1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags, 23 struct fuse_page_desc **desc) 24 { 25 struct page **pages; 26 27 pages = kzalloc(npages * (sizeof(struct page *) + 28 sizeof(struct fuse_page_desc)), flags); 29 *desc = (void *) (pages + npages); 30 31 return pages; 32 } 33 34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 35 int opcode, struct fuse_open_out *outargp) 36 { 37 struct fuse_open_in inarg; 38 FUSE_ARGS(args); 39 40 memset(&inarg, 0, sizeof(inarg)); 41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 42 if (!fc->atomic_o_trunc) 43 inarg.flags &= ~O_TRUNC; 44 args.opcode = opcode; 45 args.nodeid = nodeid; 46 args.in_numargs = 1; 47 args.in_args[0].size = sizeof(inarg); 48 args.in_args[0].value = &inarg; 49 args.out_numargs = 1; 50 args.out_args[0].size = sizeof(*outargp); 51 args.out_args[0].value = outargp; 52 53 return fuse_simple_request(fc, &args); 54 } 55 56 struct fuse_release_args { 57 struct fuse_args args; 58 struct fuse_release_in inarg; 59 struct inode *inode; 60 }; 61 62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 63 { 64 struct fuse_file *ff; 65 66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 67 if (unlikely(!ff)) 68 return NULL; 69 70 ff->fc = fc; 71 ff->release_args = kzalloc(sizeof(*ff->release_args), 72 GFP_KERNEL_ACCOUNT); 73 if (!ff->release_args) { 74 kfree(ff); 75 return NULL; 76 } 77 78 INIT_LIST_HEAD(&ff->write_entry); 79 mutex_init(&ff->readdir.lock); 80 refcount_set(&ff->count, 1); 81 RB_CLEAR_NODE(&ff->polled_node); 82 init_waitqueue_head(&ff->poll_wait); 83 84 ff->kh = atomic64_inc_return(&fc->khctr); 85 86 return ff; 87 } 88 89 void fuse_file_free(struct fuse_file *ff) 90 { 91 kfree(ff->release_args); 92 mutex_destroy(&ff->readdir.lock); 93 kfree(ff); 94 } 95 96 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 97 { 98 refcount_inc(&ff->count); 99 return ff; 100 } 101 102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args, 103 int error) 104 { 105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 106 107 iput(ra->inode); 108 kfree(ra); 109 } 110 111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 112 { 113 if (refcount_dec_and_test(&ff->count)) { 114 struct fuse_args *args = &ff->release_args->args; 115 116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 117 /* Do nothing when client does not implement 'open' */ 118 fuse_release_end(ff->fc, args, 0); 119 } else if (sync) { 120 fuse_simple_request(ff->fc, args); 121 fuse_release_end(ff->fc, args, 0); 122 } else { 123 args->end = fuse_release_end; 124 if (fuse_simple_background(ff->fc, args, 125 GFP_KERNEL | __GFP_NOFAIL)) 126 fuse_release_end(ff->fc, args, -ENOTCONN); 127 } 128 kfree(ff); 129 } 130 } 131 132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 133 bool isdir) 134 { 135 struct fuse_file *ff; 136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 137 138 ff = fuse_file_alloc(fc); 139 if (!ff) 140 return -ENOMEM; 141 142 ff->fh = 0; 143 /* Default for no-open */ 144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 145 if (isdir ? !fc->no_opendir : !fc->no_open) { 146 struct fuse_open_out outarg; 147 int err; 148 149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 150 if (!err) { 151 ff->fh = outarg.fh; 152 ff->open_flags = outarg.open_flags; 153 154 } else if (err != -ENOSYS) { 155 fuse_file_free(ff); 156 return err; 157 } else { 158 if (isdir) 159 fc->no_opendir = 1; 160 else 161 fc->no_open = 1; 162 } 163 } 164 165 if (isdir) 166 ff->open_flags &= ~FOPEN_DIRECT_IO; 167 168 ff->nodeid = nodeid; 169 file->private_data = ff; 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(fuse_do_open); 174 175 static void fuse_link_write_file(struct file *file) 176 { 177 struct inode *inode = file_inode(file); 178 struct fuse_inode *fi = get_fuse_inode(inode); 179 struct fuse_file *ff = file->private_data; 180 /* 181 * file may be written through mmap, so chain it onto the 182 * inodes's write_file list 183 */ 184 spin_lock(&fi->lock); 185 if (list_empty(&ff->write_entry)) 186 list_add(&ff->write_entry, &fi->write_files); 187 spin_unlock(&fi->lock); 188 } 189 190 void fuse_finish_open(struct inode *inode, struct file *file) 191 { 192 struct fuse_file *ff = file->private_data; 193 struct fuse_conn *fc = get_fuse_conn(inode); 194 195 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 196 invalidate_inode_pages2(inode->i_mapping); 197 if (ff->open_flags & FOPEN_STREAM) 198 stream_open(inode, file); 199 else if (ff->open_flags & FOPEN_NONSEEKABLE) 200 nonseekable_open(inode, file); 201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 202 struct fuse_inode *fi = get_fuse_inode(inode); 203 204 spin_lock(&fi->lock); 205 fi->attr_version = atomic64_inc_return(&fc->attr_version); 206 i_size_write(inode, 0); 207 spin_unlock(&fi->lock); 208 fuse_invalidate_attr(inode); 209 if (fc->writeback_cache) 210 file_update_time(file); 211 } 212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 213 fuse_link_write_file(file); 214 } 215 216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 217 { 218 struct fuse_conn *fc = get_fuse_conn(inode); 219 int err; 220 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 221 fc->atomic_o_trunc && 222 fc->writeback_cache; 223 224 err = generic_file_open(inode, file); 225 if (err) 226 return err; 227 228 if (is_wb_truncate) { 229 inode_lock(inode); 230 fuse_set_nowrite(inode); 231 } 232 233 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 234 235 if (!err) 236 fuse_finish_open(inode, file); 237 238 if (is_wb_truncate) { 239 fuse_release_nowrite(inode); 240 inode_unlock(inode); 241 } 242 243 return err; 244 } 245 246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 247 int flags, int opcode) 248 { 249 struct fuse_conn *fc = ff->fc; 250 struct fuse_release_args *ra = ff->release_args; 251 252 /* Inode is NULL on error path of fuse_create_open() */ 253 if (likely(fi)) { 254 spin_lock(&fi->lock); 255 list_del(&ff->write_entry); 256 spin_unlock(&fi->lock); 257 } 258 spin_lock(&fc->lock); 259 if (!RB_EMPTY_NODE(&ff->polled_node)) 260 rb_erase(&ff->polled_node, &fc->polled_files); 261 spin_unlock(&fc->lock); 262 263 wake_up_interruptible_all(&ff->poll_wait); 264 265 ra->inarg.fh = ff->fh; 266 ra->inarg.flags = flags; 267 ra->args.in_numargs = 1; 268 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 269 ra->args.in_args[0].value = &ra->inarg; 270 ra->args.opcode = opcode; 271 ra->args.nodeid = ff->nodeid; 272 ra->args.force = true; 273 ra->args.nocreds = true; 274 } 275 276 void fuse_release_common(struct file *file, bool isdir) 277 { 278 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 279 struct fuse_file *ff = file->private_data; 280 struct fuse_release_args *ra = ff->release_args; 281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 282 283 fuse_prepare_release(fi, ff, file->f_flags, opcode); 284 285 if (ff->flock) { 286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc, 288 (fl_owner_t) file); 289 } 290 /* Hold inode until release is finished */ 291 ra->inode = igrab(file_inode(file)); 292 293 /* 294 * Normally this will send the RELEASE request, however if 295 * some asynchronous READ or WRITE requests are outstanding, 296 * the sending will be delayed. 297 * 298 * Make the release synchronous if this is a fuseblk mount, 299 * synchronous RELEASE is allowed (and desirable) in this case 300 * because the server can be trusted not to screw up. 301 */ 302 fuse_file_put(ff, ff->fc->destroy, isdir); 303 } 304 305 static int fuse_open(struct inode *inode, struct file *file) 306 { 307 return fuse_open_common(inode, file, false); 308 } 309 310 static int fuse_release(struct inode *inode, struct file *file) 311 { 312 struct fuse_conn *fc = get_fuse_conn(inode); 313 314 /* see fuse_vma_close() for !writeback_cache case */ 315 if (fc->writeback_cache) 316 write_inode_now(inode, 1); 317 318 fuse_release_common(file, false); 319 320 /* return value is ignored by VFS */ 321 return 0; 322 } 323 324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 325 { 326 WARN_ON(refcount_read(&ff->count) > 1); 327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 328 /* 329 * iput(NULL) is a no-op and since the refcount is 1 and everything's 330 * synchronous, we are fine with not doing igrab() here" 331 */ 332 fuse_file_put(ff, true, false); 333 } 334 EXPORT_SYMBOL_GPL(fuse_sync_release); 335 336 /* 337 * Scramble the ID space with XTEA, so that the value of the files_struct 338 * pointer is not exposed to userspace. 339 */ 340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 341 { 342 u32 *k = fc->scramble_key; 343 u64 v = (unsigned long) id; 344 u32 v0 = v; 345 u32 v1 = v >> 32; 346 u32 sum = 0; 347 int i; 348 349 for (i = 0; i < 32; i++) { 350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 351 sum += 0x9E3779B9; 352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 353 } 354 355 return (u64) v0 + ((u64) v1 << 32); 356 } 357 358 struct fuse_writepage_args { 359 struct fuse_io_args ia; 360 struct list_head writepages_entry; 361 struct list_head queue_entry; 362 struct fuse_writepage_args *next; 363 struct inode *inode; 364 }; 365 366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 367 pgoff_t idx_from, pgoff_t idx_to) 368 { 369 struct fuse_writepage_args *wpa; 370 371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) { 372 pgoff_t curr_index; 373 374 WARN_ON(get_fuse_inode(wpa->inode) != fi); 375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 376 if (idx_from < curr_index + wpa->ia.ap.num_pages && 377 curr_index <= idx_to) { 378 return wpa; 379 } 380 } 381 return NULL; 382 } 383 384 /* 385 * Check if any page in a range is under writeback 386 * 387 * This is currently done by walking the list of writepage requests 388 * for the inode, which can be pretty inefficient. 389 */ 390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 391 pgoff_t idx_to) 392 { 393 struct fuse_inode *fi = get_fuse_inode(inode); 394 bool found; 395 396 spin_lock(&fi->lock); 397 found = fuse_find_writeback(fi, idx_from, idx_to); 398 spin_unlock(&fi->lock); 399 400 return found; 401 } 402 403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 404 { 405 return fuse_range_is_writeback(inode, index, index); 406 } 407 408 /* 409 * Wait for page writeback to be completed. 410 * 411 * Since fuse doesn't rely on the VM writeback tracking, this has to 412 * use some other means. 413 */ 414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 415 { 416 struct fuse_inode *fi = get_fuse_inode(inode); 417 418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 419 } 420 421 /* 422 * Wait for all pending writepages on the inode to finish. 423 * 424 * This is currently done by blocking further writes with FUSE_NOWRITE 425 * and waiting for all sent writes to complete. 426 * 427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 428 * could conflict with truncation. 429 */ 430 static void fuse_sync_writes(struct inode *inode) 431 { 432 fuse_set_nowrite(inode); 433 fuse_release_nowrite(inode); 434 } 435 436 static int fuse_flush(struct file *file, fl_owner_t id) 437 { 438 struct inode *inode = file_inode(file); 439 struct fuse_conn *fc = get_fuse_conn(inode); 440 struct fuse_file *ff = file->private_data; 441 struct fuse_flush_in inarg; 442 FUSE_ARGS(args); 443 int err; 444 445 if (is_bad_inode(inode)) 446 return -EIO; 447 448 if (fc->no_flush) 449 return 0; 450 451 err = write_inode_now(inode, 1); 452 if (err) 453 return err; 454 455 inode_lock(inode); 456 fuse_sync_writes(inode); 457 inode_unlock(inode); 458 459 err = filemap_check_errors(file->f_mapping); 460 if (err) 461 return err; 462 463 memset(&inarg, 0, sizeof(inarg)); 464 inarg.fh = ff->fh; 465 inarg.lock_owner = fuse_lock_owner_id(fc, id); 466 args.opcode = FUSE_FLUSH; 467 args.nodeid = get_node_id(inode); 468 args.in_numargs = 1; 469 args.in_args[0].size = sizeof(inarg); 470 args.in_args[0].value = &inarg; 471 args.force = true; 472 473 err = fuse_simple_request(fc, &args); 474 if (err == -ENOSYS) { 475 fc->no_flush = 1; 476 err = 0; 477 } 478 return err; 479 } 480 481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 482 int datasync, int opcode) 483 { 484 struct inode *inode = file->f_mapping->host; 485 struct fuse_conn *fc = get_fuse_conn(inode); 486 struct fuse_file *ff = file->private_data; 487 FUSE_ARGS(args); 488 struct fuse_fsync_in inarg; 489 490 memset(&inarg, 0, sizeof(inarg)); 491 inarg.fh = ff->fh; 492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 493 args.opcode = opcode; 494 args.nodeid = get_node_id(inode); 495 args.in_numargs = 1; 496 args.in_args[0].size = sizeof(inarg); 497 args.in_args[0].value = &inarg; 498 return fuse_simple_request(fc, &args); 499 } 500 501 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 502 int datasync) 503 { 504 struct inode *inode = file->f_mapping->host; 505 struct fuse_conn *fc = get_fuse_conn(inode); 506 int err; 507 508 if (is_bad_inode(inode)) 509 return -EIO; 510 511 inode_lock(inode); 512 513 /* 514 * Start writeback against all dirty pages of the inode, then 515 * wait for all outstanding writes, before sending the FSYNC 516 * request. 517 */ 518 err = file_write_and_wait_range(file, start, end); 519 if (err) 520 goto out; 521 522 fuse_sync_writes(inode); 523 524 /* 525 * Due to implementation of fuse writeback 526 * file_write_and_wait_range() does not catch errors. 527 * We have to do this directly after fuse_sync_writes() 528 */ 529 err = file_check_and_advance_wb_err(file); 530 if (err) 531 goto out; 532 533 err = sync_inode_metadata(inode, 1); 534 if (err) 535 goto out; 536 537 if (fc->no_fsync) 538 goto out; 539 540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 541 if (err == -ENOSYS) { 542 fc->no_fsync = 1; 543 err = 0; 544 } 545 out: 546 inode_unlock(inode); 547 548 return err; 549 } 550 551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 552 size_t count, int opcode) 553 { 554 struct fuse_file *ff = file->private_data; 555 struct fuse_args *args = &ia->ap.args; 556 557 ia->read.in.fh = ff->fh; 558 ia->read.in.offset = pos; 559 ia->read.in.size = count; 560 ia->read.in.flags = file->f_flags; 561 args->opcode = opcode; 562 args->nodeid = ff->nodeid; 563 args->in_numargs = 1; 564 args->in_args[0].size = sizeof(ia->read.in); 565 args->in_args[0].value = &ia->read.in; 566 args->out_argvar = true; 567 args->out_numargs = 1; 568 args->out_args[0].size = count; 569 } 570 571 static void fuse_release_user_pages(struct fuse_args_pages *ap, 572 bool should_dirty) 573 { 574 unsigned int i; 575 576 for (i = 0; i < ap->num_pages; i++) { 577 if (should_dirty) 578 set_page_dirty_lock(ap->pages[i]); 579 put_page(ap->pages[i]); 580 } 581 } 582 583 static void fuse_io_release(struct kref *kref) 584 { 585 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 586 } 587 588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 589 { 590 if (io->err) 591 return io->err; 592 593 if (io->bytes >= 0 && io->write) 594 return -EIO; 595 596 return io->bytes < 0 ? io->size : io->bytes; 597 } 598 599 /** 600 * In case of short read, the caller sets 'pos' to the position of 601 * actual end of fuse request in IO request. Otherwise, if bytes_requested 602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 603 * 604 * An example: 605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 606 * both submitted asynchronously. The first of them was ACKed by userspace as 607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 608 * second request was ACKed as short, e.g. only 1K was read, resulting in 609 * pos == 33K. 610 * 611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 612 * will be equal to the length of the longest contiguous fragment of 613 * transferred data starting from the beginning of IO request. 614 */ 615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 616 { 617 int left; 618 619 spin_lock(&io->lock); 620 if (err) 621 io->err = io->err ? : err; 622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 623 io->bytes = pos; 624 625 left = --io->reqs; 626 if (!left && io->blocking) 627 complete(io->done); 628 spin_unlock(&io->lock); 629 630 if (!left && !io->blocking) { 631 ssize_t res = fuse_get_res_by_io(io); 632 633 if (res >= 0) { 634 struct inode *inode = file_inode(io->iocb->ki_filp); 635 struct fuse_conn *fc = get_fuse_conn(inode); 636 struct fuse_inode *fi = get_fuse_inode(inode); 637 638 spin_lock(&fi->lock); 639 fi->attr_version = atomic64_inc_return(&fc->attr_version); 640 spin_unlock(&fi->lock); 641 } 642 643 io->iocb->ki_complete(io->iocb, res, 0); 644 } 645 646 kref_put(&io->refcnt, fuse_io_release); 647 } 648 649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 650 unsigned int npages) 651 { 652 struct fuse_io_args *ia; 653 654 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 655 if (ia) { 656 ia->io = io; 657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 658 &ia->ap.descs); 659 if (!ia->ap.pages) { 660 kfree(ia); 661 ia = NULL; 662 } 663 } 664 return ia; 665 } 666 667 static void fuse_io_free(struct fuse_io_args *ia) 668 { 669 kfree(ia->ap.pages); 670 kfree(ia); 671 } 672 673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args, 674 int err) 675 { 676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 677 struct fuse_io_priv *io = ia->io; 678 ssize_t pos = -1; 679 680 fuse_release_user_pages(&ia->ap, io->should_dirty); 681 682 if (err) { 683 /* Nothing */ 684 } else if (io->write) { 685 if (ia->write.out.size > ia->write.in.size) { 686 err = -EIO; 687 } else if (ia->write.in.size != ia->write.out.size) { 688 pos = ia->write.in.offset - io->offset + 689 ia->write.out.size; 690 } 691 } else { 692 u32 outsize = args->out_args[0].size; 693 694 if (ia->read.in.size != outsize) 695 pos = ia->read.in.offset - io->offset + outsize; 696 } 697 698 fuse_aio_complete(io, err, pos); 699 fuse_io_free(ia); 700 } 701 702 static ssize_t fuse_async_req_send(struct fuse_conn *fc, 703 struct fuse_io_args *ia, size_t num_bytes) 704 { 705 ssize_t err; 706 struct fuse_io_priv *io = ia->io; 707 708 spin_lock(&io->lock); 709 kref_get(&io->refcnt); 710 io->size += num_bytes; 711 io->reqs++; 712 spin_unlock(&io->lock); 713 714 ia->ap.args.end = fuse_aio_complete_req; 715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL); 716 if (err) 717 fuse_aio_complete_req(fc, &ia->ap.args, err); 718 719 return num_bytes; 720 } 721 722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 723 fl_owner_t owner) 724 { 725 struct file *file = ia->io->iocb->ki_filp; 726 struct fuse_file *ff = file->private_data; 727 struct fuse_conn *fc = ff->fc; 728 729 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 730 if (owner != NULL) { 731 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 732 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner); 733 } 734 735 if (ia->io->async) 736 return fuse_async_req_send(fc, ia, count); 737 738 return fuse_simple_request(fc, &ia->ap.args); 739 } 740 741 static void fuse_read_update_size(struct inode *inode, loff_t size, 742 u64 attr_ver) 743 { 744 struct fuse_conn *fc = get_fuse_conn(inode); 745 struct fuse_inode *fi = get_fuse_inode(inode); 746 747 spin_lock(&fi->lock); 748 if (attr_ver == fi->attr_version && size < inode->i_size && 749 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 750 fi->attr_version = atomic64_inc_return(&fc->attr_version); 751 i_size_write(inode, size); 752 } 753 spin_unlock(&fi->lock); 754 } 755 756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 757 struct fuse_args_pages *ap) 758 { 759 struct fuse_conn *fc = get_fuse_conn(inode); 760 761 if (fc->writeback_cache) { 762 /* 763 * A hole in a file. Some data after the hole are in page cache, 764 * but have not reached the client fs yet. So, the hole is not 765 * present there. 766 */ 767 int i; 768 int start_idx = num_read >> PAGE_SHIFT; 769 size_t off = num_read & (PAGE_SIZE - 1); 770 771 for (i = start_idx; i < ap->num_pages; i++) { 772 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 773 off = 0; 774 } 775 } else { 776 loff_t pos = page_offset(ap->pages[0]) + num_read; 777 fuse_read_update_size(inode, pos, attr_ver); 778 } 779 } 780 781 static int fuse_do_readpage(struct file *file, struct page *page) 782 { 783 struct inode *inode = page->mapping->host; 784 struct fuse_conn *fc = get_fuse_conn(inode); 785 loff_t pos = page_offset(page); 786 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 787 struct fuse_io_args ia = { 788 .ap.args.page_zeroing = true, 789 .ap.args.out_pages = true, 790 .ap.num_pages = 1, 791 .ap.pages = &page, 792 .ap.descs = &desc, 793 }; 794 ssize_t res; 795 u64 attr_ver; 796 797 /* 798 * Page writeback can extend beyond the lifetime of the 799 * page-cache page, so make sure we read a properly synced 800 * page. 801 */ 802 fuse_wait_on_page_writeback(inode, page->index); 803 804 attr_ver = fuse_get_attr_version(fc); 805 806 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 807 res = fuse_simple_request(fc, &ia.ap.args); 808 if (res < 0) 809 return res; 810 /* 811 * Short read means EOF. If file size is larger, truncate it 812 */ 813 if (res < desc.length) 814 fuse_short_read(inode, attr_ver, res, &ia.ap); 815 816 SetPageUptodate(page); 817 818 return 0; 819 } 820 821 static int fuse_readpage(struct file *file, struct page *page) 822 { 823 struct inode *inode = page->mapping->host; 824 int err; 825 826 err = -EIO; 827 if (is_bad_inode(inode)) 828 goto out; 829 830 err = fuse_do_readpage(file, page); 831 fuse_invalidate_atime(inode); 832 out: 833 unlock_page(page); 834 return err; 835 } 836 837 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args, 838 int err) 839 { 840 int i; 841 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 842 struct fuse_args_pages *ap = &ia->ap; 843 size_t count = ia->read.in.size; 844 size_t num_read = args->out_args[0].size; 845 struct address_space *mapping = NULL; 846 847 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 848 mapping = ap->pages[i]->mapping; 849 850 if (mapping) { 851 struct inode *inode = mapping->host; 852 853 /* 854 * Short read means EOF. If file size is larger, truncate it 855 */ 856 if (!err && num_read < count) 857 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 858 859 fuse_invalidate_atime(inode); 860 } 861 862 for (i = 0; i < ap->num_pages; i++) { 863 struct page *page = ap->pages[i]; 864 865 if (!err) 866 SetPageUptodate(page); 867 else 868 SetPageError(page); 869 unlock_page(page); 870 put_page(page); 871 } 872 if (ia->ff) 873 fuse_file_put(ia->ff, false, false); 874 875 fuse_io_free(ia); 876 } 877 878 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 879 { 880 struct fuse_file *ff = file->private_data; 881 struct fuse_conn *fc = ff->fc; 882 struct fuse_args_pages *ap = &ia->ap; 883 loff_t pos = page_offset(ap->pages[0]); 884 size_t count = ap->num_pages << PAGE_SHIFT; 885 ssize_t res; 886 int err; 887 888 ap->args.out_pages = true; 889 ap->args.page_zeroing = true; 890 ap->args.page_replace = true; 891 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 892 ia->read.attr_ver = fuse_get_attr_version(fc); 893 if (fc->async_read) { 894 ia->ff = fuse_file_get(ff); 895 ap->args.end = fuse_readpages_end; 896 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL); 897 if (!err) 898 return; 899 } else { 900 res = fuse_simple_request(fc, &ap->args); 901 err = res < 0 ? res : 0; 902 } 903 fuse_readpages_end(fc, &ap->args, err); 904 } 905 906 struct fuse_fill_data { 907 struct fuse_io_args *ia; 908 struct file *file; 909 struct inode *inode; 910 unsigned int nr_pages; 911 unsigned int max_pages; 912 }; 913 914 static int fuse_readpages_fill(void *_data, struct page *page) 915 { 916 struct fuse_fill_data *data = _data; 917 struct fuse_io_args *ia = data->ia; 918 struct fuse_args_pages *ap = &ia->ap; 919 struct inode *inode = data->inode; 920 struct fuse_conn *fc = get_fuse_conn(inode); 921 922 fuse_wait_on_page_writeback(inode, page->index); 923 924 if (ap->num_pages && 925 (ap->num_pages == fc->max_pages || 926 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read || 927 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) { 928 data->max_pages = min_t(unsigned int, data->nr_pages, 929 fc->max_pages); 930 fuse_send_readpages(ia, data->file); 931 data->ia = ia = fuse_io_alloc(NULL, data->max_pages); 932 if (!ia) { 933 unlock_page(page); 934 return -ENOMEM; 935 } 936 ap = &ia->ap; 937 } 938 939 if (WARN_ON(ap->num_pages >= data->max_pages)) { 940 unlock_page(page); 941 fuse_io_free(ia); 942 return -EIO; 943 } 944 945 get_page(page); 946 ap->pages[ap->num_pages] = page; 947 ap->descs[ap->num_pages].length = PAGE_SIZE; 948 ap->num_pages++; 949 data->nr_pages--; 950 return 0; 951 } 952 953 static int fuse_readpages(struct file *file, struct address_space *mapping, 954 struct list_head *pages, unsigned nr_pages) 955 { 956 struct inode *inode = mapping->host; 957 struct fuse_conn *fc = get_fuse_conn(inode); 958 struct fuse_fill_data data; 959 int err; 960 961 err = -EIO; 962 if (is_bad_inode(inode)) 963 goto out; 964 965 data.file = file; 966 data.inode = inode; 967 data.nr_pages = nr_pages; 968 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages); 969 ; 970 data.ia = fuse_io_alloc(NULL, data.max_pages); 971 err = -ENOMEM; 972 if (!data.ia) 973 goto out; 974 975 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 976 if (!err) { 977 if (data.ia->ap.num_pages) 978 fuse_send_readpages(data.ia, file); 979 else 980 fuse_io_free(data.ia); 981 } 982 out: 983 return err; 984 } 985 986 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 987 { 988 struct inode *inode = iocb->ki_filp->f_mapping->host; 989 struct fuse_conn *fc = get_fuse_conn(inode); 990 991 /* 992 * In auto invalidate mode, always update attributes on read. 993 * Otherwise, only update if we attempt to read past EOF (to ensure 994 * i_size is up to date). 995 */ 996 if (fc->auto_inval_data || 997 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 998 int err; 999 err = fuse_update_attributes(inode, iocb->ki_filp); 1000 if (err) 1001 return err; 1002 } 1003 1004 return generic_file_read_iter(iocb, to); 1005 } 1006 1007 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1008 loff_t pos, size_t count) 1009 { 1010 struct fuse_args *args = &ia->ap.args; 1011 1012 ia->write.in.fh = ff->fh; 1013 ia->write.in.offset = pos; 1014 ia->write.in.size = count; 1015 args->opcode = FUSE_WRITE; 1016 args->nodeid = ff->nodeid; 1017 args->in_numargs = 2; 1018 if (ff->fc->minor < 9) 1019 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1020 else 1021 args->in_args[0].size = sizeof(ia->write.in); 1022 args->in_args[0].value = &ia->write.in; 1023 args->in_args[1].size = count; 1024 args->out_numargs = 1; 1025 args->out_args[0].size = sizeof(ia->write.out); 1026 args->out_args[0].value = &ia->write.out; 1027 } 1028 1029 static unsigned int fuse_write_flags(struct kiocb *iocb) 1030 { 1031 unsigned int flags = iocb->ki_filp->f_flags; 1032 1033 if (iocb->ki_flags & IOCB_DSYNC) 1034 flags |= O_DSYNC; 1035 if (iocb->ki_flags & IOCB_SYNC) 1036 flags |= O_SYNC; 1037 1038 return flags; 1039 } 1040 1041 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1042 size_t count, fl_owner_t owner) 1043 { 1044 struct kiocb *iocb = ia->io->iocb; 1045 struct file *file = iocb->ki_filp; 1046 struct fuse_file *ff = file->private_data; 1047 struct fuse_conn *fc = ff->fc; 1048 struct fuse_write_in *inarg = &ia->write.in; 1049 ssize_t err; 1050 1051 fuse_write_args_fill(ia, ff, pos, count); 1052 inarg->flags = fuse_write_flags(iocb); 1053 if (owner != NULL) { 1054 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1055 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 1056 } 1057 1058 if (ia->io->async) 1059 return fuse_async_req_send(fc, ia, count); 1060 1061 err = fuse_simple_request(fc, &ia->ap.args); 1062 if (!err && ia->write.out.size > count) 1063 err = -EIO; 1064 1065 return err ?: ia->write.out.size; 1066 } 1067 1068 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1069 { 1070 struct fuse_conn *fc = get_fuse_conn(inode); 1071 struct fuse_inode *fi = get_fuse_inode(inode); 1072 bool ret = false; 1073 1074 spin_lock(&fi->lock); 1075 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1076 if (pos > inode->i_size) { 1077 i_size_write(inode, pos); 1078 ret = true; 1079 } 1080 spin_unlock(&fi->lock); 1081 1082 return ret; 1083 } 1084 1085 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1086 struct kiocb *iocb, struct inode *inode, 1087 loff_t pos, size_t count) 1088 { 1089 struct fuse_args_pages *ap = &ia->ap; 1090 struct file *file = iocb->ki_filp; 1091 struct fuse_file *ff = file->private_data; 1092 struct fuse_conn *fc = ff->fc; 1093 unsigned int offset, i; 1094 int err; 1095 1096 for (i = 0; i < ap->num_pages; i++) 1097 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1098 1099 fuse_write_args_fill(ia, ff, pos, count); 1100 ia->write.in.flags = fuse_write_flags(iocb); 1101 1102 err = fuse_simple_request(fc, &ap->args); 1103 if (!err && ia->write.out.size > count) 1104 err = -EIO; 1105 1106 offset = ap->descs[0].offset; 1107 count = ia->write.out.size; 1108 for (i = 0; i < ap->num_pages; i++) { 1109 struct page *page = ap->pages[i]; 1110 1111 if (!err && !offset && count >= PAGE_SIZE) 1112 SetPageUptodate(page); 1113 1114 if (count > PAGE_SIZE - offset) 1115 count -= PAGE_SIZE - offset; 1116 else 1117 count = 0; 1118 offset = 0; 1119 1120 unlock_page(page); 1121 put_page(page); 1122 } 1123 1124 return err; 1125 } 1126 1127 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1128 struct address_space *mapping, 1129 struct iov_iter *ii, loff_t pos, 1130 unsigned int max_pages) 1131 { 1132 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1133 unsigned offset = pos & (PAGE_SIZE - 1); 1134 size_t count = 0; 1135 int err; 1136 1137 ap->args.in_pages = true; 1138 ap->descs[0].offset = offset; 1139 1140 do { 1141 size_t tmp; 1142 struct page *page; 1143 pgoff_t index = pos >> PAGE_SHIFT; 1144 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1145 iov_iter_count(ii)); 1146 1147 bytes = min_t(size_t, bytes, fc->max_write - count); 1148 1149 again: 1150 err = -EFAULT; 1151 if (iov_iter_fault_in_readable(ii, bytes)) 1152 break; 1153 1154 err = -ENOMEM; 1155 page = grab_cache_page_write_begin(mapping, index, 0); 1156 if (!page) 1157 break; 1158 1159 if (mapping_writably_mapped(mapping)) 1160 flush_dcache_page(page); 1161 1162 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1163 flush_dcache_page(page); 1164 1165 iov_iter_advance(ii, tmp); 1166 if (!tmp) { 1167 unlock_page(page); 1168 put_page(page); 1169 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1170 goto again; 1171 } 1172 1173 err = 0; 1174 ap->pages[ap->num_pages] = page; 1175 ap->descs[ap->num_pages].length = tmp; 1176 ap->num_pages++; 1177 1178 count += tmp; 1179 pos += tmp; 1180 offset += tmp; 1181 if (offset == PAGE_SIZE) 1182 offset = 0; 1183 1184 if (!fc->big_writes) 1185 break; 1186 } while (iov_iter_count(ii) && count < fc->max_write && 1187 ap->num_pages < max_pages && offset == 0); 1188 1189 return count > 0 ? count : err; 1190 } 1191 1192 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1193 unsigned int max_pages) 1194 { 1195 return min_t(unsigned int, 1196 ((pos + len - 1) >> PAGE_SHIFT) - 1197 (pos >> PAGE_SHIFT) + 1, 1198 max_pages); 1199 } 1200 1201 static ssize_t fuse_perform_write(struct kiocb *iocb, 1202 struct address_space *mapping, 1203 struct iov_iter *ii, loff_t pos) 1204 { 1205 struct inode *inode = mapping->host; 1206 struct fuse_conn *fc = get_fuse_conn(inode); 1207 struct fuse_inode *fi = get_fuse_inode(inode); 1208 int err = 0; 1209 ssize_t res = 0; 1210 1211 if (inode->i_size < pos + iov_iter_count(ii)) 1212 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1213 1214 do { 1215 ssize_t count; 1216 struct fuse_io_args ia = {}; 1217 struct fuse_args_pages *ap = &ia.ap; 1218 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1219 fc->max_pages); 1220 1221 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1222 if (!ap->pages) { 1223 err = -ENOMEM; 1224 break; 1225 } 1226 1227 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1228 if (count <= 0) { 1229 err = count; 1230 } else { 1231 err = fuse_send_write_pages(&ia, iocb, inode, 1232 pos, count); 1233 if (!err) { 1234 size_t num_written = ia.write.out.size; 1235 1236 res += num_written; 1237 pos += num_written; 1238 1239 /* break out of the loop on short write */ 1240 if (num_written != count) 1241 err = -EIO; 1242 } 1243 } 1244 kfree(ap->pages); 1245 } while (!err && iov_iter_count(ii)); 1246 1247 if (res > 0) 1248 fuse_write_update_size(inode, pos); 1249 1250 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1251 fuse_invalidate_attr(inode); 1252 1253 return res > 0 ? res : err; 1254 } 1255 1256 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1257 { 1258 struct file *file = iocb->ki_filp; 1259 struct address_space *mapping = file->f_mapping; 1260 ssize_t written = 0; 1261 ssize_t written_buffered = 0; 1262 struct inode *inode = mapping->host; 1263 ssize_t err; 1264 loff_t endbyte = 0; 1265 1266 if (get_fuse_conn(inode)->writeback_cache) { 1267 /* Update size (EOF optimization) and mode (SUID clearing) */ 1268 err = fuse_update_attributes(mapping->host, file); 1269 if (err) 1270 return err; 1271 1272 return generic_file_write_iter(iocb, from); 1273 } 1274 1275 inode_lock(inode); 1276 1277 /* We can write back this queue in page reclaim */ 1278 current->backing_dev_info = inode_to_bdi(inode); 1279 1280 err = generic_write_checks(iocb, from); 1281 if (err <= 0) 1282 goto out; 1283 1284 err = file_remove_privs(file); 1285 if (err) 1286 goto out; 1287 1288 err = file_update_time(file); 1289 if (err) 1290 goto out; 1291 1292 if (iocb->ki_flags & IOCB_DIRECT) { 1293 loff_t pos = iocb->ki_pos; 1294 written = generic_file_direct_write(iocb, from); 1295 if (written < 0 || !iov_iter_count(from)) 1296 goto out; 1297 1298 pos += written; 1299 1300 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1301 if (written_buffered < 0) { 1302 err = written_buffered; 1303 goto out; 1304 } 1305 endbyte = pos + written_buffered - 1; 1306 1307 err = filemap_write_and_wait_range(file->f_mapping, pos, 1308 endbyte); 1309 if (err) 1310 goto out; 1311 1312 invalidate_mapping_pages(file->f_mapping, 1313 pos >> PAGE_SHIFT, 1314 endbyte >> PAGE_SHIFT); 1315 1316 written += written_buffered; 1317 iocb->ki_pos = pos + written_buffered; 1318 } else { 1319 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1320 if (written >= 0) 1321 iocb->ki_pos += written; 1322 } 1323 out: 1324 current->backing_dev_info = NULL; 1325 inode_unlock(inode); 1326 if (written > 0) 1327 written = generic_write_sync(iocb, written); 1328 1329 return written ? written : err; 1330 } 1331 1332 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs, 1333 unsigned int index, 1334 unsigned int nr_pages) 1335 { 1336 int i; 1337 1338 for (i = index; i < index + nr_pages; i++) 1339 descs[i].length = PAGE_SIZE - descs[i].offset; 1340 } 1341 1342 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1343 { 1344 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1345 } 1346 1347 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1348 size_t max_size) 1349 { 1350 return min(iov_iter_single_seg_count(ii), max_size); 1351 } 1352 1353 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1354 size_t *nbytesp, int write, 1355 unsigned int max_pages) 1356 { 1357 size_t nbytes = 0; /* # bytes already packed in req */ 1358 ssize_t ret = 0; 1359 1360 /* Special case for kernel I/O: can copy directly into the buffer */ 1361 if (iov_iter_is_kvec(ii)) { 1362 unsigned long user_addr = fuse_get_user_addr(ii); 1363 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1364 1365 if (write) 1366 ap->args.in_args[1].value = (void *) user_addr; 1367 else 1368 ap->args.out_args[0].value = (void *) user_addr; 1369 1370 iov_iter_advance(ii, frag_size); 1371 *nbytesp = frag_size; 1372 return 0; 1373 } 1374 1375 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1376 unsigned npages; 1377 size_t start; 1378 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1379 *nbytesp - nbytes, 1380 max_pages - ap->num_pages, 1381 &start); 1382 if (ret < 0) 1383 break; 1384 1385 iov_iter_advance(ii, ret); 1386 nbytes += ret; 1387 1388 ret += start; 1389 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1390 1391 ap->descs[ap->num_pages].offset = start; 1392 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1393 1394 ap->num_pages += npages; 1395 ap->descs[ap->num_pages - 1].length -= 1396 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1397 } 1398 1399 if (write) 1400 ap->args.in_pages = 1; 1401 else 1402 ap->args.out_pages = 1; 1403 1404 *nbytesp = nbytes; 1405 1406 return ret < 0 ? ret : 0; 1407 } 1408 1409 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1410 loff_t *ppos, int flags) 1411 { 1412 int write = flags & FUSE_DIO_WRITE; 1413 int cuse = flags & FUSE_DIO_CUSE; 1414 struct file *file = io->iocb->ki_filp; 1415 struct inode *inode = file->f_mapping->host; 1416 struct fuse_file *ff = file->private_data; 1417 struct fuse_conn *fc = ff->fc; 1418 size_t nmax = write ? fc->max_write : fc->max_read; 1419 loff_t pos = *ppos; 1420 size_t count = iov_iter_count(iter); 1421 pgoff_t idx_from = pos >> PAGE_SHIFT; 1422 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1423 ssize_t res = 0; 1424 int err = 0; 1425 struct fuse_io_args *ia; 1426 unsigned int max_pages; 1427 1428 max_pages = iov_iter_npages(iter, fc->max_pages); 1429 ia = fuse_io_alloc(io, max_pages); 1430 if (!ia) 1431 return -ENOMEM; 1432 1433 ia->io = io; 1434 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1435 if (!write) 1436 inode_lock(inode); 1437 fuse_sync_writes(inode); 1438 if (!write) 1439 inode_unlock(inode); 1440 } 1441 1442 io->should_dirty = !write && iter_is_iovec(iter); 1443 while (count) { 1444 ssize_t nres; 1445 fl_owner_t owner = current->files; 1446 size_t nbytes = min(count, nmax); 1447 1448 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1449 max_pages); 1450 if (err && !nbytes) 1451 break; 1452 1453 if (write) { 1454 if (!capable(CAP_FSETID)) 1455 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV; 1456 1457 nres = fuse_send_write(ia, pos, nbytes, owner); 1458 } else { 1459 nres = fuse_send_read(ia, pos, nbytes, owner); 1460 } 1461 1462 if (!io->async || nres < 0) { 1463 fuse_release_user_pages(&ia->ap, io->should_dirty); 1464 fuse_io_free(ia); 1465 } 1466 ia = NULL; 1467 if (nres < 0) { 1468 err = nres; 1469 break; 1470 } 1471 WARN_ON(nres > nbytes); 1472 1473 count -= nres; 1474 res += nres; 1475 pos += nres; 1476 if (nres != nbytes) 1477 break; 1478 if (count) { 1479 max_pages = iov_iter_npages(iter, fc->max_pages); 1480 ia = fuse_io_alloc(io, max_pages); 1481 if (!ia) 1482 break; 1483 } 1484 } 1485 if (ia) 1486 fuse_io_free(ia); 1487 if (res > 0) 1488 *ppos = pos; 1489 1490 return res > 0 ? res : err; 1491 } 1492 EXPORT_SYMBOL_GPL(fuse_direct_io); 1493 1494 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1495 struct iov_iter *iter, 1496 loff_t *ppos) 1497 { 1498 ssize_t res; 1499 struct inode *inode = file_inode(io->iocb->ki_filp); 1500 1501 res = fuse_direct_io(io, iter, ppos, 0); 1502 1503 fuse_invalidate_atime(inode); 1504 1505 return res; 1506 } 1507 1508 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1509 1510 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1511 { 1512 ssize_t res; 1513 1514 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1515 res = fuse_direct_IO(iocb, to); 1516 } else { 1517 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1518 1519 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1520 } 1521 1522 return res; 1523 } 1524 1525 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1526 { 1527 struct inode *inode = file_inode(iocb->ki_filp); 1528 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1529 ssize_t res; 1530 1531 /* Don't allow parallel writes to the same file */ 1532 inode_lock(inode); 1533 res = generic_write_checks(iocb, from); 1534 if (res > 0) { 1535 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1536 res = fuse_direct_IO(iocb, from); 1537 } else { 1538 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1539 FUSE_DIO_WRITE); 1540 } 1541 } 1542 fuse_invalidate_attr(inode); 1543 if (res > 0) 1544 fuse_write_update_size(inode, iocb->ki_pos); 1545 inode_unlock(inode); 1546 1547 return res; 1548 } 1549 1550 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1551 { 1552 struct file *file = iocb->ki_filp; 1553 struct fuse_file *ff = file->private_data; 1554 1555 if (is_bad_inode(file_inode(file))) 1556 return -EIO; 1557 1558 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1559 return fuse_cache_read_iter(iocb, to); 1560 else 1561 return fuse_direct_read_iter(iocb, to); 1562 } 1563 1564 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1565 { 1566 struct file *file = iocb->ki_filp; 1567 struct fuse_file *ff = file->private_data; 1568 1569 if (is_bad_inode(file_inode(file))) 1570 return -EIO; 1571 1572 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1573 return fuse_cache_write_iter(iocb, from); 1574 else 1575 return fuse_direct_write_iter(iocb, from); 1576 } 1577 1578 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1579 { 1580 struct fuse_args_pages *ap = &wpa->ia.ap; 1581 int i; 1582 1583 for (i = 0; i < ap->num_pages; i++) 1584 __free_page(ap->pages[i]); 1585 1586 if (wpa->ia.ff) 1587 fuse_file_put(wpa->ia.ff, false, false); 1588 1589 kfree(ap->pages); 1590 kfree(wpa); 1591 } 1592 1593 static void fuse_writepage_finish(struct fuse_conn *fc, 1594 struct fuse_writepage_args *wpa) 1595 { 1596 struct fuse_args_pages *ap = &wpa->ia.ap; 1597 struct inode *inode = wpa->inode; 1598 struct fuse_inode *fi = get_fuse_inode(inode); 1599 struct backing_dev_info *bdi = inode_to_bdi(inode); 1600 int i; 1601 1602 list_del(&wpa->writepages_entry); 1603 for (i = 0; i < ap->num_pages; i++) { 1604 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1605 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1606 wb_writeout_inc(&bdi->wb); 1607 } 1608 wake_up(&fi->page_waitq); 1609 } 1610 1611 /* Called under fi->lock, may release and reacquire it */ 1612 static void fuse_send_writepage(struct fuse_conn *fc, 1613 struct fuse_writepage_args *wpa, loff_t size) 1614 __releases(fi->lock) 1615 __acquires(fi->lock) 1616 { 1617 struct fuse_writepage_args *aux, *next; 1618 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1619 struct fuse_write_in *inarg = &wpa->ia.write.in; 1620 struct fuse_args *args = &wpa->ia.ap.args; 1621 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1622 int err; 1623 1624 fi->writectr++; 1625 if (inarg->offset + data_size <= size) { 1626 inarg->size = data_size; 1627 } else if (inarg->offset < size) { 1628 inarg->size = size - inarg->offset; 1629 } else { 1630 /* Got truncated off completely */ 1631 goto out_free; 1632 } 1633 1634 args->in_args[1].size = inarg->size; 1635 args->force = true; 1636 args->nocreds = true; 1637 1638 err = fuse_simple_background(fc, args, GFP_ATOMIC); 1639 if (err == -ENOMEM) { 1640 spin_unlock(&fi->lock); 1641 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL); 1642 spin_lock(&fi->lock); 1643 } 1644 1645 /* Fails on broken connection only */ 1646 if (unlikely(err)) 1647 goto out_free; 1648 1649 return; 1650 1651 out_free: 1652 fi->writectr--; 1653 fuse_writepage_finish(fc, wpa); 1654 spin_unlock(&fi->lock); 1655 1656 /* After fuse_writepage_finish() aux request list is private */ 1657 for (aux = wpa->next; aux; aux = next) { 1658 next = aux->next; 1659 aux->next = NULL; 1660 fuse_writepage_free(aux); 1661 } 1662 1663 fuse_writepage_free(wpa); 1664 spin_lock(&fi->lock); 1665 } 1666 1667 /* 1668 * If fi->writectr is positive (no truncate or fsync going on) send 1669 * all queued writepage requests. 1670 * 1671 * Called with fi->lock 1672 */ 1673 void fuse_flush_writepages(struct inode *inode) 1674 __releases(fi->lock) 1675 __acquires(fi->lock) 1676 { 1677 struct fuse_conn *fc = get_fuse_conn(inode); 1678 struct fuse_inode *fi = get_fuse_inode(inode); 1679 loff_t crop = i_size_read(inode); 1680 struct fuse_writepage_args *wpa; 1681 1682 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1683 wpa = list_entry(fi->queued_writes.next, 1684 struct fuse_writepage_args, queue_entry); 1685 list_del_init(&wpa->queue_entry); 1686 fuse_send_writepage(fc, wpa, crop); 1687 } 1688 } 1689 1690 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args, 1691 int error) 1692 { 1693 struct fuse_writepage_args *wpa = 1694 container_of(args, typeof(*wpa), ia.ap.args); 1695 struct inode *inode = wpa->inode; 1696 struct fuse_inode *fi = get_fuse_inode(inode); 1697 1698 mapping_set_error(inode->i_mapping, error); 1699 spin_lock(&fi->lock); 1700 while (wpa->next) { 1701 struct fuse_conn *fc = get_fuse_conn(inode); 1702 struct fuse_write_in *inarg = &wpa->ia.write.in; 1703 struct fuse_writepage_args *next = wpa->next; 1704 1705 wpa->next = next->next; 1706 next->next = NULL; 1707 next->ia.ff = fuse_file_get(wpa->ia.ff); 1708 list_add(&next->writepages_entry, &fi->writepages); 1709 1710 /* 1711 * Skip fuse_flush_writepages() to make it easy to crop requests 1712 * based on primary request size. 1713 * 1714 * 1st case (trivial): there are no concurrent activities using 1715 * fuse_set/release_nowrite. Then we're on safe side because 1716 * fuse_flush_writepages() would call fuse_send_writepage() 1717 * anyway. 1718 * 1719 * 2nd case: someone called fuse_set_nowrite and it is waiting 1720 * now for completion of all in-flight requests. This happens 1721 * rarely and no more than once per page, so this should be 1722 * okay. 1723 * 1724 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1725 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1726 * that fuse_set_nowrite returned implies that all in-flight 1727 * requests were completed along with all of their secondary 1728 * requests. Further primary requests are blocked by negative 1729 * writectr. Hence there cannot be any in-flight requests and 1730 * no invocations of fuse_writepage_end() while we're in 1731 * fuse_set_nowrite..fuse_release_nowrite section. 1732 */ 1733 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1734 } 1735 fi->writectr--; 1736 fuse_writepage_finish(fc, wpa); 1737 spin_unlock(&fi->lock); 1738 fuse_writepage_free(wpa); 1739 } 1740 1741 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1742 struct fuse_inode *fi) 1743 { 1744 struct fuse_file *ff = NULL; 1745 1746 spin_lock(&fi->lock); 1747 if (!list_empty(&fi->write_files)) { 1748 ff = list_entry(fi->write_files.next, struct fuse_file, 1749 write_entry); 1750 fuse_file_get(ff); 1751 } 1752 spin_unlock(&fi->lock); 1753 1754 return ff; 1755 } 1756 1757 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1758 struct fuse_inode *fi) 1759 { 1760 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1761 WARN_ON(!ff); 1762 return ff; 1763 } 1764 1765 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1766 { 1767 struct fuse_conn *fc = get_fuse_conn(inode); 1768 struct fuse_inode *fi = get_fuse_inode(inode); 1769 struct fuse_file *ff; 1770 int err; 1771 1772 ff = __fuse_write_file_get(fc, fi); 1773 err = fuse_flush_times(inode, ff); 1774 if (ff) 1775 fuse_file_put(ff, false, false); 1776 1777 return err; 1778 } 1779 1780 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1781 { 1782 struct fuse_writepage_args *wpa; 1783 struct fuse_args_pages *ap; 1784 1785 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1786 if (wpa) { 1787 ap = &wpa->ia.ap; 1788 ap->num_pages = 0; 1789 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1790 if (!ap->pages) { 1791 kfree(wpa); 1792 wpa = NULL; 1793 } 1794 } 1795 return wpa; 1796 1797 } 1798 1799 static int fuse_writepage_locked(struct page *page) 1800 { 1801 struct address_space *mapping = page->mapping; 1802 struct inode *inode = mapping->host; 1803 struct fuse_conn *fc = get_fuse_conn(inode); 1804 struct fuse_inode *fi = get_fuse_inode(inode); 1805 struct fuse_writepage_args *wpa; 1806 struct fuse_args_pages *ap; 1807 struct page *tmp_page; 1808 int error = -ENOMEM; 1809 1810 set_page_writeback(page); 1811 1812 wpa = fuse_writepage_args_alloc(); 1813 if (!wpa) 1814 goto err; 1815 ap = &wpa->ia.ap; 1816 1817 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1818 if (!tmp_page) 1819 goto err_free; 1820 1821 error = -EIO; 1822 wpa->ia.ff = fuse_write_file_get(fc, fi); 1823 if (!wpa->ia.ff) 1824 goto err_nofile; 1825 1826 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1827 1828 copy_highpage(tmp_page, page); 1829 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1830 wpa->next = NULL; 1831 ap->args.in_pages = true; 1832 ap->num_pages = 1; 1833 ap->pages[0] = tmp_page; 1834 ap->descs[0].offset = 0; 1835 ap->descs[0].length = PAGE_SIZE; 1836 ap->args.end = fuse_writepage_end; 1837 wpa->inode = inode; 1838 1839 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1840 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1841 1842 spin_lock(&fi->lock); 1843 list_add(&wpa->writepages_entry, &fi->writepages); 1844 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1845 fuse_flush_writepages(inode); 1846 spin_unlock(&fi->lock); 1847 1848 end_page_writeback(page); 1849 1850 return 0; 1851 1852 err_nofile: 1853 __free_page(tmp_page); 1854 err_free: 1855 kfree(wpa); 1856 err: 1857 mapping_set_error(page->mapping, error); 1858 end_page_writeback(page); 1859 return error; 1860 } 1861 1862 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1863 { 1864 int err; 1865 1866 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1867 /* 1868 * ->writepages() should be called for sync() and friends. We 1869 * should only get here on direct reclaim and then we are 1870 * allowed to skip a page which is already in flight 1871 */ 1872 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1873 1874 redirty_page_for_writepage(wbc, page); 1875 unlock_page(page); 1876 return 0; 1877 } 1878 1879 err = fuse_writepage_locked(page); 1880 unlock_page(page); 1881 1882 return err; 1883 } 1884 1885 struct fuse_fill_wb_data { 1886 struct fuse_writepage_args *wpa; 1887 struct fuse_file *ff; 1888 struct inode *inode; 1889 struct page **orig_pages; 1890 unsigned int max_pages; 1891 }; 1892 1893 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1894 { 1895 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1896 struct fuse_conn *fc = get_fuse_conn(data->inode); 1897 struct page **pages; 1898 struct fuse_page_desc *descs; 1899 unsigned int npages = min_t(unsigned int, 1900 max_t(unsigned int, data->max_pages * 2, 1901 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1902 fc->max_pages); 1903 WARN_ON(npages <= data->max_pages); 1904 1905 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1906 if (!pages) 1907 return false; 1908 1909 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1910 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1911 kfree(ap->pages); 1912 ap->pages = pages; 1913 ap->descs = descs; 1914 data->max_pages = npages; 1915 1916 return true; 1917 } 1918 1919 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1920 { 1921 struct fuse_writepage_args *wpa = data->wpa; 1922 struct inode *inode = data->inode; 1923 struct fuse_inode *fi = get_fuse_inode(inode); 1924 int num_pages = wpa->ia.ap.num_pages; 1925 int i; 1926 1927 wpa->ia.ff = fuse_file_get(data->ff); 1928 spin_lock(&fi->lock); 1929 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1930 fuse_flush_writepages(inode); 1931 spin_unlock(&fi->lock); 1932 1933 for (i = 0; i < num_pages; i++) 1934 end_page_writeback(data->orig_pages[i]); 1935 } 1936 1937 /* 1938 * First recheck under fi->lock if the offending offset is still under 1939 * writeback. If yes, then iterate auxiliary write requests, to see if there's 1940 * one already added for a page at this offset. If there's none, then insert 1941 * this new request onto the auxiliary list, otherwise reuse the existing one by 1942 * copying the new page contents over to the old temporary page. 1943 */ 1944 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa, 1945 struct page *page) 1946 { 1947 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 1948 struct fuse_writepage_args *tmp; 1949 struct fuse_writepage_args *old_wpa; 1950 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 1951 1952 WARN_ON(new_ap->num_pages != 0); 1953 1954 spin_lock(&fi->lock); 1955 list_del(&new_wpa->writepages_entry); 1956 old_wpa = fuse_find_writeback(fi, page->index, page->index); 1957 if (!old_wpa) { 1958 list_add(&new_wpa->writepages_entry, &fi->writepages); 1959 spin_unlock(&fi->lock); 1960 return false; 1961 } 1962 1963 new_ap->num_pages = 1; 1964 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 1965 pgoff_t curr_index; 1966 1967 WARN_ON(tmp->inode != new_wpa->inode); 1968 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 1969 if (curr_index == page->index) { 1970 WARN_ON(tmp->ia.ap.num_pages != 1); 1971 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 1972 break; 1973 } 1974 } 1975 1976 if (!tmp) { 1977 new_wpa->next = old_wpa->next; 1978 old_wpa->next = new_wpa; 1979 } 1980 1981 spin_unlock(&fi->lock); 1982 1983 if (tmp) { 1984 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 1985 1986 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1987 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 1988 wb_writeout_inc(&bdi->wb); 1989 fuse_writepage_free(new_wpa); 1990 } 1991 1992 return true; 1993 } 1994 1995 static int fuse_writepages_fill(struct page *page, 1996 struct writeback_control *wbc, void *_data) 1997 { 1998 struct fuse_fill_wb_data *data = _data; 1999 struct fuse_writepage_args *wpa = data->wpa; 2000 struct fuse_args_pages *ap = &wpa->ia.ap; 2001 struct inode *inode = data->inode; 2002 struct fuse_inode *fi = get_fuse_inode(inode); 2003 struct fuse_conn *fc = get_fuse_conn(inode); 2004 struct page *tmp_page; 2005 bool is_writeback; 2006 int err; 2007 2008 if (!data->ff) { 2009 err = -EIO; 2010 data->ff = fuse_write_file_get(fc, fi); 2011 if (!data->ff) 2012 goto out_unlock; 2013 } 2014 2015 /* 2016 * Being under writeback is unlikely but possible. For example direct 2017 * read to an mmaped fuse file will set the page dirty twice; once when 2018 * the pages are faulted with get_user_pages(), and then after the read 2019 * completed. 2020 */ 2021 is_writeback = fuse_page_is_writeback(inode, page->index); 2022 2023 if (wpa && ap->num_pages && 2024 (is_writeback || ap->num_pages == fc->max_pages || 2025 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write || 2026 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) { 2027 fuse_writepages_send(data); 2028 data->wpa = NULL; 2029 } else if (wpa && ap->num_pages == data->max_pages) { 2030 if (!fuse_pages_realloc(data)) { 2031 fuse_writepages_send(data); 2032 data->wpa = NULL; 2033 } 2034 } 2035 2036 err = -ENOMEM; 2037 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2038 if (!tmp_page) 2039 goto out_unlock; 2040 2041 /* 2042 * The page must not be redirtied until the writeout is completed 2043 * (i.e. userspace has sent a reply to the write request). Otherwise 2044 * there could be more than one temporary page instance for each real 2045 * page. 2046 * 2047 * This is ensured by holding the page lock in page_mkwrite() while 2048 * checking fuse_page_is_writeback(). We already hold the page lock 2049 * since clear_page_dirty_for_io() and keep it held until we add the 2050 * request to the fi->writepages list and increment ap->num_pages. 2051 * After this fuse_page_is_writeback() will indicate that the page is 2052 * under writeback, so we can release the page lock. 2053 */ 2054 if (data->wpa == NULL) { 2055 err = -ENOMEM; 2056 wpa = fuse_writepage_args_alloc(); 2057 if (!wpa) { 2058 __free_page(tmp_page); 2059 goto out_unlock; 2060 } 2061 data->max_pages = 1; 2062 2063 ap = &wpa->ia.ap; 2064 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2065 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2066 wpa->next = NULL; 2067 ap->args.in_pages = true; 2068 ap->args.end = fuse_writepage_end; 2069 ap->num_pages = 0; 2070 wpa->inode = inode; 2071 2072 spin_lock(&fi->lock); 2073 list_add(&wpa->writepages_entry, &fi->writepages); 2074 spin_unlock(&fi->lock); 2075 2076 data->wpa = wpa; 2077 } 2078 set_page_writeback(page); 2079 2080 copy_highpage(tmp_page, page); 2081 ap->pages[ap->num_pages] = tmp_page; 2082 ap->descs[ap->num_pages].offset = 0; 2083 ap->descs[ap->num_pages].length = PAGE_SIZE; 2084 2085 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2086 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2087 2088 err = 0; 2089 if (is_writeback && fuse_writepage_in_flight(wpa, page)) { 2090 end_page_writeback(page); 2091 data->wpa = NULL; 2092 goto out_unlock; 2093 } 2094 data->orig_pages[ap->num_pages] = page; 2095 2096 /* 2097 * Protected by fi->lock against concurrent access by 2098 * fuse_page_is_writeback(). 2099 */ 2100 spin_lock(&fi->lock); 2101 ap->num_pages++; 2102 spin_unlock(&fi->lock); 2103 2104 out_unlock: 2105 unlock_page(page); 2106 2107 return err; 2108 } 2109 2110 static int fuse_writepages(struct address_space *mapping, 2111 struct writeback_control *wbc) 2112 { 2113 struct inode *inode = mapping->host; 2114 struct fuse_conn *fc = get_fuse_conn(inode); 2115 struct fuse_fill_wb_data data; 2116 int err; 2117 2118 err = -EIO; 2119 if (is_bad_inode(inode)) 2120 goto out; 2121 2122 data.inode = inode; 2123 data.wpa = NULL; 2124 data.ff = NULL; 2125 2126 err = -ENOMEM; 2127 data.orig_pages = kcalloc(fc->max_pages, 2128 sizeof(struct page *), 2129 GFP_NOFS); 2130 if (!data.orig_pages) 2131 goto out; 2132 2133 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2134 if (data.wpa) { 2135 /* Ignore errors if we can write at least one page */ 2136 WARN_ON(!data.wpa->ia.ap.num_pages); 2137 fuse_writepages_send(&data); 2138 err = 0; 2139 } 2140 if (data.ff) 2141 fuse_file_put(data.ff, false, false); 2142 2143 kfree(data.orig_pages); 2144 out: 2145 return err; 2146 } 2147 2148 /* 2149 * It's worthy to make sure that space is reserved on disk for the write, 2150 * but how to implement it without killing performance need more thinking. 2151 */ 2152 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2153 loff_t pos, unsigned len, unsigned flags, 2154 struct page **pagep, void **fsdata) 2155 { 2156 pgoff_t index = pos >> PAGE_SHIFT; 2157 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2158 struct page *page; 2159 loff_t fsize; 2160 int err = -ENOMEM; 2161 2162 WARN_ON(!fc->writeback_cache); 2163 2164 page = grab_cache_page_write_begin(mapping, index, flags); 2165 if (!page) 2166 goto error; 2167 2168 fuse_wait_on_page_writeback(mapping->host, page->index); 2169 2170 if (PageUptodate(page) || len == PAGE_SIZE) 2171 goto success; 2172 /* 2173 * Check if the start this page comes after the end of file, in which 2174 * case the readpage can be optimized away. 2175 */ 2176 fsize = i_size_read(mapping->host); 2177 if (fsize <= (pos & PAGE_MASK)) { 2178 size_t off = pos & ~PAGE_MASK; 2179 if (off) 2180 zero_user_segment(page, 0, off); 2181 goto success; 2182 } 2183 err = fuse_do_readpage(file, page); 2184 if (err) 2185 goto cleanup; 2186 success: 2187 *pagep = page; 2188 return 0; 2189 2190 cleanup: 2191 unlock_page(page); 2192 put_page(page); 2193 error: 2194 return err; 2195 } 2196 2197 static int fuse_write_end(struct file *file, struct address_space *mapping, 2198 loff_t pos, unsigned len, unsigned copied, 2199 struct page *page, void *fsdata) 2200 { 2201 struct inode *inode = page->mapping->host; 2202 2203 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2204 if (!copied) 2205 goto unlock; 2206 2207 if (!PageUptodate(page)) { 2208 /* Zero any unwritten bytes at the end of the page */ 2209 size_t endoff = (pos + copied) & ~PAGE_MASK; 2210 if (endoff) 2211 zero_user_segment(page, endoff, PAGE_SIZE); 2212 SetPageUptodate(page); 2213 } 2214 2215 fuse_write_update_size(inode, pos + copied); 2216 set_page_dirty(page); 2217 2218 unlock: 2219 unlock_page(page); 2220 put_page(page); 2221 2222 return copied; 2223 } 2224 2225 static int fuse_launder_page(struct page *page) 2226 { 2227 int err = 0; 2228 if (clear_page_dirty_for_io(page)) { 2229 struct inode *inode = page->mapping->host; 2230 err = fuse_writepage_locked(page); 2231 if (!err) 2232 fuse_wait_on_page_writeback(inode, page->index); 2233 } 2234 return err; 2235 } 2236 2237 /* 2238 * Write back dirty pages now, because there may not be any suitable 2239 * open files later 2240 */ 2241 static void fuse_vma_close(struct vm_area_struct *vma) 2242 { 2243 filemap_write_and_wait(vma->vm_file->f_mapping); 2244 } 2245 2246 /* 2247 * Wait for writeback against this page to complete before allowing it 2248 * to be marked dirty again, and hence written back again, possibly 2249 * before the previous writepage completed. 2250 * 2251 * Block here, instead of in ->writepage(), so that the userspace fs 2252 * can only block processes actually operating on the filesystem. 2253 * 2254 * Otherwise unprivileged userspace fs would be able to block 2255 * unrelated: 2256 * 2257 * - page migration 2258 * - sync(2) 2259 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2260 */ 2261 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2262 { 2263 struct page *page = vmf->page; 2264 struct inode *inode = file_inode(vmf->vma->vm_file); 2265 2266 file_update_time(vmf->vma->vm_file); 2267 lock_page(page); 2268 if (page->mapping != inode->i_mapping) { 2269 unlock_page(page); 2270 return VM_FAULT_NOPAGE; 2271 } 2272 2273 fuse_wait_on_page_writeback(inode, page->index); 2274 return VM_FAULT_LOCKED; 2275 } 2276 2277 static const struct vm_operations_struct fuse_file_vm_ops = { 2278 .close = fuse_vma_close, 2279 .fault = filemap_fault, 2280 .map_pages = filemap_map_pages, 2281 .page_mkwrite = fuse_page_mkwrite, 2282 }; 2283 2284 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2285 { 2286 struct fuse_file *ff = file->private_data; 2287 2288 if (ff->open_flags & FOPEN_DIRECT_IO) { 2289 /* Can't provide the coherency needed for MAP_SHARED */ 2290 if (vma->vm_flags & VM_MAYSHARE) 2291 return -ENODEV; 2292 2293 invalidate_inode_pages2(file->f_mapping); 2294 2295 return generic_file_mmap(file, vma); 2296 } 2297 2298 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2299 fuse_link_write_file(file); 2300 2301 file_accessed(file); 2302 vma->vm_ops = &fuse_file_vm_ops; 2303 return 0; 2304 } 2305 2306 static int convert_fuse_file_lock(struct fuse_conn *fc, 2307 const struct fuse_file_lock *ffl, 2308 struct file_lock *fl) 2309 { 2310 switch (ffl->type) { 2311 case F_UNLCK: 2312 break; 2313 2314 case F_RDLCK: 2315 case F_WRLCK: 2316 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2317 ffl->end < ffl->start) 2318 return -EIO; 2319 2320 fl->fl_start = ffl->start; 2321 fl->fl_end = ffl->end; 2322 2323 /* 2324 * Convert pid into init's pid namespace. The locks API will 2325 * translate it into the caller's pid namespace. 2326 */ 2327 rcu_read_lock(); 2328 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2329 rcu_read_unlock(); 2330 break; 2331 2332 default: 2333 return -EIO; 2334 } 2335 fl->fl_type = ffl->type; 2336 return 0; 2337 } 2338 2339 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2340 const struct file_lock *fl, int opcode, pid_t pid, 2341 int flock, struct fuse_lk_in *inarg) 2342 { 2343 struct inode *inode = file_inode(file); 2344 struct fuse_conn *fc = get_fuse_conn(inode); 2345 struct fuse_file *ff = file->private_data; 2346 2347 memset(inarg, 0, sizeof(*inarg)); 2348 inarg->fh = ff->fh; 2349 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2350 inarg->lk.start = fl->fl_start; 2351 inarg->lk.end = fl->fl_end; 2352 inarg->lk.type = fl->fl_type; 2353 inarg->lk.pid = pid; 2354 if (flock) 2355 inarg->lk_flags |= FUSE_LK_FLOCK; 2356 args->opcode = opcode; 2357 args->nodeid = get_node_id(inode); 2358 args->in_numargs = 1; 2359 args->in_args[0].size = sizeof(*inarg); 2360 args->in_args[0].value = inarg; 2361 } 2362 2363 static int fuse_getlk(struct file *file, struct file_lock *fl) 2364 { 2365 struct inode *inode = file_inode(file); 2366 struct fuse_conn *fc = get_fuse_conn(inode); 2367 FUSE_ARGS(args); 2368 struct fuse_lk_in inarg; 2369 struct fuse_lk_out outarg; 2370 int err; 2371 2372 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2373 args.out_numargs = 1; 2374 args.out_args[0].size = sizeof(outarg); 2375 args.out_args[0].value = &outarg; 2376 err = fuse_simple_request(fc, &args); 2377 if (!err) 2378 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2379 2380 return err; 2381 } 2382 2383 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2384 { 2385 struct inode *inode = file_inode(file); 2386 struct fuse_conn *fc = get_fuse_conn(inode); 2387 FUSE_ARGS(args); 2388 struct fuse_lk_in inarg; 2389 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2390 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2391 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2392 int err; 2393 2394 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2395 /* NLM needs asynchronous locks, which we don't support yet */ 2396 return -ENOLCK; 2397 } 2398 2399 /* Unlock on close is handled by the flush method */ 2400 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2401 return 0; 2402 2403 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2404 err = fuse_simple_request(fc, &args); 2405 2406 /* locking is restartable */ 2407 if (err == -EINTR) 2408 err = -ERESTARTSYS; 2409 2410 return err; 2411 } 2412 2413 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2414 { 2415 struct inode *inode = file_inode(file); 2416 struct fuse_conn *fc = get_fuse_conn(inode); 2417 int err; 2418 2419 if (cmd == F_CANCELLK) { 2420 err = 0; 2421 } else if (cmd == F_GETLK) { 2422 if (fc->no_lock) { 2423 posix_test_lock(file, fl); 2424 err = 0; 2425 } else 2426 err = fuse_getlk(file, fl); 2427 } else { 2428 if (fc->no_lock) 2429 err = posix_lock_file(file, fl, NULL); 2430 else 2431 err = fuse_setlk(file, fl, 0); 2432 } 2433 return err; 2434 } 2435 2436 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2437 { 2438 struct inode *inode = file_inode(file); 2439 struct fuse_conn *fc = get_fuse_conn(inode); 2440 int err; 2441 2442 if (fc->no_flock) { 2443 err = locks_lock_file_wait(file, fl); 2444 } else { 2445 struct fuse_file *ff = file->private_data; 2446 2447 /* emulate flock with POSIX locks */ 2448 ff->flock = true; 2449 err = fuse_setlk(file, fl, 1); 2450 } 2451 2452 return err; 2453 } 2454 2455 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2456 { 2457 struct inode *inode = mapping->host; 2458 struct fuse_conn *fc = get_fuse_conn(inode); 2459 FUSE_ARGS(args); 2460 struct fuse_bmap_in inarg; 2461 struct fuse_bmap_out outarg; 2462 int err; 2463 2464 if (!inode->i_sb->s_bdev || fc->no_bmap) 2465 return 0; 2466 2467 memset(&inarg, 0, sizeof(inarg)); 2468 inarg.block = block; 2469 inarg.blocksize = inode->i_sb->s_blocksize; 2470 args.opcode = FUSE_BMAP; 2471 args.nodeid = get_node_id(inode); 2472 args.in_numargs = 1; 2473 args.in_args[0].size = sizeof(inarg); 2474 args.in_args[0].value = &inarg; 2475 args.out_numargs = 1; 2476 args.out_args[0].size = sizeof(outarg); 2477 args.out_args[0].value = &outarg; 2478 err = fuse_simple_request(fc, &args); 2479 if (err == -ENOSYS) 2480 fc->no_bmap = 1; 2481 2482 return err ? 0 : outarg.block; 2483 } 2484 2485 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2486 { 2487 struct inode *inode = file->f_mapping->host; 2488 struct fuse_conn *fc = get_fuse_conn(inode); 2489 struct fuse_file *ff = file->private_data; 2490 FUSE_ARGS(args); 2491 struct fuse_lseek_in inarg = { 2492 .fh = ff->fh, 2493 .offset = offset, 2494 .whence = whence 2495 }; 2496 struct fuse_lseek_out outarg; 2497 int err; 2498 2499 if (fc->no_lseek) 2500 goto fallback; 2501 2502 args.opcode = FUSE_LSEEK; 2503 args.nodeid = ff->nodeid; 2504 args.in_numargs = 1; 2505 args.in_args[0].size = sizeof(inarg); 2506 args.in_args[0].value = &inarg; 2507 args.out_numargs = 1; 2508 args.out_args[0].size = sizeof(outarg); 2509 args.out_args[0].value = &outarg; 2510 err = fuse_simple_request(fc, &args); 2511 if (err) { 2512 if (err == -ENOSYS) { 2513 fc->no_lseek = 1; 2514 goto fallback; 2515 } 2516 return err; 2517 } 2518 2519 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2520 2521 fallback: 2522 err = fuse_update_attributes(inode, file); 2523 if (!err) 2524 return generic_file_llseek(file, offset, whence); 2525 else 2526 return err; 2527 } 2528 2529 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2530 { 2531 loff_t retval; 2532 struct inode *inode = file_inode(file); 2533 2534 switch (whence) { 2535 case SEEK_SET: 2536 case SEEK_CUR: 2537 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2538 retval = generic_file_llseek(file, offset, whence); 2539 break; 2540 case SEEK_END: 2541 inode_lock(inode); 2542 retval = fuse_update_attributes(inode, file); 2543 if (!retval) 2544 retval = generic_file_llseek(file, offset, whence); 2545 inode_unlock(inode); 2546 break; 2547 case SEEK_HOLE: 2548 case SEEK_DATA: 2549 inode_lock(inode); 2550 retval = fuse_lseek(file, offset, whence); 2551 inode_unlock(inode); 2552 break; 2553 default: 2554 retval = -EINVAL; 2555 } 2556 2557 return retval; 2558 } 2559 2560 /* 2561 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2562 * ABI was defined to be 'struct iovec' which is different on 32bit 2563 * and 64bit. Fortunately we can determine which structure the server 2564 * used from the size of the reply. 2565 */ 2566 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2567 size_t transferred, unsigned count, 2568 bool is_compat) 2569 { 2570 #ifdef CONFIG_COMPAT 2571 if (count * sizeof(struct compat_iovec) == transferred) { 2572 struct compat_iovec *ciov = src; 2573 unsigned i; 2574 2575 /* 2576 * With this interface a 32bit server cannot support 2577 * non-compat (i.e. ones coming from 64bit apps) ioctl 2578 * requests 2579 */ 2580 if (!is_compat) 2581 return -EINVAL; 2582 2583 for (i = 0; i < count; i++) { 2584 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2585 dst[i].iov_len = ciov[i].iov_len; 2586 } 2587 return 0; 2588 } 2589 #endif 2590 2591 if (count * sizeof(struct iovec) != transferred) 2592 return -EIO; 2593 2594 memcpy(dst, src, transferred); 2595 return 0; 2596 } 2597 2598 /* Make sure iov_length() won't overflow */ 2599 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2600 size_t count) 2601 { 2602 size_t n; 2603 u32 max = fc->max_pages << PAGE_SHIFT; 2604 2605 for (n = 0; n < count; n++, iov++) { 2606 if (iov->iov_len > (size_t) max) 2607 return -ENOMEM; 2608 max -= iov->iov_len; 2609 } 2610 return 0; 2611 } 2612 2613 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2614 void *src, size_t transferred, unsigned count, 2615 bool is_compat) 2616 { 2617 unsigned i; 2618 struct fuse_ioctl_iovec *fiov = src; 2619 2620 if (fc->minor < 16) { 2621 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2622 count, is_compat); 2623 } 2624 2625 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2626 return -EIO; 2627 2628 for (i = 0; i < count; i++) { 2629 /* Did the server supply an inappropriate value? */ 2630 if (fiov[i].base != (unsigned long) fiov[i].base || 2631 fiov[i].len != (unsigned long) fiov[i].len) 2632 return -EIO; 2633 2634 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2635 dst[i].iov_len = (size_t) fiov[i].len; 2636 2637 #ifdef CONFIG_COMPAT 2638 if (is_compat && 2639 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2640 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2641 return -EIO; 2642 #endif 2643 } 2644 2645 return 0; 2646 } 2647 2648 2649 /* 2650 * For ioctls, there is no generic way to determine how much memory 2651 * needs to be read and/or written. Furthermore, ioctls are allowed 2652 * to dereference the passed pointer, so the parameter requires deep 2653 * copying but FUSE has no idea whatsoever about what to copy in or 2654 * out. 2655 * 2656 * This is solved by allowing FUSE server to retry ioctl with 2657 * necessary in/out iovecs. Let's assume the ioctl implementation 2658 * needs to read in the following structure. 2659 * 2660 * struct a { 2661 * char *buf; 2662 * size_t buflen; 2663 * } 2664 * 2665 * On the first callout to FUSE server, inarg->in_size and 2666 * inarg->out_size will be NULL; then, the server completes the ioctl 2667 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2668 * the actual iov array to 2669 * 2670 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2671 * 2672 * which tells FUSE to copy in the requested area and retry the ioctl. 2673 * On the second round, the server has access to the structure and 2674 * from that it can tell what to look for next, so on the invocation, 2675 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2676 * 2677 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2678 * { .iov_base = a.buf, .iov_len = a.buflen } } 2679 * 2680 * FUSE will copy both struct a and the pointed buffer from the 2681 * process doing the ioctl and retry ioctl with both struct a and the 2682 * buffer. 2683 * 2684 * This time, FUSE server has everything it needs and completes ioctl 2685 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2686 * 2687 * Copying data out works the same way. 2688 * 2689 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2690 * automatically initializes in and out iovs by decoding @cmd with 2691 * _IOC_* macros and the server is not allowed to request RETRY. This 2692 * limits ioctl data transfers to well-formed ioctls and is the forced 2693 * behavior for all FUSE servers. 2694 */ 2695 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2696 unsigned int flags) 2697 { 2698 struct fuse_file *ff = file->private_data; 2699 struct fuse_conn *fc = ff->fc; 2700 struct fuse_ioctl_in inarg = { 2701 .fh = ff->fh, 2702 .cmd = cmd, 2703 .arg = arg, 2704 .flags = flags 2705 }; 2706 struct fuse_ioctl_out outarg; 2707 struct iovec *iov_page = NULL; 2708 struct iovec *in_iov = NULL, *out_iov = NULL; 2709 unsigned int in_iovs = 0, out_iovs = 0, max_pages; 2710 size_t in_size, out_size, c; 2711 ssize_t transferred; 2712 int err, i; 2713 struct iov_iter ii; 2714 struct fuse_args_pages ap = {}; 2715 2716 #if BITS_PER_LONG == 32 2717 inarg.flags |= FUSE_IOCTL_32BIT; 2718 #else 2719 if (flags & FUSE_IOCTL_COMPAT) { 2720 inarg.flags |= FUSE_IOCTL_32BIT; 2721 #ifdef CONFIG_X86_X32 2722 if (in_x32_syscall()) 2723 inarg.flags |= FUSE_IOCTL_COMPAT_X32; 2724 #endif 2725 } 2726 #endif 2727 2728 /* assume all the iovs returned by client always fits in a page */ 2729 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2730 2731 err = -ENOMEM; 2732 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs); 2733 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2734 if (!ap.pages || !iov_page) 2735 goto out; 2736 2737 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages); 2738 2739 /* 2740 * If restricted, initialize IO parameters as encoded in @cmd. 2741 * RETRY from server is not allowed. 2742 */ 2743 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2744 struct iovec *iov = iov_page; 2745 2746 iov->iov_base = (void __user *)arg; 2747 iov->iov_len = _IOC_SIZE(cmd); 2748 2749 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2750 in_iov = iov; 2751 in_iovs = 1; 2752 } 2753 2754 if (_IOC_DIR(cmd) & _IOC_READ) { 2755 out_iov = iov; 2756 out_iovs = 1; 2757 } 2758 } 2759 2760 retry: 2761 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2762 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2763 2764 /* 2765 * Out data can be used either for actual out data or iovs, 2766 * make sure there always is at least one page. 2767 */ 2768 out_size = max_t(size_t, out_size, PAGE_SIZE); 2769 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2770 2771 /* make sure there are enough buffer pages and init request with them */ 2772 err = -ENOMEM; 2773 if (max_pages > fc->max_pages) 2774 goto out; 2775 while (ap.num_pages < max_pages) { 2776 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2777 if (!ap.pages[ap.num_pages]) 2778 goto out; 2779 ap.num_pages++; 2780 } 2781 2782 2783 /* okay, let's send it to the client */ 2784 ap.args.opcode = FUSE_IOCTL; 2785 ap.args.nodeid = ff->nodeid; 2786 ap.args.in_numargs = 1; 2787 ap.args.in_args[0].size = sizeof(inarg); 2788 ap.args.in_args[0].value = &inarg; 2789 if (in_size) { 2790 ap.args.in_numargs++; 2791 ap.args.in_args[1].size = in_size; 2792 ap.args.in_pages = true; 2793 2794 err = -EFAULT; 2795 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2796 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2797 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2798 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2799 goto out; 2800 } 2801 } 2802 2803 ap.args.out_numargs = 2; 2804 ap.args.out_args[0].size = sizeof(outarg); 2805 ap.args.out_args[0].value = &outarg; 2806 ap.args.out_args[1].size = out_size; 2807 ap.args.out_pages = true; 2808 ap.args.out_argvar = true; 2809 2810 transferred = fuse_simple_request(fc, &ap.args); 2811 err = transferred; 2812 if (transferred < 0) 2813 goto out; 2814 2815 /* did it ask for retry? */ 2816 if (outarg.flags & FUSE_IOCTL_RETRY) { 2817 void *vaddr; 2818 2819 /* no retry if in restricted mode */ 2820 err = -EIO; 2821 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2822 goto out; 2823 2824 in_iovs = outarg.in_iovs; 2825 out_iovs = outarg.out_iovs; 2826 2827 /* 2828 * Make sure things are in boundary, separate checks 2829 * are to protect against overflow. 2830 */ 2831 err = -ENOMEM; 2832 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2833 out_iovs > FUSE_IOCTL_MAX_IOV || 2834 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2835 goto out; 2836 2837 vaddr = kmap_atomic(ap.pages[0]); 2838 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2839 transferred, in_iovs + out_iovs, 2840 (flags & FUSE_IOCTL_COMPAT) != 0); 2841 kunmap_atomic(vaddr); 2842 if (err) 2843 goto out; 2844 2845 in_iov = iov_page; 2846 out_iov = in_iov + in_iovs; 2847 2848 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2849 if (err) 2850 goto out; 2851 2852 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2853 if (err) 2854 goto out; 2855 2856 goto retry; 2857 } 2858 2859 err = -EIO; 2860 if (transferred > inarg.out_size) 2861 goto out; 2862 2863 err = -EFAULT; 2864 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2865 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2866 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2867 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2868 goto out; 2869 } 2870 err = 0; 2871 out: 2872 free_page((unsigned long) iov_page); 2873 while (ap.num_pages) 2874 __free_page(ap.pages[--ap.num_pages]); 2875 kfree(ap.pages); 2876 2877 return err ? err : outarg.result; 2878 } 2879 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2880 2881 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2882 unsigned long arg, unsigned int flags) 2883 { 2884 struct inode *inode = file_inode(file); 2885 struct fuse_conn *fc = get_fuse_conn(inode); 2886 2887 if (!fuse_allow_current_process(fc)) 2888 return -EACCES; 2889 2890 if (is_bad_inode(inode)) 2891 return -EIO; 2892 2893 return fuse_do_ioctl(file, cmd, arg, flags); 2894 } 2895 2896 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2897 unsigned long arg) 2898 { 2899 return fuse_ioctl_common(file, cmd, arg, 0); 2900 } 2901 2902 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2903 unsigned long arg) 2904 { 2905 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2906 } 2907 2908 /* 2909 * All files which have been polled are linked to RB tree 2910 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2911 * find the matching one. 2912 */ 2913 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2914 struct rb_node **parent_out) 2915 { 2916 struct rb_node **link = &fc->polled_files.rb_node; 2917 struct rb_node *last = NULL; 2918 2919 while (*link) { 2920 struct fuse_file *ff; 2921 2922 last = *link; 2923 ff = rb_entry(last, struct fuse_file, polled_node); 2924 2925 if (kh < ff->kh) 2926 link = &last->rb_left; 2927 else if (kh > ff->kh) 2928 link = &last->rb_right; 2929 else 2930 return link; 2931 } 2932 2933 if (parent_out) 2934 *parent_out = last; 2935 return link; 2936 } 2937 2938 /* 2939 * The file is about to be polled. Make sure it's on the polled_files 2940 * RB tree. Note that files once added to the polled_files tree are 2941 * not removed before the file is released. This is because a file 2942 * polled once is likely to be polled again. 2943 */ 2944 static void fuse_register_polled_file(struct fuse_conn *fc, 2945 struct fuse_file *ff) 2946 { 2947 spin_lock(&fc->lock); 2948 if (RB_EMPTY_NODE(&ff->polled_node)) { 2949 struct rb_node **link, *uninitialized_var(parent); 2950 2951 link = fuse_find_polled_node(fc, ff->kh, &parent); 2952 BUG_ON(*link); 2953 rb_link_node(&ff->polled_node, parent, link); 2954 rb_insert_color(&ff->polled_node, &fc->polled_files); 2955 } 2956 spin_unlock(&fc->lock); 2957 } 2958 2959 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2960 { 2961 struct fuse_file *ff = file->private_data; 2962 struct fuse_conn *fc = ff->fc; 2963 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2964 struct fuse_poll_out outarg; 2965 FUSE_ARGS(args); 2966 int err; 2967 2968 if (fc->no_poll) 2969 return DEFAULT_POLLMASK; 2970 2971 poll_wait(file, &ff->poll_wait, wait); 2972 inarg.events = mangle_poll(poll_requested_events(wait)); 2973 2974 /* 2975 * Ask for notification iff there's someone waiting for it. 2976 * The client may ignore the flag and always notify. 2977 */ 2978 if (waitqueue_active(&ff->poll_wait)) { 2979 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2980 fuse_register_polled_file(fc, ff); 2981 } 2982 2983 args.opcode = FUSE_POLL; 2984 args.nodeid = ff->nodeid; 2985 args.in_numargs = 1; 2986 args.in_args[0].size = sizeof(inarg); 2987 args.in_args[0].value = &inarg; 2988 args.out_numargs = 1; 2989 args.out_args[0].size = sizeof(outarg); 2990 args.out_args[0].value = &outarg; 2991 err = fuse_simple_request(fc, &args); 2992 2993 if (!err) 2994 return demangle_poll(outarg.revents); 2995 if (err == -ENOSYS) { 2996 fc->no_poll = 1; 2997 return DEFAULT_POLLMASK; 2998 } 2999 return EPOLLERR; 3000 } 3001 EXPORT_SYMBOL_GPL(fuse_file_poll); 3002 3003 /* 3004 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 3005 * wakes up the poll waiters. 3006 */ 3007 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3008 struct fuse_notify_poll_wakeup_out *outarg) 3009 { 3010 u64 kh = outarg->kh; 3011 struct rb_node **link; 3012 3013 spin_lock(&fc->lock); 3014 3015 link = fuse_find_polled_node(fc, kh, NULL); 3016 if (*link) { 3017 struct fuse_file *ff; 3018 3019 ff = rb_entry(*link, struct fuse_file, polled_node); 3020 wake_up_interruptible_sync(&ff->poll_wait); 3021 } 3022 3023 spin_unlock(&fc->lock); 3024 return 0; 3025 } 3026 3027 static void fuse_do_truncate(struct file *file) 3028 { 3029 struct inode *inode = file->f_mapping->host; 3030 struct iattr attr; 3031 3032 attr.ia_valid = ATTR_SIZE; 3033 attr.ia_size = i_size_read(inode); 3034 3035 attr.ia_file = file; 3036 attr.ia_valid |= ATTR_FILE; 3037 3038 fuse_do_setattr(file_dentry(file), &attr, file); 3039 } 3040 3041 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3042 { 3043 return round_up(off, fc->max_pages << PAGE_SHIFT); 3044 } 3045 3046 static ssize_t 3047 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3048 { 3049 DECLARE_COMPLETION_ONSTACK(wait); 3050 ssize_t ret = 0; 3051 struct file *file = iocb->ki_filp; 3052 struct fuse_file *ff = file->private_data; 3053 bool async_dio = ff->fc->async_dio; 3054 loff_t pos = 0; 3055 struct inode *inode; 3056 loff_t i_size; 3057 size_t count = iov_iter_count(iter); 3058 loff_t offset = iocb->ki_pos; 3059 struct fuse_io_priv *io; 3060 3061 pos = offset; 3062 inode = file->f_mapping->host; 3063 i_size = i_size_read(inode); 3064 3065 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 3066 return 0; 3067 3068 /* optimization for short read */ 3069 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 3070 if (offset >= i_size) 3071 return 0; 3072 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 3073 count = iov_iter_count(iter); 3074 } 3075 3076 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3077 if (!io) 3078 return -ENOMEM; 3079 spin_lock_init(&io->lock); 3080 kref_init(&io->refcnt); 3081 io->reqs = 1; 3082 io->bytes = -1; 3083 io->size = 0; 3084 io->offset = offset; 3085 io->write = (iov_iter_rw(iter) == WRITE); 3086 io->err = 0; 3087 /* 3088 * By default, we want to optimize all I/Os with async request 3089 * submission to the client filesystem if supported. 3090 */ 3091 io->async = async_dio; 3092 io->iocb = iocb; 3093 io->blocking = is_sync_kiocb(iocb); 3094 3095 /* 3096 * We cannot asynchronously extend the size of a file. 3097 * In such case the aio will behave exactly like sync io. 3098 */ 3099 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 3100 io->blocking = true; 3101 3102 if (io->async && io->blocking) { 3103 /* 3104 * Additional reference to keep io around after 3105 * calling fuse_aio_complete() 3106 */ 3107 kref_get(&io->refcnt); 3108 io->done = &wait; 3109 } 3110 3111 if (iov_iter_rw(iter) == WRITE) { 3112 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3113 fuse_invalidate_attr(inode); 3114 } else { 3115 ret = __fuse_direct_read(io, iter, &pos); 3116 } 3117 3118 if (io->async) { 3119 bool blocking = io->blocking; 3120 3121 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3122 3123 /* we have a non-extending, async request, so return */ 3124 if (!blocking) 3125 return -EIOCBQUEUED; 3126 3127 wait_for_completion(&wait); 3128 ret = fuse_get_res_by_io(io); 3129 } 3130 3131 kref_put(&io->refcnt, fuse_io_release); 3132 3133 if (iov_iter_rw(iter) == WRITE) { 3134 if (ret > 0) 3135 fuse_write_update_size(inode, pos); 3136 else if (ret < 0 && offset + count > i_size) 3137 fuse_do_truncate(file); 3138 } 3139 3140 return ret; 3141 } 3142 3143 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3144 { 3145 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 3146 3147 if (!err) 3148 fuse_sync_writes(inode); 3149 3150 return err; 3151 } 3152 3153 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3154 loff_t length) 3155 { 3156 struct fuse_file *ff = file->private_data; 3157 struct inode *inode = file_inode(file); 3158 struct fuse_inode *fi = get_fuse_inode(inode); 3159 struct fuse_conn *fc = ff->fc; 3160 FUSE_ARGS(args); 3161 struct fuse_fallocate_in inarg = { 3162 .fh = ff->fh, 3163 .offset = offset, 3164 .length = length, 3165 .mode = mode 3166 }; 3167 int err; 3168 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3169 (mode & FALLOC_FL_PUNCH_HOLE); 3170 3171 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3172 return -EOPNOTSUPP; 3173 3174 if (fc->no_fallocate) 3175 return -EOPNOTSUPP; 3176 3177 if (lock_inode) { 3178 inode_lock(inode); 3179 if (mode & FALLOC_FL_PUNCH_HOLE) { 3180 loff_t endbyte = offset + length - 1; 3181 3182 err = fuse_writeback_range(inode, offset, endbyte); 3183 if (err) 3184 goto out; 3185 } 3186 } 3187 3188 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3189 offset + length > i_size_read(inode)) { 3190 err = inode_newsize_ok(inode, offset + length); 3191 if (err) 3192 goto out; 3193 } 3194 3195 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3196 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3197 3198 args.opcode = FUSE_FALLOCATE; 3199 args.nodeid = ff->nodeid; 3200 args.in_numargs = 1; 3201 args.in_args[0].size = sizeof(inarg); 3202 args.in_args[0].value = &inarg; 3203 err = fuse_simple_request(fc, &args); 3204 if (err == -ENOSYS) { 3205 fc->no_fallocate = 1; 3206 err = -EOPNOTSUPP; 3207 } 3208 if (err) 3209 goto out; 3210 3211 /* we could have extended the file */ 3212 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3213 bool changed = fuse_write_update_size(inode, offset + length); 3214 3215 if (changed && fc->writeback_cache) 3216 file_update_time(file); 3217 } 3218 3219 if (mode & FALLOC_FL_PUNCH_HOLE) 3220 truncate_pagecache_range(inode, offset, offset + length - 1); 3221 3222 fuse_invalidate_attr(inode); 3223 3224 out: 3225 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3226 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3227 3228 if (lock_inode) 3229 inode_unlock(inode); 3230 3231 return err; 3232 } 3233 3234 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3235 struct file *file_out, loff_t pos_out, 3236 size_t len, unsigned int flags) 3237 { 3238 struct fuse_file *ff_in = file_in->private_data; 3239 struct fuse_file *ff_out = file_out->private_data; 3240 struct inode *inode_in = file_inode(file_in); 3241 struct inode *inode_out = file_inode(file_out); 3242 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3243 struct fuse_conn *fc = ff_in->fc; 3244 FUSE_ARGS(args); 3245 struct fuse_copy_file_range_in inarg = { 3246 .fh_in = ff_in->fh, 3247 .off_in = pos_in, 3248 .nodeid_out = ff_out->nodeid, 3249 .fh_out = ff_out->fh, 3250 .off_out = pos_out, 3251 .len = len, 3252 .flags = flags 3253 }; 3254 struct fuse_write_out outarg; 3255 ssize_t err; 3256 /* mark unstable when write-back is not used, and file_out gets 3257 * extended */ 3258 bool is_unstable = (!fc->writeback_cache) && 3259 ((pos_out + len) > inode_out->i_size); 3260 3261 if (fc->no_copy_file_range) 3262 return -EOPNOTSUPP; 3263 3264 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3265 return -EXDEV; 3266 3267 if (fc->writeback_cache) { 3268 inode_lock(inode_in); 3269 err = fuse_writeback_range(inode_in, pos_in, pos_in + len); 3270 inode_unlock(inode_in); 3271 if (err) 3272 return err; 3273 } 3274 3275 inode_lock(inode_out); 3276 3277 err = file_modified(file_out); 3278 if (err) 3279 goto out; 3280 3281 if (fc->writeback_cache) { 3282 err = fuse_writeback_range(inode_out, pos_out, pos_out + len); 3283 if (err) 3284 goto out; 3285 } 3286 3287 if (is_unstable) 3288 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3289 3290 args.opcode = FUSE_COPY_FILE_RANGE; 3291 args.nodeid = ff_in->nodeid; 3292 args.in_numargs = 1; 3293 args.in_args[0].size = sizeof(inarg); 3294 args.in_args[0].value = &inarg; 3295 args.out_numargs = 1; 3296 args.out_args[0].size = sizeof(outarg); 3297 args.out_args[0].value = &outarg; 3298 err = fuse_simple_request(fc, &args); 3299 if (err == -ENOSYS) { 3300 fc->no_copy_file_range = 1; 3301 err = -EOPNOTSUPP; 3302 } 3303 if (err) 3304 goto out; 3305 3306 if (fc->writeback_cache) { 3307 fuse_write_update_size(inode_out, pos_out + outarg.size); 3308 file_update_time(file_out); 3309 } 3310 3311 fuse_invalidate_attr(inode_out); 3312 3313 err = outarg.size; 3314 out: 3315 if (is_unstable) 3316 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3317 3318 inode_unlock(inode_out); 3319 file_accessed(file_in); 3320 3321 return err; 3322 } 3323 3324 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3325 struct file *dst_file, loff_t dst_off, 3326 size_t len, unsigned int flags) 3327 { 3328 ssize_t ret; 3329 3330 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3331 len, flags); 3332 3333 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3334 ret = generic_copy_file_range(src_file, src_off, dst_file, 3335 dst_off, len, flags); 3336 return ret; 3337 } 3338 3339 static const struct file_operations fuse_file_operations = { 3340 .llseek = fuse_file_llseek, 3341 .read_iter = fuse_file_read_iter, 3342 .write_iter = fuse_file_write_iter, 3343 .mmap = fuse_file_mmap, 3344 .open = fuse_open, 3345 .flush = fuse_flush, 3346 .release = fuse_release, 3347 .fsync = fuse_fsync, 3348 .lock = fuse_file_lock, 3349 .flock = fuse_file_flock, 3350 .splice_read = generic_file_splice_read, 3351 .splice_write = iter_file_splice_write, 3352 .unlocked_ioctl = fuse_file_ioctl, 3353 .compat_ioctl = fuse_file_compat_ioctl, 3354 .poll = fuse_file_poll, 3355 .fallocate = fuse_file_fallocate, 3356 .copy_file_range = fuse_copy_file_range, 3357 }; 3358 3359 static const struct address_space_operations fuse_file_aops = { 3360 .readpage = fuse_readpage, 3361 .writepage = fuse_writepage, 3362 .writepages = fuse_writepages, 3363 .launder_page = fuse_launder_page, 3364 .readpages = fuse_readpages, 3365 .set_page_dirty = __set_page_dirty_nobuffers, 3366 .bmap = fuse_bmap, 3367 .direct_IO = fuse_direct_IO, 3368 .write_begin = fuse_write_begin, 3369 .write_end = fuse_write_end, 3370 }; 3371 3372 void fuse_init_file_inode(struct inode *inode) 3373 { 3374 struct fuse_inode *fi = get_fuse_inode(inode); 3375 3376 inode->i_fop = &fuse_file_operations; 3377 inode->i_data.a_ops = &fuse_file_aops; 3378 3379 INIT_LIST_HEAD(&fi->write_files); 3380 INIT_LIST_HEAD(&fi->queued_writes); 3381 fi->writectr = 0; 3382 init_waitqueue_head(&fi->page_waitq); 3383 INIT_LIST_HEAD(&fi->writepages); 3384 } 3385