* 3105 * We cannot asynchronously extend the size of a file. 3106 * In such case the aio will behave exactly like sync io. 3107 */ 3108 if ((offset + count > i_size) && io->write) 3109 io->blocking = true; 3110 3111 if (io->async && io->blocking) { 3112 /* 3113 * Additional reference to keep io around after 3114 * calling fuse_aio_complete() 3115 */ 3116 kref_get(&io->refcnt); 3117 io->done = &wait; 3118 } 3119 3120 if (iov_iter_rw(iter) == WRITE) { 3121 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3122 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3123 } else { 3124 ret = __fuse_direct_read(io, iter, &pos); 3125 } 3126 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 3127 3128 if (io->async) { 3129 bool blocking = io->blocking; 3130 3131 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3132 3133 /* we have a non-extending, async request, so return */ 3134 if (!blocking) 3135 return -EIOCBQUEUED; 3136 3137 wait_for_completion(&wait); 3138 ret = fuse_get_res_by_io(io); 3139 } 3140 3141 kref_put(&io->refcnt, fuse_io_release); 3142 3143 if (iov_iter_rw(iter) == WRITE) { 3144 fuse_write_update_attr(inode, pos, ret); 3145 /* For extending writes we already hold exclusive lock */ 3146 if (ret < 0 && offset + count > i_size) 3147 fuse_do_truncate(file); 3148 } 3149 3150 return ret; 3151 } 3152 3153 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3154 { 3155 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 3156 3157 if (!err) 3158 fuse_sync_writes(inode); 3159 3160 return err; 3161 } 3162 3163 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3164 loff_t length) 3165 { 3166 struct fuse_file *ff = file->private_data; 3167 struct inode *inode = file_inode(file); 3168 struct fuse_inode *fi = get_fuse_inode(inode); 3169 struct fuse_mount *fm = ff->fm; 3170 FUSE_ARGS(args); 3171 struct fuse_fallocate_in inarg = { 3172 .fh = ff->fh, 3173 .offset = offset, 3174 .length = length, 3175 .mode = mode 3176 }; 3177 int err; 3178 bool block_faults = FUSE_IS_DAX(inode) && 3179 (!(mode & FALLOC_FL_KEEP_SIZE) || 3180 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))); 3181 3182 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3183 FALLOC_FL_ZERO_RANGE)) 3184 return -EOPNOTSUPP; 3185 3186 if (fm->fc->no_fallocate) 3187 return -EOPNOTSUPP; 3188 3189 inode_lock(inode); 3190 if (block_faults) { 3191 filemap_invalidate_lock(inode->i_mapping); 3192 err = fuse_dax_break_layouts(inode, 0, 0); 3193 if (err) 3194 goto out; 3195 } 3196 3197 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 3198 loff_t endbyte = offset + length - 1; 3199 3200 err = fuse_writeback_range(inode, offset, endbyte); 3201 if (err) 3202 goto out; 3203 } 3204 3205 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3206 offset + length > i_size_read(inode)) { 3207 err = inode_newsize_ok(inode, offset + length); 3208 if (err) 3209 goto out; 3210 } 3211 3212 err = file_modified(file); 3213 if (err) 3214 goto out; 3215 3216 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3217 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3218 3219 args.opcode = FUSE_FALLOCATE; 3220 args.nodeid = ff->nodeid; 3221 args.in_numargs = 1; 3222 args.in_args[0].size = sizeof(inarg); 3223 args.in_args[0].value = &inarg; 3224 err = fuse_simple_request(fm, &args); 3225 if (err == -ENOSYS) { 3226 fm->fc->no_fallocate = 1; 3227 err = -EOPNOTSUPP; 3228 } 3229 if (err) 3230 goto out; 3231 3232 /* we could have extended the file */ 3233 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3234 if (fuse_write_update_attr(inode, offset + length, length)) 3235 file_update_time(file); 3236 } 3237 3238 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 3239 truncate_pagecache_range(inode, offset, offset + length - 1); 3240 3241 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3242 3243 out: 3244 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3245 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3246 3247 if (block_faults) 3248 filemap_invalidate_unlock(inode->i_mapping); 3249 3250 inode_unlock(inode); 3251 3252 fuse_flush_time_update(inode); 3253 3254 return err; 3255 } 3256 3257 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3258 struct file *file_out, loff_t pos_out, 3259 size_t len, unsigned int flags) 3260 { 3261 struct fuse_file *ff_in = file_in->private_data; 3262 struct fuse_file *ff_out = file_out->private_data; 3263 struct inode *inode_in = file_inode(file_in); 3264 struct inode *inode_out = file_inode(file_out); 3265 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3266 struct fuse_mount *fm = ff_in->fm; 3267 struct fuse_conn *fc = fm->fc; 3268 FUSE_ARGS(args); 3269 struct fuse_copy_file_range_in inarg = { 3270 .fh_in = ff_in->fh, 3271 .off_in = pos_in, 3272 .nodeid_out = ff_out->nodeid, 3273 .fh_out = ff_out->fh, 3274 .off_out = pos_out, 3275 .len = len, 3276 .flags = flags 3277 }; 3278 struct fuse_write_out outarg; 3279 ssize_t err; 3280 /* mark unstable when write-back is not used, and file_out gets 3281 * extended */ 3282 bool is_unstable = (!fc->writeback_cache) && 3283 ((pos_out + len) > inode_out->i_size); 3284 3285 if (fc->no_copy_file_range) 3286 return -EOPNOTSUPP; 3287 3288 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3289 return -EXDEV; 3290 3291 inode_lock(inode_in); 3292 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3293 inode_unlock(inode_in); 3294 if (err) 3295 return err; 3296 3297 inode_lock(inode_out); 3298 3299 err = file_modified(file_out); 3300 if (err) 3301 goto out; 3302 3303 /* 3304 * Write out dirty pages in the destination file before sending the COPY 3305 * request to userspace. After the request is completed, truncate off 3306 * pages (including partial ones) from the cache that have been copied, 3307 * since these contain stale data at that point. 3308 * 3309 * This should be mostly correct, but if the COPY writes to partial 3310 * pages (at the start or end) and the parts not covered by the COPY are 3311 * written through a memory map after calling fuse_writeback_range(), 3312 * then these partial page modifications will be lost on truncation. 3313 * 3314 * It is unlikely that someone would rely on such mixed style 3315 * modifications. Yet this does give less guarantees than if the 3316 * copying was performed with write(2). 3317 * 3318 * To fix this a mapping->invalidate_lock could be used to prevent new 3319 * faults while the copy is ongoing. 3320 */ 3321 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3322 if (err) 3323 goto out; 3324 3325 if (is_unstable) 3326 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3327 3328 args.opcode = FUSE_COPY_FILE_RANGE; 3329 args.nodeid = ff_in->nodeid; 3330 args.in_numargs = 1; 3331 args.in_args[0].size = sizeof(inarg); 3332 args.in_args[0].value = &inarg; 3333 args.out_numargs = 1; 3334 args.out_args[0].size = sizeof(outarg); 3335 args.out_args[0].value = &outarg; 3336 err = fuse_simple_request(fm, &args); 3337 if (err == -ENOSYS) { 3338 fc->no_copy_file_range = 1; 3339 err = -EOPNOTSUPP; 3340 } 3341 if (err) 3342 goto out; 3343 3344 truncate_inode_pages_range(inode_out->i_mapping, 3345 ALIGN_DOWN(pos_out, PAGE_SIZE), 3346 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3347 3348 file_update_time(file_out); 3349 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3350 3351 err = outarg.size; 3352 out: 3353 if (is_unstable) 3354 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3355 3356 inode_unlock(inode_out); 3357 file_accessed(file_in); 3358 3359 fuse_flush_time_update(inode_out); 3360 3361 return err; 3362 } 3363 3364 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3365 struct file *dst_file, loff_t dst_off, 3366 size_t len, unsigned int flags) 3367 { 3368 ssize_t ret; 3369 3370 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3371 len, flags); 3372 3373 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3374 ret = splice_copy_file_range(src_file, src_off, dst_file, 3375 dst_off, len); 3376 return ret; 3377 } 3378 3379 static const struct file_operations fuse_file_operations = { 3380 .llseek = fuse_file_llseek, 3381 .read_iter = fuse_file_read_iter, 3382 .write_iter = fuse_file_write_iter, 3383 .mmap = fuse_file_mmap, 3384 .open = fuse_open, 3385 .flush = fuse_flush, 3386 .release = fuse_release, 3387 .fsync = fuse_fsync, 3388 .lock = fuse_file_lock, 3389 .get_unmapped_area = thp_get_unmapped_area, 3390 .flock = fuse_file_flock, 3391 .splice_read = fuse_splice_read, 3392 .splice_write = fuse_splice_write, 3393 .unlocked_ioctl = fuse_file_ioctl, 3394 .compat_ioctl = fuse_file_compat_ioctl, 3395 .poll = fuse_file_poll, 3396 .fallocate = fuse_file_fallocate, 3397 .copy_file_range = fuse_copy_file_range, 3398 }; 3399 3400 static const struct address_space_operations fuse_file_aops = { 3401 .read_folio = fuse_read_folio, 3402 .readahead = fuse_readahead, 3403 .writepages = fuse_writepages, 3404 .launder_folio = fuse_launder_folio, 3405 .dirty_folio = filemap_dirty_folio, 3406 .migrate_folio = filemap_migrate_folio, 3407 .bmap = fuse_bmap, 3408 .direct_IO = fuse_direct_IO, 3409 .write_begin = fuse_write_begin, 3410 .write_end = fuse_write_end, 3411 }; 3412 3413 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3414 { 3415 struct fuse_inode *fi = get_fuse_inode(inode); 3416 3417 inode->i_fop = &fuse_file_operations; 3418 inode->i_data.a_ops = &fuse_file_aops; 3419 3420 INIT_LIST_HEAD(&fi->write_files); 3421 INIT_LIST_HEAD(&fi->queued_writes); 3422 fi->writectr = 0; 3423 fi->iocachectr = 0; 3424 init_waitqueue_head(&fi->page_waitq); 3425 init_waitqueue_head(&fi->direct_io_waitq); 3426 fi->writepages = RB_ROOT; 3427 3428 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3429 fuse_dax_inode_init(inode, flags); 3430 } 3431