xref: /linux/fs/fuse/file.c (revision 61ffb9d27860769c5d5596f6e4cca3cded2755e0)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 				      struct fuse_page_desc **desc)
24 {
25 	struct page **pages;
26 
27 	pages = kzalloc(npages * (sizeof(struct page *) +
28 				  sizeof(struct fuse_page_desc)), flags);
29 	*desc = (void *) (pages + npages);
30 
31 	return pages;
32 }
33 
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 			  int opcode, struct fuse_open_out *outargp)
36 {
37 	struct fuse_open_in inarg;
38 	FUSE_ARGS(args);
39 
40 	memset(&inarg, 0, sizeof(inarg));
41 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 	if (!fc->atomic_o_trunc)
43 		inarg.flags &= ~O_TRUNC;
44 	args.opcode = opcode;
45 	args.nodeid = nodeid;
46 	args.in_numargs = 1;
47 	args.in_args[0].size = sizeof(inarg);
48 	args.in_args[0].value = &inarg;
49 	args.out_numargs = 1;
50 	args.out_args[0].size = sizeof(*outargp);
51 	args.out_args[0].value = outargp;
52 
53 	return fuse_simple_request(fc, &args);
54 }
55 
56 struct fuse_release_args {
57 	struct fuse_args args;
58 	struct fuse_release_in inarg;
59 	struct inode *inode;
60 };
61 
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 	struct fuse_file *ff;
65 
66 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 	if (unlikely(!ff))
68 		return NULL;
69 
70 	ff->fc = fc;
71 	ff->release_args = kzalloc(sizeof(*ff->release_args),
72 				   GFP_KERNEL_ACCOUNT);
73 	if (!ff->release_args) {
74 		kfree(ff);
75 		return NULL;
76 	}
77 
78 	INIT_LIST_HEAD(&ff->write_entry);
79 	mutex_init(&ff->readdir.lock);
80 	refcount_set(&ff->count, 1);
81 	RB_CLEAR_NODE(&ff->polled_node);
82 	init_waitqueue_head(&ff->poll_wait);
83 
84 	ff->kh = atomic64_inc_return(&fc->khctr);
85 
86 	return ff;
87 }
88 
89 void fuse_file_free(struct fuse_file *ff)
90 {
91 	kfree(ff->release_args);
92 	mutex_destroy(&ff->readdir.lock);
93 	kfree(ff);
94 }
95 
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 	refcount_inc(&ff->count);
99 	return ff;
100 }
101 
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 			     int error)
104 {
105 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106 
107 	iput(ra->inode);
108 	kfree(ra);
109 }
110 
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 	if (refcount_dec_and_test(&ff->count)) {
114 		struct fuse_args *args = &ff->release_args->args;
115 
116 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 			/* Do nothing when client does not implement 'open' */
118 			fuse_release_end(ff->fc, args, 0);
119 		} else if (sync) {
120 			fuse_simple_request(ff->fc, args);
121 			fuse_release_end(ff->fc, args, 0);
122 		} else {
123 			args->end = fuse_release_end;
124 			if (fuse_simple_background(ff->fc, args,
125 						   GFP_KERNEL | __GFP_NOFAIL))
126 				fuse_release_end(ff->fc, args, -ENOTCONN);
127 		}
128 		kfree(ff);
129 	}
130 }
131 
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 		 bool isdir)
134 {
135 	struct fuse_file *ff;
136 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137 
138 	ff = fuse_file_alloc(fc);
139 	if (!ff)
140 		return -ENOMEM;
141 
142 	ff->fh = 0;
143 	/* Default for no-open */
144 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 	if (isdir ? !fc->no_opendir : !fc->no_open) {
146 		struct fuse_open_out outarg;
147 		int err;
148 
149 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 		if (!err) {
151 			ff->fh = outarg.fh;
152 			ff->open_flags = outarg.open_flags;
153 
154 		} else if (err != -ENOSYS) {
155 			fuse_file_free(ff);
156 			return err;
157 		} else {
158 			if (isdir)
159 				fc->no_opendir = 1;
160 			else
161 				fc->no_open = 1;
162 		}
163 	}
164 
165 	if (isdir)
166 		ff->open_flags &= ~FOPEN_DIRECT_IO;
167 
168 	ff->nodeid = nodeid;
169 	file->private_data = ff;
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174 
175 static void fuse_link_write_file(struct file *file)
176 {
177 	struct inode *inode = file_inode(file);
178 	struct fuse_inode *fi = get_fuse_inode(inode);
179 	struct fuse_file *ff = file->private_data;
180 	/*
181 	 * file may be written through mmap, so chain it onto the
182 	 * inodes's write_file list
183 	 */
184 	spin_lock(&fi->lock);
185 	if (list_empty(&ff->write_entry))
186 		list_add(&ff->write_entry, &fi->write_files);
187 	spin_unlock(&fi->lock);
188 }
189 
190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 	struct fuse_file *ff = file->private_data;
193 	struct fuse_conn *fc = get_fuse_conn(inode);
194 
195 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 		invalidate_inode_pages2(inode->i_mapping);
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		fuse_invalidate_attr(inode);
209 		if (fc->writeback_cache)
210 			file_update_time(file);
211 	}
212 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 		fuse_link_write_file(file);
214 }
215 
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 	struct fuse_conn *fc = get_fuse_conn(inode);
219 	int err;
220 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 			  fc->atomic_o_trunc &&
222 			  fc->writeback_cache;
223 
224 	err = generic_file_open(inode, file);
225 	if (err)
226 		return err;
227 
228 	if (is_wb_truncate) {
229 		inode_lock(inode);
230 		fuse_set_nowrite(inode);
231 	}
232 
233 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 
235 	if (!err)
236 		fuse_finish_open(inode, file);
237 
238 	if (is_wb_truncate) {
239 		fuse_release_nowrite(inode);
240 		inode_unlock(inode);
241 	}
242 
243 	return err;
244 }
245 
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 				 int flags, int opcode)
248 {
249 	struct fuse_conn *fc = ff->fc;
250 	struct fuse_release_args *ra = ff->release_args;
251 
252 	/* Inode is NULL on error path of fuse_create_open() */
253 	if (likely(fi)) {
254 		spin_lock(&fi->lock);
255 		list_del(&ff->write_entry);
256 		spin_unlock(&fi->lock);
257 	}
258 	spin_lock(&fc->lock);
259 	if (!RB_EMPTY_NODE(&ff->polled_node))
260 		rb_erase(&ff->polled_node, &fc->polled_files);
261 	spin_unlock(&fc->lock);
262 
263 	wake_up_interruptible_all(&ff->poll_wait);
264 
265 	ra->inarg.fh = ff->fh;
266 	ra->inarg.flags = flags;
267 	ra->args.in_numargs = 1;
268 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 	ra->args.in_args[0].value = &ra->inarg;
270 	ra->args.opcode = opcode;
271 	ra->args.nodeid = ff->nodeid;
272 	ra->args.force = true;
273 	ra->args.nocreds = true;
274 }
275 
276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 	struct fuse_file *ff = file->private_data;
280 	struct fuse_release_args *ra = ff->release_args;
281 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282 
283 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
284 
285 	if (ff->flock) {
286 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 							  (fl_owner_t) file);
289 	}
290 	/* Hold inode until release is finished */
291 	ra->inode = igrab(file_inode(file));
292 
293 	/*
294 	 * Normally this will send the RELEASE request, however if
295 	 * some asynchronous READ or WRITE requests are outstanding,
296 	 * the sending will be delayed.
297 	 *
298 	 * Make the release synchronous if this is a fuseblk mount,
299 	 * synchronous RELEASE is allowed (and desirable) in this case
300 	 * because the server can be trusted not to screw up.
301 	 */
302 	fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304 
305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 	return fuse_open_common(inode, file, false);
308 }
309 
310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 	struct fuse_conn *fc = get_fuse_conn(inode);
313 
314 	/* see fuse_vma_close() for !writeback_cache case */
315 	if (fc->writeback_cache)
316 		write_inode_now(inode, 1);
317 
318 	fuse_release_common(file, false);
319 
320 	/* return value is ignored by VFS */
321 	return 0;
322 }
323 
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 	WARN_ON(refcount_read(&ff->count) > 1);
327 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 	/*
329 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 	 * synchronous, we are fine with not doing igrab() here"
331 	 */
332 	fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335 
336 /*
337  * Scramble the ID space with XTEA, so that the value of the files_struct
338  * pointer is not exposed to userspace.
339  */
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 	u32 *k = fc->scramble_key;
343 	u64 v = (unsigned long) id;
344 	u32 v0 = v;
345 	u32 v1 = v >> 32;
346 	u32 sum = 0;
347 	int i;
348 
349 	for (i = 0; i < 32; i++) {
350 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 		sum += 0x9E3779B9;
352 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 	}
354 
355 	return (u64) v0 + ((u64) v1 << 32);
356 }
357 
358 struct fuse_writepage_args {
359 	struct fuse_io_args ia;
360 	struct list_head writepages_entry;
361 	struct list_head queue_entry;
362 	struct fuse_writepage_args *next;
363 	struct inode *inode;
364 };
365 
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 					    pgoff_t idx_from, pgoff_t idx_to)
368 {
369 	struct fuse_writepage_args *wpa;
370 
371 	list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 		pgoff_t curr_index;
373 
374 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 		if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 		    curr_index <= idx_to) {
378 			return wpa;
379 		}
380 	}
381 	return NULL;
382 }
383 
384 /*
385  * Check if any page in a range is under writeback
386  *
387  * This is currently done by walking the list of writepage requests
388  * for the inode, which can be pretty inefficient.
389  */
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 				   pgoff_t idx_to)
392 {
393 	struct fuse_inode *fi = get_fuse_inode(inode);
394 	bool found;
395 
396 	spin_lock(&fi->lock);
397 	found = fuse_find_writeback(fi, idx_from, idx_to);
398 	spin_unlock(&fi->lock);
399 
400 	return found;
401 }
402 
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
404 {
405 	return fuse_range_is_writeback(inode, index, index);
406 }
407 
408 /*
409  * Wait for page writeback to be completed.
410  *
411  * Since fuse doesn't rely on the VM writeback tracking, this has to
412  * use some other means.
413  */
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
415 {
416 	struct fuse_inode *fi = get_fuse_inode(inode);
417 
418 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
419 }
420 
421 /*
422  * Wait for all pending writepages on the inode to finish.
423  *
424  * This is currently done by blocking further writes with FUSE_NOWRITE
425  * and waiting for all sent writes to complete.
426  *
427  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428  * could conflict with truncation.
429  */
430 static void fuse_sync_writes(struct inode *inode)
431 {
432 	fuse_set_nowrite(inode);
433 	fuse_release_nowrite(inode);
434 }
435 
436 static int fuse_flush(struct file *file, fl_owner_t id)
437 {
438 	struct inode *inode = file_inode(file);
439 	struct fuse_conn *fc = get_fuse_conn(inode);
440 	struct fuse_file *ff = file->private_data;
441 	struct fuse_flush_in inarg;
442 	FUSE_ARGS(args);
443 	int err;
444 
445 	if (is_bad_inode(inode))
446 		return -EIO;
447 
448 	if (fc->no_flush)
449 		return 0;
450 
451 	err = write_inode_now(inode, 1);
452 	if (err)
453 		return err;
454 
455 	inode_lock(inode);
456 	fuse_sync_writes(inode);
457 	inode_unlock(inode);
458 
459 	err = filemap_check_errors(file->f_mapping);
460 	if (err)
461 		return err;
462 
463 	memset(&inarg, 0, sizeof(inarg));
464 	inarg.fh = ff->fh;
465 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 	args.opcode = FUSE_FLUSH;
467 	args.nodeid = get_node_id(inode);
468 	args.in_numargs = 1;
469 	args.in_args[0].size = sizeof(inarg);
470 	args.in_args[0].value = &inarg;
471 	args.force = true;
472 
473 	err = fuse_simple_request(fc, &args);
474 	if (err == -ENOSYS) {
475 		fc->no_flush = 1;
476 		err = 0;
477 	}
478 	return err;
479 }
480 
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 		      int datasync, int opcode)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	struct fuse_conn *fc = get_fuse_conn(inode);
486 	struct fuse_file *ff = file->private_data;
487 	FUSE_ARGS(args);
488 	struct fuse_fsync_in inarg;
489 
490 	memset(&inarg, 0, sizeof(inarg));
491 	inarg.fh = ff->fh;
492 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 	args.opcode = opcode;
494 	args.nodeid = get_node_id(inode);
495 	args.in_numargs = 1;
496 	args.in_args[0].size = sizeof(inarg);
497 	args.in_args[0].value = &inarg;
498 	return fuse_simple_request(fc, &args);
499 }
500 
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 		      int datasync)
503 {
504 	struct inode *inode = file->f_mapping->host;
505 	struct fuse_conn *fc = get_fuse_conn(inode);
506 	int err;
507 
508 	if (is_bad_inode(inode))
509 		return -EIO;
510 
511 	inode_lock(inode);
512 
513 	/*
514 	 * Start writeback against all dirty pages of the inode, then
515 	 * wait for all outstanding writes, before sending the FSYNC
516 	 * request.
517 	 */
518 	err = file_write_and_wait_range(file, start, end);
519 	if (err)
520 		goto out;
521 
522 	fuse_sync_writes(inode);
523 
524 	/*
525 	 * Due to implementation of fuse writeback
526 	 * file_write_and_wait_range() does not catch errors.
527 	 * We have to do this directly after fuse_sync_writes()
528 	 */
529 	err = file_check_and_advance_wb_err(file);
530 	if (err)
531 		goto out;
532 
533 	err = sync_inode_metadata(inode, 1);
534 	if (err)
535 		goto out;
536 
537 	if (fc->no_fsync)
538 		goto out;
539 
540 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 	if (err == -ENOSYS) {
542 		fc->no_fsync = 1;
543 		err = 0;
544 	}
545 out:
546 	inode_unlock(inode);
547 
548 	return err;
549 }
550 
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 			 size_t count, int opcode)
553 {
554 	struct fuse_file *ff = file->private_data;
555 	struct fuse_args *args = &ia->ap.args;
556 
557 	ia->read.in.fh = ff->fh;
558 	ia->read.in.offset = pos;
559 	ia->read.in.size = count;
560 	ia->read.in.flags = file->f_flags;
561 	args->opcode = opcode;
562 	args->nodeid = ff->nodeid;
563 	args->in_numargs = 1;
564 	args->in_args[0].size = sizeof(ia->read.in);
565 	args->in_args[0].value = &ia->read.in;
566 	args->out_argvar = true;
567 	args->out_numargs = 1;
568 	args->out_args[0].size = count;
569 }
570 
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 				    bool should_dirty)
573 {
574 	unsigned int i;
575 
576 	for (i = 0; i < ap->num_pages; i++) {
577 		if (should_dirty)
578 			set_page_dirty_lock(ap->pages[i]);
579 		put_page(ap->pages[i]);
580 	}
581 }
582 
583 static void fuse_io_release(struct kref *kref)
584 {
585 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
586 }
587 
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 {
590 	if (io->err)
591 		return io->err;
592 
593 	if (io->bytes >= 0 && io->write)
594 		return -EIO;
595 
596 	return io->bytes < 0 ? io->size : io->bytes;
597 }
598 
599 /**
600  * In case of short read, the caller sets 'pos' to the position of
601  * actual end of fuse request in IO request. Otherwise, if bytes_requested
602  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
603  *
604  * An example:
605  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606  * both submitted asynchronously. The first of them was ACKed by userspace as
607  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608  * second request was ACKed as short, e.g. only 1K was read, resulting in
609  * pos == 33K.
610  *
611  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612  * will be equal to the length of the longest contiguous fragment of
613  * transferred data starting from the beginning of IO request.
614  */
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
616 {
617 	int left;
618 
619 	spin_lock(&io->lock);
620 	if (err)
621 		io->err = io->err ? : err;
622 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 		io->bytes = pos;
624 
625 	left = --io->reqs;
626 	if (!left && io->blocking)
627 		complete(io->done);
628 	spin_unlock(&io->lock);
629 
630 	if (!left && !io->blocking) {
631 		ssize_t res = fuse_get_res_by_io(io);
632 
633 		if (res >= 0) {
634 			struct inode *inode = file_inode(io->iocb->ki_filp);
635 			struct fuse_conn *fc = get_fuse_conn(inode);
636 			struct fuse_inode *fi = get_fuse_inode(inode);
637 
638 			spin_lock(&fi->lock);
639 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 			spin_unlock(&fi->lock);
641 		}
642 
643 		io->iocb->ki_complete(io->iocb, res, 0);
644 	}
645 
646 	kref_put(&io->refcnt, fuse_io_release);
647 }
648 
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 					  unsigned int npages)
651 {
652 	struct fuse_io_args *ia;
653 
654 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 	if (ia) {
656 		ia->io = io;
657 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 						&ia->ap.descs);
659 		if (!ia->ap.pages) {
660 			kfree(ia);
661 			ia = NULL;
662 		}
663 	}
664 	return ia;
665 }
666 
667 static void fuse_io_free(struct fuse_io_args *ia)
668 {
669 	kfree(ia->ap.pages);
670 	kfree(ia);
671 }
672 
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 				  int err)
675 {
676 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 	struct fuse_io_priv *io = ia->io;
678 	ssize_t pos = -1;
679 
680 	fuse_release_user_pages(&ia->ap, io->should_dirty);
681 
682 	if (err) {
683 		/* Nothing */
684 	} else if (io->write) {
685 		if (ia->write.out.size > ia->write.in.size) {
686 			err = -EIO;
687 		} else if (ia->write.in.size != ia->write.out.size) {
688 			pos = ia->write.in.offset - io->offset +
689 				ia->write.out.size;
690 		}
691 	} else {
692 		u32 outsize = args->out_args[0].size;
693 
694 		if (ia->read.in.size != outsize)
695 			pos = ia->read.in.offset - io->offset + outsize;
696 	}
697 
698 	fuse_aio_complete(io, err, pos);
699 	fuse_io_free(ia);
700 }
701 
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 				   struct fuse_io_args *ia, size_t num_bytes)
704 {
705 	ssize_t err;
706 	struct fuse_io_priv *io = ia->io;
707 
708 	spin_lock(&io->lock);
709 	kref_get(&io->refcnt);
710 	io->size += num_bytes;
711 	io->reqs++;
712 	spin_unlock(&io->lock);
713 
714 	ia->ap.args.end = fuse_aio_complete_req;
715 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 	if (err)
717 		fuse_aio_complete_req(fc, &ia->ap.args, err);
718 
719 	return num_bytes;
720 }
721 
722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
723 			      fl_owner_t owner)
724 {
725 	struct file *file = ia->io->iocb->ki_filp;
726 	struct fuse_file *ff = file->private_data;
727 	struct fuse_conn *fc = ff->fc;
728 
729 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
730 	if (owner != NULL) {
731 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
733 	}
734 
735 	if (ia->io->async)
736 		return fuse_async_req_send(fc, ia, count);
737 
738 	return fuse_simple_request(fc, &ia->ap.args);
739 }
740 
741 static void fuse_read_update_size(struct inode *inode, loff_t size,
742 				  u64 attr_ver)
743 {
744 	struct fuse_conn *fc = get_fuse_conn(inode);
745 	struct fuse_inode *fi = get_fuse_inode(inode);
746 
747 	spin_lock(&fi->lock);
748 	if (attr_ver == fi->attr_version && size < inode->i_size &&
749 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 		i_size_write(inode, size);
752 	}
753 	spin_unlock(&fi->lock);
754 }
755 
756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 			    struct fuse_args_pages *ap)
758 {
759 	struct fuse_conn *fc = get_fuse_conn(inode);
760 
761 	if (fc->writeback_cache) {
762 		/*
763 		 * A hole in a file. Some data after the hole are in page cache,
764 		 * but have not reached the client fs yet. So, the hole is not
765 		 * present there.
766 		 */
767 		int i;
768 		int start_idx = num_read >> PAGE_SHIFT;
769 		size_t off = num_read & (PAGE_SIZE - 1);
770 
771 		for (i = start_idx; i < ap->num_pages; i++) {
772 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
773 			off = 0;
774 		}
775 	} else {
776 		loff_t pos = page_offset(ap->pages[0]) + num_read;
777 		fuse_read_update_size(inode, pos, attr_ver);
778 	}
779 }
780 
781 static int fuse_do_readpage(struct file *file, struct page *page)
782 {
783 	struct inode *inode = page->mapping->host;
784 	struct fuse_conn *fc = get_fuse_conn(inode);
785 	loff_t pos = page_offset(page);
786 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 	struct fuse_io_args ia = {
788 		.ap.args.page_zeroing = true,
789 		.ap.args.out_pages = true,
790 		.ap.num_pages = 1,
791 		.ap.pages = &page,
792 		.ap.descs = &desc,
793 	};
794 	ssize_t res;
795 	u64 attr_ver;
796 
797 	/*
798 	 * Page writeback can extend beyond the lifetime of the
799 	 * page-cache page, so make sure we read a properly synced
800 	 * page.
801 	 */
802 	fuse_wait_on_page_writeback(inode, page->index);
803 
804 	attr_ver = fuse_get_attr_version(fc);
805 
806 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
807 	res = fuse_simple_request(fc, &ia.ap.args);
808 	if (res < 0)
809 		return res;
810 	/*
811 	 * Short read means EOF.  If file size is larger, truncate it
812 	 */
813 	if (res < desc.length)
814 		fuse_short_read(inode, attr_ver, res, &ia.ap);
815 
816 	SetPageUptodate(page);
817 
818 	return 0;
819 }
820 
821 static int fuse_readpage(struct file *file, struct page *page)
822 {
823 	struct inode *inode = page->mapping->host;
824 	int err;
825 
826 	err = -EIO;
827 	if (is_bad_inode(inode))
828 		goto out;
829 
830 	err = fuse_do_readpage(file, page);
831 	fuse_invalidate_atime(inode);
832  out:
833 	unlock_page(page);
834 	return err;
835 }
836 
837 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
838 			       int err)
839 {
840 	int i;
841 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
842 	struct fuse_args_pages *ap = &ia->ap;
843 	size_t count = ia->read.in.size;
844 	size_t num_read = args->out_args[0].size;
845 	struct address_space *mapping = NULL;
846 
847 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
848 		mapping = ap->pages[i]->mapping;
849 
850 	if (mapping) {
851 		struct inode *inode = mapping->host;
852 
853 		/*
854 		 * Short read means EOF. If file size is larger, truncate it
855 		 */
856 		if (!err && num_read < count)
857 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
858 
859 		fuse_invalidate_atime(inode);
860 	}
861 
862 	for (i = 0; i < ap->num_pages; i++) {
863 		struct page *page = ap->pages[i];
864 
865 		if (!err)
866 			SetPageUptodate(page);
867 		else
868 			SetPageError(page);
869 		unlock_page(page);
870 		put_page(page);
871 	}
872 	if (ia->ff)
873 		fuse_file_put(ia->ff, false, false);
874 
875 	fuse_io_free(ia);
876 }
877 
878 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
879 {
880 	struct fuse_file *ff = file->private_data;
881 	struct fuse_conn *fc = ff->fc;
882 	struct fuse_args_pages *ap = &ia->ap;
883 	loff_t pos = page_offset(ap->pages[0]);
884 	size_t count = ap->num_pages << PAGE_SHIFT;
885 	ssize_t res;
886 	int err;
887 
888 	ap->args.out_pages = true;
889 	ap->args.page_zeroing = true;
890 	ap->args.page_replace = true;
891 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
892 	ia->read.attr_ver = fuse_get_attr_version(fc);
893 	if (fc->async_read) {
894 		ia->ff = fuse_file_get(ff);
895 		ap->args.end = fuse_readpages_end;
896 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
897 		if (!err)
898 			return;
899 	} else {
900 		res = fuse_simple_request(fc, &ap->args);
901 		err = res < 0 ? res : 0;
902 	}
903 	fuse_readpages_end(fc, &ap->args, err);
904 }
905 
906 struct fuse_fill_data {
907 	struct fuse_io_args *ia;
908 	struct file *file;
909 	struct inode *inode;
910 	unsigned int nr_pages;
911 	unsigned int max_pages;
912 };
913 
914 static int fuse_readpages_fill(void *_data, struct page *page)
915 {
916 	struct fuse_fill_data *data = _data;
917 	struct fuse_io_args *ia = data->ia;
918 	struct fuse_args_pages *ap = &ia->ap;
919 	struct inode *inode = data->inode;
920 	struct fuse_conn *fc = get_fuse_conn(inode);
921 
922 	fuse_wait_on_page_writeback(inode, page->index);
923 
924 	if (ap->num_pages &&
925 	    (ap->num_pages == fc->max_pages ||
926 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
927 	     ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
928 		data->max_pages = min_t(unsigned int, data->nr_pages,
929 					fc->max_pages);
930 		fuse_send_readpages(ia, data->file);
931 		data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
932 		if (!ia) {
933 			unlock_page(page);
934 			return -ENOMEM;
935 		}
936 		ap = &ia->ap;
937 	}
938 
939 	if (WARN_ON(ap->num_pages >= data->max_pages)) {
940 		unlock_page(page);
941 		fuse_io_free(ia);
942 		return -EIO;
943 	}
944 
945 	get_page(page);
946 	ap->pages[ap->num_pages] = page;
947 	ap->descs[ap->num_pages].length = PAGE_SIZE;
948 	ap->num_pages++;
949 	data->nr_pages--;
950 	return 0;
951 }
952 
953 static int fuse_readpages(struct file *file, struct address_space *mapping,
954 			  struct list_head *pages, unsigned nr_pages)
955 {
956 	struct inode *inode = mapping->host;
957 	struct fuse_conn *fc = get_fuse_conn(inode);
958 	struct fuse_fill_data data;
959 	int err;
960 
961 	err = -EIO;
962 	if (is_bad_inode(inode))
963 		goto out;
964 
965 	data.file = file;
966 	data.inode = inode;
967 	data.nr_pages = nr_pages;
968 	data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
969 ;
970 	data.ia = fuse_io_alloc(NULL, data.max_pages);
971 	err = -ENOMEM;
972 	if (!data.ia)
973 		goto out;
974 
975 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
976 	if (!err) {
977 		if (data.ia->ap.num_pages)
978 			fuse_send_readpages(data.ia, file);
979 		else
980 			fuse_io_free(data.ia);
981 	}
982 out:
983 	return err;
984 }
985 
986 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
987 {
988 	struct inode *inode = iocb->ki_filp->f_mapping->host;
989 	struct fuse_conn *fc = get_fuse_conn(inode);
990 
991 	/*
992 	 * In auto invalidate mode, always update attributes on read.
993 	 * Otherwise, only update if we attempt to read past EOF (to ensure
994 	 * i_size is up to date).
995 	 */
996 	if (fc->auto_inval_data ||
997 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
998 		int err;
999 		err = fuse_update_attributes(inode, iocb->ki_filp);
1000 		if (err)
1001 			return err;
1002 	}
1003 
1004 	return generic_file_read_iter(iocb, to);
1005 }
1006 
1007 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1008 				 loff_t pos, size_t count)
1009 {
1010 	struct fuse_args *args = &ia->ap.args;
1011 
1012 	ia->write.in.fh = ff->fh;
1013 	ia->write.in.offset = pos;
1014 	ia->write.in.size = count;
1015 	args->opcode = FUSE_WRITE;
1016 	args->nodeid = ff->nodeid;
1017 	args->in_numargs = 2;
1018 	if (ff->fc->minor < 9)
1019 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1020 	else
1021 		args->in_args[0].size = sizeof(ia->write.in);
1022 	args->in_args[0].value = &ia->write.in;
1023 	args->in_args[1].size = count;
1024 	args->out_numargs = 1;
1025 	args->out_args[0].size = sizeof(ia->write.out);
1026 	args->out_args[0].value = &ia->write.out;
1027 }
1028 
1029 static unsigned int fuse_write_flags(struct kiocb *iocb)
1030 {
1031 	unsigned int flags = iocb->ki_filp->f_flags;
1032 
1033 	if (iocb->ki_flags & IOCB_DSYNC)
1034 		flags |= O_DSYNC;
1035 	if (iocb->ki_flags & IOCB_SYNC)
1036 		flags |= O_SYNC;
1037 
1038 	return flags;
1039 }
1040 
1041 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1042 			       size_t count, fl_owner_t owner)
1043 {
1044 	struct kiocb *iocb = ia->io->iocb;
1045 	struct file *file = iocb->ki_filp;
1046 	struct fuse_file *ff = file->private_data;
1047 	struct fuse_conn *fc = ff->fc;
1048 	struct fuse_write_in *inarg = &ia->write.in;
1049 	ssize_t err;
1050 
1051 	fuse_write_args_fill(ia, ff, pos, count);
1052 	inarg->flags = fuse_write_flags(iocb);
1053 	if (owner != NULL) {
1054 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1055 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1056 	}
1057 
1058 	if (ia->io->async)
1059 		return fuse_async_req_send(fc, ia, count);
1060 
1061 	err = fuse_simple_request(fc, &ia->ap.args);
1062 	if (!err && ia->write.out.size > count)
1063 		err = -EIO;
1064 
1065 	return err ?: ia->write.out.size;
1066 }
1067 
1068 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1069 {
1070 	struct fuse_conn *fc = get_fuse_conn(inode);
1071 	struct fuse_inode *fi = get_fuse_inode(inode);
1072 	bool ret = false;
1073 
1074 	spin_lock(&fi->lock);
1075 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1076 	if (pos > inode->i_size) {
1077 		i_size_write(inode, pos);
1078 		ret = true;
1079 	}
1080 	spin_unlock(&fi->lock);
1081 
1082 	return ret;
1083 }
1084 
1085 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1086 				     struct kiocb *iocb, struct inode *inode,
1087 				     loff_t pos, size_t count)
1088 {
1089 	struct fuse_args_pages *ap = &ia->ap;
1090 	struct file *file = iocb->ki_filp;
1091 	struct fuse_file *ff = file->private_data;
1092 	struct fuse_conn *fc = ff->fc;
1093 	unsigned int offset, i;
1094 	int err;
1095 
1096 	for (i = 0; i < ap->num_pages; i++)
1097 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1098 
1099 	fuse_write_args_fill(ia, ff, pos, count);
1100 	ia->write.in.flags = fuse_write_flags(iocb);
1101 
1102 	err = fuse_simple_request(fc, &ap->args);
1103 	if (!err && ia->write.out.size > count)
1104 		err = -EIO;
1105 
1106 	offset = ap->descs[0].offset;
1107 	count = ia->write.out.size;
1108 	for (i = 0; i < ap->num_pages; i++) {
1109 		struct page *page = ap->pages[i];
1110 
1111 		if (!err && !offset && count >= PAGE_SIZE)
1112 			SetPageUptodate(page);
1113 
1114 		if (count > PAGE_SIZE - offset)
1115 			count -= PAGE_SIZE - offset;
1116 		else
1117 			count = 0;
1118 		offset = 0;
1119 
1120 		unlock_page(page);
1121 		put_page(page);
1122 	}
1123 
1124 	return err;
1125 }
1126 
1127 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1128 				     struct address_space *mapping,
1129 				     struct iov_iter *ii, loff_t pos,
1130 				     unsigned int max_pages)
1131 {
1132 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1133 	unsigned offset = pos & (PAGE_SIZE - 1);
1134 	size_t count = 0;
1135 	int err;
1136 
1137 	ap->args.in_pages = true;
1138 	ap->descs[0].offset = offset;
1139 
1140 	do {
1141 		size_t tmp;
1142 		struct page *page;
1143 		pgoff_t index = pos >> PAGE_SHIFT;
1144 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1145 				     iov_iter_count(ii));
1146 
1147 		bytes = min_t(size_t, bytes, fc->max_write - count);
1148 
1149  again:
1150 		err = -EFAULT;
1151 		if (iov_iter_fault_in_readable(ii, bytes))
1152 			break;
1153 
1154 		err = -ENOMEM;
1155 		page = grab_cache_page_write_begin(mapping, index, 0);
1156 		if (!page)
1157 			break;
1158 
1159 		if (mapping_writably_mapped(mapping))
1160 			flush_dcache_page(page);
1161 
1162 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1163 		flush_dcache_page(page);
1164 
1165 		iov_iter_advance(ii, tmp);
1166 		if (!tmp) {
1167 			unlock_page(page);
1168 			put_page(page);
1169 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1170 			goto again;
1171 		}
1172 
1173 		err = 0;
1174 		ap->pages[ap->num_pages] = page;
1175 		ap->descs[ap->num_pages].length = tmp;
1176 		ap->num_pages++;
1177 
1178 		count += tmp;
1179 		pos += tmp;
1180 		offset += tmp;
1181 		if (offset == PAGE_SIZE)
1182 			offset = 0;
1183 
1184 		if (!fc->big_writes)
1185 			break;
1186 	} while (iov_iter_count(ii) && count < fc->max_write &&
1187 		 ap->num_pages < max_pages && offset == 0);
1188 
1189 	return count > 0 ? count : err;
1190 }
1191 
1192 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1193 				     unsigned int max_pages)
1194 {
1195 	return min_t(unsigned int,
1196 		     ((pos + len - 1) >> PAGE_SHIFT) -
1197 		     (pos >> PAGE_SHIFT) + 1,
1198 		     max_pages);
1199 }
1200 
1201 static ssize_t fuse_perform_write(struct kiocb *iocb,
1202 				  struct address_space *mapping,
1203 				  struct iov_iter *ii, loff_t pos)
1204 {
1205 	struct inode *inode = mapping->host;
1206 	struct fuse_conn *fc = get_fuse_conn(inode);
1207 	struct fuse_inode *fi = get_fuse_inode(inode);
1208 	int err = 0;
1209 	ssize_t res = 0;
1210 
1211 	if (inode->i_size < pos + iov_iter_count(ii))
1212 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1213 
1214 	do {
1215 		ssize_t count;
1216 		struct fuse_io_args ia = {};
1217 		struct fuse_args_pages *ap = &ia.ap;
1218 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1219 						      fc->max_pages);
1220 
1221 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1222 		if (!ap->pages) {
1223 			err = -ENOMEM;
1224 			break;
1225 		}
1226 
1227 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1228 		if (count <= 0) {
1229 			err = count;
1230 		} else {
1231 			err = fuse_send_write_pages(&ia, iocb, inode,
1232 						    pos, count);
1233 			if (!err) {
1234 				size_t num_written = ia.write.out.size;
1235 
1236 				res += num_written;
1237 				pos += num_written;
1238 
1239 				/* break out of the loop on short write */
1240 				if (num_written != count)
1241 					err = -EIO;
1242 			}
1243 		}
1244 		kfree(ap->pages);
1245 	} while (!err && iov_iter_count(ii));
1246 
1247 	if (res > 0)
1248 		fuse_write_update_size(inode, pos);
1249 
1250 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1251 	fuse_invalidate_attr(inode);
1252 
1253 	return res > 0 ? res : err;
1254 }
1255 
1256 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1257 {
1258 	struct file *file = iocb->ki_filp;
1259 	struct address_space *mapping = file->f_mapping;
1260 	ssize_t written = 0;
1261 	ssize_t written_buffered = 0;
1262 	struct inode *inode = mapping->host;
1263 	ssize_t err;
1264 	loff_t endbyte = 0;
1265 
1266 	if (get_fuse_conn(inode)->writeback_cache) {
1267 		/* Update size (EOF optimization) and mode (SUID clearing) */
1268 		err = fuse_update_attributes(mapping->host, file);
1269 		if (err)
1270 			return err;
1271 
1272 		return generic_file_write_iter(iocb, from);
1273 	}
1274 
1275 	inode_lock(inode);
1276 
1277 	/* We can write back this queue in page reclaim */
1278 	current->backing_dev_info = inode_to_bdi(inode);
1279 
1280 	err = generic_write_checks(iocb, from);
1281 	if (err <= 0)
1282 		goto out;
1283 
1284 	err = file_remove_privs(file);
1285 	if (err)
1286 		goto out;
1287 
1288 	err = file_update_time(file);
1289 	if (err)
1290 		goto out;
1291 
1292 	if (iocb->ki_flags & IOCB_DIRECT) {
1293 		loff_t pos = iocb->ki_pos;
1294 		written = generic_file_direct_write(iocb, from);
1295 		if (written < 0 || !iov_iter_count(from))
1296 			goto out;
1297 
1298 		pos += written;
1299 
1300 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1301 		if (written_buffered < 0) {
1302 			err = written_buffered;
1303 			goto out;
1304 		}
1305 		endbyte = pos + written_buffered - 1;
1306 
1307 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1308 						   endbyte);
1309 		if (err)
1310 			goto out;
1311 
1312 		invalidate_mapping_pages(file->f_mapping,
1313 					 pos >> PAGE_SHIFT,
1314 					 endbyte >> PAGE_SHIFT);
1315 
1316 		written += written_buffered;
1317 		iocb->ki_pos = pos + written_buffered;
1318 	} else {
1319 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1320 		if (written >= 0)
1321 			iocb->ki_pos += written;
1322 	}
1323 out:
1324 	current->backing_dev_info = NULL;
1325 	inode_unlock(inode);
1326 	if (written > 0)
1327 		written = generic_write_sync(iocb, written);
1328 
1329 	return written ? written : err;
1330 }
1331 
1332 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1333 					       unsigned int index,
1334 					       unsigned int nr_pages)
1335 {
1336 	int i;
1337 
1338 	for (i = index; i < index + nr_pages; i++)
1339 		descs[i].length = PAGE_SIZE - descs[i].offset;
1340 }
1341 
1342 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1343 {
1344 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1345 }
1346 
1347 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1348 					size_t max_size)
1349 {
1350 	return min(iov_iter_single_seg_count(ii), max_size);
1351 }
1352 
1353 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1354 			       size_t *nbytesp, int write,
1355 			       unsigned int max_pages)
1356 {
1357 	size_t nbytes = 0;  /* # bytes already packed in req */
1358 	ssize_t ret = 0;
1359 
1360 	/* Special case for kernel I/O: can copy directly into the buffer */
1361 	if (iov_iter_is_kvec(ii)) {
1362 		unsigned long user_addr = fuse_get_user_addr(ii);
1363 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1364 
1365 		if (write)
1366 			ap->args.in_args[1].value = (void *) user_addr;
1367 		else
1368 			ap->args.out_args[0].value = (void *) user_addr;
1369 
1370 		iov_iter_advance(ii, frag_size);
1371 		*nbytesp = frag_size;
1372 		return 0;
1373 	}
1374 
1375 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1376 		unsigned npages;
1377 		size_t start;
1378 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1379 					*nbytesp - nbytes,
1380 					max_pages - ap->num_pages,
1381 					&start);
1382 		if (ret < 0)
1383 			break;
1384 
1385 		iov_iter_advance(ii, ret);
1386 		nbytes += ret;
1387 
1388 		ret += start;
1389 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1390 
1391 		ap->descs[ap->num_pages].offset = start;
1392 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1393 
1394 		ap->num_pages += npages;
1395 		ap->descs[ap->num_pages - 1].length -=
1396 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1397 	}
1398 
1399 	if (write)
1400 		ap->args.in_pages = 1;
1401 	else
1402 		ap->args.out_pages = 1;
1403 
1404 	*nbytesp = nbytes;
1405 
1406 	return ret < 0 ? ret : 0;
1407 }
1408 
1409 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1410 		       loff_t *ppos, int flags)
1411 {
1412 	int write = flags & FUSE_DIO_WRITE;
1413 	int cuse = flags & FUSE_DIO_CUSE;
1414 	struct file *file = io->iocb->ki_filp;
1415 	struct inode *inode = file->f_mapping->host;
1416 	struct fuse_file *ff = file->private_data;
1417 	struct fuse_conn *fc = ff->fc;
1418 	size_t nmax = write ? fc->max_write : fc->max_read;
1419 	loff_t pos = *ppos;
1420 	size_t count = iov_iter_count(iter);
1421 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1422 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1423 	ssize_t res = 0;
1424 	int err = 0;
1425 	struct fuse_io_args *ia;
1426 	unsigned int max_pages;
1427 
1428 	max_pages = iov_iter_npages(iter, fc->max_pages);
1429 	ia = fuse_io_alloc(io, max_pages);
1430 	if (!ia)
1431 		return -ENOMEM;
1432 
1433 	ia->io = io;
1434 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1435 		if (!write)
1436 			inode_lock(inode);
1437 		fuse_sync_writes(inode);
1438 		if (!write)
1439 			inode_unlock(inode);
1440 	}
1441 
1442 	io->should_dirty = !write && iter_is_iovec(iter);
1443 	while (count) {
1444 		ssize_t nres;
1445 		fl_owner_t owner = current->files;
1446 		size_t nbytes = min(count, nmax);
1447 
1448 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1449 					  max_pages);
1450 		if (err && !nbytes)
1451 			break;
1452 
1453 		if (write) {
1454 			if (!capable(CAP_FSETID))
1455 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1456 
1457 			nres = fuse_send_write(ia, pos, nbytes, owner);
1458 		} else {
1459 			nres = fuse_send_read(ia, pos, nbytes, owner);
1460 		}
1461 
1462 		if (!io->async || nres < 0) {
1463 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1464 			fuse_io_free(ia);
1465 		}
1466 		ia = NULL;
1467 		if (nres < 0) {
1468 			err = nres;
1469 			break;
1470 		}
1471 		WARN_ON(nres > nbytes);
1472 
1473 		count -= nres;
1474 		res += nres;
1475 		pos += nres;
1476 		if (nres != nbytes)
1477 			break;
1478 		if (count) {
1479 			max_pages = iov_iter_npages(iter, fc->max_pages);
1480 			ia = fuse_io_alloc(io, max_pages);
1481 			if (!ia)
1482 				break;
1483 		}
1484 	}
1485 	if (ia)
1486 		fuse_io_free(ia);
1487 	if (res > 0)
1488 		*ppos = pos;
1489 
1490 	return res > 0 ? res : err;
1491 }
1492 EXPORT_SYMBOL_GPL(fuse_direct_io);
1493 
1494 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1495 				  struct iov_iter *iter,
1496 				  loff_t *ppos)
1497 {
1498 	ssize_t res;
1499 	struct inode *inode = file_inode(io->iocb->ki_filp);
1500 
1501 	res = fuse_direct_io(io, iter, ppos, 0);
1502 
1503 	fuse_invalidate_atime(inode);
1504 
1505 	return res;
1506 }
1507 
1508 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1509 
1510 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1511 {
1512 	ssize_t res;
1513 
1514 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1515 		res = fuse_direct_IO(iocb, to);
1516 	} else {
1517 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1518 
1519 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1520 	}
1521 
1522 	return res;
1523 }
1524 
1525 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1526 {
1527 	struct inode *inode = file_inode(iocb->ki_filp);
1528 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1529 	ssize_t res;
1530 
1531 	/* Don't allow parallel writes to the same file */
1532 	inode_lock(inode);
1533 	res = generic_write_checks(iocb, from);
1534 	if (res > 0) {
1535 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1536 			res = fuse_direct_IO(iocb, from);
1537 		} else {
1538 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1539 					     FUSE_DIO_WRITE);
1540 		}
1541 	}
1542 	fuse_invalidate_attr(inode);
1543 	if (res > 0)
1544 		fuse_write_update_size(inode, iocb->ki_pos);
1545 	inode_unlock(inode);
1546 
1547 	return res;
1548 }
1549 
1550 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1551 {
1552 	struct file *file = iocb->ki_filp;
1553 	struct fuse_file *ff = file->private_data;
1554 
1555 	if (is_bad_inode(file_inode(file)))
1556 		return -EIO;
1557 
1558 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1559 		return fuse_cache_read_iter(iocb, to);
1560 	else
1561 		return fuse_direct_read_iter(iocb, to);
1562 }
1563 
1564 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1565 {
1566 	struct file *file = iocb->ki_filp;
1567 	struct fuse_file *ff = file->private_data;
1568 
1569 	if (is_bad_inode(file_inode(file)))
1570 		return -EIO;
1571 
1572 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1573 		return fuse_cache_write_iter(iocb, from);
1574 	else
1575 		return fuse_direct_write_iter(iocb, from);
1576 }
1577 
1578 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1579 {
1580 	struct fuse_args_pages *ap = &wpa->ia.ap;
1581 	int i;
1582 
1583 	for (i = 0; i < ap->num_pages; i++)
1584 		__free_page(ap->pages[i]);
1585 
1586 	if (wpa->ia.ff)
1587 		fuse_file_put(wpa->ia.ff, false, false);
1588 
1589 	kfree(ap->pages);
1590 	kfree(wpa);
1591 }
1592 
1593 static void fuse_writepage_finish(struct fuse_conn *fc,
1594 				  struct fuse_writepage_args *wpa)
1595 {
1596 	struct fuse_args_pages *ap = &wpa->ia.ap;
1597 	struct inode *inode = wpa->inode;
1598 	struct fuse_inode *fi = get_fuse_inode(inode);
1599 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1600 	int i;
1601 
1602 	list_del(&wpa->writepages_entry);
1603 	for (i = 0; i < ap->num_pages; i++) {
1604 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1605 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1606 		wb_writeout_inc(&bdi->wb);
1607 	}
1608 	wake_up(&fi->page_waitq);
1609 }
1610 
1611 /* Called under fi->lock, may release and reacquire it */
1612 static void fuse_send_writepage(struct fuse_conn *fc,
1613 				struct fuse_writepage_args *wpa, loff_t size)
1614 __releases(fi->lock)
1615 __acquires(fi->lock)
1616 {
1617 	struct fuse_writepage_args *aux, *next;
1618 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1619 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1620 	struct fuse_args *args = &wpa->ia.ap.args;
1621 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1622 	int err;
1623 
1624 	fi->writectr++;
1625 	if (inarg->offset + data_size <= size) {
1626 		inarg->size = data_size;
1627 	} else if (inarg->offset < size) {
1628 		inarg->size = size - inarg->offset;
1629 	} else {
1630 		/* Got truncated off completely */
1631 		goto out_free;
1632 	}
1633 
1634 	args->in_args[1].size = inarg->size;
1635 	args->force = true;
1636 	args->nocreds = true;
1637 
1638 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1639 	if (err == -ENOMEM) {
1640 		spin_unlock(&fi->lock);
1641 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1642 		spin_lock(&fi->lock);
1643 	}
1644 
1645 	/* Fails on broken connection only */
1646 	if (unlikely(err))
1647 		goto out_free;
1648 
1649 	return;
1650 
1651  out_free:
1652 	fi->writectr--;
1653 	fuse_writepage_finish(fc, wpa);
1654 	spin_unlock(&fi->lock);
1655 
1656 	/* After fuse_writepage_finish() aux request list is private */
1657 	for (aux = wpa->next; aux; aux = next) {
1658 		next = aux->next;
1659 		aux->next = NULL;
1660 		fuse_writepage_free(aux);
1661 	}
1662 
1663 	fuse_writepage_free(wpa);
1664 	spin_lock(&fi->lock);
1665 }
1666 
1667 /*
1668  * If fi->writectr is positive (no truncate or fsync going on) send
1669  * all queued writepage requests.
1670  *
1671  * Called with fi->lock
1672  */
1673 void fuse_flush_writepages(struct inode *inode)
1674 __releases(fi->lock)
1675 __acquires(fi->lock)
1676 {
1677 	struct fuse_conn *fc = get_fuse_conn(inode);
1678 	struct fuse_inode *fi = get_fuse_inode(inode);
1679 	loff_t crop = i_size_read(inode);
1680 	struct fuse_writepage_args *wpa;
1681 
1682 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1683 		wpa = list_entry(fi->queued_writes.next,
1684 				 struct fuse_writepage_args, queue_entry);
1685 		list_del_init(&wpa->queue_entry);
1686 		fuse_send_writepage(fc, wpa, crop);
1687 	}
1688 }
1689 
1690 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1691 			       int error)
1692 {
1693 	struct fuse_writepage_args *wpa =
1694 		container_of(args, typeof(*wpa), ia.ap.args);
1695 	struct inode *inode = wpa->inode;
1696 	struct fuse_inode *fi = get_fuse_inode(inode);
1697 
1698 	mapping_set_error(inode->i_mapping, error);
1699 	spin_lock(&fi->lock);
1700 	while (wpa->next) {
1701 		struct fuse_conn *fc = get_fuse_conn(inode);
1702 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1703 		struct fuse_writepage_args *next = wpa->next;
1704 
1705 		wpa->next = next->next;
1706 		next->next = NULL;
1707 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1708 		list_add(&next->writepages_entry, &fi->writepages);
1709 
1710 		/*
1711 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1712 		 * based on primary request size.
1713 		 *
1714 		 * 1st case (trivial): there are no concurrent activities using
1715 		 * fuse_set/release_nowrite.  Then we're on safe side because
1716 		 * fuse_flush_writepages() would call fuse_send_writepage()
1717 		 * anyway.
1718 		 *
1719 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1720 		 * now for completion of all in-flight requests.  This happens
1721 		 * rarely and no more than once per page, so this should be
1722 		 * okay.
1723 		 *
1724 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1725 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1726 		 * that fuse_set_nowrite returned implies that all in-flight
1727 		 * requests were completed along with all of their secondary
1728 		 * requests.  Further primary requests are blocked by negative
1729 		 * writectr.  Hence there cannot be any in-flight requests and
1730 		 * no invocations of fuse_writepage_end() while we're in
1731 		 * fuse_set_nowrite..fuse_release_nowrite section.
1732 		 */
1733 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1734 	}
1735 	fi->writectr--;
1736 	fuse_writepage_finish(fc, wpa);
1737 	spin_unlock(&fi->lock);
1738 	fuse_writepage_free(wpa);
1739 }
1740 
1741 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1742 					       struct fuse_inode *fi)
1743 {
1744 	struct fuse_file *ff = NULL;
1745 
1746 	spin_lock(&fi->lock);
1747 	if (!list_empty(&fi->write_files)) {
1748 		ff = list_entry(fi->write_files.next, struct fuse_file,
1749 				write_entry);
1750 		fuse_file_get(ff);
1751 	}
1752 	spin_unlock(&fi->lock);
1753 
1754 	return ff;
1755 }
1756 
1757 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1758 					     struct fuse_inode *fi)
1759 {
1760 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1761 	WARN_ON(!ff);
1762 	return ff;
1763 }
1764 
1765 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1766 {
1767 	struct fuse_conn *fc = get_fuse_conn(inode);
1768 	struct fuse_inode *fi = get_fuse_inode(inode);
1769 	struct fuse_file *ff;
1770 	int err;
1771 
1772 	ff = __fuse_write_file_get(fc, fi);
1773 	err = fuse_flush_times(inode, ff);
1774 	if (ff)
1775 		fuse_file_put(ff, false, false);
1776 
1777 	return err;
1778 }
1779 
1780 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1781 {
1782 	struct fuse_writepage_args *wpa;
1783 	struct fuse_args_pages *ap;
1784 
1785 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1786 	if (wpa) {
1787 		ap = &wpa->ia.ap;
1788 		ap->num_pages = 0;
1789 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1790 		if (!ap->pages) {
1791 			kfree(wpa);
1792 			wpa = NULL;
1793 		}
1794 	}
1795 	return wpa;
1796 
1797 }
1798 
1799 static int fuse_writepage_locked(struct page *page)
1800 {
1801 	struct address_space *mapping = page->mapping;
1802 	struct inode *inode = mapping->host;
1803 	struct fuse_conn *fc = get_fuse_conn(inode);
1804 	struct fuse_inode *fi = get_fuse_inode(inode);
1805 	struct fuse_writepage_args *wpa;
1806 	struct fuse_args_pages *ap;
1807 	struct page *tmp_page;
1808 	int error = -ENOMEM;
1809 
1810 	set_page_writeback(page);
1811 
1812 	wpa = fuse_writepage_args_alloc();
1813 	if (!wpa)
1814 		goto err;
1815 	ap = &wpa->ia.ap;
1816 
1817 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1818 	if (!tmp_page)
1819 		goto err_free;
1820 
1821 	error = -EIO;
1822 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1823 	if (!wpa->ia.ff)
1824 		goto err_nofile;
1825 
1826 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1827 
1828 	copy_highpage(tmp_page, page);
1829 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1830 	wpa->next = NULL;
1831 	ap->args.in_pages = true;
1832 	ap->num_pages = 1;
1833 	ap->pages[0] = tmp_page;
1834 	ap->descs[0].offset = 0;
1835 	ap->descs[0].length = PAGE_SIZE;
1836 	ap->args.end = fuse_writepage_end;
1837 	wpa->inode = inode;
1838 
1839 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1840 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1841 
1842 	spin_lock(&fi->lock);
1843 	list_add(&wpa->writepages_entry, &fi->writepages);
1844 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1845 	fuse_flush_writepages(inode);
1846 	spin_unlock(&fi->lock);
1847 
1848 	end_page_writeback(page);
1849 
1850 	return 0;
1851 
1852 err_nofile:
1853 	__free_page(tmp_page);
1854 err_free:
1855 	kfree(wpa);
1856 err:
1857 	mapping_set_error(page->mapping, error);
1858 	end_page_writeback(page);
1859 	return error;
1860 }
1861 
1862 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1863 {
1864 	int err;
1865 
1866 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1867 		/*
1868 		 * ->writepages() should be called for sync() and friends.  We
1869 		 * should only get here on direct reclaim and then we are
1870 		 * allowed to skip a page which is already in flight
1871 		 */
1872 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1873 
1874 		redirty_page_for_writepage(wbc, page);
1875 		unlock_page(page);
1876 		return 0;
1877 	}
1878 
1879 	err = fuse_writepage_locked(page);
1880 	unlock_page(page);
1881 
1882 	return err;
1883 }
1884 
1885 struct fuse_fill_wb_data {
1886 	struct fuse_writepage_args *wpa;
1887 	struct fuse_file *ff;
1888 	struct inode *inode;
1889 	struct page **orig_pages;
1890 	unsigned int max_pages;
1891 };
1892 
1893 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1894 {
1895 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1896 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1897 	struct page **pages;
1898 	struct fuse_page_desc *descs;
1899 	unsigned int npages = min_t(unsigned int,
1900 				    max_t(unsigned int, data->max_pages * 2,
1901 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1902 				    fc->max_pages);
1903 	WARN_ON(npages <= data->max_pages);
1904 
1905 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1906 	if (!pages)
1907 		return false;
1908 
1909 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1910 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1911 	kfree(ap->pages);
1912 	ap->pages = pages;
1913 	ap->descs = descs;
1914 	data->max_pages = npages;
1915 
1916 	return true;
1917 }
1918 
1919 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1920 {
1921 	struct fuse_writepage_args *wpa = data->wpa;
1922 	struct inode *inode = data->inode;
1923 	struct fuse_inode *fi = get_fuse_inode(inode);
1924 	int num_pages = wpa->ia.ap.num_pages;
1925 	int i;
1926 
1927 	wpa->ia.ff = fuse_file_get(data->ff);
1928 	spin_lock(&fi->lock);
1929 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1930 	fuse_flush_writepages(inode);
1931 	spin_unlock(&fi->lock);
1932 
1933 	for (i = 0; i < num_pages; i++)
1934 		end_page_writeback(data->orig_pages[i]);
1935 }
1936 
1937 /*
1938  * First recheck under fi->lock if the offending offset is still under
1939  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1940  * one already added for a page at this offset.  If there's none, then insert
1941  * this new request onto the auxiliary list, otherwise reuse the existing one by
1942  * copying the new page contents over to the old temporary page.
1943  */
1944 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1945 				     struct page *page)
1946 {
1947 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1948 	struct fuse_writepage_args *tmp;
1949 	struct fuse_writepage_args *old_wpa;
1950 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1951 
1952 	WARN_ON(new_ap->num_pages != 0);
1953 
1954 	spin_lock(&fi->lock);
1955 	list_del(&new_wpa->writepages_entry);
1956 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1957 	if (!old_wpa) {
1958 		list_add(&new_wpa->writepages_entry, &fi->writepages);
1959 		spin_unlock(&fi->lock);
1960 		return false;
1961 	}
1962 
1963 	new_ap->num_pages = 1;
1964 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1965 		pgoff_t curr_index;
1966 
1967 		WARN_ON(tmp->inode != new_wpa->inode);
1968 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1969 		if (curr_index == page->index) {
1970 			WARN_ON(tmp->ia.ap.num_pages != 1);
1971 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1972 			break;
1973 		}
1974 	}
1975 
1976 	if (!tmp) {
1977 		new_wpa->next = old_wpa->next;
1978 		old_wpa->next = new_wpa;
1979 	}
1980 
1981 	spin_unlock(&fi->lock);
1982 
1983 	if (tmp) {
1984 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1985 
1986 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1987 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1988 		wb_writeout_inc(&bdi->wb);
1989 		fuse_writepage_free(new_wpa);
1990 	}
1991 
1992 	return true;
1993 }
1994 
1995 static int fuse_writepages_fill(struct page *page,
1996 		struct writeback_control *wbc, void *_data)
1997 {
1998 	struct fuse_fill_wb_data *data = _data;
1999 	struct fuse_writepage_args *wpa = data->wpa;
2000 	struct fuse_args_pages *ap = &wpa->ia.ap;
2001 	struct inode *inode = data->inode;
2002 	struct fuse_inode *fi = get_fuse_inode(inode);
2003 	struct fuse_conn *fc = get_fuse_conn(inode);
2004 	struct page *tmp_page;
2005 	bool is_writeback;
2006 	int err;
2007 
2008 	if (!data->ff) {
2009 		err = -EIO;
2010 		data->ff = fuse_write_file_get(fc, fi);
2011 		if (!data->ff)
2012 			goto out_unlock;
2013 	}
2014 
2015 	/*
2016 	 * Being under writeback is unlikely but possible.  For example direct
2017 	 * read to an mmaped fuse file will set the page dirty twice; once when
2018 	 * the pages are faulted with get_user_pages(), and then after the read
2019 	 * completed.
2020 	 */
2021 	is_writeback = fuse_page_is_writeback(inode, page->index);
2022 
2023 	if (wpa && ap->num_pages &&
2024 	    (is_writeback || ap->num_pages == fc->max_pages ||
2025 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2026 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2027 		fuse_writepages_send(data);
2028 		data->wpa = NULL;
2029 	} else if (wpa && ap->num_pages == data->max_pages) {
2030 		if (!fuse_pages_realloc(data)) {
2031 			fuse_writepages_send(data);
2032 			data->wpa = NULL;
2033 		}
2034 	}
2035 
2036 	err = -ENOMEM;
2037 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2038 	if (!tmp_page)
2039 		goto out_unlock;
2040 
2041 	/*
2042 	 * The page must not be redirtied until the writeout is completed
2043 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2044 	 * there could be more than one temporary page instance for each real
2045 	 * page.
2046 	 *
2047 	 * This is ensured by holding the page lock in page_mkwrite() while
2048 	 * checking fuse_page_is_writeback().  We already hold the page lock
2049 	 * since clear_page_dirty_for_io() and keep it held until we add the
2050 	 * request to the fi->writepages list and increment ap->num_pages.
2051 	 * After this fuse_page_is_writeback() will indicate that the page is
2052 	 * under writeback, so we can release the page lock.
2053 	 */
2054 	if (data->wpa == NULL) {
2055 		err = -ENOMEM;
2056 		wpa = fuse_writepage_args_alloc();
2057 		if (!wpa) {
2058 			__free_page(tmp_page);
2059 			goto out_unlock;
2060 		}
2061 		data->max_pages = 1;
2062 
2063 		ap = &wpa->ia.ap;
2064 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2065 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2066 		wpa->next = NULL;
2067 		ap->args.in_pages = true;
2068 		ap->args.end = fuse_writepage_end;
2069 		ap->num_pages = 0;
2070 		wpa->inode = inode;
2071 
2072 		spin_lock(&fi->lock);
2073 		list_add(&wpa->writepages_entry, &fi->writepages);
2074 		spin_unlock(&fi->lock);
2075 
2076 		data->wpa = wpa;
2077 	}
2078 	set_page_writeback(page);
2079 
2080 	copy_highpage(tmp_page, page);
2081 	ap->pages[ap->num_pages] = tmp_page;
2082 	ap->descs[ap->num_pages].offset = 0;
2083 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2084 
2085 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2086 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2087 
2088 	err = 0;
2089 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2090 		end_page_writeback(page);
2091 		data->wpa = NULL;
2092 		goto out_unlock;
2093 	}
2094 	data->orig_pages[ap->num_pages] = page;
2095 
2096 	/*
2097 	 * Protected by fi->lock against concurrent access by
2098 	 * fuse_page_is_writeback().
2099 	 */
2100 	spin_lock(&fi->lock);
2101 	ap->num_pages++;
2102 	spin_unlock(&fi->lock);
2103 
2104 out_unlock:
2105 	unlock_page(page);
2106 
2107 	return err;
2108 }
2109 
2110 static int fuse_writepages(struct address_space *mapping,
2111 			   struct writeback_control *wbc)
2112 {
2113 	struct inode *inode = mapping->host;
2114 	struct fuse_conn *fc = get_fuse_conn(inode);
2115 	struct fuse_fill_wb_data data;
2116 	int err;
2117 
2118 	err = -EIO;
2119 	if (is_bad_inode(inode))
2120 		goto out;
2121 
2122 	data.inode = inode;
2123 	data.wpa = NULL;
2124 	data.ff = NULL;
2125 
2126 	err = -ENOMEM;
2127 	data.orig_pages = kcalloc(fc->max_pages,
2128 				  sizeof(struct page *),
2129 				  GFP_NOFS);
2130 	if (!data.orig_pages)
2131 		goto out;
2132 
2133 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2134 	if (data.wpa) {
2135 		/* Ignore errors if we can write at least one page */
2136 		WARN_ON(!data.wpa->ia.ap.num_pages);
2137 		fuse_writepages_send(&data);
2138 		err = 0;
2139 	}
2140 	if (data.ff)
2141 		fuse_file_put(data.ff, false, false);
2142 
2143 	kfree(data.orig_pages);
2144 out:
2145 	return err;
2146 }
2147 
2148 /*
2149  * It's worthy to make sure that space is reserved on disk for the write,
2150  * but how to implement it without killing performance need more thinking.
2151  */
2152 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2153 		loff_t pos, unsigned len, unsigned flags,
2154 		struct page **pagep, void **fsdata)
2155 {
2156 	pgoff_t index = pos >> PAGE_SHIFT;
2157 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2158 	struct page *page;
2159 	loff_t fsize;
2160 	int err = -ENOMEM;
2161 
2162 	WARN_ON(!fc->writeback_cache);
2163 
2164 	page = grab_cache_page_write_begin(mapping, index, flags);
2165 	if (!page)
2166 		goto error;
2167 
2168 	fuse_wait_on_page_writeback(mapping->host, page->index);
2169 
2170 	if (PageUptodate(page) || len == PAGE_SIZE)
2171 		goto success;
2172 	/*
2173 	 * Check if the start this page comes after the end of file, in which
2174 	 * case the readpage can be optimized away.
2175 	 */
2176 	fsize = i_size_read(mapping->host);
2177 	if (fsize <= (pos & PAGE_MASK)) {
2178 		size_t off = pos & ~PAGE_MASK;
2179 		if (off)
2180 			zero_user_segment(page, 0, off);
2181 		goto success;
2182 	}
2183 	err = fuse_do_readpage(file, page);
2184 	if (err)
2185 		goto cleanup;
2186 success:
2187 	*pagep = page;
2188 	return 0;
2189 
2190 cleanup:
2191 	unlock_page(page);
2192 	put_page(page);
2193 error:
2194 	return err;
2195 }
2196 
2197 static int fuse_write_end(struct file *file, struct address_space *mapping,
2198 		loff_t pos, unsigned len, unsigned copied,
2199 		struct page *page, void *fsdata)
2200 {
2201 	struct inode *inode = page->mapping->host;
2202 
2203 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2204 	if (!copied)
2205 		goto unlock;
2206 
2207 	if (!PageUptodate(page)) {
2208 		/* Zero any unwritten bytes at the end of the page */
2209 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2210 		if (endoff)
2211 			zero_user_segment(page, endoff, PAGE_SIZE);
2212 		SetPageUptodate(page);
2213 	}
2214 
2215 	fuse_write_update_size(inode, pos + copied);
2216 	set_page_dirty(page);
2217 
2218 unlock:
2219 	unlock_page(page);
2220 	put_page(page);
2221 
2222 	return copied;
2223 }
2224 
2225 static int fuse_launder_page(struct page *page)
2226 {
2227 	int err = 0;
2228 	if (clear_page_dirty_for_io(page)) {
2229 		struct inode *inode = page->mapping->host;
2230 		err = fuse_writepage_locked(page);
2231 		if (!err)
2232 			fuse_wait_on_page_writeback(inode, page->index);
2233 	}
2234 	return err;
2235 }
2236 
2237 /*
2238  * Write back dirty pages now, because there may not be any suitable
2239  * open files later
2240  */
2241 static void fuse_vma_close(struct vm_area_struct *vma)
2242 {
2243 	filemap_write_and_wait(vma->vm_file->f_mapping);
2244 }
2245 
2246 /*
2247  * Wait for writeback against this page to complete before allowing it
2248  * to be marked dirty again, and hence written back again, possibly
2249  * before the previous writepage completed.
2250  *
2251  * Block here, instead of in ->writepage(), so that the userspace fs
2252  * can only block processes actually operating on the filesystem.
2253  *
2254  * Otherwise unprivileged userspace fs would be able to block
2255  * unrelated:
2256  *
2257  * - page migration
2258  * - sync(2)
2259  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2260  */
2261 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2262 {
2263 	struct page *page = vmf->page;
2264 	struct inode *inode = file_inode(vmf->vma->vm_file);
2265 
2266 	file_update_time(vmf->vma->vm_file);
2267 	lock_page(page);
2268 	if (page->mapping != inode->i_mapping) {
2269 		unlock_page(page);
2270 		return VM_FAULT_NOPAGE;
2271 	}
2272 
2273 	fuse_wait_on_page_writeback(inode, page->index);
2274 	return VM_FAULT_LOCKED;
2275 }
2276 
2277 static const struct vm_operations_struct fuse_file_vm_ops = {
2278 	.close		= fuse_vma_close,
2279 	.fault		= filemap_fault,
2280 	.map_pages	= filemap_map_pages,
2281 	.page_mkwrite	= fuse_page_mkwrite,
2282 };
2283 
2284 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2285 {
2286 	struct fuse_file *ff = file->private_data;
2287 
2288 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2289 		/* Can't provide the coherency needed for MAP_SHARED */
2290 		if (vma->vm_flags & VM_MAYSHARE)
2291 			return -ENODEV;
2292 
2293 		invalidate_inode_pages2(file->f_mapping);
2294 
2295 		return generic_file_mmap(file, vma);
2296 	}
2297 
2298 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2299 		fuse_link_write_file(file);
2300 
2301 	file_accessed(file);
2302 	vma->vm_ops = &fuse_file_vm_ops;
2303 	return 0;
2304 }
2305 
2306 static int convert_fuse_file_lock(struct fuse_conn *fc,
2307 				  const struct fuse_file_lock *ffl,
2308 				  struct file_lock *fl)
2309 {
2310 	switch (ffl->type) {
2311 	case F_UNLCK:
2312 		break;
2313 
2314 	case F_RDLCK:
2315 	case F_WRLCK:
2316 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2317 		    ffl->end < ffl->start)
2318 			return -EIO;
2319 
2320 		fl->fl_start = ffl->start;
2321 		fl->fl_end = ffl->end;
2322 
2323 		/*
2324 		 * Convert pid into init's pid namespace.  The locks API will
2325 		 * translate it into the caller's pid namespace.
2326 		 */
2327 		rcu_read_lock();
2328 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2329 		rcu_read_unlock();
2330 		break;
2331 
2332 	default:
2333 		return -EIO;
2334 	}
2335 	fl->fl_type = ffl->type;
2336 	return 0;
2337 }
2338 
2339 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2340 			 const struct file_lock *fl, int opcode, pid_t pid,
2341 			 int flock, struct fuse_lk_in *inarg)
2342 {
2343 	struct inode *inode = file_inode(file);
2344 	struct fuse_conn *fc = get_fuse_conn(inode);
2345 	struct fuse_file *ff = file->private_data;
2346 
2347 	memset(inarg, 0, sizeof(*inarg));
2348 	inarg->fh = ff->fh;
2349 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2350 	inarg->lk.start = fl->fl_start;
2351 	inarg->lk.end = fl->fl_end;
2352 	inarg->lk.type = fl->fl_type;
2353 	inarg->lk.pid = pid;
2354 	if (flock)
2355 		inarg->lk_flags |= FUSE_LK_FLOCK;
2356 	args->opcode = opcode;
2357 	args->nodeid = get_node_id(inode);
2358 	args->in_numargs = 1;
2359 	args->in_args[0].size = sizeof(*inarg);
2360 	args->in_args[0].value = inarg;
2361 }
2362 
2363 static int fuse_getlk(struct file *file, struct file_lock *fl)
2364 {
2365 	struct inode *inode = file_inode(file);
2366 	struct fuse_conn *fc = get_fuse_conn(inode);
2367 	FUSE_ARGS(args);
2368 	struct fuse_lk_in inarg;
2369 	struct fuse_lk_out outarg;
2370 	int err;
2371 
2372 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2373 	args.out_numargs = 1;
2374 	args.out_args[0].size = sizeof(outarg);
2375 	args.out_args[0].value = &outarg;
2376 	err = fuse_simple_request(fc, &args);
2377 	if (!err)
2378 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2379 
2380 	return err;
2381 }
2382 
2383 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2384 {
2385 	struct inode *inode = file_inode(file);
2386 	struct fuse_conn *fc = get_fuse_conn(inode);
2387 	FUSE_ARGS(args);
2388 	struct fuse_lk_in inarg;
2389 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2390 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2391 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2392 	int err;
2393 
2394 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2395 		/* NLM needs asynchronous locks, which we don't support yet */
2396 		return -ENOLCK;
2397 	}
2398 
2399 	/* Unlock on close is handled by the flush method */
2400 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2401 		return 0;
2402 
2403 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2404 	err = fuse_simple_request(fc, &args);
2405 
2406 	/* locking is restartable */
2407 	if (err == -EINTR)
2408 		err = -ERESTARTSYS;
2409 
2410 	return err;
2411 }
2412 
2413 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2414 {
2415 	struct inode *inode = file_inode(file);
2416 	struct fuse_conn *fc = get_fuse_conn(inode);
2417 	int err;
2418 
2419 	if (cmd == F_CANCELLK) {
2420 		err = 0;
2421 	} else if (cmd == F_GETLK) {
2422 		if (fc->no_lock) {
2423 			posix_test_lock(file, fl);
2424 			err = 0;
2425 		} else
2426 			err = fuse_getlk(file, fl);
2427 	} else {
2428 		if (fc->no_lock)
2429 			err = posix_lock_file(file, fl, NULL);
2430 		else
2431 			err = fuse_setlk(file, fl, 0);
2432 	}
2433 	return err;
2434 }
2435 
2436 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2437 {
2438 	struct inode *inode = file_inode(file);
2439 	struct fuse_conn *fc = get_fuse_conn(inode);
2440 	int err;
2441 
2442 	if (fc->no_flock) {
2443 		err = locks_lock_file_wait(file, fl);
2444 	} else {
2445 		struct fuse_file *ff = file->private_data;
2446 
2447 		/* emulate flock with POSIX locks */
2448 		ff->flock = true;
2449 		err = fuse_setlk(file, fl, 1);
2450 	}
2451 
2452 	return err;
2453 }
2454 
2455 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2456 {
2457 	struct inode *inode = mapping->host;
2458 	struct fuse_conn *fc = get_fuse_conn(inode);
2459 	FUSE_ARGS(args);
2460 	struct fuse_bmap_in inarg;
2461 	struct fuse_bmap_out outarg;
2462 	int err;
2463 
2464 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2465 		return 0;
2466 
2467 	memset(&inarg, 0, sizeof(inarg));
2468 	inarg.block = block;
2469 	inarg.blocksize = inode->i_sb->s_blocksize;
2470 	args.opcode = FUSE_BMAP;
2471 	args.nodeid = get_node_id(inode);
2472 	args.in_numargs = 1;
2473 	args.in_args[0].size = sizeof(inarg);
2474 	args.in_args[0].value = &inarg;
2475 	args.out_numargs = 1;
2476 	args.out_args[0].size = sizeof(outarg);
2477 	args.out_args[0].value = &outarg;
2478 	err = fuse_simple_request(fc, &args);
2479 	if (err == -ENOSYS)
2480 		fc->no_bmap = 1;
2481 
2482 	return err ? 0 : outarg.block;
2483 }
2484 
2485 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2486 {
2487 	struct inode *inode = file->f_mapping->host;
2488 	struct fuse_conn *fc = get_fuse_conn(inode);
2489 	struct fuse_file *ff = file->private_data;
2490 	FUSE_ARGS(args);
2491 	struct fuse_lseek_in inarg = {
2492 		.fh = ff->fh,
2493 		.offset = offset,
2494 		.whence = whence
2495 	};
2496 	struct fuse_lseek_out outarg;
2497 	int err;
2498 
2499 	if (fc->no_lseek)
2500 		goto fallback;
2501 
2502 	args.opcode = FUSE_LSEEK;
2503 	args.nodeid = ff->nodeid;
2504 	args.in_numargs = 1;
2505 	args.in_args[0].size = sizeof(inarg);
2506 	args.in_args[0].value = &inarg;
2507 	args.out_numargs = 1;
2508 	args.out_args[0].size = sizeof(outarg);
2509 	args.out_args[0].value = &outarg;
2510 	err = fuse_simple_request(fc, &args);
2511 	if (err) {
2512 		if (err == -ENOSYS) {
2513 			fc->no_lseek = 1;
2514 			goto fallback;
2515 		}
2516 		return err;
2517 	}
2518 
2519 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2520 
2521 fallback:
2522 	err = fuse_update_attributes(inode, file);
2523 	if (!err)
2524 		return generic_file_llseek(file, offset, whence);
2525 	else
2526 		return err;
2527 }
2528 
2529 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2530 {
2531 	loff_t retval;
2532 	struct inode *inode = file_inode(file);
2533 
2534 	switch (whence) {
2535 	case SEEK_SET:
2536 	case SEEK_CUR:
2537 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2538 		retval = generic_file_llseek(file, offset, whence);
2539 		break;
2540 	case SEEK_END:
2541 		inode_lock(inode);
2542 		retval = fuse_update_attributes(inode, file);
2543 		if (!retval)
2544 			retval = generic_file_llseek(file, offset, whence);
2545 		inode_unlock(inode);
2546 		break;
2547 	case SEEK_HOLE:
2548 	case SEEK_DATA:
2549 		inode_lock(inode);
2550 		retval = fuse_lseek(file, offset, whence);
2551 		inode_unlock(inode);
2552 		break;
2553 	default:
2554 		retval = -EINVAL;
2555 	}
2556 
2557 	return retval;
2558 }
2559 
2560 /*
2561  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2562  * ABI was defined to be 'struct iovec' which is different on 32bit
2563  * and 64bit.  Fortunately we can determine which structure the server
2564  * used from the size of the reply.
2565  */
2566 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2567 				     size_t transferred, unsigned count,
2568 				     bool is_compat)
2569 {
2570 #ifdef CONFIG_COMPAT
2571 	if (count * sizeof(struct compat_iovec) == transferred) {
2572 		struct compat_iovec *ciov = src;
2573 		unsigned i;
2574 
2575 		/*
2576 		 * With this interface a 32bit server cannot support
2577 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2578 		 * requests
2579 		 */
2580 		if (!is_compat)
2581 			return -EINVAL;
2582 
2583 		for (i = 0; i < count; i++) {
2584 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2585 			dst[i].iov_len = ciov[i].iov_len;
2586 		}
2587 		return 0;
2588 	}
2589 #endif
2590 
2591 	if (count * sizeof(struct iovec) != transferred)
2592 		return -EIO;
2593 
2594 	memcpy(dst, src, transferred);
2595 	return 0;
2596 }
2597 
2598 /* Make sure iov_length() won't overflow */
2599 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2600 				 size_t count)
2601 {
2602 	size_t n;
2603 	u32 max = fc->max_pages << PAGE_SHIFT;
2604 
2605 	for (n = 0; n < count; n++, iov++) {
2606 		if (iov->iov_len > (size_t) max)
2607 			return -ENOMEM;
2608 		max -= iov->iov_len;
2609 	}
2610 	return 0;
2611 }
2612 
2613 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2614 				 void *src, size_t transferred, unsigned count,
2615 				 bool is_compat)
2616 {
2617 	unsigned i;
2618 	struct fuse_ioctl_iovec *fiov = src;
2619 
2620 	if (fc->minor < 16) {
2621 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2622 						 count, is_compat);
2623 	}
2624 
2625 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2626 		return -EIO;
2627 
2628 	for (i = 0; i < count; i++) {
2629 		/* Did the server supply an inappropriate value? */
2630 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2631 		    fiov[i].len != (unsigned long) fiov[i].len)
2632 			return -EIO;
2633 
2634 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2635 		dst[i].iov_len = (size_t) fiov[i].len;
2636 
2637 #ifdef CONFIG_COMPAT
2638 		if (is_compat &&
2639 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2640 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2641 			return -EIO;
2642 #endif
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 
2649 /*
2650  * For ioctls, there is no generic way to determine how much memory
2651  * needs to be read and/or written.  Furthermore, ioctls are allowed
2652  * to dereference the passed pointer, so the parameter requires deep
2653  * copying but FUSE has no idea whatsoever about what to copy in or
2654  * out.
2655  *
2656  * This is solved by allowing FUSE server to retry ioctl with
2657  * necessary in/out iovecs.  Let's assume the ioctl implementation
2658  * needs to read in the following structure.
2659  *
2660  * struct a {
2661  *	char	*buf;
2662  *	size_t	buflen;
2663  * }
2664  *
2665  * On the first callout to FUSE server, inarg->in_size and
2666  * inarg->out_size will be NULL; then, the server completes the ioctl
2667  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2668  * the actual iov array to
2669  *
2670  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2671  *
2672  * which tells FUSE to copy in the requested area and retry the ioctl.
2673  * On the second round, the server has access to the structure and
2674  * from that it can tell what to look for next, so on the invocation,
2675  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2676  *
2677  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2678  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2679  *
2680  * FUSE will copy both struct a and the pointed buffer from the
2681  * process doing the ioctl and retry ioctl with both struct a and the
2682  * buffer.
2683  *
2684  * This time, FUSE server has everything it needs and completes ioctl
2685  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2686  *
2687  * Copying data out works the same way.
2688  *
2689  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2690  * automatically initializes in and out iovs by decoding @cmd with
2691  * _IOC_* macros and the server is not allowed to request RETRY.  This
2692  * limits ioctl data transfers to well-formed ioctls and is the forced
2693  * behavior for all FUSE servers.
2694  */
2695 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2696 		   unsigned int flags)
2697 {
2698 	struct fuse_file *ff = file->private_data;
2699 	struct fuse_conn *fc = ff->fc;
2700 	struct fuse_ioctl_in inarg = {
2701 		.fh = ff->fh,
2702 		.cmd = cmd,
2703 		.arg = arg,
2704 		.flags = flags
2705 	};
2706 	struct fuse_ioctl_out outarg;
2707 	struct iovec *iov_page = NULL;
2708 	struct iovec *in_iov = NULL, *out_iov = NULL;
2709 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2710 	size_t in_size, out_size, c;
2711 	ssize_t transferred;
2712 	int err, i;
2713 	struct iov_iter ii;
2714 	struct fuse_args_pages ap = {};
2715 
2716 #if BITS_PER_LONG == 32
2717 	inarg.flags |= FUSE_IOCTL_32BIT;
2718 #else
2719 	if (flags & FUSE_IOCTL_COMPAT) {
2720 		inarg.flags |= FUSE_IOCTL_32BIT;
2721 #ifdef CONFIG_X86_X32
2722 		if (in_x32_syscall())
2723 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2724 #endif
2725 	}
2726 #endif
2727 
2728 	/* assume all the iovs returned by client always fits in a page */
2729 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2730 
2731 	err = -ENOMEM;
2732 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2733 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2734 	if (!ap.pages || !iov_page)
2735 		goto out;
2736 
2737 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2738 
2739 	/*
2740 	 * If restricted, initialize IO parameters as encoded in @cmd.
2741 	 * RETRY from server is not allowed.
2742 	 */
2743 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2744 		struct iovec *iov = iov_page;
2745 
2746 		iov->iov_base = (void __user *)arg;
2747 		iov->iov_len = _IOC_SIZE(cmd);
2748 
2749 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2750 			in_iov = iov;
2751 			in_iovs = 1;
2752 		}
2753 
2754 		if (_IOC_DIR(cmd) & _IOC_READ) {
2755 			out_iov = iov;
2756 			out_iovs = 1;
2757 		}
2758 	}
2759 
2760  retry:
2761 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2762 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2763 
2764 	/*
2765 	 * Out data can be used either for actual out data or iovs,
2766 	 * make sure there always is at least one page.
2767 	 */
2768 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2769 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2770 
2771 	/* make sure there are enough buffer pages and init request with them */
2772 	err = -ENOMEM;
2773 	if (max_pages > fc->max_pages)
2774 		goto out;
2775 	while (ap.num_pages < max_pages) {
2776 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2777 		if (!ap.pages[ap.num_pages])
2778 			goto out;
2779 		ap.num_pages++;
2780 	}
2781 
2782 
2783 	/* okay, let's send it to the client */
2784 	ap.args.opcode = FUSE_IOCTL;
2785 	ap.args.nodeid = ff->nodeid;
2786 	ap.args.in_numargs = 1;
2787 	ap.args.in_args[0].size = sizeof(inarg);
2788 	ap.args.in_args[0].value = &inarg;
2789 	if (in_size) {
2790 		ap.args.in_numargs++;
2791 		ap.args.in_args[1].size = in_size;
2792 		ap.args.in_pages = true;
2793 
2794 		err = -EFAULT;
2795 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2796 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2797 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2798 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2799 				goto out;
2800 		}
2801 	}
2802 
2803 	ap.args.out_numargs = 2;
2804 	ap.args.out_args[0].size = sizeof(outarg);
2805 	ap.args.out_args[0].value = &outarg;
2806 	ap.args.out_args[1].size = out_size;
2807 	ap.args.out_pages = true;
2808 	ap.args.out_argvar = true;
2809 
2810 	transferred = fuse_simple_request(fc, &ap.args);
2811 	err = transferred;
2812 	if (transferred < 0)
2813 		goto out;
2814 
2815 	/* did it ask for retry? */
2816 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2817 		void *vaddr;
2818 
2819 		/* no retry if in restricted mode */
2820 		err = -EIO;
2821 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2822 			goto out;
2823 
2824 		in_iovs = outarg.in_iovs;
2825 		out_iovs = outarg.out_iovs;
2826 
2827 		/*
2828 		 * Make sure things are in boundary, separate checks
2829 		 * are to protect against overflow.
2830 		 */
2831 		err = -ENOMEM;
2832 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2833 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2834 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2835 			goto out;
2836 
2837 		vaddr = kmap_atomic(ap.pages[0]);
2838 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2839 					    transferred, in_iovs + out_iovs,
2840 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2841 		kunmap_atomic(vaddr);
2842 		if (err)
2843 			goto out;
2844 
2845 		in_iov = iov_page;
2846 		out_iov = in_iov + in_iovs;
2847 
2848 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2849 		if (err)
2850 			goto out;
2851 
2852 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2853 		if (err)
2854 			goto out;
2855 
2856 		goto retry;
2857 	}
2858 
2859 	err = -EIO;
2860 	if (transferred > inarg.out_size)
2861 		goto out;
2862 
2863 	err = -EFAULT;
2864 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2865 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2866 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2867 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2868 			goto out;
2869 	}
2870 	err = 0;
2871  out:
2872 	free_page((unsigned long) iov_page);
2873 	while (ap.num_pages)
2874 		__free_page(ap.pages[--ap.num_pages]);
2875 	kfree(ap.pages);
2876 
2877 	return err ? err : outarg.result;
2878 }
2879 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2880 
2881 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2882 		       unsigned long arg, unsigned int flags)
2883 {
2884 	struct inode *inode = file_inode(file);
2885 	struct fuse_conn *fc = get_fuse_conn(inode);
2886 
2887 	if (!fuse_allow_current_process(fc))
2888 		return -EACCES;
2889 
2890 	if (is_bad_inode(inode))
2891 		return -EIO;
2892 
2893 	return fuse_do_ioctl(file, cmd, arg, flags);
2894 }
2895 
2896 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2897 			    unsigned long arg)
2898 {
2899 	return fuse_ioctl_common(file, cmd, arg, 0);
2900 }
2901 
2902 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2903 				   unsigned long arg)
2904 {
2905 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2906 }
2907 
2908 /*
2909  * All files which have been polled are linked to RB tree
2910  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2911  * find the matching one.
2912  */
2913 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2914 					      struct rb_node **parent_out)
2915 {
2916 	struct rb_node **link = &fc->polled_files.rb_node;
2917 	struct rb_node *last = NULL;
2918 
2919 	while (*link) {
2920 		struct fuse_file *ff;
2921 
2922 		last = *link;
2923 		ff = rb_entry(last, struct fuse_file, polled_node);
2924 
2925 		if (kh < ff->kh)
2926 			link = &last->rb_left;
2927 		else if (kh > ff->kh)
2928 			link = &last->rb_right;
2929 		else
2930 			return link;
2931 	}
2932 
2933 	if (parent_out)
2934 		*parent_out = last;
2935 	return link;
2936 }
2937 
2938 /*
2939  * The file is about to be polled.  Make sure it's on the polled_files
2940  * RB tree.  Note that files once added to the polled_files tree are
2941  * not removed before the file is released.  This is because a file
2942  * polled once is likely to be polled again.
2943  */
2944 static void fuse_register_polled_file(struct fuse_conn *fc,
2945 				      struct fuse_file *ff)
2946 {
2947 	spin_lock(&fc->lock);
2948 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2949 		struct rb_node **link, *uninitialized_var(parent);
2950 
2951 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2952 		BUG_ON(*link);
2953 		rb_link_node(&ff->polled_node, parent, link);
2954 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2955 	}
2956 	spin_unlock(&fc->lock);
2957 }
2958 
2959 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2960 {
2961 	struct fuse_file *ff = file->private_data;
2962 	struct fuse_conn *fc = ff->fc;
2963 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2964 	struct fuse_poll_out outarg;
2965 	FUSE_ARGS(args);
2966 	int err;
2967 
2968 	if (fc->no_poll)
2969 		return DEFAULT_POLLMASK;
2970 
2971 	poll_wait(file, &ff->poll_wait, wait);
2972 	inarg.events = mangle_poll(poll_requested_events(wait));
2973 
2974 	/*
2975 	 * Ask for notification iff there's someone waiting for it.
2976 	 * The client may ignore the flag and always notify.
2977 	 */
2978 	if (waitqueue_active(&ff->poll_wait)) {
2979 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2980 		fuse_register_polled_file(fc, ff);
2981 	}
2982 
2983 	args.opcode = FUSE_POLL;
2984 	args.nodeid = ff->nodeid;
2985 	args.in_numargs = 1;
2986 	args.in_args[0].size = sizeof(inarg);
2987 	args.in_args[0].value = &inarg;
2988 	args.out_numargs = 1;
2989 	args.out_args[0].size = sizeof(outarg);
2990 	args.out_args[0].value = &outarg;
2991 	err = fuse_simple_request(fc, &args);
2992 
2993 	if (!err)
2994 		return demangle_poll(outarg.revents);
2995 	if (err == -ENOSYS) {
2996 		fc->no_poll = 1;
2997 		return DEFAULT_POLLMASK;
2998 	}
2999 	return EPOLLERR;
3000 }
3001 EXPORT_SYMBOL_GPL(fuse_file_poll);
3002 
3003 /*
3004  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3005  * wakes up the poll waiters.
3006  */
3007 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3008 			    struct fuse_notify_poll_wakeup_out *outarg)
3009 {
3010 	u64 kh = outarg->kh;
3011 	struct rb_node **link;
3012 
3013 	spin_lock(&fc->lock);
3014 
3015 	link = fuse_find_polled_node(fc, kh, NULL);
3016 	if (*link) {
3017 		struct fuse_file *ff;
3018 
3019 		ff = rb_entry(*link, struct fuse_file, polled_node);
3020 		wake_up_interruptible_sync(&ff->poll_wait);
3021 	}
3022 
3023 	spin_unlock(&fc->lock);
3024 	return 0;
3025 }
3026 
3027 static void fuse_do_truncate(struct file *file)
3028 {
3029 	struct inode *inode = file->f_mapping->host;
3030 	struct iattr attr;
3031 
3032 	attr.ia_valid = ATTR_SIZE;
3033 	attr.ia_size = i_size_read(inode);
3034 
3035 	attr.ia_file = file;
3036 	attr.ia_valid |= ATTR_FILE;
3037 
3038 	fuse_do_setattr(file_dentry(file), &attr, file);
3039 }
3040 
3041 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3042 {
3043 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3044 }
3045 
3046 static ssize_t
3047 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3048 {
3049 	DECLARE_COMPLETION_ONSTACK(wait);
3050 	ssize_t ret = 0;
3051 	struct file *file = iocb->ki_filp;
3052 	struct fuse_file *ff = file->private_data;
3053 	bool async_dio = ff->fc->async_dio;
3054 	loff_t pos = 0;
3055 	struct inode *inode;
3056 	loff_t i_size;
3057 	size_t count = iov_iter_count(iter);
3058 	loff_t offset = iocb->ki_pos;
3059 	struct fuse_io_priv *io;
3060 
3061 	pos = offset;
3062 	inode = file->f_mapping->host;
3063 	i_size = i_size_read(inode);
3064 
3065 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3066 		return 0;
3067 
3068 	/* optimization for short read */
3069 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3070 		if (offset >= i_size)
3071 			return 0;
3072 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3073 		count = iov_iter_count(iter);
3074 	}
3075 
3076 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3077 	if (!io)
3078 		return -ENOMEM;
3079 	spin_lock_init(&io->lock);
3080 	kref_init(&io->refcnt);
3081 	io->reqs = 1;
3082 	io->bytes = -1;
3083 	io->size = 0;
3084 	io->offset = offset;
3085 	io->write = (iov_iter_rw(iter) == WRITE);
3086 	io->err = 0;
3087 	/*
3088 	 * By default, we want to optimize all I/Os with async request
3089 	 * submission to the client filesystem if supported.
3090 	 */
3091 	io->async = async_dio;
3092 	io->iocb = iocb;
3093 	io->blocking = is_sync_kiocb(iocb);
3094 
3095 	/*
3096 	 * We cannot asynchronously extend the size of a file.
3097 	 * In such case the aio will behave exactly like sync io.
3098 	 */
3099 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3100 		io->blocking = true;
3101 
3102 	if (io->async && io->blocking) {
3103 		/*
3104 		 * Additional reference to keep io around after
3105 		 * calling fuse_aio_complete()
3106 		 */
3107 		kref_get(&io->refcnt);
3108 		io->done = &wait;
3109 	}
3110 
3111 	if (iov_iter_rw(iter) == WRITE) {
3112 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3113 		fuse_invalidate_attr(inode);
3114 	} else {
3115 		ret = __fuse_direct_read(io, iter, &pos);
3116 	}
3117 
3118 	if (io->async) {
3119 		bool blocking = io->blocking;
3120 
3121 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3122 
3123 		/* we have a non-extending, async request, so return */
3124 		if (!blocking)
3125 			return -EIOCBQUEUED;
3126 
3127 		wait_for_completion(&wait);
3128 		ret = fuse_get_res_by_io(io);
3129 	}
3130 
3131 	kref_put(&io->refcnt, fuse_io_release);
3132 
3133 	if (iov_iter_rw(iter) == WRITE) {
3134 		if (ret > 0)
3135 			fuse_write_update_size(inode, pos);
3136 		else if (ret < 0 && offset + count > i_size)
3137 			fuse_do_truncate(file);
3138 	}
3139 
3140 	return ret;
3141 }
3142 
3143 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3144 {
3145 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3146 
3147 	if (!err)
3148 		fuse_sync_writes(inode);
3149 
3150 	return err;
3151 }
3152 
3153 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3154 				loff_t length)
3155 {
3156 	struct fuse_file *ff = file->private_data;
3157 	struct inode *inode = file_inode(file);
3158 	struct fuse_inode *fi = get_fuse_inode(inode);
3159 	struct fuse_conn *fc = ff->fc;
3160 	FUSE_ARGS(args);
3161 	struct fuse_fallocate_in inarg = {
3162 		.fh = ff->fh,
3163 		.offset = offset,
3164 		.length = length,
3165 		.mode = mode
3166 	};
3167 	int err;
3168 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3169 			   (mode & FALLOC_FL_PUNCH_HOLE);
3170 
3171 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3172 		return -EOPNOTSUPP;
3173 
3174 	if (fc->no_fallocate)
3175 		return -EOPNOTSUPP;
3176 
3177 	if (lock_inode) {
3178 		inode_lock(inode);
3179 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3180 			loff_t endbyte = offset + length - 1;
3181 
3182 			err = fuse_writeback_range(inode, offset, endbyte);
3183 			if (err)
3184 				goto out;
3185 		}
3186 	}
3187 
3188 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3189 	    offset + length > i_size_read(inode)) {
3190 		err = inode_newsize_ok(inode, offset + length);
3191 		if (err)
3192 			goto out;
3193 	}
3194 
3195 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3196 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3197 
3198 	args.opcode = FUSE_FALLOCATE;
3199 	args.nodeid = ff->nodeid;
3200 	args.in_numargs = 1;
3201 	args.in_args[0].size = sizeof(inarg);
3202 	args.in_args[0].value = &inarg;
3203 	err = fuse_simple_request(fc, &args);
3204 	if (err == -ENOSYS) {
3205 		fc->no_fallocate = 1;
3206 		err = -EOPNOTSUPP;
3207 	}
3208 	if (err)
3209 		goto out;
3210 
3211 	/* we could have extended the file */
3212 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3213 		bool changed = fuse_write_update_size(inode, offset + length);
3214 
3215 		if (changed && fc->writeback_cache)
3216 			file_update_time(file);
3217 	}
3218 
3219 	if (mode & FALLOC_FL_PUNCH_HOLE)
3220 		truncate_pagecache_range(inode, offset, offset + length - 1);
3221 
3222 	fuse_invalidate_attr(inode);
3223 
3224 out:
3225 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3226 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3227 
3228 	if (lock_inode)
3229 		inode_unlock(inode);
3230 
3231 	return err;
3232 }
3233 
3234 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3235 				      struct file *file_out, loff_t pos_out,
3236 				      size_t len, unsigned int flags)
3237 {
3238 	struct fuse_file *ff_in = file_in->private_data;
3239 	struct fuse_file *ff_out = file_out->private_data;
3240 	struct inode *inode_in = file_inode(file_in);
3241 	struct inode *inode_out = file_inode(file_out);
3242 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3243 	struct fuse_conn *fc = ff_in->fc;
3244 	FUSE_ARGS(args);
3245 	struct fuse_copy_file_range_in inarg = {
3246 		.fh_in = ff_in->fh,
3247 		.off_in = pos_in,
3248 		.nodeid_out = ff_out->nodeid,
3249 		.fh_out = ff_out->fh,
3250 		.off_out = pos_out,
3251 		.len = len,
3252 		.flags = flags
3253 	};
3254 	struct fuse_write_out outarg;
3255 	ssize_t err;
3256 	/* mark unstable when write-back is not used, and file_out gets
3257 	 * extended */
3258 	bool is_unstable = (!fc->writeback_cache) &&
3259 			   ((pos_out + len) > inode_out->i_size);
3260 
3261 	if (fc->no_copy_file_range)
3262 		return -EOPNOTSUPP;
3263 
3264 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3265 		return -EXDEV;
3266 
3267 	if (fc->writeback_cache) {
3268 		inode_lock(inode_in);
3269 		err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3270 		inode_unlock(inode_in);
3271 		if (err)
3272 			return err;
3273 	}
3274 
3275 	inode_lock(inode_out);
3276 
3277 	err = file_modified(file_out);
3278 	if (err)
3279 		goto out;
3280 
3281 	if (fc->writeback_cache) {
3282 		err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3283 		if (err)
3284 			goto out;
3285 	}
3286 
3287 	if (is_unstable)
3288 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3289 
3290 	args.opcode = FUSE_COPY_FILE_RANGE;
3291 	args.nodeid = ff_in->nodeid;
3292 	args.in_numargs = 1;
3293 	args.in_args[0].size = sizeof(inarg);
3294 	args.in_args[0].value = &inarg;
3295 	args.out_numargs = 1;
3296 	args.out_args[0].size = sizeof(outarg);
3297 	args.out_args[0].value = &outarg;
3298 	err = fuse_simple_request(fc, &args);
3299 	if (err == -ENOSYS) {
3300 		fc->no_copy_file_range = 1;
3301 		err = -EOPNOTSUPP;
3302 	}
3303 	if (err)
3304 		goto out;
3305 
3306 	if (fc->writeback_cache) {
3307 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3308 		file_update_time(file_out);
3309 	}
3310 
3311 	fuse_invalidate_attr(inode_out);
3312 
3313 	err = outarg.size;
3314 out:
3315 	if (is_unstable)
3316 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3317 
3318 	inode_unlock(inode_out);
3319 	file_accessed(file_in);
3320 
3321 	return err;
3322 }
3323 
3324 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3325 				    struct file *dst_file, loff_t dst_off,
3326 				    size_t len, unsigned int flags)
3327 {
3328 	ssize_t ret;
3329 
3330 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3331 				     len, flags);
3332 
3333 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3334 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3335 					      dst_off, len, flags);
3336 	return ret;
3337 }
3338 
3339 static const struct file_operations fuse_file_operations = {
3340 	.llseek		= fuse_file_llseek,
3341 	.read_iter	= fuse_file_read_iter,
3342 	.write_iter	= fuse_file_write_iter,
3343 	.mmap		= fuse_file_mmap,
3344 	.open		= fuse_open,
3345 	.flush		= fuse_flush,
3346 	.release	= fuse_release,
3347 	.fsync		= fuse_fsync,
3348 	.lock		= fuse_file_lock,
3349 	.flock		= fuse_file_flock,
3350 	.splice_read	= generic_file_splice_read,
3351 	.splice_write	= iter_file_splice_write,
3352 	.unlocked_ioctl	= fuse_file_ioctl,
3353 	.compat_ioctl	= fuse_file_compat_ioctl,
3354 	.poll		= fuse_file_poll,
3355 	.fallocate	= fuse_file_fallocate,
3356 	.copy_file_range = fuse_copy_file_range,
3357 };
3358 
3359 static const struct address_space_operations fuse_file_aops  = {
3360 	.readpage	= fuse_readpage,
3361 	.writepage	= fuse_writepage,
3362 	.writepages	= fuse_writepages,
3363 	.launder_page	= fuse_launder_page,
3364 	.readpages	= fuse_readpages,
3365 	.set_page_dirty	= __set_page_dirty_nobuffers,
3366 	.bmap		= fuse_bmap,
3367 	.direct_IO	= fuse_direct_IO,
3368 	.write_begin	= fuse_write_begin,
3369 	.write_end	= fuse_write_end,
3370 };
3371 
3372 void fuse_init_file_inode(struct inode *inode)
3373 {
3374 	struct fuse_inode *fi = get_fuse_inode(inode);
3375 
3376 	inode->i_fop = &fuse_file_operations;
3377 	inode->i_data.a_ops = &fuse_file_aops;
3378 
3379 	INIT_LIST_HEAD(&fi->write_files);
3380 	INIT_LIST_HEAD(&fi->queued_writes);
3381 	fi->writectr = 0;
3382 	init_waitqueue_head(&fi->page_waitq);
3383 	INIT_LIST_HEAD(&fi->writepages);
3384 }
3385