1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 #include <linux/filelock.h> 22 #include <linux/splice.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 26 unsigned int open_flags, int opcode, 27 struct fuse_open_out *outargp) 28 { 29 struct fuse_open_in inarg; 30 FUSE_ARGS(args); 31 32 memset(&inarg, 0, sizeof(inarg)); 33 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 34 if (!fm->fc->atomic_o_trunc) 35 inarg.flags &= ~O_TRUNC; 36 37 if (fm->fc->handle_killpriv_v2 && 38 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 39 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 40 } 41 42 args.opcode = opcode; 43 args.nodeid = nodeid; 44 args.in_numargs = 1; 45 args.in_args[0].size = sizeof(inarg); 46 args.in_args[0].value = &inarg; 47 args.out_numargs = 1; 48 args.out_args[0].size = sizeof(*outargp); 49 args.out_args[0].value = outargp; 50 51 return fuse_simple_request(fm, &args); 52 } 53 54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release) 55 { 56 struct fuse_file *ff; 57 58 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 59 if (unlikely(!ff)) 60 return NULL; 61 62 ff->fm = fm; 63 if (release) { 64 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT); 65 if (!ff->args) { 66 kfree(ff); 67 return NULL; 68 } 69 } 70 71 INIT_LIST_HEAD(&ff->write_entry); 72 refcount_set(&ff->count, 1); 73 RB_CLEAR_NODE(&ff->polled_node); 74 init_waitqueue_head(&ff->poll_wait); 75 76 ff->kh = atomic64_inc_return(&fm->fc->khctr); 77 78 return ff; 79 } 80 81 void fuse_file_free(struct fuse_file *ff) 82 { 83 kfree(ff->args); 84 kfree(ff); 85 } 86 87 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 88 { 89 refcount_inc(&ff->count); 90 return ff; 91 } 92 93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 94 int error) 95 { 96 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 97 98 iput(ra->inode); 99 kfree(ra); 100 } 101 102 static void fuse_file_put(struct fuse_file *ff, bool sync) 103 { 104 if (refcount_dec_and_test(&ff->count)) { 105 struct fuse_release_args *ra = &ff->args->release_args; 106 struct fuse_args *args = (ra ? &ra->args : NULL); 107 108 if (ra && ra->inode) 109 fuse_file_io_release(ff, ra->inode); 110 111 if (!args) { 112 /* Do nothing when server does not implement 'open' */ 113 } else if (sync) { 114 fuse_simple_request(ff->fm, args); 115 fuse_release_end(ff->fm, args, 0); 116 } else { 117 args->end = fuse_release_end; 118 if (fuse_simple_background(ff->fm, args, 119 GFP_KERNEL | __GFP_NOFAIL)) 120 fuse_release_end(ff->fm, args, -ENOTCONN); 121 } 122 kfree(ff); 123 } 124 } 125 126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 127 unsigned int open_flags, bool isdir) 128 { 129 struct fuse_conn *fc = fm->fc; 130 struct fuse_file *ff; 131 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 132 bool open = isdir ? !fc->no_opendir : !fc->no_open; 133 134 ff = fuse_file_alloc(fm, open); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (open) { 142 /* Store outarg for fuse_finish_open() */ 143 struct fuse_open_out *outargp = &ff->args->open_outarg; 144 int err; 145 146 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp); 147 if (!err) { 148 ff->fh = outargp->fh; 149 ff->open_flags = outargp->open_flags; 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 /* No release needed */ 155 kfree(ff->args); 156 ff->args = NULL; 157 if (isdir) 158 fc->no_opendir = 1; 159 else 160 fc->no_open = 1; 161 } 162 } 163 164 if (isdir) 165 ff->open_flags &= ~FOPEN_DIRECT_IO; 166 167 ff->nodeid = nodeid; 168 169 return ff; 170 } 171 172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 173 bool isdir) 174 { 175 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 176 177 if (!IS_ERR(ff)) 178 file->private_data = ff; 179 180 return PTR_ERR_OR_ZERO(ff); 181 } 182 EXPORT_SYMBOL_GPL(fuse_do_open); 183 184 static void fuse_link_write_file(struct file *file) 185 { 186 struct inode *inode = file_inode(file); 187 struct fuse_inode *fi = get_fuse_inode(inode); 188 struct fuse_file *ff = file->private_data; 189 /* 190 * file may be written through mmap, so chain it onto the 191 * inodes's write_file list 192 */ 193 spin_lock(&fi->lock); 194 if (list_empty(&ff->write_entry)) 195 list_add(&ff->write_entry, &fi->write_files); 196 spin_unlock(&fi->lock); 197 } 198 199 int fuse_finish_open(struct inode *inode, struct file *file) 200 { 201 struct fuse_file *ff = file->private_data; 202 struct fuse_conn *fc = get_fuse_conn(inode); 203 int err; 204 205 err = fuse_file_io_open(file, inode); 206 if (err) 207 return err; 208 209 if (ff->open_flags & FOPEN_STREAM) 210 stream_open(inode, file); 211 else if (ff->open_flags & FOPEN_NONSEEKABLE) 212 nonseekable_open(inode, file); 213 214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 215 fuse_link_write_file(file); 216 217 return 0; 218 } 219 220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file) 221 { 222 struct fuse_conn *fc = get_fuse_conn(inode); 223 struct fuse_inode *fi = get_fuse_inode(inode); 224 225 spin_lock(&fi->lock); 226 fi->attr_version = atomic64_inc_return(&fc->attr_version); 227 i_size_write(inode, 0); 228 spin_unlock(&fi->lock); 229 file_update_time(file); 230 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 231 } 232 233 static int fuse_open(struct inode *inode, struct file *file) 234 { 235 struct fuse_mount *fm = get_fuse_mount(inode); 236 struct fuse_inode *fi = get_fuse_inode(inode); 237 struct fuse_conn *fc = fm->fc; 238 struct fuse_file *ff; 239 int err; 240 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc; 241 bool is_wb_truncate = is_truncate && fc->writeback_cache; 242 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode); 243 244 if (fuse_is_bad(inode)) 245 return -EIO; 246 247 err = generic_file_open(inode, file); 248 if (err) 249 return err; 250 251 if (is_wb_truncate || dax_truncate) 252 inode_lock(inode); 253 254 if (dax_truncate) { 255 filemap_invalidate_lock(inode->i_mapping); 256 err = fuse_dax_break_layouts(inode, 0, 0); 257 if (err) 258 goto out_inode_unlock; 259 } 260 261 if (is_wb_truncate || dax_truncate) 262 fuse_set_nowrite(inode); 263 264 err = fuse_do_open(fm, get_node_id(inode), file, false); 265 if (!err) { 266 ff = file->private_data; 267 err = fuse_finish_open(inode, file); 268 if (err) 269 fuse_sync_release(fi, ff, file->f_flags); 270 else if (is_truncate) 271 fuse_truncate_update_attr(inode, file); 272 } 273 274 if (is_wb_truncate || dax_truncate) 275 fuse_release_nowrite(inode); 276 if (!err) { 277 if (is_truncate) 278 truncate_pagecache(inode, 0); 279 else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 280 invalidate_inode_pages2(inode->i_mapping); 281 } 282 if (dax_truncate) 283 filemap_invalidate_unlock(inode->i_mapping); 284 out_inode_unlock: 285 if (is_wb_truncate || dax_truncate) 286 inode_unlock(inode); 287 288 return err; 289 } 290 291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 292 unsigned int flags, int opcode, bool sync) 293 { 294 struct fuse_conn *fc = ff->fm->fc; 295 struct fuse_release_args *ra = &ff->args->release_args; 296 297 if (fuse_file_passthrough(ff)) 298 fuse_passthrough_release(ff, fuse_inode_backing(fi)); 299 300 /* Inode is NULL on error path of fuse_create_open() */ 301 if (likely(fi)) { 302 spin_lock(&fi->lock); 303 list_del(&ff->write_entry); 304 spin_unlock(&fi->lock); 305 } 306 spin_lock(&fc->lock); 307 if (!RB_EMPTY_NODE(&ff->polled_node)) 308 rb_erase(&ff->polled_node, &fc->polled_files); 309 spin_unlock(&fc->lock); 310 311 wake_up_interruptible_all(&ff->poll_wait); 312 313 if (!ra) 314 return; 315 316 /* ff->args was used for open outarg */ 317 memset(ff->args, 0, sizeof(*ff->args)); 318 ra->inarg.fh = ff->fh; 319 ra->inarg.flags = flags; 320 ra->args.in_numargs = 1; 321 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 322 ra->args.in_args[0].value = &ra->inarg; 323 ra->args.opcode = opcode; 324 ra->args.nodeid = ff->nodeid; 325 ra->args.force = true; 326 ra->args.nocreds = true; 327 328 /* 329 * Hold inode until release is finished. 330 * From fuse_sync_release() the refcount is 1 and everything's 331 * synchronous, so we are fine with not doing igrab() here. 332 */ 333 ra->inode = sync ? NULL : igrab(&fi->inode); 334 } 335 336 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 337 unsigned int open_flags, fl_owner_t id, bool isdir) 338 { 339 struct fuse_inode *fi = get_fuse_inode(inode); 340 struct fuse_release_args *ra = &ff->args->release_args; 341 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 342 343 fuse_prepare_release(fi, ff, open_flags, opcode, false); 344 345 if (ra && ff->flock) { 346 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 347 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 348 } 349 350 /* 351 * Normally this will send the RELEASE request, however if 352 * some asynchronous READ or WRITE requests are outstanding, 353 * the sending will be delayed. 354 * 355 * Make the release synchronous if this is a fuseblk mount, 356 * synchronous RELEASE is allowed (and desirable) in this case 357 * because the server can be trusted not to screw up. 358 */ 359 fuse_file_put(ff, ff->fm->fc->destroy); 360 } 361 362 void fuse_release_common(struct file *file, bool isdir) 363 { 364 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 365 (fl_owner_t) file, isdir); 366 } 367 368 static int fuse_release(struct inode *inode, struct file *file) 369 { 370 struct fuse_conn *fc = get_fuse_conn(inode); 371 372 /* 373 * Dirty pages might remain despite write_inode_now() call from 374 * fuse_flush() due to writes racing with the close. 375 */ 376 if (fc->writeback_cache) 377 write_inode_now(inode, 1); 378 379 fuse_release_common(file, false); 380 381 /* return value is ignored by VFS */ 382 return 0; 383 } 384 385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 386 unsigned int flags) 387 { 388 WARN_ON(refcount_read(&ff->count) > 1); 389 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true); 390 fuse_file_put(ff, true); 391 } 392 EXPORT_SYMBOL_GPL(fuse_sync_release); 393 394 /* 395 * Scramble the ID space with XTEA, so that the value of the files_struct 396 * pointer is not exposed to userspace. 397 */ 398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 399 { 400 u32 *k = fc->scramble_key; 401 u64 v = (unsigned long) id; 402 u32 v0 = v; 403 u32 v1 = v >> 32; 404 u32 sum = 0; 405 int i; 406 407 for (i = 0; i < 32; i++) { 408 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 409 sum += 0x9E3779B9; 410 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 411 } 412 413 return (u64) v0 + ((u64) v1 << 32); 414 } 415 416 struct fuse_writepage_args { 417 struct fuse_io_args ia; 418 struct rb_node writepages_entry; 419 struct list_head queue_entry; 420 struct fuse_writepage_args *next; 421 struct inode *inode; 422 struct fuse_sync_bucket *bucket; 423 }; 424 425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 426 pgoff_t idx_from, pgoff_t idx_to) 427 { 428 struct rb_node *n; 429 430 n = fi->writepages.rb_node; 431 432 while (n) { 433 struct fuse_writepage_args *wpa; 434 pgoff_t curr_index; 435 436 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 437 WARN_ON(get_fuse_inode(wpa->inode) != fi); 438 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 439 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 440 n = n->rb_right; 441 else if (idx_to < curr_index) 442 n = n->rb_left; 443 else 444 return wpa; 445 } 446 return NULL; 447 } 448 449 /* 450 * Check if any page in a range is under writeback 451 * 452 * This is currently done by walking the list of writepage requests 453 * for the inode, which can be pretty inefficient. 454 */ 455 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 456 pgoff_t idx_to) 457 { 458 struct fuse_inode *fi = get_fuse_inode(inode); 459 bool found; 460 461 spin_lock(&fi->lock); 462 found = fuse_find_writeback(fi, idx_from, idx_to); 463 spin_unlock(&fi->lock); 464 465 return found; 466 } 467 468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 469 { 470 return fuse_range_is_writeback(inode, index, index); 471 } 472 473 /* 474 * Wait for page writeback to be completed. 475 * 476 * Since fuse doesn't rely on the VM writeback tracking, this has to 477 * use some other means. 478 */ 479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 480 { 481 struct fuse_inode *fi = get_fuse_inode(inode); 482 483 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 484 } 485 486 /* 487 * Wait for all pending writepages on the inode to finish. 488 * 489 * This is currently done by blocking further writes with FUSE_NOWRITE 490 * and waiting for all sent writes to complete. 491 * 492 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 493 * could conflict with truncation. 494 */ 495 static void fuse_sync_writes(struct inode *inode) 496 { 497 fuse_set_nowrite(inode); 498 fuse_release_nowrite(inode); 499 } 500 501 static int fuse_flush(struct file *file, fl_owner_t id) 502 { 503 struct inode *inode = file_inode(file); 504 struct fuse_mount *fm = get_fuse_mount(inode); 505 struct fuse_file *ff = file->private_data; 506 struct fuse_flush_in inarg; 507 FUSE_ARGS(args); 508 int err; 509 510 if (fuse_is_bad(inode)) 511 return -EIO; 512 513 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 514 return 0; 515 516 err = write_inode_now(inode, 1); 517 if (err) 518 return err; 519 520 inode_lock(inode); 521 fuse_sync_writes(inode); 522 inode_unlock(inode); 523 524 err = filemap_check_errors(file->f_mapping); 525 if (err) 526 return err; 527 528 err = 0; 529 if (fm->fc->no_flush) 530 goto inval_attr_out; 531 532 memset(&inarg, 0, sizeof(inarg)); 533 inarg.fh = ff->fh; 534 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 535 args.opcode = FUSE_FLUSH; 536 args.nodeid = get_node_id(inode); 537 args.in_numargs = 1; 538 args.in_args[0].size = sizeof(inarg); 539 args.in_args[0].value = &inarg; 540 args.force = true; 541 542 err = fuse_simple_request(fm, &args); 543 if (err == -ENOSYS) { 544 fm->fc->no_flush = 1; 545 err = 0; 546 } 547 548 inval_attr_out: 549 /* 550 * In memory i_blocks is not maintained by fuse, if writeback cache is 551 * enabled, i_blocks from cached attr may not be accurate. 552 */ 553 if (!err && fm->fc->writeback_cache) 554 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 555 return err; 556 } 557 558 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 559 int datasync, int opcode) 560 { 561 struct inode *inode = file->f_mapping->host; 562 struct fuse_mount *fm = get_fuse_mount(inode); 563 struct fuse_file *ff = file->private_data; 564 FUSE_ARGS(args); 565 struct fuse_fsync_in inarg; 566 567 memset(&inarg, 0, sizeof(inarg)); 568 inarg.fh = ff->fh; 569 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 570 args.opcode = opcode; 571 args.nodeid = get_node_id(inode); 572 args.in_numargs = 1; 573 args.in_args[0].size = sizeof(inarg); 574 args.in_args[0].value = &inarg; 575 return fuse_simple_request(fm, &args); 576 } 577 578 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 579 int datasync) 580 { 581 struct inode *inode = file->f_mapping->host; 582 struct fuse_conn *fc = get_fuse_conn(inode); 583 int err; 584 585 if (fuse_is_bad(inode)) 586 return -EIO; 587 588 inode_lock(inode); 589 590 /* 591 * Start writeback against all dirty pages of the inode, then 592 * wait for all outstanding writes, before sending the FSYNC 593 * request. 594 */ 595 err = file_write_and_wait_range(file, start, end); 596 if (err) 597 goto out; 598 599 fuse_sync_writes(inode); 600 601 /* 602 * Due to implementation of fuse writeback 603 * file_write_and_wait_range() does not catch errors. 604 * We have to do this directly after fuse_sync_writes() 605 */ 606 err = file_check_and_advance_wb_err(file); 607 if (err) 608 goto out; 609 610 err = sync_inode_metadata(inode, 1); 611 if (err) 612 goto out; 613 614 if (fc->no_fsync) 615 goto out; 616 617 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 618 if (err == -ENOSYS) { 619 fc->no_fsync = 1; 620 err = 0; 621 } 622 out: 623 inode_unlock(inode); 624 625 return err; 626 } 627 628 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 629 size_t count, int opcode) 630 { 631 struct fuse_file *ff = file->private_data; 632 struct fuse_args *args = &ia->ap.args; 633 634 ia->read.in.fh = ff->fh; 635 ia->read.in.offset = pos; 636 ia->read.in.size = count; 637 ia->read.in.flags = file->f_flags; 638 args->opcode = opcode; 639 args->nodeid = ff->nodeid; 640 args->in_numargs = 1; 641 args->in_args[0].size = sizeof(ia->read.in); 642 args->in_args[0].value = &ia->read.in; 643 args->out_argvar = true; 644 args->out_numargs = 1; 645 args->out_args[0].size = count; 646 } 647 648 static void fuse_release_user_pages(struct fuse_args_pages *ap, 649 bool should_dirty) 650 { 651 unsigned int i; 652 653 for (i = 0; i < ap->num_pages; i++) { 654 if (should_dirty) 655 set_page_dirty_lock(ap->pages[i]); 656 if (ap->args.is_pinned) 657 unpin_user_page(ap->pages[i]); 658 } 659 } 660 661 static void fuse_io_release(struct kref *kref) 662 { 663 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 664 } 665 666 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 667 { 668 if (io->err) 669 return io->err; 670 671 if (io->bytes >= 0 && io->write) 672 return -EIO; 673 674 return io->bytes < 0 ? io->size : io->bytes; 675 } 676 677 /* 678 * In case of short read, the caller sets 'pos' to the position of 679 * actual end of fuse request in IO request. Otherwise, if bytes_requested 680 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 681 * 682 * An example: 683 * User requested DIO read of 64K. It was split into two 32K fuse requests, 684 * both submitted asynchronously. The first of them was ACKed by userspace as 685 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 686 * second request was ACKed as short, e.g. only 1K was read, resulting in 687 * pos == 33K. 688 * 689 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 690 * will be equal to the length of the longest contiguous fragment of 691 * transferred data starting from the beginning of IO request. 692 */ 693 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 694 { 695 int left; 696 697 spin_lock(&io->lock); 698 if (err) 699 io->err = io->err ? : err; 700 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 701 io->bytes = pos; 702 703 left = --io->reqs; 704 if (!left && io->blocking) 705 complete(io->done); 706 spin_unlock(&io->lock); 707 708 if (!left && !io->blocking) { 709 ssize_t res = fuse_get_res_by_io(io); 710 711 if (res >= 0) { 712 struct inode *inode = file_inode(io->iocb->ki_filp); 713 struct fuse_conn *fc = get_fuse_conn(inode); 714 struct fuse_inode *fi = get_fuse_inode(inode); 715 716 spin_lock(&fi->lock); 717 fi->attr_version = atomic64_inc_return(&fc->attr_version); 718 spin_unlock(&fi->lock); 719 } 720 721 io->iocb->ki_complete(io->iocb, res); 722 } 723 724 kref_put(&io->refcnt, fuse_io_release); 725 } 726 727 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 728 unsigned int npages) 729 { 730 struct fuse_io_args *ia; 731 732 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 733 if (ia) { 734 ia->io = io; 735 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 736 &ia->ap.descs); 737 if (!ia->ap.pages) { 738 kfree(ia); 739 ia = NULL; 740 } 741 } 742 return ia; 743 } 744 745 static void fuse_io_free(struct fuse_io_args *ia) 746 { 747 kfree(ia->ap.pages); 748 kfree(ia); 749 } 750 751 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 752 int err) 753 { 754 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 755 struct fuse_io_priv *io = ia->io; 756 ssize_t pos = -1; 757 758 fuse_release_user_pages(&ia->ap, io->should_dirty); 759 760 if (err) { 761 /* Nothing */ 762 } else if (io->write) { 763 if (ia->write.out.size > ia->write.in.size) { 764 err = -EIO; 765 } else if (ia->write.in.size != ia->write.out.size) { 766 pos = ia->write.in.offset - io->offset + 767 ia->write.out.size; 768 } 769 } else { 770 u32 outsize = args->out_args[0].size; 771 772 if (ia->read.in.size != outsize) 773 pos = ia->read.in.offset - io->offset + outsize; 774 } 775 776 fuse_aio_complete(io, err, pos); 777 fuse_io_free(ia); 778 } 779 780 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 781 struct fuse_io_args *ia, size_t num_bytes) 782 { 783 ssize_t err; 784 struct fuse_io_priv *io = ia->io; 785 786 spin_lock(&io->lock); 787 kref_get(&io->refcnt); 788 io->size += num_bytes; 789 io->reqs++; 790 spin_unlock(&io->lock); 791 792 ia->ap.args.end = fuse_aio_complete_req; 793 ia->ap.args.may_block = io->should_dirty; 794 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 795 if (err) 796 fuse_aio_complete_req(fm, &ia->ap.args, err); 797 798 return num_bytes; 799 } 800 801 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 802 fl_owner_t owner) 803 { 804 struct file *file = ia->io->iocb->ki_filp; 805 struct fuse_file *ff = file->private_data; 806 struct fuse_mount *fm = ff->fm; 807 808 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 809 if (owner != NULL) { 810 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 811 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 812 } 813 814 if (ia->io->async) 815 return fuse_async_req_send(fm, ia, count); 816 817 return fuse_simple_request(fm, &ia->ap.args); 818 } 819 820 static void fuse_read_update_size(struct inode *inode, loff_t size, 821 u64 attr_ver) 822 { 823 struct fuse_conn *fc = get_fuse_conn(inode); 824 struct fuse_inode *fi = get_fuse_inode(inode); 825 826 spin_lock(&fi->lock); 827 if (attr_ver >= fi->attr_version && size < inode->i_size && 828 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 829 fi->attr_version = atomic64_inc_return(&fc->attr_version); 830 i_size_write(inode, size); 831 } 832 spin_unlock(&fi->lock); 833 } 834 835 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 836 struct fuse_args_pages *ap) 837 { 838 struct fuse_conn *fc = get_fuse_conn(inode); 839 840 /* 841 * If writeback_cache is enabled, a short read means there's a hole in 842 * the file. Some data after the hole is in page cache, but has not 843 * reached the client fs yet. So the hole is not present there. 844 */ 845 if (!fc->writeback_cache) { 846 loff_t pos = page_offset(ap->pages[0]) + num_read; 847 fuse_read_update_size(inode, pos, attr_ver); 848 } 849 } 850 851 static int fuse_do_readpage(struct file *file, struct page *page) 852 { 853 struct inode *inode = page->mapping->host; 854 struct fuse_mount *fm = get_fuse_mount(inode); 855 loff_t pos = page_offset(page); 856 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 857 struct fuse_io_args ia = { 858 .ap.args.page_zeroing = true, 859 .ap.args.out_pages = true, 860 .ap.num_pages = 1, 861 .ap.pages = &page, 862 .ap.descs = &desc, 863 }; 864 ssize_t res; 865 u64 attr_ver; 866 867 /* 868 * Page writeback can extend beyond the lifetime of the 869 * page-cache page, so make sure we read a properly synced 870 * page. 871 */ 872 fuse_wait_on_page_writeback(inode, page->index); 873 874 attr_ver = fuse_get_attr_version(fm->fc); 875 876 /* Don't overflow end offset */ 877 if (pos + (desc.length - 1) == LLONG_MAX) 878 desc.length--; 879 880 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 881 res = fuse_simple_request(fm, &ia.ap.args); 882 if (res < 0) 883 return res; 884 /* 885 * Short read means EOF. If file size is larger, truncate it 886 */ 887 if (res < desc.length) 888 fuse_short_read(inode, attr_ver, res, &ia.ap); 889 890 SetPageUptodate(page); 891 892 return 0; 893 } 894 895 static int fuse_read_folio(struct file *file, struct folio *folio) 896 { 897 struct page *page = &folio->page; 898 struct inode *inode = page->mapping->host; 899 int err; 900 901 err = -EIO; 902 if (fuse_is_bad(inode)) 903 goto out; 904 905 err = fuse_do_readpage(file, page); 906 fuse_invalidate_atime(inode); 907 out: 908 unlock_page(page); 909 return err; 910 } 911 912 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 913 int err) 914 { 915 int i; 916 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 917 struct fuse_args_pages *ap = &ia->ap; 918 size_t count = ia->read.in.size; 919 size_t num_read = args->out_args[0].size; 920 struct address_space *mapping = NULL; 921 922 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 923 mapping = ap->pages[i]->mapping; 924 925 if (mapping) { 926 struct inode *inode = mapping->host; 927 928 /* 929 * Short read means EOF. If file size is larger, truncate it 930 */ 931 if (!err && num_read < count) 932 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 933 934 fuse_invalidate_atime(inode); 935 } 936 937 for (i = 0; i < ap->num_pages; i++) { 938 struct page *page = ap->pages[i]; 939 940 if (!err) 941 SetPageUptodate(page); 942 else 943 SetPageError(page); 944 unlock_page(page); 945 put_page(page); 946 } 947 if (ia->ff) 948 fuse_file_put(ia->ff, false); 949 950 fuse_io_free(ia); 951 } 952 953 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 954 { 955 struct fuse_file *ff = file->private_data; 956 struct fuse_mount *fm = ff->fm; 957 struct fuse_args_pages *ap = &ia->ap; 958 loff_t pos = page_offset(ap->pages[0]); 959 size_t count = ap->num_pages << PAGE_SHIFT; 960 ssize_t res; 961 int err; 962 963 ap->args.out_pages = true; 964 ap->args.page_zeroing = true; 965 ap->args.page_replace = true; 966 967 /* Don't overflow end offset */ 968 if (pos + (count - 1) == LLONG_MAX) { 969 count--; 970 ap->descs[ap->num_pages - 1].length--; 971 } 972 WARN_ON((loff_t) (pos + count) < 0); 973 974 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 975 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 976 if (fm->fc->async_read) { 977 ia->ff = fuse_file_get(ff); 978 ap->args.end = fuse_readpages_end; 979 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 980 if (!err) 981 return; 982 } else { 983 res = fuse_simple_request(fm, &ap->args); 984 err = res < 0 ? res : 0; 985 } 986 fuse_readpages_end(fm, &ap->args, err); 987 } 988 989 static void fuse_readahead(struct readahead_control *rac) 990 { 991 struct inode *inode = rac->mapping->host; 992 struct fuse_conn *fc = get_fuse_conn(inode); 993 unsigned int i, max_pages, nr_pages = 0; 994 995 if (fuse_is_bad(inode)) 996 return; 997 998 max_pages = min_t(unsigned int, fc->max_pages, 999 fc->max_read / PAGE_SIZE); 1000 1001 for (;;) { 1002 struct fuse_io_args *ia; 1003 struct fuse_args_pages *ap; 1004 1005 if (fc->num_background >= fc->congestion_threshold && 1006 rac->ra->async_size >= readahead_count(rac)) 1007 /* 1008 * Congested and only async pages left, so skip the 1009 * rest. 1010 */ 1011 break; 1012 1013 nr_pages = readahead_count(rac) - nr_pages; 1014 if (nr_pages > max_pages) 1015 nr_pages = max_pages; 1016 if (nr_pages == 0) 1017 break; 1018 ia = fuse_io_alloc(NULL, nr_pages); 1019 if (!ia) 1020 return; 1021 ap = &ia->ap; 1022 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 1023 for (i = 0; i < nr_pages; i++) { 1024 fuse_wait_on_page_writeback(inode, 1025 readahead_index(rac) + i); 1026 ap->descs[i].length = PAGE_SIZE; 1027 } 1028 ap->num_pages = nr_pages; 1029 fuse_send_readpages(ia, rac->file); 1030 } 1031 } 1032 1033 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 1034 { 1035 struct inode *inode = iocb->ki_filp->f_mapping->host; 1036 struct fuse_conn *fc = get_fuse_conn(inode); 1037 1038 /* 1039 * In auto invalidate mode, always update attributes on read. 1040 * Otherwise, only update if we attempt to read past EOF (to ensure 1041 * i_size is up to date). 1042 */ 1043 if (fc->auto_inval_data || 1044 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1045 int err; 1046 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1047 if (err) 1048 return err; 1049 } 1050 1051 return generic_file_read_iter(iocb, to); 1052 } 1053 1054 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1055 loff_t pos, size_t count) 1056 { 1057 struct fuse_args *args = &ia->ap.args; 1058 1059 ia->write.in.fh = ff->fh; 1060 ia->write.in.offset = pos; 1061 ia->write.in.size = count; 1062 args->opcode = FUSE_WRITE; 1063 args->nodeid = ff->nodeid; 1064 args->in_numargs = 2; 1065 if (ff->fm->fc->minor < 9) 1066 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1067 else 1068 args->in_args[0].size = sizeof(ia->write.in); 1069 args->in_args[0].value = &ia->write.in; 1070 args->in_args[1].size = count; 1071 args->out_numargs = 1; 1072 args->out_args[0].size = sizeof(ia->write.out); 1073 args->out_args[0].value = &ia->write.out; 1074 } 1075 1076 static unsigned int fuse_write_flags(struct kiocb *iocb) 1077 { 1078 unsigned int flags = iocb->ki_filp->f_flags; 1079 1080 if (iocb_is_dsync(iocb)) 1081 flags |= O_DSYNC; 1082 if (iocb->ki_flags & IOCB_SYNC) 1083 flags |= O_SYNC; 1084 1085 return flags; 1086 } 1087 1088 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1089 size_t count, fl_owner_t owner) 1090 { 1091 struct kiocb *iocb = ia->io->iocb; 1092 struct file *file = iocb->ki_filp; 1093 struct fuse_file *ff = file->private_data; 1094 struct fuse_mount *fm = ff->fm; 1095 struct fuse_write_in *inarg = &ia->write.in; 1096 ssize_t err; 1097 1098 fuse_write_args_fill(ia, ff, pos, count); 1099 inarg->flags = fuse_write_flags(iocb); 1100 if (owner != NULL) { 1101 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1102 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1103 } 1104 1105 if (ia->io->async) 1106 return fuse_async_req_send(fm, ia, count); 1107 1108 err = fuse_simple_request(fm, &ia->ap.args); 1109 if (!err && ia->write.out.size > count) 1110 err = -EIO; 1111 1112 return err ?: ia->write.out.size; 1113 } 1114 1115 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1116 { 1117 struct fuse_conn *fc = get_fuse_conn(inode); 1118 struct fuse_inode *fi = get_fuse_inode(inode); 1119 bool ret = false; 1120 1121 spin_lock(&fi->lock); 1122 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1123 if (written > 0 && pos > inode->i_size) { 1124 i_size_write(inode, pos); 1125 ret = true; 1126 } 1127 spin_unlock(&fi->lock); 1128 1129 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1130 1131 return ret; 1132 } 1133 1134 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1135 struct kiocb *iocb, struct inode *inode, 1136 loff_t pos, size_t count) 1137 { 1138 struct fuse_args_pages *ap = &ia->ap; 1139 struct file *file = iocb->ki_filp; 1140 struct fuse_file *ff = file->private_data; 1141 struct fuse_mount *fm = ff->fm; 1142 unsigned int offset, i; 1143 bool short_write; 1144 int err; 1145 1146 for (i = 0; i < ap->num_pages; i++) 1147 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1148 1149 fuse_write_args_fill(ia, ff, pos, count); 1150 ia->write.in.flags = fuse_write_flags(iocb); 1151 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1152 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1153 1154 err = fuse_simple_request(fm, &ap->args); 1155 if (!err && ia->write.out.size > count) 1156 err = -EIO; 1157 1158 short_write = ia->write.out.size < count; 1159 offset = ap->descs[0].offset; 1160 count = ia->write.out.size; 1161 for (i = 0; i < ap->num_pages; i++) { 1162 struct page *page = ap->pages[i]; 1163 1164 if (err) { 1165 ClearPageUptodate(page); 1166 } else { 1167 if (count >= PAGE_SIZE - offset) 1168 count -= PAGE_SIZE - offset; 1169 else { 1170 if (short_write) 1171 ClearPageUptodate(page); 1172 count = 0; 1173 } 1174 offset = 0; 1175 } 1176 if (ia->write.page_locked && (i == ap->num_pages - 1)) 1177 unlock_page(page); 1178 put_page(page); 1179 } 1180 1181 return err; 1182 } 1183 1184 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1185 struct address_space *mapping, 1186 struct iov_iter *ii, loff_t pos, 1187 unsigned int max_pages) 1188 { 1189 struct fuse_args_pages *ap = &ia->ap; 1190 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1191 unsigned offset = pos & (PAGE_SIZE - 1); 1192 size_t count = 0; 1193 int err; 1194 1195 ap->args.in_pages = true; 1196 ap->descs[0].offset = offset; 1197 1198 do { 1199 size_t tmp; 1200 struct page *page; 1201 pgoff_t index = pos >> PAGE_SHIFT; 1202 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1203 iov_iter_count(ii)); 1204 1205 bytes = min_t(size_t, bytes, fc->max_write - count); 1206 1207 again: 1208 err = -EFAULT; 1209 if (fault_in_iov_iter_readable(ii, bytes)) 1210 break; 1211 1212 err = -ENOMEM; 1213 page = grab_cache_page_write_begin(mapping, index); 1214 if (!page) 1215 break; 1216 1217 if (mapping_writably_mapped(mapping)) 1218 flush_dcache_page(page); 1219 1220 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii); 1221 flush_dcache_page(page); 1222 1223 if (!tmp) { 1224 unlock_page(page); 1225 put_page(page); 1226 goto again; 1227 } 1228 1229 err = 0; 1230 ap->pages[ap->num_pages] = page; 1231 ap->descs[ap->num_pages].length = tmp; 1232 ap->num_pages++; 1233 1234 count += tmp; 1235 pos += tmp; 1236 offset += tmp; 1237 if (offset == PAGE_SIZE) 1238 offset = 0; 1239 1240 /* If we copied full page, mark it uptodate */ 1241 if (tmp == PAGE_SIZE) 1242 SetPageUptodate(page); 1243 1244 if (PageUptodate(page)) { 1245 unlock_page(page); 1246 } else { 1247 ia->write.page_locked = true; 1248 break; 1249 } 1250 if (!fc->big_writes) 1251 break; 1252 } while (iov_iter_count(ii) && count < fc->max_write && 1253 ap->num_pages < max_pages && offset == 0); 1254 1255 return count > 0 ? count : err; 1256 } 1257 1258 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1259 unsigned int max_pages) 1260 { 1261 return min_t(unsigned int, 1262 ((pos + len - 1) >> PAGE_SHIFT) - 1263 (pos >> PAGE_SHIFT) + 1, 1264 max_pages); 1265 } 1266 1267 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii) 1268 { 1269 struct address_space *mapping = iocb->ki_filp->f_mapping; 1270 struct inode *inode = mapping->host; 1271 struct fuse_conn *fc = get_fuse_conn(inode); 1272 struct fuse_inode *fi = get_fuse_inode(inode); 1273 loff_t pos = iocb->ki_pos; 1274 int err = 0; 1275 ssize_t res = 0; 1276 1277 if (inode->i_size < pos + iov_iter_count(ii)) 1278 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1279 1280 do { 1281 ssize_t count; 1282 struct fuse_io_args ia = {}; 1283 struct fuse_args_pages *ap = &ia.ap; 1284 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1285 fc->max_pages); 1286 1287 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1288 if (!ap->pages) { 1289 err = -ENOMEM; 1290 break; 1291 } 1292 1293 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1294 if (count <= 0) { 1295 err = count; 1296 } else { 1297 err = fuse_send_write_pages(&ia, iocb, inode, 1298 pos, count); 1299 if (!err) { 1300 size_t num_written = ia.write.out.size; 1301 1302 res += num_written; 1303 pos += num_written; 1304 1305 /* break out of the loop on short write */ 1306 if (num_written != count) 1307 err = -EIO; 1308 } 1309 } 1310 kfree(ap->pages); 1311 } while (!err && iov_iter_count(ii)); 1312 1313 fuse_write_update_attr(inode, pos, res); 1314 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1315 1316 if (!res) 1317 return err; 1318 iocb->ki_pos += res; 1319 return res; 1320 } 1321 1322 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter) 1323 { 1324 struct inode *inode = file_inode(iocb->ki_filp); 1325 1326 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode); 1327 } 1328 1329 /* 1330 * @return true if an exclusive lock for direct IO writes is needed 1331 */ 1332 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from) 1333 { 1334 struct file *file = iocb->ki_filp; 1335 struct fuse_file *ff = file->private_data; 1336 struct inode *inode = file_inode(iocb->ki_filp); 1337 struct fuse_inode *fi = get_fuse_inode(inode); 1338 1339 /* Server side has to advise that it supports parallel dio writes. */ 1340 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES)) 1341 return true; 1342 1343 /* 1344 * Append will need to know the eventual EOF - always needs an 1345 * exclusive lock. 1346 */ 1347 if (iocb->ki_flags & IOCB_APPEND) 1348 return true; 1349 1350 /* shared locks are not allowed with parallel page cache IO */ 1351 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state)) 1352 return false; 1353 1354 /* Parallel dio beyond EOF is not supported, at least for now. */ 1355 if (fuse_io_past_eof(iocb, from)) 1356 return true; 1357 1358 return false; 1359 } 1360 1361 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from, 1362 bool *exclusive) 1363 { 1364 struct inode *inode = file_inode(iocb->ki_filp); 1365 struct fuse_inode *fi = get_fuse_inode(inode); 1366 1367 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from); 1368 if (*exclusive) { 1369 inode_lock(inode); 1370 } else { 1371 inode_lock_shared(inode); 1372 /* 1373 * New parallal dio allowed only if inode is not in caching 1374 * mode and denies new opens in caching mode. This check 1375 * should be performed only after taking shared inode lock. 1376 * Previous past eof check was without inode lock and might 1377 * have raced, so check it again. 1378 */ 1379 if (fuse_io_past_eof(iocb, from) || 1380 fuse_inode_uncached_io_start(fi, NULL) != 0) { 1381 inode_unlock_shared(inode); 1382 inode_lock(inode); 1383 *exclusive = true; 1384 } 1385 } 1386 } 1387 1388 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive) 1389 { 1390 struct inode *inode = file_inode(iocb->ki_filp); 1391 struct fuse_inode *fi = get_fuse_inode(inode); 1392 1393 if (exclusive) { 1394 inode_unlock(inode); 1395 } else { 1396 /* Allow opens in caching mode after last parallel dio end */ 1397 fuse_inode_uncached_io_end(fi); 1398 inode_unlock_shared(inode); 1399 } 1400 } 1401 1402 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1403 { 1404 struct file *file = iocb->ki_filp; 1405 struct address_space *mapping = file->f_mapping; 1406 ssize_t written = 0; 1407 struct inode *inode = mapping->host; 1408 ssize_t err, count; 1409 struct fuse_conn *fc = get_fuse_conn(inode); 1410 1411 if (fc->writeback_cache) { 1412 /* Update size (EOF optimization) and mode (SUID clearing) */ 1413 err = fuse_update_attributes(mapping->host, file, 1414 STATX_SIZE | STATX_MODE); 1415 if (err) 1416 return err; 1417 1418 if (fc->handle_killpriv_v2 && 1419 setattr_should_drop_suidgid(&nop_mnt_idmap, 1420 file_inode(file))) { 1421 goto writethrough; 1422 } 1423 1424 return generic_file_write_iter(iocb, from); 1425 } 1426 1427 writethrough: 1428 inode_lock(inode); 1429 1430 err = count = generic_write_checks(iocb, from); 1431 if (err <= 0) 1432 goto out; 1433 1434 task_io_account_write(count); 1435 1436 err = file_remove_privs(file); 1437 if (err) 1438 goto out; 1439 1440 err = file_update_time(file); 1441 if (err) 1442 goto out; 1443 1444 if (iocb->ki_flags & IOCB_DIRECT) { 1445 written = generic_file_direct_write(iocb, from); 1446 if (written < 0 || !iov_iter_count(from)) 1447 goto out; 1448 written = direct_write_fallback(iocb, from, written, 1449 fuse_perform_write(iocb, from)); 1450 } else { 1451 written = fuse_perform_write(iocb, from); 1452 } 1453 out: 1454 inode_unlock(inode); 1455 if (written > 0) 1456 written = generic_write_sync(iocb, written); 1457 1458 return written ? written : err; 1459 } 1460 1461 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1462 { 1463 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset; 1464 } 1465 1466 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1467 size_t max_size) 1468 { 1469 return min(iov_iter_single_seg_count(ii), max_size); 1470 } 1471 1472 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1473 size_t *nbytesp, int write, 1474 unsigned int max_pages) 1475 { 1476 size_t nbytes = 0; /* # bytes already packed in req */ 1477 ssize_t ret = 0; 1478 1479 /* Special case for kernel I/O: can copy directly into the buffer */ 1480 if (iov_iter_is_kvec(ii)) { 1481 unsigned long user_addr = fuse_get_user_addr(ii); 1482 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1483 1484 if (write) 1485 ap->args.in_args[1].value = (void *) user_addr; 1486 else 1487 ap->args.out_args[0].value = (void *) user_addr; 1488 1489 iov_iter_advance(ii, frag_size); 1490 *nbytesp = frag_size; 1491 return 0; 1492 } 1493 1494 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1495 unsigned npages; 1496 size_t start; 1497 struct page **pt_pages; 1498 1499 pt_pages = &ap->pages[ap->num_pages]; 1500 ret = iov_iter_extract_pages(ii, &pt_pages, 1501 *nbytesp - nbytes, 1502 max_pages - ap->num_pages, 1503 0, &start); 1504 if (ret < 0) 1505 break; 1506 1507 nbytes += ret; 1508 1509 ret += start; 1510 npages = DIV_ROUND_UP(ret, PAGE_SIZE); 1511 1512 ap->descs[ap->num_pages].offset = start; 1513 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1514 1515 ap->num_pages += npages; 1516 ap->descs[ap->num_pages - 1].length -= 1517 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1518 } 1519 1520 ap->args.is_pinned = iov_iter_extract_will_pin(ii); 1521 ap->args.user_pages = true; 1522 if (write) 1523 ap->args.in_pages = true; 1524 else 1525 ap->args.out_pages = true; 1526 1527 *nbytesp = nbytes; 1528 1529 return ret < 0 ? ret : 0; 1530 } 1531 1532 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1533 loff_t *ppos, int flags) 1534 { 1535 int write = flags & FUSE_DIO_WRITE; 1536 int cuse = flags & FUSE_DIO_CUSE; 1537 struct file *file = io->iocb->ki_filp; 1538 struct address_space *mapping = file->f_mapping; 1539 struct inode *inode = mapping->host; 1540 struct fuse_file *ff = file->private_data; 1541 struct fuse_conn *fc = ff->fm->fc; 1542 size_t nmax = write ? fc->max_write : fc->max_read; 1543 loff_t pos = *ppos; 1544 size_t count = iov_iter_count(iter); 1545 pgoff_t idx_from = pos >> PAGE_SHIFT; 1546 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1547 ssize_t res = 0; 1548 int err = 0; 1549 struct fuse_io_args *ia; 1550 unsigned int max_pages; 1551 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO; 1552 1553 max_pages = iov_iter_npages(iter, fc->max_pages); 1554 ia = fuse_io_alloc(io, max_pages); 1555 if (!ia) 1556 return -ENOMEM; 1557 1558 if (fopen_direct_io && fc->direct_io_allow_mmap) { 1559 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1); 1560 if (res) { 1561 fuse_io_free(ia); 1562 return res; 1563 } 1564 } 1565 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1566 if (!write) 1567 inode_lock(inode); 1568 fuse_sync_writes(inode); 1569 if (!write) 1570 inode_unlock(inode); 1571 } 1572 1573 if (fopen_direct_io && write) { 1574 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to); 1575 if (res) { 1576 fuse_io_free(ia); 1577 return res; 1578 } 1579 } 1580 1581 io->should_dirty = !write && user_backed_iter(iter); 1582 while (count) { 1583 ssize_t nres; 1584 fl_owner_t owner = current->files; 1585 size_t nbytes = min(count, nmax); 1586 1587 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1588 max_pages); 1589 if (err && !nbytes) 1590 break; 1591 1592 if (write) { 1593 if (!capable(CAP_FSETID)) 1594 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1595 1596 nres = fuse_send_write(ia, pos, nbytes, owner); 1597 } else { 1598 nres = fuse_send_read(ia, pos, nbytes, owner); 1599 } 1600 1601 if (!io->async || nres < 0) { 1602 fuse_release_user_pages(&ia->ap, io->should_dirty); 1603 fuse_io_free(ia); 1604 } 1605 ia = NULL; 1606 if (nres < 0) { 1607 iov_iter_revert(iter, nbytes); 1608 err = nres; 1609 break; 1610 } 1611 WARN_ON(nres > nbytes); 1612 1613 count -= nres; 1614 res += nres; 1615 pos += nres; 1616 if (nres != nbytes) { 1617 iov_iter_revert(iter, nbytes - nres); 1618 break; 1619 } 1620 if (count) { 1621 max_pages = iov_iter_npages(iter, fc->max_pages); 1622 ia = fuse_io_alloc(io, max_pages); 1623 if (!ia) 1624 break; 1625 } 1626 } 1627 if (ia) 1628 fuse_io_free(ia); 1629 if (res > 0) 1630 *ppos = pos; 1631 1632 return res > 0 ? res : err; 1633 } 1634 EXPORT_SYMBOL_GPL(fuse_direct_io); 1635 1636 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1637 struct iov_iter *iter, 1638 loff_t *ppos) 1639 { 1640 ssize_t res; 1641 struct inode *inode = file_inode(io->iocb->ki_filp); 1642 1643 res = fuse_direct_io(io, iter, ppos, 0); 1644 1645 fuse_invalidate_atime(inode); 1646 1647 return res; 1648 } 1649 1650 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1651 1652 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1653 { 1654 ssize_t res; 1655 1656 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1657 res = fuse_direct_IO(iocb, to); 1658 } else { 1659 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1660 1661 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1662 } 1663 1664 return res; 1665 } 1666 1667 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1668 { 1669 struct inode *inode = file_inode(iocb->ki_filp); 1670 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1671 ssize_t res; 1672 bool exclusive; 1673 1674 fuse_dio_lock(iocb, from, &exclusive); 1675 res = generic_write_checks(iocb, from); 1676 if (res > 0) { 1677 task_io_account_write(res); 1678 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1679 res = fuse_direct_IO(iocb, from); 1680 } else { 1681 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1682 FUSE_DIO_WRITE); 1683 fuse_write_update_attr(inode, iocb->ki_pos, res); 1684 } 1685 } 1686 fuse_dio_unlock(iocb, exclusive); 1687 1688 return res; 1689 } 1690 1691 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1692 { 1693 struct file *file = iocb->ki_filp; 1694 struct fuse_file *ff = file->private_data; 1695 struct inode *inode = file_inode(file); 1696 1697 if (fuse_is_bad(inode)) 1698 return -EIO; 1699 1700 if (FUSE_IS_DAX(inode)) 1701 return fuse_dax_read_iter(iocb, to); 1702 1703 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1704 if (ff->open_flags & FOPEN_DIRECT_IO) 1705 return fuse_direct_read_iter(iocb, to); 1706 else if (fuse_file_passthrough(ff)) 1707 return fuse_passthrough_read_iter(iocb, to); 1708 else 1709 return fuse_cache_read_iter(iocb, to); 1710 } 1711 1712 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1713 { 1714 struct file *file = iocb->ki_filp; 1715 struct fuse_file *ff = file->private_data; 1716 struct inode *inode = file_inode(file); 1717 1718 if (fuse_is_bad(inode)) 1719 return -EIO; 1720 1721 if (FUSE_IS_DAX(inode)) 1722 return fuse_dax_write_iter(iocb, from); 1723 1724 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1725 if (ff->open_flags & FOPEN_DIRECT_IO) 1726 return fuse_direct_write_iter(iocb, from); 1727 else if (fuse_file_passthrough(ff)) 1728 return fuse_passthrough_write_iter(iocb, from); 1729 else 1730 return fuse_cache_write_iter(iocb, from); 1731 } 1732 1733 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos, 1734 struct pipe_inode_info *pipe, size_t len, 1735 unsigned int flags) 1736 { 1737 struct fuse_file *ff = in->private_data; 1738 1739 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1740 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1741 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags); 1742 else 1743 return filemap_splice_read(in, ppos, pipe, len, flags); 1744 } 1745 1746 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out, 1747 loff_t *ppos, size_t len, unsigned int flags) 1748 { 1749 struct fuse_file *ff = out->private_data; 1750 1751 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1752 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1753 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags); 1754 else 1755 return iter_file_splice_write(pipe, out, ppos, len, flags); 1756 } 1757 1758 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1759 { 1760 struct fuse_args_pages *ap = &wpa->ia.ap; 1761 int i; 1762 1763 if (wpa->bucket) 1764 fuse_sync_bucket_dec(wpa->bucket); 1765 1766 for (i = 0; i < ap->num_pages; i++) 1767 __free_page(ap->pages[i]); 1768 1769 if (wpa->ia.ff) 1770 fuse_file_put(wpa->ia.ff, false); 1771 1772 kfree(ap->pages); 1773 kfree(wpa); 1774 } 1775 1776 static void fuse_writepage_finish(struct fuse_mount *fm, 1777 struct fuse_writepage_args *wpa) 1778 { 1779 struct fuse_args_pages *ap = &wpa->ia.ap; 1780 struct inode *inode = wpa->inode; 1781 struct fuse_inode *fi = get_fuse_inode(inode); 1782 struct backing_dev_info *bdi = inode_to_bdi(inode); 1783 int i; 1784 1785 for (i = 0; i < ap->num_pages; i++) { 1786 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1787 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1788 wb_writeout_inc(&bdi->wb); 1789 } 1790 wake_up(&fi->page_waitq); 1791 } 1792 1793 /* Called under fi->lock, may release and reacquire it */ 1794 static void fuse_send_writepage(struct fuse_mount *fm, 1795 struct fuse_writepage_args *wpa, loff_t size) 1796 __releases(fi->lock) 1797 __acquires(fi->lock) 1798 { 1799 struct fuse_writepage_args *aux, *next; 1800 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1801 struct fuse_write_in *inarg = &wpa->ia.write.in; 1802 struct fuse_args *args = &wpa->ia.ap.args; 1803 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1804 int err; 1805 1806 fi->writectr++; 1807 if (inarg->offset + data_size <= size) { 1808 inarg->size = data_size; 1809 } else if (inarg->offset < size) { 1810 inarg->size = size - inarg->offset; 1811 } else { 1812 /* Got truncated off completely */ 1813 goto out_free; 1814 } 1815 1816 args->in_args[1].size = inarg->size; 1817 args->force = true; 1818 args->nocreds = true; 1819 1820 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1821 if (err == -ENOMEM) { 1822 spin_unlock(&fi->lock); 1823 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1824 spin_lock(&fi->lock); 1825 } 1826 1827 /* Fails on broken connection only */ 1828 if (unlikely(err)) 1829 goto out_free; 1830 1831 return; 1832 1833 out_free: 1834 fi->writectr--; 1835 rb_erase(&wpa->writepages_entry, &fi->writepages); 1836 fuse_writepage_finish(fm, wpa); 1837 spin_unlock(&fi->lock); 1838 1839 /* After fuse_writepage_finish() aux request list is private */ 1840 for (aux = wpa->next; aux; aux = next) { 1841 next = aux->next; 1842 aux->next = NULL; 1843 fuse_writepage_free(aux); 1844 } 1845 1846 fuse_writepage_free(wpa); 1847 spin_lock(&fi->lock); 1848 } 1849 1850 /* 1851 * If fi->writectr is positive (no truncate or fsync going on) send 1852 * all queued writepage requests. 1853 * 1854 * Called with fi->lock 1855 */ 1856 void fuse_flush_writepages(struct inode *inode) 1857 __releases(fi->lock) 1858 __acquires(fi->lock) 1859 { 1860 struct fuse_mount *fm = get_fuse_mount(inode); 1861 struct fuse_inode *fi = get_fuse_inode(inode); 1862 loff_t crop = i_size_read(inode); 1863 struct fuse_writepage_args *wpa; 1864 1865 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1866 wpa = list_entry(fi->queued_writes.next, 1867 struct fuse_writepage_args, queue_entry); 1868 list_del_init(&wpa->queue_entry); 1869 fuse_send_writepage(fm, wpa, crop); 1870 } 1871 } 1872 1873 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1874 struct fuse_writepage_args *wpa) 1875 { 1876 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1877 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1878 struct rb_node **p = &root->rb_node; 1879 struct rb_node *parent = NULL; 1880 1881 WARN_ON(!wpa->ia.ap.num_pages); 1882 while (*p) { 1883 struct fuse_writepage_args *curr; 1884 pgoff_t curr_index; 1885 1886 parent = *p; 1887 curr = rb_entry(parent, struct fuse_writepage_args, 1888 writepages_entry); 1889 WARN_ON(curr->inode != wpa->inode); 1890 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1891 1892 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1893 p = &(*p)->rb_right; 1894 else if (idx_to < curr_index) 1895 p = &(*p)->rb_left; 1896 else 1897 return curr; 1898 } 1899 1900 rb_link_node(&wpa->writepages_entry, parent, p); 1901 rb_insert_color(&wpa->writepages_entry, root); 1902 return NULL; 1903 } 1904 1905 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1906 { 1907 WARN_ON(fuse_insert_writeback(root, wpa)); 1908 } 1909 1910 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1911 int error) 1912 { 1913 struct fuse_writepage_args *wpa = 1914 container_of(args, typeof(*wpa), ia.ap.args); 1915 struct inode *inode = wpa->inode; 1916 struct fuse_inode *fi = get_fuse_inode(inode); 1917 struct fuse_conn *fc = get_fuse_conn(inode); 1918 1919 mapping_set_error(inode->i_mapping, error); 1920 /* 1921 * A writeback finished and this might have updated mtime/ctime on 1922 * server making local mtime/ctime stale. Hence invalidate attrs. 1923 * Do this only if writeback_cache is not enabled. If writeback_cache 1924 * is enabled, we trust local ctime/mtime. 1925 */ 1926 if (!fc->writeback_cache) 1927 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 1928 spin_lock(&fi->lock); 1929 rb_erase(&wpa->writepages_entry, &fi->writepages); 1930 while (wpa->next) { 1931 struct fuse_mount *fm = get_fuse_mount(inode); 1932 struct fuse_write_in *inarg = &wpa->ia.write.in; 1933 struct fuse_writepage_args *next = wpa->next; 1934 1935 wpa->next = next->next; 1936 next->next = NULL; 1937 next->ia.ff = fuse_file_get(wpa->ia.ff); 1938 tree_insert(&fi->writepages, next); 1939 1940 /* 1941 * Skip fuse_flush_writepages() to make it easy to crop requests 1942 * based on primary request size. 1943 * 1944 * 1st case (trivial): there are no concurrent activities using 1945 * fuse_set/release_nowrite. Then we're on safe side because 1946 * fuse_flush_writepages() would call fuse_send_writepage() 1947 * anyway. 1948 * 1949 * 2nd case: someone called fuse_set_nowrite and it is waiting 1950 * now for completion of all in-flight requests. This happens 1951 * rarely and no more than once per page, so this should be 1952 * okay. 1953 * 1954 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1955 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1956 * that fuse_set_nowrite returned implies that all in-flight 1957 * requests were completed along with all of their secondary 1958 * requests. Further primary requests are blocked by negative 1959 * writectr. Hence there cannot be any in-flight requests and 1960 * no invocations of fuse_writepage_end() while we're in 1961 * fuse_set_nowrite..fuse_release_nowrite section. 1962 */ 1963 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 1964 } 1965 fi->writectr--; 1966 fuse_writepage_finish(fm, wpa); 1967 spin_unlock(&fi->lock); 1968 fuse_writepage_free(wpa); 1969 } 1970 1971 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 1972 { 1973 struct fuse_file *ff; 1974 1975 spin_lock(&fi->lock); 1976 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 1977 write_entry); 1978 if (ff) 1979 fuse_file_get(ff); 1980 spin_unlock(&fi->lock); 1981 1982 return ff; 1983 } 1984 1985 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 1986 { 1987 struct fuse_file *ff = __fuse_write_file_get(fi); 1988 WARN_ON(!ff); 1989 return ff; 1990 } 1991 1992 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1993 { 1994 struct fuse_inode *fi = get_fuse_inode(inode); 1995 struct fuse_file *ff; 1996 int err; 1997 1998 /* 1999 * Inode is always written before the last reference is dropped and 2000 * hence this should not be reached from reclaim. 2001 * 2002 * Writing back the inode from reclaim can deadlock if the request 2003 * processing itself needs an allocation. Allocations triggering 2004 * reclaim while serving a request can't be prevented, because it can 2005 * involve any number of unrelated userspace processes. 2006 */ 2007 WARN_ON(wbc->for_reclaim); 2008 2009 ff = __fuse_write_file_get(fi); 2010 err = fuse_flush_times(inode, ff); 2011 if (ff) 2012 fuse_file_put(ff, false); 2013 2014 return err; 2015 } 2016 2017 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 2018 { 2019 struct fuse_writepage_args *wpa; 2020 struct fuse_args_pages *ap; 2021 2022 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 2023 if (wpa) { 2024 ap = &wpa->ia.ap; 2025 ap->num_pages = 0; 2026 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 2027 if (!ap->pages) { 2028 kfree(wpa); 2029 wpa = NULL; 2030 } 2031 } 2032 return wpa; 2033 2034 } 2035 2036 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 2037 struct fuse_writepage_args *wpa) 2038 { 2039 if (!fc->sync_fs) 2040 return; 2041 2042 rcu_read_lock(); 2043 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 2044 do { 2045 wpa->bucket = rcu_dereference(fc->curr_bucket); 2046 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 2047 rcu_read_unlock(); 2048 } 2049 2050 static int fuse_writepage_locked(struct folio *folio) 2051 { 2052 struct address_space *mapping = folio->mapping; 2053 struct inode *inode = mapping->host; 2054 struct fuse_conn *fc = get_fuse_conn(inode); 2055 struct fuse_inode *fi = get_fuse_inode(inode); 2056 struct fuse_writepage_args *wpa; 2057 struct fuse_args_pages *ap; 2058 struct folio *tmp_folio; 2059 int error = -ENOMEM; 2060 2061 folio_start_writeback(folio); 2062 2063 wpa = fuse_writepage_args_alloc(); 2064 if (!wpa) 2065 goto err; 2066 ap = &wpa->ia.ap; 2067 2068 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2069 if (!tmp_folio) 2070 goto err_free; 2071 2072 error = -EIO; 2073 wpa->ia.ff = fuse_write_file_get(fi); 2074 if (!wpa->ia.ff) 2075 goto err_nofile; 2076 2077 fuse_writepage_add_to_bucket(fc, wpa); 2078 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, folio_pos(folio), 0); 2079 2080 folio_copy(tmp_folio, folio); 2081 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2082 wpa->next = NULL; 2083 ap->args.in_pages = true; 2084 ap->num_pages = 1; 2085 ap->pages[0] = &tmp_folio->page; 2086 ap->descs[0].offset = 0; 2087 ap->descs[0].length = PAGE_SIZE; 2088 ap->args.end = fuse_writepage_end; 2089 wpa->inode = inode; 2090 2091 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2092 node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP); 2093 2094 spin_lock(&fi->lock); 2095 tree_insert(&fi->writepages, wpa); 2096 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2097 fuse_flush_writepages(inode); 2098 spin_unlock(&fi->lock); 2099 2100 folio_end_writeback(folio); 2101 2102 return 0; 2103 2104 err_nofile: 2105 folio_put(tmp_folio); 2106 err_free: 2107 kfree(wpa); 2108 err: 2109 mapping_set_error(folio->mapping, error); 2110 folio_end_writeback(folio); 2111 return error; 2112 } 2113 2114 struct fuse_fill_wb_data { 2115 struct fuse_writepage_args *wpa; 2116 struct fuse_file *ff; 2117 struct inode *inode; 2118 struct page **orig_pages; 2119 unsigned int max_pages; 2120 }; 2121 2122 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 2123 { 2124 struct fuse_args_pages *ap = &data->wpa->ia.ap; 2125 struct fuse_conn *fc = get_fuse_conn(data->inode); 2126 struct page **pages; 2127 struct fuse_page_desc *descs; 2128 unsigned int npages = min_t(unsigned int, 2129 max_t(unsigned int, data->max_pages * 2, 2130 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2131 fc->max_pages); 2132 WARN_ON(npages <= data->max_pages); 2133 2134 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 2135 if (!pages) 2136 return false; 2137 2138 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 2139 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 2140 kfree(ap->pages); 2141 ap->pages = pages; 2142 ap->descs = descs; 2143 data->max_pages = npages; 2144 2145 return true; 2146 } 2147 2148 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2149 { 2150 struct fuse_writepage_args *wpa = data->wpa; 2151 struct inode *inode = data->inode; 2152 struct fuse_inode *fi = get_fuse_inode(inode); 2153 int num_pages = wpa->ia.ap.num_pages; 2154 int i; 2155 2156 wpa->ia.ff = fuse_file_get(data->ff); 2157 spin_lock(&fi->lock); 2158 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2159 fuse_flush_writepages(inode); 2160 spin_unlock(&fi->lock); 2161 2162 for (i = 0; i < num_pages; i++) 2163 end_page_writeback(data->orig_pages[i]); 2164 } 2165 2166 /* 2167 * Check under fi->lock if the page is under writeback, and insert it onto the 2168 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2169 * one already added for a page at this offset. If there's none, then insert 2170 * this new request onto the auxiliary list, otherwise reuse the existing one by 2171 * swapping the new temp page with the old one. 2172 */ 2173 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2174 struct page *page) 2175 { 2176 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2177 struct fuse_writepage_args *tmp; 2178 struct fuse_writepage_args *old_wpa; 2179 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2180 2181 WARN_ON(new_ap->num_pages != 0); 2182 new_ap->num_pages = 1; 2183 2184 spin_lock(&fi->lock); 2185 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2186 if (!old_wpa) { 2187 spin_unlock(&fi->lock); 2188 return true; 2189 } 2190 2191 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2192 pgoff_t curr_index; 2193 2194 WARN_ON(tmp->inode != new_wpa->inode); 2195 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2196 if (curr_index == page->index) { 2197 WARN_ON(tmp->ia.ap.num_pages != 1); 2198 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 2199 break; 2200 } 2201 } 2202 2203 if (!tmp) { 2204 new_wpa->next = old_wpa->next; 2205 old_wpa->next = new_wpa; 2206 } 2207 2208 spin_unlock(&fi->lock); 2209 2210 if (tmp) { 2211 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2212 2213 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2214 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2215 wb_writeout_inc(&bdi->wb); 2216 fuse_writepage_free(new_wpa); 2217 } 2218 2219 return false; 2220 } 2221 2222 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2223 struct fuse_args_pages *ap, 2224 struct fuse_fill_wb_data *data) 2225 { 2226 WARN_ON(!ap->num_pages); 2227 2228 /* 2229 * Being under writeback is unlikely but possible. For example direct 2230 * read to an mmaped fuse file will set the page dirty twice; once when 2231 * the pages are faulted with get_user_pages(), and then after the read 2232 * completed. 2233 */ 2234 if (fuse_page_is_writeback(data->inode, page->index)) 2235 return true; 2236 2237 /* Reached max pages */ 2238 if (ap->num_pages == fc->max_pages) 2239 return true; 2240 2241 /* Reached max write bytes */ 2242 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2243 return true; 2244 2245 /* Discontinuity */ 2246 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2247 return true; 2248 2249 /* Need to grow the pages array? If so, did the expansion fail? */ 2250 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2251 return true; 2252 2253 return false; 2254 } 2255 2256 static int fuse_writepages_fill(struct folio *folio, 2257 struct writeback_control *wbc, void *_data) 2258 { 2259 struct fuse_fill_wb_data *data = _data; 2260 struct fuse_writepage_args *wpa = data->wpa; 2261 struct fuse_args_pages *ap = &wpa->ia.ap; 2262 struct inode *inode = data->inode; 2263 struct fuse_inode *fi = get_fuse_inode(inode); 2264 struct fuse_conn *fc = get_fuse_conn(inode); 2265 struct page *tmp_page; 2266 int err; 2267 2268 if (!data->ff) { 2269 err = -EIO; 2270 data->ff = fuse_write_file_get(fi); 2271 if (!data->ff) 2272 goto out_unlock; 2273 } 2274 2275 if (wpa && fuse_writepage_need_send(fc, &folio->page, ap, data)) { 2276 fuse_writepages_send(data); 2277 data->wpa = NULL; 2278 } 2279 2280 err = -ENOMEM; 2281 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2282 if (!tmp_page) 2283 goto out_unlock; 2284 2285 /* 2286 * The page must not be redirtied until the writeout is completed 2287 * (i.e. userspace has sent a reply to the write request). Otherwise 2288 * there could be more than one temporary page instance for each real 2289 * page. 2290 * 2291 * This is ensured by holding the page lock in page_mkwrite() while 2292 * checking fuse_page_is_writeback(). We already hold the page lock 2293 * since clear_page_dirty_for_io() and keep it held until we add the 2294 * request to the fi->writepages list and increment ap->num_pages. 2295 * After this fuse_page_is_writeback() will indicate that the page is 2296 * under writeback, so we can release the page lock. 2297 */ 2298 if (data->wpa == NULL) { 2299 err = -ENOMEM; 2300 wpa = fuse_writepage_args_alloc(); 2301 if (!wpa) { 2302 __free_page(tmp_page); 2303 goto out_unlock; 2304 } 2305 fuse_writepage_add_to_bucket(fc, wpa); 2306 2307 data->max_pages = 1; 2308 2309 ap = &wpa->ia.ap; 2310 fuse_write_args_fill(&wpa->ia, data->ff, folio_pos(folio), 0); 2311 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2312 wpa->next = NULL; 2313 ap->args.in_pages = true; 2314 ap->args.end = fuse_writepage_end; 2315 ap->num_pages = 0; 2316 wpa->inode = inode; 2317 } 2318 folio_start_writeback(folio); 2319 2320 copy_highpage(tmp_page, &folio->page); 2321 ap->pages[ap->num_pages] = tmp_page; 2322 ap->descs[ap->num_pages].offset = 0; 2323 ap->descs[ap->num_pages].length = PAGE_SIZE; 2324 data->orig_pages[ap->num_pages] = &folio->page; 2325 2326 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2327 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2328 2329 err = 0; 2330 if (data->wpa) { 2331 /* 2332 * Protected by fi->lock against concurrent access by 2333 * fuse_page_is_writeback(). 2334 */ 2335 spin_lock(&fi->lock); 2336 ap->num_pages++; 2337 spin_unlock(&fi->lock); 2338 } else if (fuse_writepage_add(wpa, &folio->page)) { 2339 data->wpa = wpa; 2340 } else { 2341 folio_end_writeback(folio); 2342 } 2343 out_unlock: 2344 folio_unlock(folio); 2345 2346 return err; 2347 } 2348 2349 static int fuse_writepages(struct address_space *mapping, 2350 struct writeback_control *wbc) 2351 { 2352 struct inode *inode = mapping->host; 2353 struct fuse_conn *fc = get_fuse_conn(inode); 2354 struct fuse_fill_wb_data data; 2355 int err; 2356 2357 err = -EIO; 2358 if (fuse_is_bad(inode)) 2359 goto out; 2360 2361 if (wbc->sync_mode == WB_SYNC_NONE && 2362 fc->num_background >= fc->congestion_threshold) 2363 return 0; 2364 2365 data.inode = inode; 2366 data.wpa = NULL; 2367 data.ff = NULL; 2368 2369 err = -ENOMEM; 2370 data.orig_pages = kcalloc(fc->max_pages, 2371 sizeof(struct page *), 2372 GFP_NOFS); 2373 if (!data.orig_pages) 2374 goto out; 2375 2376 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2377 if (data.wpa) { 2378 WARN_ON(!data.wpa->ia.ap.num_pages); 2379 fuse_writepages_send(&data); 2380 } 2381 if (data.ff) 2382 fuse_file_put(data.ff, false); 2383 2384 kfree(data.orig_pages); 2385 out: 2386 return err; 2387 } 2388 2389 /* 2390 * It's worthy to make sure that space is reserved on disk for the write, 2391 * but how to implement it without killing performance need more thinking. 2392 */ 2393 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2394 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 2395 { 2396 pgoff_t index = pos >> PAGE_SHIFT; 2397 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2398 struct page *page; 2399 loff_t fsize; 2400 int err = -ENOMEM; 2401 2402 WARN_ON(!fc->writeback_cache); 2403 2404 page = grab_cache_page_write_begin(mapping, index); 2405 if (!page) 2406 goto error; 2407 2408 fuse_wait_on_page_writeback(mapping->host, page->index); 2409 2410 if (PageUptodate(page) || len == PAGE_SIZE) 2411 goto success; 2412 /* 2413 * Check if the start this page comes after the end of file, in which 2414 * case the readpage can be optimized away. 2415 */ 2416 fsize = i_size_read(mapping->host); 2417 if (fsize <= (pos & PAGE_MASK)) { 2418 size_t off = pos & ~PAGE_MASK; 2419 if (off) 2420 zero_user_segment(page, 0, off); 2421 goto success; 2422 } 2423 err = fuse_do_readpage(file, page); 2424 if (err) 2425 goto cleanup; 2426 success: 2427 *pagep = page; 2428 return 0; 2429 2430 cleanup: 2431 unlock_page(page); 2432 put_page(page); 2433 error: 2434 return err; 2435 } 2436 2437 static int fuse_write_end(struct file *file, struct address_space *mapping, 2438 loff_t pos, unsigned len, unsigned copied, 2439 struct page *page, void *fsdata) 2440 { 2441 struct inode *inode = page->mapping->host; 2442 2443 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2444 if (!copied) 2445 goto unlock; 2446 2447 pos += copied; 2448 if (!PageUptodate(page)) { 2449 /* Zero any unwritten bytes at the end of the page */ 2450 size_t endoff = pos & ~PAGE_MASK; 2451 if (endoff) 2452 zero_user_segment(page, endoff, PAGE_SIZE); 2453 SetPageUptodate(page); 2454 } 2455 2456 if (pos > inode->i_size) 2457 i_size_write(inode, pos); 2458 2459 set_page_dirty(page); 2460 2461 unlock: 2462 unlock_page(page); 2463 put_page(page); 2464 2465 return copied; 2466 } 2467 2468 static int fuse_launder_folio(struct folio *folio) 2469 { 2470 int err = 0; 2471 if (folio_clear_dirty_for_io(folio)) { 2472 struct inode *inode = folio->mapping->host; 2473 2474 /* Serialize with pending writeback for the same page */ 2475 fuse_wait_on_page_writeback(inode, folio->index); 2476 err = fuse_writepage_locked(folio); 2477 if (!err) 2478 fuse_wait_on_page_writeback(inode, folio->index); 2479 } 2480 return err; 2481 } 2482 2483 /* 2484 * Write back dirty data/metadata now (there may not be any suitable 2485 * open files later for data) 2486 */ 2487 static void fuse_vma_close(struct vm_area_struct *vma) 2488 { 2489 int err; 2490 2491 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2492 mapping_set_error(vma->vm_file->f_mapping, err); 2493 } 2494 2495 /* 2496 * Wait for writeback against this page to complete before allowing it 2497 * to be marked dirty again, and hence written back again, possibly 2498 * before the previous writepage completed. 2499 * 2500 * Block here, instead of in ->writepage(), so that the userspace fs 2501 * can only block processes actually operating on the filesystem. 2502 * 2503 * Otherwise unprivileged userspace fs would be able to block 2504 * unrelated: 2505 * 2506 * - page migration 2507 * - sync(2) 2508 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2509 */ 2510 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2511 { 2512 struct page *page = vmf->page; 2513 struct inode *inode = file_inode(vmf->vma->vm_file); 2514 2515 file_update_time(vmf->vma->vm_file); 2516 lock_page(page); 2517 if (page->mapping != inode->i_mapping) { 2518 unlock_page(page); 2519 return VM_FAULT_NOPAGE; 2520 } 2521 2522 fuse_wait_on_page_writeback(inode, page->index); 2523 return VM_FAULT_LOCKED; 2524 } 2525 2526 static const struct vm_operations_struct fuse_file_vm_ops = { 2527 .close = fuse_vma_close, 2528 .fault = filemap_fault, 2529 .map_pages = filemap_map_pages, 2530 .page_mkwrite = fuse_page_mkwrite, 2531 }; 2532 2533 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2534 { 2535 struct fuse_file *ff = file->private_data; 2536 struct fuse_conn *fc = ff->fm->fc; 2537 struct inode *inode = file_inode(file); 2538 int rc; 2539 2540 /* DAX mmap is superior to direct_io mmap */ 2541 if (FUSE_IS_DAX(inode)) 2542 return fuse_dax_mmap(file, vma); 2543 2544 /* 2545 * If inode is in passthrough io mode, because it has some file open 2546 * in passthrough mode, either mmap to backing file or fail mmap, 2547 * because mixing cached mmap and passthrough io mode is not allowed. 2548 */ 2549 if (fuse_file_passthrough(ff)) 2550 return fuse_passthrough_mmap(file, vma); 2551 else if (fuse_inode_backing(get_fuse_inode(inode))) 2552 return -ENODEV; 2553 2554 /* 2555 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT, 2556 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP. 2557 */ 2558 if (ff->open_flags & FOPEN_DIRECT_IO) { 2559 /* 2560 * Can't provide the coherency needed for MAP_SHARED 2561 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set. 2562 */ 2563 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap) 2564 return -ENODEV; 2565 2566 invalidate_inode_pages2(file->f_mapping); 2567 2568 if (!(vma->vm_flags & VM_MAYSHARE)) { 2569 /* MAP_PRIVATE */ 2570 return generic_file_mmap(file, vma); 2571 } 2572 2573 /* 2574 * First mmap of direct_io file enters caching inode io mode. 2575 * Also waits for parallel dio writers to go into serial mode 2576 * (exclusive instead of shared lock). 2577 * After first mmap, the inode stays in caching io mode until 2578 * the direct_io file release. 2579 */ 2580 rc = fuse_file_cached_io_open(inode, ff); 2581 if (rc) 2582 return rc; 2583 } 2584 2585 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2586 fuse_link_write_file(file); 2587 2588 file_accessed(file); 2589 vma->vm_ops = &fuse_file_vm_ops; 2590 return 0; 2591 } 2592 2593 static int convert_fuse_file_lock(struct fuse_conn *fc, 2594 const struct fuse_file_lock *ffl, 2595 struct file_lock *fl) 2596 { 2597 switch (ffl->type) { 2598 case F_UNLCK: 2599 break; 2600 2601 case F_RDLCK: 2602 case F_WRLCK: 2603 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2604 ffl->end < ffl->start) 2605 return -EIO; 2606 2607 fl->fl_start = ffl->start; 2608 fl->fl_end = ffl->end; 2609 2610 /* 2611 * Convert pid into init's pid namespace. The locks API will 2612 * translate it into the caller's pid namespace. 2613 */ 2614 rcu_read_lock(); 2615 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2616 rcu_read_unlock(); 2617 break; 2618 2619 default: 2620 return -EIO; 2621 } 2622 fl->c.flc_type = ffl->type; 2623 return 0; 2624 } 2625 2626 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2627 const struct file_lock *fl, int opcode, pid_t pid, 2628 int flock, struct fuse_lk_in *inarg) 2629 { 2630 struct inode *inode = file_inode(file); 2631 struct fuse_conn *fc = get_fuse_conn(inode); 2632 struct fuse_file *ff = file->private_data; 2633 2634 memset(inarg, 0, sizeof(*inarg)); 2635 inarg->fh = ff->fh; 2636 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner); 2637 inarg->lk.start = fl->fl_start; 2638 inarg->lk.end = fl->fl_end; 2639 inarg->lk.type = fl->c.flc_type; 2640 inarg->lk.pid = pid; 2641 if (flock) 2642 inarg->lk_flags |= FUSE_LK_FLOCK; 2643 args->opcode = opcode; 2644 args->nodeid = get_node_id(inode); 2645 args->in_numargs = 1; 2646 args->in_args[0].size = sizeof(*inarg); 2647 args->in_args[0].value = inarg; 2648 } 2649 2650 static int fuse_getlk(struct file *file, struct file_lock *fl) 2651 { 2652 struct inode *inode = file_inode(file); 2653 struct fuse_mount *fm = get_fuse_mount(inode); 2654 FUSE_ARGS(args); 2655 struct fuse_lk_in inarg; 2656 struct fuse_lk_out outarg; 2657 int err; 2658 2659 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2660 args.out_numargs = 1; 2661 args.out_args[0].size = sizeof(outarg); 2662 args.out_args[0].value = &outarg; 2663 err = fuse_simple_request(fm, &args); 2664 if (!err) 2665 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2666 2667 return err; 2668 } 2669 2670 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2671 { 2672 struct inode *inode = file_inode(file); 2673 struct fuse_mount *fm = get_fuse_mount(inode); 2674 FUSE_ARGS(args); 2675 struct fuse_lk_in inarg; 2676 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2677 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL; 2678 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2679 int err; 2680 2681 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2682 /* NLM needs asynchronous locks, which we don't support yet */ 2683 return -ENOLCK; 2684 } 2685 2686 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2687 err = fuse_simple_request(fm, &args); 2688 2689 /* locking is restartable */ 2690 if (err == -EINTR) 2691 err = -ERESTARTSYS; 2692 2693 return err; 2694 } 2695 2696 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2697 { 2698 struct inode *inode = file_inode(file); 2699 struct fuse_conn *fc = get_fuse_conn(inode); 2700 int err; 2701 2702 if (cmd == F_CANCELLK) { 2703 err = 0; 2704 } else if (cmd == F_GETLK) { 2705 if (fc->no_lock) { 2706 posix_test_lock(file, fl); 2707 err = 0; 2708 } else 2709 err = fuse_getlk(file, fl); 2710 } else { 2711 if (fc->no_lock) 2712 err = posix_lock_file(file, fl, NULL); 2713 else 2714 err = fuse_setlk(file, fl, 0); 2715 } 2716 return err; 2717 } 2718 2719 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2720 { 2721 struct inode *inode = file_inode(file); 2722 struct fuse_conn *fc = get_fuse_conn(inode); 2723 int err; 2724 2725 if (fc->no_flock) { 2726 err = locks_lock_file_wait(file, fl); 2727 } else { 2728 struct fuse_file *ff = file->private_data; 2729 2730 /* emulate flock with POSIX locks */ 2731 ff->flock = true; 2732 err = fuse_setlk(file, fl, 1); 2733 } 2734 2735 return err; 2736 } 2737 2738 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2739 { 2740 struct inode *inode = mapping->host; 2741 struct fuse_mount *fm = get_fuse_mount(inode); 2742 FUSE_ARGS(args); 2743 struct fuse_bmap_in inarg; 2744 struct fuse_bmap_out outarg; 2745 int err; 2746 2747 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2748 return 0; 2749 2750 memset(&inarg, 0, sizeof(inarg)); 2751 inarg.block = block; 2752 inarg.blocksize = inode->i_sb->s_blocksize; 2753 args.opcode = FUSE_BMAP; 2754 args.nodeid = get_node_id(inode); 2755 args.in_numargs = 1; 2756 args.in_args[0].size = sizeof(inarg); 2757 args.in_args[0].value = &inarg; 2758 args.out_numargs = 1; 2759 args.out_args[0].size = sizeof(outarg); 2760 args.out_args[0].value = &outarg; 2761 err = fuse_simple_request(fm, &args); 2762 if (err == -ENOSYS) 2763 fm->fc->no_bmap = 1; 2764 2765 return err ? 0 : outarg.block; 2766 } 2767 2768 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2769 { 2770 struct inode *inode = file->f_mapping->host; 2771 struct fuse_mount *fm = get_fuse_mount(inode); 2772 struct fuse_file *ff = file->private_data; 2773 FUSE_ARGS(args); 2774 struct fuse_lseek_in inarg = { 2775 .fh = ff->fh, 2776 .offset = offset, 2777 .whence = whence 2778 }; 2779 struct fuse_lseek_out outarg; 2780 int err; 2781 2782 if (fm->fc->no_lseek) 2783 goto fallback; 2784 2785 args.opcode = FUSE_LSEEK; 2786 args.nodeid = ff->nodeid; 2787 args.in_numargs = 1; 2788 args.in_args[0].size = sizeof(inarg); 2789 args.in_args[0].value = &inarg; 2790 args.out_numargs = 1; 2791 args.out_args[0].size = sizeof(outarg); 2792 args.out_args[0].value = &outarg; 2793 err = fuse_simple_request(fm, &args); 2794 if (err) { 2795 if (err == -ENOSYS) { 2796 fm->fc->no_lseek = 1; 2797 goto fallback; 2798 } 2799 return err; 2800 } 2801 2802 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2803 2804 fallback: 2805 err = fuse_update_attributes(inode, file, STATX_SIZE); 2806 if (!err) 2807 return generic_file_llseek(file, offset, whence); 2808 else 2809 return err; 2810 } 2811 2812 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2813 { 2814 loff_t retval; 2815 struct inode *inode = file_inode(file); 2816 2817 switch (whence) { 2818 case SEEK_SET: 2819 case SEEK_CUR: 2820 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2821 retval = generic_file_llseek(file, offset, whence); 2822 break; 2823 case SEEK_END: 2824 inode_lock(inode); 2825 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2826 if (!retval) 2827 retval = generic_file_llseek(file, offset, whence); 2828 inode_unlock(inode); 2829 break; 2830 case SEEK_HOLE: 2831 case SEEK_DATA: 2832 inode_lock(inode); 2833 retval = fuse_lseek(file, offset, whence); 2834 inode_unlock(inode); 2835 break; 2836 default: 2837 retval = -EINVAL; 2838 } 2839 2840 return retval; 2841 } 2842 2843 /* 2844 * All files which have been polled are linked to RB tree 2845 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2846 * find the matching one. 2847 */ 2848 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2849 struct rb_node **parent_out) 2850 { 2851 struct rb_node **link = &fc->polled_files.rb_node; 2852 struct rb_node *last = NULL; 2853 2854 while (*link) { 2855 struct fuse_file *ff; 2856 2857 last = *link; 2858 ff = rb_entry(last, struct fuse_file, polled_node); 2859 2860 if (kh < ff->kh) 2861 link = &last->rb_left; 2862 else if (kh > ff->kh) 2863 link = &last->rb_right; 2864 else 2865 return link; 2866 } 2867 2868 if (parent_out) 2869 *parent_out = last; 2870 return link; 2871 } 2872 2873 /* 2874 * The file is about to be polled. Make sure it's on the polled_files 2875 * RB tree. Note that files once added to the polled_files tree are 2876 * not removed before the file is released. This is because a file 2877 * polled once is likely to be polled again. 2878 */ 2879 static void fuse_register_polled_file(struct fuse_conn *fc, 2880 struct fuse_file *ff) 2881 { 2882 spin_lock(&fc->lock); 2883 if (RB_EMPTY_NODE(&ff->polled_node)) { 2884 struct rb_node **link, *parent; 2885 2886 link = fuse_find_polled_node(fc, ff->kh, &parent); 2887 BUG_ON(*link); 2888 rb_link_node(&ff->polled_node, parent, link); 2889 rb_insert_color(&ff->polled_node, &fc->polled_files); 2890 } 2891 spin_unlock(&fc->lock); 2892 } 2893 2894 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2895 { 2896 struct fuse_file *ff = file->private_data; 2897 struct fuse_mount *fm = ff->fm; 2898 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2899 struct fuse_poll_out outarg; 2900 FUSE_ARGS(args); 2901 int err; 2902 2903 if (fm->fc->no_poll) 2904 return DEFAULT_POLLMASK; 2905 2906 poll_wait(file, &ff->poll_wait, wait); 2907 inarg.events = mangle_poll(poll_requested_events(wait)); 2908 2909 /* 2910 * Ask for notification iff there's someone waiting for it. 2911 * The client may ignore the flag and always notify. 2912 */ 2913 if (waitqueue_active(&ff->poll_wait)) { 2914 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2915 fuse_register_polled_file(fm->fc, ff); 2916 } 2917 2918 args.opcode = FUSE_POLL; 2919 args.nodeid = ff->nodeid; 2920 args.in_numargs = 1; 2921 args.in_args[0].size = sizeof(inarg); 2922 args.in_args[0].value = &inarg; 2923 args.out_numargs = 1; 2924 args.out_args[0].size = sizeof(outarg); 2925 args.out_args[0].value = &outarg; 2926 err = fuse_simple_request(fm, &args); 2927 2928 if (!err) 2929 return demangle_poll(outarg.revents); 2930 if (err == -ENOSYS) { 2931 fm->fc->no_poll = 1; 2932 return DEFAULT_POLLMASK; 2933 } 2934 return EPOLLERR; 2935 } 2936 EXPORT_SYMBOL_GPL(fuse_file_poll); 2937 2938 /* 2939 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2940 * wakes up the poll waiters. 2941 */ 2942 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2943 struct fuse_notify_poll_wakeup_out *outarg) 2944 { 2945 u64 kh = outarg->kh; 2946 struct rb_node **link; 2947 2948 spin_lock(&fc->lock); 2949 2950 link = fuse_find_polled_node(fc, kh, NULL); 2951 if (*link) { 2952 struct fuse_file *ff; 2953 2954 ff = rb_entry(*link, struct fuse_file, polled_node); 2955 wake_up_interruptible_sync(&ff->poll_wait); 2956 } 2957 2958 spin_unlock(&fc->lock); 2959 return 0; 2960 } 2961 2962 static void fuse_do_truncate(struct file *file) 2963 { 2964 struct inode *inode = file->f_mapping->host; 2965 struct iattr attr; 2966 2967 attr.ia_valid = ATTR_SIZE; 2968 attr.ia_size = i_size_read(inode); 2969 2970 attr.ia_file = file; 2971 attr.ia_valid |= ATTR_FILE; 2972 2973 fuse_do_setattr(file_dentry(file), &attr, file); 2974 } 2975 2976 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2977 { 2978 return round_up(off, fc->max_pages << PAGE_SHIFT); 2979 } 2980 2981 static ssize_t 2982 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2983 { 2984 DECLARE_COMPLETION_ONSTACK(wait); 2985 ssize_t ret = 0; 2986 struct file *file = iocb->ki_filp; 2987 struct fuse_file *ff = file->private_data; 2988 loff_t pos = 0; 2989 struct inode *inode; 2990 loff_t i_size; 2991 size_t count = iov_iter_count(iter), shortened = 0; 2992 loff_t offset = iocb->ki_pos; 2993 struct fuse_io_priv *io; 2994 2995 pos = offset; 2996 inode = file->f_mapping->host; 2997 i_size = i_size_read(inode); 2998 2999 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 3000 return 0; 3001 3002 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3003 if (!io) 3004 return -ENOMEM; 3005 spin_lock_init(&io->lock); 3006 kref_init(&io->refcnt); 3007 io->reqs = 1; 3008 io->bytes = -1; 3009 io->size = 0; 3010 io->offset = offset; 3011 io->write = (iov_iter_rw(iter) == WRITE); 3012 io->err = 0; 3013 /* 3014 * By default, we want to optimize all I/Os with async request 3015 * submission to the client filesystem if supported. 3016 */ 3017 io->async = ff->fm->fc->async_dio; 3018 io->iocb = iocb; 3019 io->blocking = is_sync_kiocb(iocb); 3020 3021 /* optimization for short read */ 3022 if (io->async && !io->write && offset + count > i_size) { 3023 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 3024 shortened = count - iov_iter_count(iter); 3025 count -= shortened; 3026 } 3027 3028 /* 3029 * We cannot asynchronously extend the size of a file. 3030 * In such case the aio will behave exactly like sync io. 3031 */ 3032 if ((offset + count > i_size) && io->write) 3033 io->blocking = true; 3034 3035 if (io->async && io->blocking) { 3036 /* 3037 * Additional reference to keep io around after 3038 * calling fuse_aio_complete() 3039 */ 3040 kref_get(&io->refcnt); 3041 io->done = &wait; 3042 } 3043 3044 if (iov_iter_rw(iter) == WRITE) { 3045 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3046 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3047 } else { 3048 ret = __fuse_direct_read(io, iter, &pos); 3049 } 3050 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 3051 3052 if (io->async) { 3053 bool blocking = io->blocking; 3054 3055 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3056 3057 /* we have a non-extending, async request, so return */ 3058 if (!blocking) 3059 return -EIOCBQUEUED; 3060 3061 wait_for_completion(&wait); 3062 ret = fuse_get_res_by_io(io); 3063 } 3064 3065 kref_put(&io->refcnt, fuse_io_release); 3066 3067 if (iov_iter_rw(iter) == WRITE) { 3068 fuse_write_update_attr(inode, pos, ret); 3069 /* For extending writes we already hold exclusive lock */ 3070 if (ret < 0 && offset + count > i_size) 3071 fuse_do_truncate(file); 3072 } 3073 3074 return ret; 3075 } 3076 3077 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3078 { 3079 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 3080 3081 if (!err) 3082 fuse_sync_writes(inode); 3083 3084 return err; 3085 } 3086 3087 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3088 loff_t length) 3089 { 3090 struct fuse_file *ff = file->private_data; 3091 struct inode *inode = file_inode(file); 3092 struct fuse_inode *fi = get_fuse_inode(inode); 3093 struct fuse_mount *fm = ff->fm; 3094 FUSE_ARGS(args); 3095 struct fuse_fallocate_in inarg = { 3096 .fh = ff->fh, 3097 .offset = offset, 3098 .length = length, 3099 .mode = mode 3100 }; 3101 int err; 3102 bool block_faults = FUSE_IS_DAX(inode) && 3103 (!(mode & FALLOC_FL_KEEP_SIZE) || 3104 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))); 3105 3106 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3107 FALLOC_FL_ZERO_RANGE)) 3108 return -EOPNOTSUPP; 3109 3110 if (fm->fc->no_fallocate) 3111 return -EOPNOTSUPP; 3112 3113 inode_lock(inode); 3114 if (block_faults) { 3115 filemap_invalidate_lock(inode->i_mapping); 3116 err = fuse_dax_break_layouts(inode, 0, 0); 3117 if (err) 3118 goto out; 3119 } 3120 3121 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 3122 loff_t endbyte = offset + length - 1; 3123 3124 err = fuse_writeback_range(inode, offset, endbyte); 3125 if (err) 3126 goto out; 3127 } 3128 3129 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3130 offset + length > i_size_read(inode)) { 3131 err = inode_newsize_ok(inode, offset + length); 3132 if (err) 3133 goto out; 3134 } 3135 3136 err = file_modified(file); 3137 if (err) 3138 goto out; 3139 3140 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3141 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3142 3143 args.opcode = FUSE_FALLOCATE; 3144 args.nodeid = ff->nodeid; 3145 args.in_numargs = 1; 3146 args.in_args[0].size = sizeof(inarg); 3147 args.in_args[0].value = &inarg; 3148 err = fuse_simple_request(fm, &args); 3149 if (err == -ENOSYS) { 3150 fm->fc->no_fallocate = 1; 3151 err = -EOPNOTSUPP; 3152 } 3153 if (err) 3154 goto out; 3155 3156 /* we could have extended the file */ 3157 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3158 if (fuse_write_update_attr(inode, offset + length, length)) 3159 file_update_time(file); 3160 } 3161 3162 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 3163 truncate_pagecache_range(inode, offset, offset + length - 1); 3164 3165 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3166 3167 out: 3168 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3169 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3170 3171 if (block_faults) 3172 filemap_invalidate_unlock(inode->i_mapping); 3173 3174 inode_unlock(inode); 3175 3176 fuse_flush_time_update(inode); 3177 3178 return err; 3179 } 3180 3181 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3182 struct file *file_out, loff_t pos_out, 3183 size_t len, unsigned int flags) 3184 { 3185 struct fuse_file *ff_in = file_in->private_data; 3186 struct fuse_file *ff_out = file_out->private_data; 3187 struct inode *inode_in = file_inode(file_in); 3188 struct inode *inode_out = file_inode(file_out); 3189 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3190 struct fuse_mount *fm = ff_in->fm; 3191 struct fuse_conn *fc = fm->fc; 3192 FUSE_ARGS(args); 3193 struct fuse_copy_file_range_in inarg = { 3194 .fh_in = ff_in->fh, 3195 .off_in = pos_in, 3196 .nodeid_out = ff_out->nodeid, 3197 .fh_out = ff_out->fh, 3198 .off_out = pos_out, 3199 .len = len, 3200 .flags = flags 3201 }; 3202 struct fuse_write_out outarg; 3203 ssize_t err; 3204 /* mark unstable when write-back is not used, and file_out gets 3205 * extended */ 3206 bool is_unstable = (!fc->writeback_cache) && 3207 ((pos_out + len) > inode_out->i_size); 3208 3209 if (fc->no_copy_file_range) 3210 return -EOPNOTSUPP; 3211 3212 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3213 return -EXDEV; 3214 3215 inode_lock(inode_in); 3216 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3217 inode_unlock(inode_in); 3218 if (err) 3219 return err; 3220 3221 inode_lock(inode_out); 3222 3223 err = file_modified(file_out); 3224 if (err) 3225 goto out; 3226 3227 /* 3228 * Write out dirty pages in the destination file before sending the COPY 3229 * request to userspace. After the request is completed, truncate off 3230 * pages (including partial ones) from the cache that have been copied, 3231 * since these contain stale data at that point. 3232 * 3233 * This should be mostly correct, but if the COPY writes to partial 3234 * pages (at the start or end) and the parts not covered by the COPY are 3235 * written through a memory map after calling fuse_writeback_range(), 3236 * then these partial page modifications will be lost on truncation. 3237 * 3238 * It is unlikely that someone would rely on such mixed style 3239 * modifications. Yet this does give less guarantees than if the 3240 * copying was performed with write(2). 3241 * 3242 * To fix this a mapping->invalidate_lock could be used to prevent new 3243 * faults while the copy is ongoing. 3244 */ 3245 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3246 if (err) 3247 goto out; 3248 3249 if (is_unstable) 3250 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3251 3252 args.opcode = FUSE_COPY_FILE_RANGE; 3253 args.nodeid = ff_in->nodeid; 3254 args.in_numargs = 1; 3255 args.in_args[0].size = sizeof(inarg); 3256 args.in_args[0].value = &inarg; 3257 args.out_numargs = 1; 3258 args.out_args[0].size = sizeof(outarg); 3259 args.out_args[0].value = &outarg; 3260 err = fuse_simple_request(fm, &args); 3261 if (err == -ENOSYS) { 3262 fc->no_copy_file_range = 1; 3263 err = -EOPNOTSUPP; 3264 } 3265 if (err) 3266 goto out; 3267 3268 truncate_inode_pages_range(inode_out->i_mapping, 3269 ALIGN_DOWN(pos_out, PAGE_SIZE), 3270 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3271 3272 file_update_time(file_out); 3273 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3274 3275 err = outarg.size; 3276 out: 3277 if (is_unstable) 3278 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3279 3280 inode_unlock(inode_out); 3281 file_accessed(file_in); 3282 3283 fuse_flush_time_update(inode_out); 3284 3285 return err; 3286 } 3287 3288 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3289 struct file *dst_file, loff_t dst_off, 3290 size_t len, unsigned int flags) 3291 { 3292 ssize_t ret; 3293 3294 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3295 len, flags); 3296 3297 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3298 ret = splice_copy_file_range(src_file, src_off, dst_file, 3299 dst_off, len); 3300 return ret; 3301 } 3302 3303 static const struct file_operations fuse_file_operations = { 3304 .llseek = fuse_file_llseek, 3305 .read_iter = fuse_file_read_iter, 3306 .write_iter = fuse_file_write_iter, 3307 .mmap = fuse_file_mmap, 3308 .open = fuse_open, 3309 .flush = fuse_flush, 3310 .release = fuse_release, 3311 .fsync = fuse_fsync, 3312 .lock = fuse_file_lock, 3313 .get_unmapped_area = thp_get_unmapped_area, 3314 .flock = fuse_file_flock, 3315 .splice_read = fuse_splice_read, 3316 .splice_write = fuse_splice_write, 3317 .unlocked_ioctl = fuse_file_ioctl, 3318 .compat_ioctl = fuse_file_compat_ioctl, 3319 .poll = fuse_file_poll, 3320 .fallocate = fuse_file_fallocate, 3321 .copy_file_range = fuse_copy_file_range, 3322 }; 3323 3324 static const struct address_space_operations fuse_file_aops = { 3325 .read_folio = fuse_read_folio, 3326 .readahead = fuse_readahead, 3327 .writepages = fuse_writepages, 3328 .launder_folio = fuse_launder_folio, 3329 .dirty_folio = filemap_dirty_folio, 3330 .migrate_folio = filemap_migrate_folio, 3331 .bmap = fuse_bmap, 3332 .direct_IO = fuse_direct_IO, 3333 .write_begin = fuse_write_begin, 3334 .write_end = fuse_write_end, 3335 }; 3336 3337 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3338 { 3339 struct fuse_inode *fi = get_fuse_inode(inode); 3340 3341 inode->i_fop = &fuse_file_operations; 3342 inode->i_data.a_ops = &fuse_file_aops; 3343 3344 INIT_LIST_HEAD(&fi->write_files); 3345 INIT_LIST_HEAD(&fi->queued_writes); 3346 fi->writectr = 0; 3347 fi->iocachectr = 0; 3348 init_waitqueue_head(&fi->page_waitq); 3349 init_waitqueue_head(&fi->direct_io_waitq); 3350 fi->writepages = RB_ROOT; 3351 3352 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3353 fuse_dax_inode_init(inode, flags); 3354 } 3355