1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 23 unsigned int open_flags, int opcode, 24 struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fm->fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 34 if (fm->fc->handle_killpriv_v2 && 35 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 36 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 37 } 38 39 args.opcode = opcode; 40 args.nodeid = nodeid; 41 args.in_numargs = 1; 42 args.in_args[0].size = sizeof(inarg); 43 args.in_args[0].value = &inarg; 44 args.out_numargs = 1; 45 args.out_args[0].size = sizeof(*outargp); 46 args.out_args[0].value = outargp; 47 48 return fuse_simple_request(fm, &args); 49 } 50 51 struct fuse_release_args { 52 struct fuse_args args; 53 struct fuse_release_in inarg; 54 struct inode *inode; 55 }; 56 57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm) 58 { 59 struct fuse_file *ff; 60 61 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 62 if (unlikely(!ff)) 63 return NULL; 64 65 ff->fm = fm; 66 ff->release_args = kzalloc(sizeof(*ff->release_args), 67 GFP_KERNEL_ACCOUNT); 68 if (!ff->release_args) { 69 kfree(ff); 70 return NULL; 71 } 72 73 INIT_LIST_HEAD(&ff->write_entry); 74 mutex_init(&ff->readdir.lock); 75 refcount_set(&ff->count, 1); 76 RB_CLEAR_NODE(&ff->polled_node); 77 init_waitqueue_head(&ff->poll_wait); 78 79 ff->kh = atomic64_inc_return(&fm->fc->khctr); 80 81 return ff; 82 } 83 84 void fuse_file_free(struct fuse_file *ff) 85 { 86 kfree(ff->release_args); 87 mutex_destroy(&ff->readdir.lock); 88 kfree(ff); 89 } 90 91 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 92 { 93 refcount_inc(&ff->count); 94 return ff; 95 } 96 97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 98 int error) 99 { 100 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 101 102 iput(ra->inode); 103 kfree(ra); 104 } 105 106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 107 { 108 if (refcount_dec_and_test(&ff->count)) { 109 struct fuse_args *args = &ff->release_args->args; 110 111 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) { 112 /* Do nothing when client does not implement 'open' */ 113 fuse_release_end(ff->fm, args, 0); 114 } else if (sync) { 115 fuse_simple_request(ff->fm, args); 116 fuse_release_end(ff->fm, args, 0); 117 } else { 118 args->end = fuse_release_end; 119 if (fuse_simple_background(ff->fm, args, 120 GFP_KERNEL | __GFP_NOFAIL)) 121 fuse_release_end(ff->fm, args, -ENOTCONN); 122 } 123 kfree(ff); 124 } 125 } 126 127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 128 unsigned int open_flags, bool isdir) 129 { 130 struct fuse_conn *fc = fm->fc; 131 struct fuse_file *ff; 132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 133 134 ff = fuse_file_alloc(fm); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (isdir ? !fc->no_opendir : !fc->no_open) { 142 struct fuse_open_out outarg; 143 int err; 144 145 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg); 146 if (!err) { 147 ff->fh = outarg.fh; 148 ff->open_flags = outarg.open_flags; 149 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 if (isdir) 155 fc->no_opendir = 1; 156 else 157 fc->no_open = 1; 158 } 159 } 160 161 if (isdir) 162 ff->open_flags &= ~FOPEN_DIRECT_IO; 163 164 ff->nodeid = nodeid; 165 166 return ff; 167 } 168 169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 170 bool isdir) 171 { 172 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 173 174 if (!IS_ERR(ff)) 175 file->private_data = ff; 176 177 return PTR_ERR_OR_ZERO(ff); 178 } 179 EXPORT_SYMBOL_GPL(fuse_do_open); 180 181 static void fuse_link_write_file(struct file *file) 182 { 183 struct inode *inode = file_inode(file); 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 struct fuse_file *ff = file->private_data; 186 /* 187 * file may be written through mmap, so chain it onto the 188 * inodes's write_file list 189 */ 190 spin_lock(&fi->lock); 191 if (list_empty(&ff->write_entry)) 192 list_add(&ff->write_entry, &fi->write_files); 193 spin_unlock(&fi->lock); 194 } 195 196 void fuse_finish_open(struct inode *inode, struct file *file) 197 { 198 struct fuse_file *ff = file->private_data; 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 201 if (ff->open_flags & FOPEN_STREAM) 202 stream_open(inode, file); 203 else if (ff->open_flags & FOPEN_NONSEEKABLE) 204 nonseekable_open(inode, file); 205 206 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 207 struct fuse_inode *fi = get_fuse_inode(inode); 208 209 spin_lock(&fi->lock); 210 fi->attr_version = atomic64_inc_return(&fc->attr_version); 211 i_size_write(inode, 0); 212 spin_unlock(&fi->lock); 213 truncate_pagecache(inode, 0); 214 file_update_time(file); 215 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 216 } else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) { 217 invalidate_inode_pages2(inode->i_mapping); 218 } 219 220 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 221 fuse_link_write_file(file); 222 } 223 224 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 225 { 226 struct fuse_mount *fm = get_fuse_mount(inode); 227 struct fuse_conn *fc = fm->fc; 228 int err; 229 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 230 fc->atomic_o_trunc && 231 fc->writeback_cache; 232 bool dax_truncate = (file->f_flags & O_TRUNC) && 233 fc->atomic_o_trunc && FUSE_IS_DAX(inode); 234 235 if (fuse_is_bad(inode)) 236 return -EIO; 237 238 err = generic_file_open(inode, file); 239 if (err) 240 return err; 241 242 if (is_wb_truncate || dax_truncate) { 243 inode_lock(inode); 244 fuse_set_nowrite(inode); 245 } 246 247 if (dax_truncate) { 248 filemap_invalidate_lock(inode->i_mapping); 249 err = fuse_dax_break_layouts(inode, 0, 0); 250 if (err) 251 goto out; 252 } 253 254 err = fuse_do_open(fm, get_node_id(inode), file, isdir); 255 if (!err) 256 fuse_finish_open(inode, file); 257 258 out: 259 if (dax_truncate) 260 filemap_invalidate_unlock(inode->i_mapping); 261 262 if (is_wb_truncate | dax_truncate) { 263 fuse_release_nowrite(inode); 264 inode_unlock(inode); 265 } 266 267 return err; 268 } 269 270 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 271 unsigned int flags, int opcode) 272 { 273 struct fuse_conn *fc = ff->fm->fc; 274 struct fuse_release_args *ra = ff->release_args; 275 276 /* Inode is NULL on error path of fuse_create_open() */ 277 if (likely(fi)) { 278 spin_lock(&fi->lock); 279 list_del(&ff->write_entry); 280 spin_unlock(&fi->lock); 281 } 282 spin_lock(&fc->lock); 283 if (!RB_EMPTY_NODE(&ff->polled_node)) 284 rb_erase(&ff->polled_node, &fc->polled_files); 285 spin_unlock(&fc->lock); 286 287 wake_up_interruptible_all(&ff->poll_wait); 288 289 ra->inarg.fh = ff->fh; 290 ra->inarg.flags = flags; 291 ra->args.in_numargs = 1; 292 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 293 ra->args.in_args[0].value = &ra->inarg; 294 ra->args.opcode = opcode; 295 ra->args.nodeid = ff->nodeid; 296 ra->args.force = true; 297 ra->args.nocreds = true; 298 } 299 300 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 301 unsigned int open_flags, fl_owner_t id, bool isdir) 302 { 303 struct fuse_inode *fi = get_fuse_inode(inode); 304 struct fuse_release_args *ra = ff->release_args; 305 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 306 307 fuse_prepare_release(fi, ff, open_flags, opcode); 308 309 if (ff->flock) { 310 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 311 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 312 } 313 /* Hold inode until release is finished */ 314 ra->inode = igrab(inode); 315 316 /* 317 * Normally this will send the RELEASE request, however if 318 * some asynchronous READ or WRITE requests are outstanding, 319 * the sending will be delayed. 320 * 321 * Make the release synchronous if this is a fuseblk mount, 322 * synchronous RELEASE is allowed (and desirable) in this case 323 * because the server can be trusted not to screw up. 324 */ 325 fuse_file_put(ff, ff->fm->fc->destroy, isdir); 326 } 327 328 void fuse_release_common(struct file *file, bool isdir) 329 { 330 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 331 (fl_owner_t) file, isdir); 332 } 333 334 static int fuse_open(struct inode *inode, struct file *file) 335 { 336 return fuse_open_common(inode, file, false); 337 } 338 339 static int fuse_release(struct inode *inode, struct file *file) 340 { 341 fuse_release_common(file, false); 342 343 /* return value is ignored by VFS */ 344 return 0; 345 } 346 347 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 348 unsigned int flags) 349 { 350 WARN_ON(refcount_read(&ff->count) > 1); 351 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 352 /* 353 * iput(NULL) is a no-op and since the refcount is 1 and everything's 354 * synchronous, we are fine with not doing igrab() here" 355 */ 356 fuse_file_put(ff, true, false); 357 } 358 EXPORT_SYMBOL_GPL(fuse_sync_release); 359 360 /* 361 * Scramble the ID space with XTEA, so that the value of the files_struct 362 * pointer is not exposed to userspace. 363 */ 364 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 365 { 366 u32 *k = fc->scramble_key; 367 u64 v = (unsigned long) id; 368 u32 v0 = v; 369 u32 v1 = v >> 32; 370 u32 sum = 0; 371 int i; 372 373 for (i = 0; i < 32; i++) { 374 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 375 sum += 0x9E3779B9; 376 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 377 } 378 379 return (u64) v0 + ((u64) v1 << 32); 380 } 381 382 struct fuse_writepage_args { 383 struct fuse_io_args ia; 384 struct rb_node writepages_entry; 385 struct list_head queue_entry; 386 struct fuse_writepage_args *next; 387 struct inode *inode; 388 struct fuse_sync_bucket *bucket; 389 }; 390 391 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 392 pgoff_t idx_from, pgoff_t idx_to) 393 { 394 struct rb_node *n; 395 396 n = fi->writepages.rb_node; 397 398 while (n) { 399 struct fuse_writepage_args *wpa; 400 pgoff_t curr_index; 401 402 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 403 WARN_ON(get_fuse_inode(wpa->inode) != fi); 404 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 405 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 406 n = n->rb_right; 407 else if (idx_to < curr_index) 408 n = n->rb_left; 409 else 410 return wpa; 411 } 412 return NULL; 413 } 414 415 /* 416 * Check if any page in a range is under writeback 417 * 418 * This is currently done by walking the list of writepage requests 419 * for the inode, which can be pretty inefficient. 420 */ 421 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 422 pgoff_t idx_to) 423 { 424 struct fuse_inode *fi = get_fuse_inode(inode); 425 bool found; 426 427 spin_lock(&fi->lock); 428 found = fuse_find_writeback(fi, idx_from, idx_to); 429 spin_unlock(&fi->lock); 430 431 return found; 432 } 433 434 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 435 { 436 return fuse_range_is_writeback(inode, index, index); 437 } 438 439 /* 440 * Wait for page writeback to be completed. 441 * 442 * Since fuse doesn't rely on the VM writeback tracking, this has to 443 * use some other means. 444 */ 445 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 446 { 447 struct fuse_inode *fi = get_fuse_inode(inode); 448 449 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 450 } 451 452 /* 453 * Wait for all pending writepages on the inode to finish. 454 * 455 * This is currently done by blocking further writes with FUSE_NOWRITE 456 * and waiting for all sent writes to complete. 457 * 458 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 459 * could conflict with truncation. 460 */ 461 static void fuse_sync_writes(struct inode *inode) 462 { 463 fuse_set_nowrite(inode); 464 fuse_release_nowrite(inode); 465 } 466 467 static int fuse_flush(struct file *file, fl_owner_t id) 468 { 469 struct inode *inode = file_inode(file); 470 struct fuse_mount *fm = get_fuse_mount(inode); 471 struct fuse_file *ff = file->private_data; 472 struct fuse_flush_in inarg; 473 FUSE_ARGS(args); 474 int err; 475 476 if (fuse_is_bad(inode)) 477 return -EIO; 478 479 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 480 return 0; 481 482 err = write_inode_now(inode, 1); 483 if (err) 484 return err; 485 486 inode_lock(inode); 487 fuse_sync_writes(inode); 488 inode_unlock(inode); 489 490 err = filemap_check_errors(file->f_mapping); 491 if (err) 492 return err; 493 494 err = 0; 495 if (fm->fc->no_flush) 496 goto inval_attr_out; 497 498 memset(&inarg, 0, sizeof(inarg)); 499 inarg.fh = ff->fh; 500 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 501 args.opcode = FUSE_FLUSH; 502 args.nodeid = get_node_id(inode); 503 args.in_numargs = 1; 504 args.in_args[0].size = sizeof(inarg); 505 args.in_args[0].value = &inarg; 506 args.force = true; 507 508 err = fuse_simple_request(fm, &args); 509 if (err == -ENOSYS) { 510 fm->fc->no_flush = 1; 511 err = 0; 512 } 513 514 inval_attr_out: 515 /* 516 * In memory i_blocks is not maintained by fuse, if writeback cache is 517 * enabled, i_blocks from cached attr may not be accurate. 518 */ 519 if (!err && fm->fc->writeback_cache) 520 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 521 return err; 522 } 523 524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 525 int datasync, int opcode) 526 { 527 struct inode *inode = file->f_mapping->host; 528 struct fuse_mount *fm = get_fuse_mount(inode); 529 struct fuse_file *ff = file->private_data; 530 FUSE_ARGS(args); 531 struct fuse_fsync_in inarg; 532 533 memset(&inarg, 0, sizeof(inarg)); 534 inarg.fh = ff->fh; 535 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 536 args.opcode = opcode; 537 args.nodeid = get_node_id(inode); 538 args.in_numargs = 1; 539 args.in_args[0].size = sizeof(inarg); 540 args.in_args[0].value = &inarg; 541 return fuse_simple_request(fm, &args); 542 } 543 544 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 545 int datasync) 546 { 547 struct inode *inode = file->f_mapping->host; 548 struct fuse_conn *fc = get_fuse_conn(inode); 549 int err; 550 551 if (fuse_is_bad(inode)) 552 return -EIO; 553 554 inode_lock(inode); 555 556 /* 557 * Start writeback against all dirty pages of the inode, then 558 * wait for all outstanding writes, before sending the FSYNC 559 * request. 560 */ 561 err = file_write_and_wait_range(file, start, end); 562 if (err) 563 goto out; 564 565 fuse_sync_writes(inode); 566 567 /* 568 * Due to implementation of fuse writeback 569 * file_write_and_wait_range() does not catch errors. 570 * We have to do this directly after fuse_sync_writes() 571 */ 572 err = file_check_and_advance_wb_err(file); 573 if (err) 574 goto out; 575 576 err = sync_inode_metadata(inode, 1); 577 if (err) 578 goto out; 579 580 if (fc->no_fsync) 581 goto out; 582 583 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 584 if (err == -ENOSYS) { 585 fc->no_fsync = 1; 586 err = 0; 587 } 588 out: 589 inode_unlock(inode); 590 591 return err; 592 } 593 594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 595 size_t count, int opcode) 596 { 597 struct fuse_file *ff = file->private_data; 598 struct fuse_args *args = &ia->ap.args; 599 600 ia->read.in.fh = ff->fh; 601 ia->read.in.offset = pos; 602 ia->read.in.size = count; 603 ia->read.in.flags = file->f_flags; 604 args->opcode = opcode; 605 args->nodeid = ff->nodeid; 606 args->in_numargs = 1; 607 args->in_args[0].size = sizeof(ia->read.in); 608 args->in_args[0].value = &ia->read.in; 609 args->out_argvar = true; 610 args->out_numargs = 1; 611 args->out_args[0].size = count; 612 } 613 614 static void fuse_release_user_pages(struct fuse_args_pages *ap, 615 bool should_dirty) 616 { 617 unsigned int i; 618 619 for (i = 0; i < ap->num_pages; i++) { 620 if (should_dirty) 621 set_page_dirty_lock(ap->pages[i]); 622 put_page(ap->pages[i]); 623 } 624 } 625 626 static void fuse_io_release(struct kref *kref) 627 { 628 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 629 } 630 631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 632 { 633 if (io->err) 634 return io->err; 635 636 if (io->bytes >= 0 && io->write) 637 return -EIO; 638 639 return io->bytes < 0 ? io->size : io->bytes; 640 } 641 642 /** 643 * In case of short read, the caller sets 'pos' to the position of 644 * actual end of fuse request in IO request. Otherwise, if bytes_requested 645 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 646 * 647 * An example: 648 * User requested DIO read of 64K. It was split into two 32K fuse requests, 649 * both submitted asynchronously. The first of them was ACKed by userspace as 650 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 651 * second request was ACKed as short, e.g. only 1K was read, resulting in 652 * pos == 33K. 653 * 654 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 655 * will be equal to the length of the longest contiguous fragment of 656 * transferred data starting from the beginning of IO request. 657 */ 658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 659 { 660 int left; 661 662 spin_lock(&io->lock); 663 if (err) 664 io->err = io->err ? : err; 665 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 666 io->bytes = pos; 667 668 left = --io->reqs; 669 if (!left && io->blocking) 670 complete(io->done); 671 spin_unlock(&io->lock); 672 673 if (!left && !io->blocking) { 674 ssize_t res = fuse_get_res_by_io(io); 675 676 if (res >= 0) { 677 struct inode *inode = file_inode(io->iocb->ki_filp); 678 struct fuse_conn *fc = get_fuse_conn(inode); 679 struct fuse_inode *fi = get_fuse_inode(inode); 680 681 spin_lock(&fi->lock); 682 fi->attr_version = atomic64_inc_return(&fc->attr_version); 683 spin_unlock(&fi->lock); 684 } 685 686 io->iocb->ki_complete(io->iocb, res); 687 } 688 689 kref_put(&io->refcnt, fuse_io_release); 690 } 691 692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 693 unsigned int npages) 694 { 695 struct fuse_io_args *ia; 696 697 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 698 if (ia) { 699 ia->io = io; 700 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 701 &ia->ap.descs); 702 if (!ia->ap.pages) { 703 kfree(ia); 704 ia = NULL; 705 } 706 } 707 return ia; 708 } 709 710 static void fuse_io_free(struct fuse_io_args *ia) 711 { 712 kfree(ia->ap.pages); 713 kfree(ia); 714 } 715 716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 717 int err) 718 { 719 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 720 struct fuse_io_priv *io = ia->io; 721 ssize_t pos = -1; 722 723 fuse_release_user_pages(&ia->ap, io->should_dirty); 724 725 if (err) { 726 /* Nothing */ 727 } else if (io->write) { 728 if (ia->write.out.size > ia->write.in.size) { 729 err = -EIO; 730 } else if (ia->write.in.size != ia->write.out.size) { 731 pos = ia->write.in.offset - io->offset + 732 ia->write.out.size; 733 } 734 } else { 735 u32 outsize = args->out_args[0].size; 736 737 if (ia->read.in.size != outsize) 738 pos = ia->read.in.offset - io->offset + outsize; 739 } 740 741 fuse_aio_complete(io, err, pos); 742 fuse_io_free(ia); 743 } 744 745 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 746 struct fuse_io_args *ia, size_t num_bytes) 747 { 748 ssize_t err; 749 struct fuse_io_priv *io = ia->io; 750 751 spin_lock(&io->lock); 752 kref_get(&io->refcnt); 753 io->size += num_bytes; 754 io->reqs++; 755 spin_unlock(&io->lock); 756 757 ia->ap.args.end = fuse_aio_complete_req; 758 ia->ap.args.may_block = io->should_dirty; 759 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 760 if (err) 761 fuse_aio_complete_req(fm, &ia->ap.args, err); 762 763 return num_bytes; 764 } 765 766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 767 fl_owner_t owner) 768 { 769 struct file *file = ia->io->iocb->ki_filp; 770 struct fuse_file *ff = file->private_data; 771 struct fuse_mount *fm = ff->fm; 772 773 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 774 if (owner != NULL) { 775 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 776 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 777 } 778 779 if (ia->io->async) 780 return fuse_async_req_send(fm, ia, count); 781 782 return fuse_simple_request(fm, &ia->ap.args); 783 } 784 785 static void fuse_read_update_size(struct inode *inode, loff_t size, 786 u64 attr_ver) 787 { 788 struct fuse_conn *fc = get_fuse_conn(inode); 789 struct fuse_inode *fi = get_fuse_inode(inode); 790 791 spin_lock(&fi->lock); 792 if (attr_ver >= fi->attr_version && size < inode->i_size && 793 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 794 fi->attr_version = atomic64_inc_return(&fc->attr_version); 795 i_size_write(inode, size); 796 } 797 spin_unlock(&fi->lock); 798 } 799 800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 801 struct fuse_args_pages *ap) 802 { 803 struct fuse_conn *fc = get_fuse_conn(inode); 804 805 /* 806 * If writeback_cache is enabled, a short read means there's a hole in 807 * the file. Some data after the hole is in page cache, but has not 808 * reached the client fs yet. So the hole is not present there. 809 */ 810 if (!fc->writeback_cache) { 811 loff_t pos = page_offset(ap->pages[0]) + num_read; 812 fuse_read_update_size(inode, pos, attr_ver); 813 } 814 } 815 816 static int fuse_do_readpage(struct file *file, struct page *page) 817 { 818 struct inode *inode = page->mapping->host; 819 struct fuse_mount *fm = get_fuse_mount(inode); 820 loff_t pos = page_offset(page); 821 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 822 struct fuse_io_args ia = { 823 .ap.args.page_zeroing = true, 824 .ap.args.out_pages = true, 825 .ap.num_pages = 1, 826 .ap.pages = &page, 827 .ap.descs = &desc, 828 }; 829 ssize_t res; 830 u64 attr_ver; 831 832 /* 833 * Page writeback can extend beyond the lifetime of the 834 * page-cache page, so make sure we read a properly synced 835 * page. 836 */ 837 fuse_wait_on_page_writeback(inode, page->index); 838 839 attr_ver = fuse_get_attr_version(fm->fc); 840 841 /* Don't overflow end offset */ 842 if (pos + (desc.length - 1) == LLONG_MAX) 843 desc.length--; 844 845 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 846 res = fuse_simple_request(fm, &ia.ap.args); 847 if (res < 0) 848 return res; 849 /* 850 * Short read means EOF. If file size is larger, truncate it 851 */ 852 if (res < desc.length) 853 fuse_short_read(inode, attr_ver, res, &ia.ap); 854 855 SetPageUptodate(page); 856 857 return 0; 858 } 859 860 static int fuse_readpage(struct file *file, struct page *page) 861 { 862 struct inode *inode = page->mapping->host; 863 int err; 864 865 err = -EIO; 866 if (fuse_is_bad(inode)) 867 goto out; 868 869 err = fuse_do_readpage(file, page); 870 fuse_invalidate_atime(inode); 871 out: 872 unlock_page(page); 873 return err; 874 } 875 876 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 877 int err) 878 { 879 int i; 880 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 881 struct fuse_args_pages *ap = &ia->ap; 882 size_t count = ia->read.in.size; 883 size_t num_read = args->out_args[0].size; 884 struct address_space *mapping = NULL; 885 886 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 887 mapping = ap->pages[i]->mapping; 888 889 if (mapping) { 890 struct inode *inode = mapping->host; 891 892 /* 893 * Short read means EOF. If file size is larger, truncate it 894 */ 895 if (!err && num_read < count) 896 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 897 898 fuse_invalidate_atime(inode); 899 } 900 901 for (i = 0; i < ap->num_pages; i++) { 902 struct page *page = ap->pages[i]; 903 904 if (!err) 905 SetPageUptodate(page); 906 else 907 SetPageError(page); 908 unlock_page(page); 909 put_page(page); 910 } 911 if (ia->ff) 912 fuse_file_put(ia->ff, false, false); 913 914 fuse_io_free(ia); 915 } 916 917 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 918 { 919 struct fuse_file *ff = file->private_data; 920 struct fuse_mount *fm = ff->fm; 921 struct fuse_args_pages *ap = &ia->ap; 922 loff_t pos = page_offset(ap->pages[0]); 923 size_t count = ap->num_pages << PAGE_SHIFT; 924 ssize_t res; 925 int err; 926 927 ap->args.out_pages = true; 928 ap->args.page_zeroing = true; 929 ap->args.page_replace = true; 930 931 /* Don't overflow end offset */ 932 if (pos + (count - 1) == LLONG_MAX) { 933 count--; 934 ap->descs[ap->num_pages - 1].length--; 935 } 936 WARN_ON((loff_t) (pos + count) < 0); 937 938 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 939 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 940 if (fm->fc->async_read) { 941 ia->ff = fuse_file_get(ff); 942 ap->args.end = fuse_readpages_end; 943 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 944 if (!err) 945 return; 946 } else { 947 res = fuse_simple_request(fm, &ap->args); 948 err = res < 0 ? res : 0; 949 } 950 fuse_readpages_end(fm, &ap->args, err); 951 } 952 953 static void fuse_readahead(struct readahead_control *rac) 954 { 955 struct inode *inode = rac->mapping->host; 956 struct fuse_conn *fc = get_fuse_conn(inode); 957 unsigned int i, max_pages, nr_pages = 0; 958 959 if (fuse_is_bad(inode)) 960 return; 961 962 max_pages = min_t(unsigned int, fc->max_pages, 963 fc->max_read / PAGE_SIZE); 964 965 for (;;) { 966 struct fuse_io_args *ia; 967 struct fuse_args_pages *ap; 968 969 if (fc->num_background >= fc->congestion_threshold && 970 rac->ra->async_size >= readahead_count(rac)) 971 /* 972 * Congested and only async pages left, so skip the 973 * rest. 974 */ 975 break; 976 977 nr_pages = readahead_count(rac) - nr_pages; 978 if (nr_pages > max_pages) 979 nr_pages = max_pages; 980 if (nr_pages == 0) 981 break; 982 ia = fuse_io_alloc(NULL, nr_pages); 983 if (!ia) 984 return; 985 ap = &ia->ap; 986 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 987 for (i = 0; i < nr_pages; i++) { 988 fuse_wait_on_page_writeback(inode, 989 readahead_index(rac) + i); 990 ap->descs[i].length = PAGE_SIZE; 991 } 992 ap->num_pages = nr_pages; 993 fuse_send_readpages(ia, rac->file); 994 } 995 } 996 997 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 998 { 999 struct inode *inode = iocb->ki_filp->f_mapping->host; 1000 struct fuse_conn *fc = get_fuse_conn(inode); 1001 1002 /* 1003 * In auto invalidate mode, always update attributes on read. 1004 * Otherwise, only update if we attempt to read past EOF (to ensure 1005 * i_size is up to date). 1006 */ 1007 if (fc->auto_inval_data || 1008 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1009 int err; 1010 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1011 if (err) 1012 return err; 1013 } 1014 1015 return generic_file_read_iter(iocb, to); 1016 } 1017 1018 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1019 loff_t pos, size_t count) 1020 { 1021 struct fuse_args *args = &ia->ap.args; 1022 1023 ia->write.in.fh = ff->fh; 1024 ia->write.in.offset = pos; 1025 ia->write.in.size = count; 1026 args->opcode = FUSE_WRITE; 1027 args->nodeid = ff->nodeid; 1028 args->in_numargs = 2; 1029 if (ff->fm->fc->minor < 9) 1030 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1031 else 1032 args->in_args[0].size = sizeof(ia->write.in); 1033 args->in_args[0].value = &ia->write.in; 1034 args->in_args[1].size = count; 1035 args->out_numargs = 1; 1036 args->out_args[0].size = sizeof(ia->write.out); 1037 args->out_args[0].value = &ia->write.out; 1038 } 1039 1040 static unsigned int fuse_write_flags(struct kiocb *iocb) 1041 { 1042 unsigned int flags = iocb->ki_filp->f_flags; 1043 1044 if (iocb->ki_flags & IOCB_DSYNC) 1045 flags |= O_DSYNC; 1046 if (iocb->ki_flags & IOCB_SYNC) 1047 flags |= O_SYNC; 1048 1049 return flags; 1050 } 1051 1052 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1053 size_t count, fl_owner_t owner) 1054 { 1055 struct kiocb *iocb = ia->io->iocb; 1056 struct file *file = iocb->ki_filp; 1057 struct fuse_file *ff = file->private_data; 1058 struct fuse_mount *fm = ff->fm; 1059 struct fuse_write_in *inarg = &ia->write.in; 1060 ssize_t err; 1061 1062 fuse_write_args_fill(ia, ff, pos, count); 1063 inarg->flags = fuse_write_flags(iocb); 1064 if (owner != NULL) { 1065 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1066 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1067 } 1068 1069 if (ia->io->async) 1070 return fuse_async_req_send(fm, ia, count); 1071 1072 err = fuse_simple_request(fm, &ia->ap.args); 1073 if (!err && ia->write.out.size > count) 1074 err = -EIO; 1075 1076 return err ?: ia->write.out.size; 1077 } 1078 1079 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1080 { 1081 struct fuse_conn *fc = get_fuse_conn(inode); 1082 struct fuse_inode *fi = get_fuse_inode(inode); 1083 bool ret = false; 1084 1085 spin_lock(&fi->lock); 1086 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1087 if (written > 0 && pos > inode->i_size) { 1088 i_size_write(inode, pos); 1089 ret = true; 1090 } 1091 spin_unlock(&fi->lock); 1092 1093 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1094 1095 return ret; 1096 } 1097 1098 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1099 struct kiocb *iocb, struct inode *inode, 1100 loff_t pos, size_t count) 1101 { 1102 struct fuse_args_pages *ap = &ia->ap; 1103 struct file *file = iocb->ki_filp; 1104 struct fuse_file *ff = file->private_data; 1105 struct fuse_mount *fm = ff->fm; 1106 unsigned int offset, i; 1107 bool short_write; 1108 int err; 1109 1110 for (i = 0; i < ap->num_pages; i++) 1111 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1112 1113 fuse_write_args_fill(ia, ff, pos, count); 1114 ia->write.in.flags = fuse_write_flags(iocb); 1115 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1116 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1117 1118 err = fuse_simple_request(fm, &ap->args); 1119 if (!err && ia->write.out.size > count) 1120 err = -EIO; 1121 1122 short_write = ia->write.out.size < count; 1123 offset = ap->descs[0].offset; 1124 count = ia->write.out.size; 1125 for (i = 0; i < ap->num_pages; i++) { 1126 struct page *page = ap->pages[i]; 1127 1128 if (err) { 1129 ClearPageUptodate(page); 1130 } else { 1131 if (count >= PAGE_SIZE - offset) 1132 count -= PAGE_SIZE - offset; 1133 else { 1134 if (short_write) 1135 ClearPageUptodate(page); 1136 count = 0; 1137 } 1138 offset = 0; 1139 } 1140 if (ia->write.page_locked && (i == ap->num_pages - 1)) 1141 unlock_page(page); 1142 put_page(page); 1143 } 1144 1145 return err; 1146 } 1147 1148 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1149 struct address_space *mapping, 1150 struct iov_iter *ii, loff_t pos, 1151 unsigned int max_pages) 1152 { 1153 struct fuse_args_pages *ap = &ia->ap; 1154 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1155 unsigned offset = pos & (PAGE_SIZE - 1); 1156 size_t count = 0; 1157 int err; 1158 1159 ap->args.in_pages = true; 1160 ap->descs[0].offset = offset; 1161 1162 do { 1163 size_t tmp; 1164 struct page *page; 1165 pgoff_t index = pos >> PAGE_SHIFT; 1166 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1167 iov_iter_count(ii)); 1168 1169 bytes = min_t(size_t, bytes, fc->max_write - count); 1170 1171 again: 1172 err = -EFAULT; 1173 if (fault_in_iov_iter_readable(ii, bytes)) 1174 break; 1175 1176 err = -ENOMEM; 1177 page = grab_cache_page_write_begin(mapping, index, 0); 1178 if (!page) 1179 break; 1180 1181 if (mapping_writably_mapped(mapping)) 1182 flush_dcache_page(page); 1183 1184 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii); 1185 flush_dcache_page(page); 1186 1187 if (!tmp) { 1188 unlock_page(page); 1189 put_page(page); 1190 goto again; 1191 } 1192 1193 err = 0; 1194 ap->pages[ap->num_pages] = page; 1195 ap->descs[ap->num_pages].length = tmp; 1196 ap->num_pages++; 1197 1198 count += tmp; 1199 pos += tmp; 1200 offset += tmp; 1201 if (offset == PAGE_SIZE) 1202 offset = 0; 1203 1204 /* If we copied full page, mark it uptodate */ 1205 if (tmp == PAGE_SIZE) 1206 SetPageUptodate(page); 1207 1208 if (PageUptodate(page)) { 1209 unlock_page(page); 1210 } else { 1211 ia->write.page_locked = true; 1212 break; 1213 } 1214 if (!fc->big_writes) 1215 break; 1216 } while (iov_iter_count(ii) && count < fc->max_write && 1217 ap->num_pages < max_pages && offset == 0); 1218 1219 return count > 0 ? count : err; 1220 } 1221 1222 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1223 unsigned int max_pages) 1224 { 1225 return min_t(unsigned int, 1226 ((pos + len - 1) >> PAGE_SHIFT) - 1227 (pos >> PAGE_SHIFT) + 1, 1228 max_pages); 1229 } 1230 1231 static ssize_t fuse_perform_write(struct kiocb *iocb, 1232 struct address_space *mapping, 1233 struct iov_iter *ii, loff_t pos) 1234 { 1235 struct inode *inode = mapping->host; 1236 struct fuse_conn *fc = get_fuse_conn(inode); 1237 struct fuse_inode *fi = get_fuse_inode(inode); 1238 int err = 0; 1239 ssize_t res = 0; 1240 1241 if (inode->i_size < pos + iov_iter_count(ii)) 1242 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1243 1244 do { 1245 ssize_t count; 1246 struct fuse_io_args ia = {}; 1247 struct fuse_args_pages *ap = &ia.ap; 1248 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1249 fc->max_pages); 1250 1251 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1252 if (!ap->pages) { 1253 err = -ENOMEM; 1254 break; 1255 } 1256 1257 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1258 if (count <= 0) { 1259 err = count; 1260 } else { 1261 err = fuse_send_write_pages(&ia, iocb, inode, 1262 pos, count); 1263 if (!err) { 1264 size_t num_written = ia.write.out.size; 1265 1266 res += num_written; 1267 pos += num_written; 1268 1269 /* break out of the loop on short write */ 1270 if (num_written != count) 1271 err = -EIO; 1272 } 1273 } 1274 kfree(ap->pages); 1275 } while (!err && iov_iter_count(ii)); 1276 1277 fuse_write_update_attr(inode, pos, res); 1278 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1279 1280 return res > 0 ? res : err; 1281 } 1282 1283 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1284 { 1285 struct file *file = iocb->ki_filp; 1286 struct address_space *mapping = file->f_mapping; 1287 ssize_t written = 0; 1288 ssize_t written_buffered = 0; 1289 struct inode *inode = mapping->host; 1290 ssize_t err; 1291 struct fuse_conn *fc = get_fuse_conn(inode); 1292 loff_t endbyte = 0; 1293 1294 if (fc->writeback_cache) { 1295 /* Update size (EOF optimization) and mode (SUID clearing) */ 1296 err = fuse_update_attributes(mapping->host, file, 1297 STATX_SIZE | STATX_MODE); 1298 if (err) 1299 return err; 1300 1301 if (fc->handle_killpriv_v2 && 1302 should_remove_suid(file_dentry(file))) { 1303 goto writethrough; 1304 } 1305 1306 return generic_file_write_iter(iocb, from); 1307 } 1308 1309 writethrough: 1310 inode_lock(inode); 1311 1312 /* We can write back this queue in page reclaim */ 1313 current->backing_dev_info = inode_to_bdi(inode); 1314 1315 err = generic_write_checks(iocb, from); 1316 if (err <= 0) 1317 goto out; 1318 1319 err = file_remove_privs(file); 1320 if (err) 1321 goto out; 1322 1323 err = file_update_time(file); 1324 if (err) 1325 goto out; 1326 1327 if (iocb->ki_flags & IOCB_DIRECT) { 1328 loff_t pos = iocb->ki_pos; 1329 written = generic_file_direct_write(iocb, from); 1330 if (written < 0 || !iov_iter_count(from)) 1331 goto out; 1332 1333 pos += written; 1334 1335 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1336 if (written_buffered < 0) { 1337 err = written_buffered; 1338 goto out; 1339 } 1340 endbyte = pos + written_buffered - 1; 1341 1342 err = filemap_write_and_wait_range(file->f_mapping, pos, 1343 endbyte); 1344 if (err) 1345 goto out; 1346 1347 invalidate_mapping_pages(file->f_mapping, 1348 pos >> PAGE_SHIFT, 1349 endbyte >> PAGE_SHIFT); 1350 1351 written += written_buffered; 1352 iocb->ki_pos = pos + written_buffered; 1353 } else { 1354 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1355 if (written >= 0) 1356 iocb->ki_pos += written; 1357 } 1358 out: 1359 current->backing_dev_info = NULL; 1360 inode_unlock(inode); 1361 if (written > 0) 1362 written = generic_write_sync(iocb, written); 1363 1364 return written ? written : err; 1365 } 1366 1367 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1368 { 1369 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1370 } 1371 1372 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1373 size_t max_size) 1374 { 1375 return min(iov_iter_single_seg_count(ii), max_size); 1376 } 1377 1378 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1379 size_t *nbytesp, int write, 1380 unsigned int max_pages) 1381 { 1382 size_t nbytes = 0; /* # bytes already packed in req */ 1383 ssize_t ret = 0; 1384 1385 /* Special case for kernel I/O: can copy directly into the buffer */ 1386 if (iov_iter_is_kvec(ii)) { 1387 unsigned long user_addr = fuse_get_user_addr(ii); 1388 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1389 1390 if (write) 1391 ap->args.in_args[1].value = (void *) user_addr; 1392 else 1393 ap->args.out_args[0].value = (void *) user_addr; 1394 1395 iov_iter_advance(ii, frag_size); 1396 *nbytesp = frag_size; 1397 return 0; 1398 } 1399 1400 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1401 unsigned npages; 1402 size_t start; 1403 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1404 *nbytesp - nbytes, 1405 max_pages - ap->num_pages, 1406 &start); 1407 if (ret < 0) 1408 break; 1409 1410 iov_iter_advance(ii, ret); 1411 nbytes += ret; 1412 1413 ret += start; 1414 npages = DIV_ROUND_UP(ret, PAGE_SIZE); 1415 1416 ap->descs[ap->num_pages].offset = start; 1417 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1418 1419 ap->num_pages += npages; 1420 ap->descs[ap->num_pages - 1].length -= 1421 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1422 } 1423 1424 ap->args.user_pages = true; 1425 if (write) 1426 ap->args.in_pages = true; 1427 else 1428 ap->args.out_pages = true; 1429 1430 *nbytesp = nbytes; 1431 1432 return ret < 0 ? ret : 0; 1433 } 1434 1435 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1436 loff_t *ppos, int flags) 1437 { 1438 int write = flags & FUSE_DIO_WRITE; 1439 int cuse = flags & FUSE_DIO_CUSE; 1440 struct file *file = io->iocb->ki_filp; 1441 struct inode *inode = file->f_mapping->host; 1442 struct fuse_file *ff = file->private_data; 1443 struct fuse_conn *fc = ff->fm->fc; 1444 size_t nmax = write ? fc->max_write : fc->max_read; 1445 loff_t pos = *ppos; 1446 size_t count = iov_iter_count(iter); 1447 pgoff_t idx_from = pos >> PAGE_SHIFT; 1448 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1449 ssize_t res = 0; 1450 int err = 0; 1451 struct fuse_io_args *ia; 1452 unsigned int max_pages; 1453 1454 max_pages = iov_iter_npages(iter, fc->max_pages); 1455 ia = fuse_io_alloc(io, max_pages); 1456 if (!ia) 1457 return -ENOMEM; 1458 1459 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1460 if (!write) 1461 inode_lock(inode); 1462 fuse_sync_writes(inode); 1463 if (!write) 1464 inode_unlock(inode); 1465 } 1466 1467 io->should_dirty = !write && iter_is_iovec(iter); 1468 while (count) { 1469 ssize_t nres; 1470 fl_owner_t owner = current->files; 1471 size_t nbytes = min(count, nmax); 1472 1473 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1474 max_pages); 1475 if (err && !nbytes) 1476 break; 1477 1478 if (write) { 1479 if (!capable(CAP_FSETID)) 1480 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1481 1482 nres = fuse_send_write(ia, pos, nbytes, owner); 1483 } else { 1484 nres = fuse_send_read(ia, pos, nbytes, owner); 1485 } 1486 1487 if (!io->async || nres < 0) { 1488 fuse_release_user_pages(&ia->ap, io->should_dirty); 1489 fuse_io_free(ia); 1490 } 1491 ia = NULL; 1492 if (nres < 0) { 1493 iov_iter_revert(iter, nbytes); 1494 err = nres; 1495 break; 1496 } 1497 WARN_ON(nres > nbytes); 1498 1499 count -= nres; 1500 res += nres; 1501 pos += nres; 1502 if (nres != nbytes) { 1503 iov_iter_revert(iter, nbytes - nres); 1504 break; 1505 } 1506 if (count) { 1507 max_pages = iov_iter_npages(iter, fc->max_pages); 1508 ia = fuse_io_alloc(io, max_pages); 1509 if (!ia) 1510 break; 1511 } 1512 } 1513 if (ia) 1514 fuse_io_free(ia); 1515 if (res > 0) 1516 *ppos = pos; 1517 1518 return res > 0 ? res : err; 1519 } 1520 EXPORT_SYMBOL_GPL(fuse_direct_io); 1521 1522 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1523 struct iov_iter *iter, 1524 loff_t *ppos) 1525 { 1526 ssize_t res; 1527 struct inode *inode = file_inode(io->iocb->ki_filp); 1528 1529 res = fuse_direct_io(io, iter, ppos, 0); 1530 1531 fuse_invalidate_atime(inode); 1532 1533 return res; 1534 } 1535 1536 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1537 1538 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1539 { 1540 ssize_t res; 1541 1542 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1543 res = fuse_direct_IO(iocb, to); 1544 } else { 1545 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1546 1547 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1548 } 1549 1550 return res; 1551 } 1552 1553 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1554 { 1555 struct inode *inode = file_inode(iocb->ki_filp); 1556 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1557 ssize_t res; 1558 1559 /* Don't allow parallel writes to the same file */ 1560 inode_lock(inode); 1561 res = generic_write_checks(iocb, from); 1562 if (res > 0) { 1563 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1564 res = fuse_direct_IO(iocb, from); 1565 } else { 1566 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1567 FUSE_DIO_WRITE); 1568 fuse_write_update_attr(inode, iocb->ki_pos, res); 1569 } 1570 } 1571 inode_unlock(inode); 1572 1573 return res; 1574 } 1575 1576 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1577 { 1578 struct file *file = iocb->ki_filp; 1579 struct fuse_file *ff = file->private_data; 1580 struct inode *inode = file_inode(file); 1581 1582 if (fuse_is_bad(inode)) 1583 return -EIO; 1584 1585 if (FUSE_IS_DAX(inode)) 1586 return fuse_dax_read_iter(iocb, to); 1587 1588 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1589 return fuse_cache_read_iter(iocb, to); 1590 else 1591 return fuse_direct_read_iter(iocb, to); 1592 } 1593 1594 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1595 { 1596 struct file *file = iocb->ki_filp; 1597 struct fuse_file *ff = file->private_data; 1598 struct inode *inode = file_inode(file); 1599 1600 if (fuse_is_bad(inode)) 1601 return -EIO; 1602 1603 if (FUSE_IS_DAX(inode)) 1604 return fuse_dax_write_iter(iocb, from); 1605 1606 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1607 return fuse_cache_write_iter(iocb, from); 1608 else 1609 return fuse_direct_write_iter(iocb, from); 1610 } 1611 1612 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1613 { 1614 struct fuse_args_pages *ap = &wpa->ia.ap; 1615 int i; 1616 1617 if (wpa->bucket) 1618 fuse_sync_bucket_dec(wpa->bucket); 1619 1620 for (i = 0; i < ap->num_pages; i++) 1621 __free_page(ap->pages[i]); 1622 1623 if (wpa->ia.ff) 1624 fuse_file_put(wpa->ia.ff, false, false); 1625 1626 kfree(ap->pages); 1627 kfree(wpa); 1628 } 1629 1630 static void fuse_writepage_finish(struct fuse_mount *fm, 1631 struct fuse_writepage_args *wpa) 1632 { 1633 struct fuse_args_pages *ap = &wpa->ia.ap; 1634 struct inode *inode = wpa->inode; 1635 struct fuse_inode *fi = get_fuse_inode(inode); 1636 struct backing_dev_info *bdi = inode_to_bdi(inode); 1637 int i; 1638 1639 for (i = 0; i < ap->num_pages; i++) { 1640 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1641 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1642 wb_writeout_inc(&bdi->wb); 1643 } 1644 wake_up(&fi->page_waitq); 1645 } 1646 1647 /* Called under fi->lock, may release and reacquire it */ 1648 static void fuse_send_writepage(struct fuse_mount *fm, 1649 struct fuse_writepage_args *wpa, loff_t size) 1650 __releases(fi->lock) 1651 __acquires(fi->lock) 1652 { 1653 struct fuse_writepage_args *aux, *next; 1654 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1655 struct fuse_write_in *inarg = &wpa->ia.write.in; 1656 struct fuse_args *args = &wpa->ia.ap.args; 1657 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1658 int err; 1659 1660 fi->writectr++; 1661 if (inarg->offset + data_size <= size) { 1662 inarg->size = data_size; 1663 } else if (inarg->offset < size) { 1664 inarg->size = size - inarg->offset; 1665 } else { 1666 /* Got truncated off completely */ 1667 goto out_free; 1668 } 1669 1670 args->in_args[1].size = inarg->size; 1671 args->force = true; 1672 args->nocreds = true; 1673 1674 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1675 if (err == -ENOMEM) { 1676 spin_unlock(&fi->lock); 1677 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1678 spin_lock(&fi->lock); 1679 } 1680 1681 /* Fails on broken connection only */ 1682 if (unlikely(err)) 1683 goto out_free; 1684 1685 return; 1686 1687 out_free: 1688 fi->writectr--; 1689 rb_erase(&wpa->writepages_entry, &fi->writepages); 1690 fuse_writepage_finish(fm, wpa); 1691 spin_unlock(&fi->lock); 1692 1693 /* After fuse_writepage_finish() aux request list is private */ 1694 for (aux = wpa->next; aux; aux = next) { 1695 next = aux->next; 1696 aux->next = NULL; 1697 fuse_writepage_free(aux); 1698 } 1699 1700 fuse_writepage_free(wpa); 1701 spin_lock(&fi->lock); 1702 } 1703 1704 /* 1705 * If fi->writectr is positive (no truncate or fsync going on) send 1706 * all queued writepage requests. 1707 * 1708 * Called with fi->lock 1709 */ 1710 void fuse_flush_writepages(struct inode *inode) 1711 __releases(fi->lock) 1712 __acquires(fi->lock) 1713 { 1714 struct fuse_mount *fm = get_fuse_mount(inode); 1715 struct fuse_inode *fi = get_fuse_inode(inode); 1716 loff_t crop = i_size_read(inode); 1717 struct fuse_writepage_args *wpa; 1718 1719 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1720 wpa = list_entry(fi->queued_writes.next, 1721 struct fuse_writepage_args, queue_entry); 1722 list_del_init(&wpa->queue_entry); 1723 fuse_send_writepage(fm, wpa, crop); 1724 } 1725 } 1726 1727 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1728 struct fuse_writepage_args *wpa) 1729 { 1730 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1731 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1732 struct rb_node **p = &root->rb_node; 1733 struct rb_node *parent = NULL; 1734 1735 WARN_ON(!wpa->ia.ap.num_pages); 1736 while (*p) { 1737 struct fuse_writepage_args *curr; 1738 pgoff_t curr_index; 1739 1740 parent = *p; 1741 curr = rb_entry(parent, struct fuse_writepage_args, 1742 writepages_entry); 1743 WARN_ON(curr->inode != wpa->inode); 1744 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1745 1746 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1747 p = &(*p)->rb_right; 1748 else if (idx_to < curr_index) 1749 p = &(*p)->rb_left; 1750 else 1751 return curr; 1752 } 1753 1754 rb_link_node(&wpa->writepages_entry, parent, p); 1755 rb_insert_color(&wpa->writepages_entry, root); 1756 return NULL; 1757 } 1758 1759 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1760 { 1761 WARN_ON(fuse_insert_writeback(root, wpa)); 1762 } 1763 1764 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1765 int error) 1766 { 1767 struct fuse_writepage_args *wpa = 1768 container_of(args, typeof(*wpa), ia.ap.args); 1769 struct inode *inode = wpa->inode; 1770 struct fuse_inode *fi = get_fuse_inode(inode); 1771 struct fuse_conn *fc = get_fuse_conn(inode); 1772 1773 mapping_set_error(inode->i_mapping, error); 1774 /* 1775 * A writeback finished and this might have updated mtime/ctime on 1776 * server making local mtime/ctime stale. Hence invalidate attrs. 1777 * Do this only if writeback_cache is not enabled. If writeback_cache 1778 * is enabled, we trust local ctime/mtime. 1779 */ 1780 if (!fc->writeback_cache) 1781 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 1782 spin_lock(&fi->lock); 1783 rb_erase(&wpa->writepages_entry, &fi->writepages); 1784 while (wpa->next) { 1785 struct fuse_mount *fm = get_fuse_mount(inode); 1786 struct fuse_write_in *inarg = &wpa->ia.write.in; 1787 struct fuse_writepage_args *next = wpa->next; 1788 1789 wpa->next = next->next; 1790 next->next = NULL; 1791 next->ia.ff = fuse_file_get(wpa->ia.ff); 1792 tree_insert(&fi->writepages, next); 1793 1794 /* 1795 * Skip fuse_flush_writepages() to make it easy to crop requests 1796 * based on primary request size. 1797 * 1798 * 1st case (trivial): there are no concurrent activities using 1799 * fuse_set/release_nowrite. Then we're on safe side because 1800 * fuse_flush_writepages() would call fuse_send_writepage() 1801 * anyway. 1802 * 1803 * 2nd case: someone called fuse_set_nowrite and it is waiting 1804 * now for completion of all in-flight requests. This happens 1805 * rarely and no more than once per page, so this should be 1806 * okay. 1807 * 1808 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1809 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1810 * that fuse_set_nowrite returned implies that all in-flight 1811 * requests were completed along with all of their secondary 1812 * requests. Further primary requests are blocked by negative 1813 * writectr. Hence there cannot be any in-flight requests and 1814 * no invocations of fuse_writepage_end() while we're in 1815 * fuse_set_nowrite..fuse_release_nowrite section. 1816 */ 1817 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 1818 } 1819 fi->writectr--; 1820 fuse_writepage_finish(fm, wpa); 1821 spin_unlock(&fi->lock); 1822 fuse_writepage_free(wpa); 1823 } 1824 1825 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 1826 { 1827 struct fuse_file *ff; 1828 1829 spin_lock(&fi->lock); 1830 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 1831 write_entry); 1832 if (ff) 1833 fuse_file_get(ff); 1834 spin_unlock(&fi->lock); 1835 1836 return ff; 1837 } 1838 1839 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 1840 { 1841 struct fuse_file *ff = __fuse_write_file_get(fi); 1842 WARN_ON(!ff); 1843 return ff; 1844 } 1845 1846 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1847 { 1848 struct fuse_inode *fi = get_fuse_inode(inode); 1849 struct fuse_file *ff; 1850 int err; 1851 1852 /* 1853 * Inode is always written before the last reference is dropped and 1854 * hence this should not be reached from reclaim. 1855 * 1856 * Writing back the inode from reclaim can deadlock if the request 1857 * processing itself needs an allocation. Allocations triggering 1858 * reclaim while serving a request can't be prevented, because it can 1859 * involve any number of unrelated userspace processes. 1860 */ 1861 WARN_ON(wbc->for_reclaim); 1862 1863 ff = __fuse_write_file_get(fi); 1864 err = fuse_flush_times(inode, ff); 1865 if (ff) 1866 fuse_file_put(ff, false, false); 1867 1868 return err; 1869 } 1870 1871 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1872 { 1873 struct fuse_writepage_args *wpa; 1874 struct fuse_args_pages *ap; 1875 1876 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1877 if (wpa) { 1878 ap = &wpa->ia.ap; 1879 ap->num_pages = 0; 1880 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1881 if (!ap->pages) { 1882 kfree(wpa); 1883 wpa = NULL; 1884 } 1885 } 1886 return wpa; 1887 1888 } 1889 1890 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 1891 struct fuse_writepage_args *wpa) 1892 { 1893 if (!fc->sync_fs) 1894 return; 1895 1896 rcu_read_lock(); 1897 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 1898 do { 1899 wpa->bucket = rcu_dereference(fc->curr_bucket); 1900 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 1901 rcu_read_unlock(); 1902 } 1903 1904 static int fuse_writepage_locked(struct page *page) 1905 { 1906 struct address_space *mapping = page->mapping; 1907 struct inode *inode = mapping->host; 1908 struct fuse_conn *fc = get_fuse_conn(inode); 1909 struct fuse_inode *fi = get_fuse_inode(inode); 1910 struct fuse_writepage_args *wpa; 1911 struct fuse_args_pages *ap; 1912 struct page *tmp_page; 1913 int error = -ENOMEM; 1914 1915 set_page_writeback(page); 1916 1917 wpa = fuse_writepage_args_alloc(); 1918 if (!wpa) 1919 goto err; 1920 ap = &wpa->ia.ap; 1921 1922 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1923 if (!tmp_page) 1924 goto err_free; 1925 1926 error = -EIO; 1927 wpa->ia.ff = fuse_write_file_get(fi); 1928 if (!wpa->ia.ff) 1929 goto err_nofile; 1930 1931 fuse_writepage_add_to_bucket(fc, wpa); 1932 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1933 1934 copy_highpage(tmp_page, page); 1935 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1936 wpa->next = NULL; 1937 ap->args.in_pages = true; 1938 ap->num_pages = 1; 1939 ap->pages[0] = tmp_page; 1940 ap->descs[0].offset = 0; 1941 ap->descs[0].length = PAGE_SIZE; 1942 ap->args.end = fuse_writepage_end; 1943 wpa->inode = inode; 1944 1945 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1946 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1947 1948 spin_lock(&fi->lock); 1949 tree_insert(&fi->writepages, wpa); 1950 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1951 fuse_flush_writepages(inode); 1952 spin_unlock(&fi->lock); 1953 1954 end_page_writeback(page); 1955 1956 return 0; 1957 1958 err_nofile: 1959 __free_page(tmp_page); 1960 err_free: 1961 kfree(wpa); 1962 err: 1963 mapping_set_error(page->mapping, error); 1964 end_page_writeback(page); 1965 return error; 1966 } 1967 1968 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1969 { 1970 struct fuse_conn *fc = get_fuse_conn(page->mapping->host); 1971 int err; 1972 1973 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1974 /* 1975 * ->writepages() should be called for sync() and friends. We 1976 * should only get here on direct reclaim and then we are 1977 * allowed to skip a page which is already in flight 1978 */ 1979 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1980 1981 redirty_page_for_writepage(wbc, page); 1982 unlock_page(page); 1983 return 0; 1984 } 1985 1986 if (wbc->sync_mode == WB_SYNC_NONE && 1987 fc->num_background >= fc->congestion_threshold) 1988 return AOP_WRITEPAGE_ACTIVATE; 1989 1990 err = fuse_writepage_locked(page); 1991 unlock_page(page); 1992 1993 return err; 1994 } 1995 1996 struct fuse_fill_wb_data { 1997 struct fuse_writepage_args *wpa; 1998 struct fuse_file *ff; 1999 struct inode *inode; 2000 struct page **orig_pages; 2001 unsigned int max_pages; 2002 }; 2003 2004 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 2005 { 2006 struct fuse_args_pages *ap = &data->wpa->ia.ap; 2007 struct fuse_conn *fc = get_fuse_conn(data->inode); 2008 struct page **pages; 2009 struct fuse_page_desc *descs; 2010 unsigned int npages = min_t(unsigned int, 2011 max_t(unsigned int, data->max_pages * 2, 2012 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2013 fc->max_pages); 2014 WARN_ON(npages <= data->max_pages); 2015 2016 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 2017 if (!pages) 2018 return false; 2019 2020 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 2021 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 2022 kfree(ap->pages); 2023 ap->pages = pages; 2024 ap->descs = descs; 2025 data->max_pages = npages; 2026 2027 return true; 2028 } 2029 2030 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2031 { 2032 struct fuse_writepage_args *wpa = data->wpa; 2033 struct inode *inode = data->inode; 2034 struct fuse_inode *fi = get_fuse_inode(inode); 2035 int num_pages = wpa->ia.ap.num_pages; 2036 int i; 2037 2038 wpa->ia.ff = fuse_file_get(data->ff); 2039 spin_lock(&fi->lock); 2040 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2041 fuse_flush_writepages(inode); 2042 spin_unlock(&fi->lock); 2043 2044 for (i = 0; i < num_pages; i++) 2045 end_page_writeback(data->orig_pages[i]); 2046 } 2047 2048 /* 2049 * Check under fi->lock if the page is under writeback, and insert it onto the 2050 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2051 * one already added for a page at this offset. If there's none, then insert 2052 * this new request onto the auxiliary list, otherwise reuse the existing one by 2053 * swapping the new temp page with the old one. 2054 */ 2055 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2056 struct page *page) 2057 { 2058 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2059 struct fuse_writepage_args *tmp; 2060 struct fuse_writepage_args *old_wpa; 2061 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2062 2063 WARN_ON(new_ap->num_pages != 0); 2064 new_ap->num_pages = 1; 2065 2066 spin_lock(&fi->lock); 2067 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2068 if (!old_wpa) { 2069 spin_unlock(&fi->lock); 2070 return true; 2071 } 2072 2073 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2074 pgoff_t curr_index; 2075 2076 WARN_ON(tmp->inode != new_wpa->inode); 2077 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2078 if (curr_index == page->index) { 2079 WARN_ON(tmp->ia.ap.num_pages != 1); 2080 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 2081 break; 2082 } 2083 } 2084 2085 if (!tmp) { 2086 new_wpa->next = old_wpa->next; 2087 old_wpa->next = new_wpa; 2088 } 2089 2090 spin_unlock(&fi->lock); 2091 2092 if (tmp) { 2093 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2094 2095 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2096 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2097 wb_writeout_inc(&bdi->wb); 2098 fuse_writepage_free(new_wpa); 2099 } 2100 2101 return false; 2102 } 2103 2104 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2105 struct fuse_args_pages *ap, 2106 struct fuse_fill_wb_data *data) 2107 { 2108 WARN_ON(!ap->num_pages); 2109 2110 /* 2111 * Being under writeback is unlikely but possible. For example direct 2112 * read to an mmaped fuse file will set the page dirty twice; once when 2113 * the pages are faulted with get_user_pages(), and then after the read 2114 * completed. 2115 */ 2116 if (fuse_page_is_writeback(data->inode, page->index)) 2117 return true; 2118 2119 /* Reached max pages */ 2120 if (ap->num_pages == fc->max_pages) 2121 return true; 2122 2123 /* Reached max write bytes */ 2124 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2125 return true; 2126 2127 /* Discontinuity */ 2128 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2129 return true; 2130 2131 /* Need to grow the pages array? If so, did the expansion fail? */ 2132 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2133 return true; 2134 2135 return false; 2136 } 2137 2138 static int fuse_writepages_fill(struct page *page, 2139 struct writeback_control *wbc, void *_data) 2140 { 2141 struct fuse_fill_wb_data *data = _data; 2142 struct fuse_writepage_args *wpa = data->wpa; 2143 struct fuse_args_pages *ap = &wpa->ia.ap; 2144 struct inode *inode = data->inode; 2145 struct fuse_inode *fi = get_fuse_inode(inode); 2146 struct fuse_conn *fc = get_fuse_conn(inode); 2147 struct page *tmp_page; 2148 int err; 2149 2150 if (!data->ff) { 2151 err = -EIO; 2152 data->ff = fuse_write_file_get(fi); 2153 if (!data->ff) 2154 goto out_unlock; 2155 } 2156 2157 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) { 2158 fuse_writepages_send(data); 2159 data->wpa = NULL; 2160 } 2161 2162 err = -ENOMEM; 2163 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2164 if (!tmp_page) 2165 goto out_unlock; 2166 2167 /* 2168 * The page must not be redirtied until the writeout is completed 2169 * (i.e. userspace has sent a reply to the write request). Otherwise 2170 * there could be more than one temporary page instance for each real 2171 * page. 2172 * 2173 * This is ensured by holding the page lock in page_mkwrite() while 2174 * checking fuse_page_is_writeback(). We already hold the page lock 2175 * since clear_page_dirty_for_io() and keep it held until we add the 2176 * request to the fi->writepages list and increment ap->num_pages. 2177 * After this fuse_page_is_writeback() will indicate that the page is 2178 * under writeback, so we can release the page lock. 2179 */ 2180 if (data->wpa == NULL) { 2181 err = -ENOMEM; 2182 wpa = fuse_writepage_args_alloc(); 2183 if (!wpa) { 2184 __free_page(tmp_page); 2185 goto out_unlock; 2186 } 2187 fuse_writepage_add_to_bucket(fc, wpa); 2188 2189 data->max_pages = 1; 2190 2191 ap = &wpa->ia.ap; 2192 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2193 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2194 wpa->next = NULL; 2195 ap->args.in_pages = true; 2196 ap->args.end = fuse_writepage_end; 2197 ap->num_pages = 0; 2198 wpa->inode = inode; 2199 } 2200 set_page_writeback(page); 2201 2202 copy_highpage(tmp_page, page); 2203 ap->pages[ap->num_pages] = tmp_page; 2204 ap->descs[ap->num_pages].offset = 0; 2205 ap->descs[ap->num_pages].length = PAGE_SIZE; 2206 data->orig_pages[ap->num_pages] = page; 2207 2208 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2209 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2210 2211 err = 0; 2212 if (data->wpa) { 2213 /* 2214 * Protected by fi->lock against concurrent access by 2215 * fuse_page_is_writeback(). 2216 */ 2217 spin_lock(&fi->lock); 2218 ap->num_pages++; 2219 spin_unlock(&fi->lock); 2220 } else if (fuse_writepage_add(wpa, page)) { 2221 data->wpa = wpa; 2222 } else { 2223 end_page_writeback(page); 2224 } 2225 out_unlock: 2226 unlock_page(page); 2227 2228 return err; 2229 } 2230 2231 static int fuse_writepages(struct address_space *mapping, 2232 struct writeback_control *wbc) 2233 { 2234 struct inode *inode = mapping->host; 2235 struct fuse_conn *fc = get_fuse_conn(inode); 2236 struct fuse_fill_wb_data data; 2237 int err; 2238 2239 err = -EIO; 2240 if (fuse_is_bad(inode)) 2241 goto out; 2242 2243 if (wbc->sync_mode == WB_SYNC_NONE && 2244 fc->num_background >= fc->congestion_threshold) 2245 return 0; 2246 2247 data.inode = inode; 2248 data.wpa = NULL; 2249 data.ff = NULL; 2250 2251 err = -ENOMEM; 2252 data.orig_pages = kcalloc(fc->max_pages, 2253 sizeof(struct page *), 2254 GFP_NOFS); 2255 if (!data.orig_pages) 2256 goto out; 2257 2258 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2259 if (data.wpa) { 2260 WARN_ON(!data.wpa->ia.ap.num_pages); 2261 fuse_writepages_send(&data); 2262 } 2263 if (data.ff) 2264 fuse_file_put(data.ff, false, false); 2265 2266 kfree(data.orig_pages); 2267 out: 2268 return err; 2269 } 2270 2271 /* 2272 * It's worthy to make sure that space is reserved on disk for the write, 2273 * but how to implement it without killing performance need more thinking. 2274 */ 2275 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2276 loff_t pos, unsigned len, unsigned flags, 2277 struct page **pagep, void **fsdata) 2278 { 2279 pgoff_t index = pos >> PAGE_SHIFT; 2280 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2281 struct page *page; 2282 loff_t fsize; 2283 int err = -ENOMEM; 2284 2285 WARN_ON(!fc->writeback_cache); 2286 2287 page = grab_cache_page_write_begin(mapping, index, flags); 2288 if (!page) 2289 goto error; 2290 2291 fuse_wait_on_page_writeback(mapping->host, page->index); 2292 2293 if (PageUptodate(page) || len == PAGE_SIZE) 2294 goto success; 2295 /* 2296 * Check if the start this page comes after the end of file, in which 2297 * case the readpage can be optimized away. 2298 */ 2299 fsize = i_size_read(mapping->host); 2300 if (fsize <= (pos & PAGE_MASK)) { 2301 size_t off = pos & ~PAGE_MASK; 2302 if (off) 2303 zero_user_segment(page, 0, off); 2304 goto success; 2305 } 2306 err = fuse_do_readpage(file, page); 2307 if (err) 2308 goto cleanup; 2309 success: 2310 *pagep = page; 2311 return 0; 2312 2313 cleanup: 2314 unlock_page(page); 2315 put_page(page); 2316 error: 2317 return err; 2318 } 2319 2320 static int fuse_write_end(struct file *file, struct address_space *mapping, 2321 loff_t pos, unsigned len, unsigned copied, 2322 struct page *page, void *fsdata) 2323 { 2324 struct inode *inode = page->mapping->host; 2325 2326 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2327 if (!copied) 2328 goto unlock; 2329 2330 pos += copied; 2331 if (!PageUptodate(page)) { 2332 /* Zero any unwritten bytes at the end of the page */ 2333 size_t endoff = pos & ~PAGE_MASK; 2334 if (endoff) 2335 zero_user_segment(page, endoff, PAGE_SIZE); 2336 SetPageUptodate(page); 2337 } 2338 2339 if (pos > inode->i_size) 2340 i_size_write(inode, pos); 2341 2342 set_page_dirty(page); 2343 2344 unlock: 2345 unlock_page(page); 2346 put_page(page); 2347 2348 return copied; 2349 } 2350 2351 static int fuse_launder_folio(struct folio *folio) 2352 { 2353 int err = 0; 2354 if (folio_clear_dirty_for_io(folio)) { 2355 struct inode *inode = folio->mapping->host; 2356 2357 /* Serialize with pending writeback for the same page */ 2358 fuse_wait_on_page_writeback(inode, folio->index); 2359 err = fuse_writepage_locked(&folio->page); 2360 if (!err) 2361 fuse_wait_on_page_writeback(inode, folio->index); 2362 } 2363 return err; 2364 } 2365 2366 /* 2367 * Write back dirty data/metadata now (there may not be any suitable 2368 * open files later for data) 2369 */ 2370 static void fuse_vma_close(struct vm_area_struct *vma) 2371 { 2372 int err; 2373 2374 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2375 mapping_set_error(vma->vm_file->f_mapping, err); 2376 } 2377 2378 /* 2379 * Wait for writeback against this page to complete before allowing it 2380 * to be marked dirty again, and hence written back again, possibly 2381 * before the previous writepage completed. 2382 * 2383 * Block here, instead of in ->writepage(), so that the userspace fs 2384 * can only block processes actually operating on the filesystem. 2385 * 2386 * Otherwise unprivileged userspace fs would be able to block 2387 * unrelated: 2388 * 2389 * - page migration 2390 * - sync(2) 2391 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2392 */ 2393 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2394 { 2395 struct page *page = vmf->page; 2396 struct inode *inode = file_inode(vmf->vma->vm_file); 2397 2398 file_update_time(vmf->vma->vm_file); 2399 lock_page(page); 2400 if (page->mapping != inode->i_mapping) { 2401 unlock_page(page); 2402 return VM_FAULT_NOPAGE; 2403 } 2404 2405 fuse_wait_on_page_writeback(inode, page->index); 2406 return VM_FAULT_LOCKED; 2407 } 2408 2409 static const struct vm_operations_struct fuse_file_vm_ops = { 2410 .close = fuse_vma_close, 2411 .fault = filemap_fault, 2412 .map_pages = filemap_map_pages, 2413 .page_mkwrite = fuse_page_mkwrite, 2414 }; 2415 2416 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2417 { 2418 struct fuse_file *ff = file->private_data; 2419 2420 /* DAX mmap is superior to direct_io mmap */ 2421 if (FUSE_IS_DAX(file_inode(file))) 2422 return fuse_dax_mmap(file, vma); 2423 2424 if (ff->open_flags & FOPEN_DIRECT_IO) { 2425 /* Can't provide the coherency needed for MAP_SHARED */ 2426 if (vma->vm_flags & VM_MAYSHARE) 2427 return -ENODEV; 2428 2429 invalidate_inode_pages2(file->f_mapping); 2430 2431 return generic_file_mmap(file, vma); 2432 } 2433 2434 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2435 fuse_link_write_file(file); 2436 2437 file_accessed(file); 2438 vma->vm_ops = &fuse_file_vm_ops; 2439 return 0; 2440 } 2441 2442 static int convert_fuse_file_lock(struct fuse_conn *fc, 2443 const struct fuse_file_lock *ffl, 2444 struct file_lock *fl) 2445 { 2446 switch (ffl->type) { 2447 case F_UNLCK: 2448 break; 2449 2450 case F_RDLCK: 2451 case F_WRLCK: 2452 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2453 ffl->end < ffl->start) 2454 return -EIO; 2455 2456 fl->fl_start = ffl->start; 2457 fl->fl_end = ffl->end; 2458 2459 /* 2460 * Convert pid into init's pid namespace. The locks API will 2461 * translate it into the caller's pid namespace. 2462 */ 2463 rcu_read_lock(); 2464 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2465 rcu_read_unlock(); 2466 break; 2467 2468 default: 2469 return -EIO; 2470 } 2471 fl->fl_type = ffl->type; 2472 return 0; 2473 } 2474 2475 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2476 const struct file_lock *fl, int opcode, pid_t pid, 2477 int flock, struct fuse_lk_in *inarg) 2478 { 2479 struct inode *inode = file_inode(file); 2480 struct fuse_conn *fc = get_fuse_conn(inode); 2481 struct fuse_file *ff = file->private_data; 2482 2483 memset(inarg, 0, sizeof(*inarg)); 2484 inarg->fh = ff->fh; 2485 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2486 inarg->lk.start = fl->fl_start; 2487 inarg->lk.end = fl->fl_end; 2488 inarg->lk.type = fl->fl_type; 2489 inarg->lk.pid = pid; 2490 if (flock) 2491 inarg->lk_flags |= FUSE_LK_FLOCK; 2492 args->opcode = opcode; 2493 args->nodeid = get_node_id(inode); 2494 args->in_numargs = 1; 2495 args->in_args[0].size = sizeof(*inarg); 2496 args->in_args[0].value = inarg; 2497 } 2498 2499 static int fuse_getlk(struct file *file, struct file_lock *fl) 2500 { 2501 struct inode *inode = file_inode(file); 2502 struct fuse_mount *fm = get_fuse_mount(inode); 2503 FUSE_ARGS(args); 2504 struct fuse_lk_in inarg; 2505 struct fuse_lk_out outarg; 2506 int err; 2507 2508 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2509 args.out_numargs = 1; 2510 args.out_args[0].size = sizeof(outarg); 2511 args.out_args[0].value = &outarg; 2512 err = fuse_simple_request(fm, &args); 2513 if (!err) 2514 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2515 2516 return err; 2517 } 2518 2519 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2520 { 2521 struct inode *inode = file_inode(file); 2522 struct fuse_mount *fm = get_fuse_mount(inode); 2523 FUSE_ARGS(args); 2524 struct fuse_lk_in inarg; 2525 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2526 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2527 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2528 int err; 2529 2530 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2531 /* NLM needs asynchronous locks, which we don't support yet */ 2532 return -ENOLCK; 2533 } 2534 2535 /* Unlock on close is handled by the flush method */ 2536 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2537 return 0; 2538 2539 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2540 err = fuse_simple_request(fm, &args); 2541 2542 /* locking is restartable */ 2543 if (err == -EINTR) 2544 err = -ERESTARTSYS; 2545 2546 return err; 2547 } 2548 2549 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2550 { 2551 struct inode *inode = file_inode(file); 2552 struct fuse_conn *fc = get_fuse_conn(inode); 2553 int err; 2554 2555 if (cmd == F_CANCELLK) { 2556 err = 0; 2557 } else if (cmd == F_GETLK) { 2558 if (fc->no_lock) { 2559 posix_test_lock(file, fl); 2560 err = 0; 2561 } else 2562 err = fuse_getlk(file, fl); 2563 } else { 2564 if (fc->no_lock) 2565 err = posix_lock_file(file, fl, NULL); 2566 else 2567 err = fuse_setlk(file, fl, 0); 2568 } 2569 return err; 2570 } 2571 2572 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2573 { 2574 struct inode *inode = file_inode(file); 2575 struct fuse_conn *fc = get_fuse_conn(inode); 2576 int err; 2577 2578 if (fc->no_flock) { 2579 err = locks_lock_file_wait(file, fl); 2580 } else { 2581 struct fuse_file *ff = file->private_data; 2582 2583 /* emulate flock with POSIX locks */ 2584 ff->flock = true; 2585 err = fuse_setlk(file, fl, 1); 2586 } 2587 2588 return err; 2589 } 2590 2591 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2592 { 2593 struct inode *inode = mapping->host; 2594 struct fuse_mount *fm = get_fuse_mount(inode); 2595 FUSE_ARGS(args); 2596 struct fuse_bmap_in inarg; 2597 struct fuse_bmap_out outarg; 2598 int err; 2599 2600 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2601 return 0; 2602 2603 memset(&inarg, 0, sizeof(inarg)); 2604 inarg.block = block; 2605 inarg.blocksize = inode->i_sb->s_blocksize; 2606 args.opcode = FUSE_BMAP; 2607 args.nodeid = get_node_id(inode); 2608 args.in_numargs = 1; 2609 args.in_args[0].size = sizeof(inarg); 2610 args.in_args[0].value = &inarg; 2611 args.out_numargs = 1; 2612 args.out_args[0].size = sizeof(outarg); 2613 args.out_args[0].value = &outarg; 2614 err = fuse_simple_request(fm, &args); 2615 if (err == -ENOSYS) 2616 fm->fc->no_bmap = 1; 2617 2618 return err ? 0 : outarg.block; 2619 } 2620 2621 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2622 { 2623 struct inode *inode = file->f_mapping->host; 2624 struct fuse_mount *fm = get_fuse_mount(inode); 2625 struct fuse_file *ff = file->private_data; 2626 FUSE_ARGS(args); 2627 struct fuse_lseek_in inarg = { 2628 .fh = ff->fh, 2629 .offset = offset, 2630 .whence = whence 2631 }; 2632 struct fuse_lseek_out outarg; 2633 int err; 2634 2635 if (fm->fc->no_lseek) 2636 goto fallback; 2637 2638 args.opcode = FUSE_LSEEK; 2639 args.nodeid = ff->nodeid; 2640 args.in_numargs = 1; 2641 args.in_args[0].size = sizeof(inarg); 2642 args.in_args[0].value = &inarg; 2643 args.out_numargs = 1; 2644 args.out_args[0].size = sizeof(outarg); 2645 args.out_args[0].value = &outarg; 2646 err = fuse_simple_request(fm, &args); 2647 if (err) { 2648 if (err == -ENOSYS) { 2649 fm->fc->no_lseek = 1; 2650 goto fallback; 2651 } 2652 return err; 2653 } 2654 2655 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2656 2657 fallback: 2658 err = fuse_update_attributes(inode, file, STATX_SIZE); 2659 if (!err) 2660 return generic_file_llseek(file, offset, whence); 2661 else 2662 return err; 2663 } 2664 2665 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2666 { 2667 loff_t retval; 2668 struct inode *inode = file_inode(file); 2669 2670 switch (whence) { 2671 case SEEK_SET: 2672 case SEEK_CUR: 2673 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2674 retval = generic_file_llseek(file, offset, whence); 2675 break; 2676 case SEEK_END: 2677 inode_lock(inode); 2678 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2679 if (!retval) 2680 retval = generic_file_llseek(file, offset, whence); 2681 inode_unlock(inode); 2682 break; 2683 case SEEK_HOLE: 2684 case SEEK_DATA: 2685 inode_lock(inode); 2686 retval = fuse_lseek(file, offset, whence); 2687 inode_unlock(inode); 2688 break; 2689 default: 2690 retval = -EINVAL; 2691 } 2692 2693 return retval; 2694 } 2695 2696 /* 2697 * All files which have been polled are linked to RB tree 2698 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2699 * find the matching one. 2700 */ 2701 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2702 struct rb_node **parent_out) 2703 { 2704 struct rb_node **link = &fc->polled_files.rb_node; 2705 struct rb_node *last = NULL; 2706 2707 while (*link) { 2708 struct fuse_file *ff; 2709 2710 last = *link; 2711 ff = rb_entry(last, struct fuse_file, polled_node); 2712 2713 if (kh < ff->kh) 2714 link = &last->rb_left; 2715 else if (kh > ff->kh) 2716 link = &last->rb_right; 2717 else 2718 return link; 2719 } 2720 2721 if (parent_out) 2722 *parent_out = last; 2723 return link; 2724 } 2725 2726 /* 2727 * The file is about to be polled. Make sure it's on the polled_files 2728 * RB tree. Note that files once added to the polled_files tree are 2729 * not removed before the file is released. This is because a file 2730 * polled once is likely to be polled again. 2731 */ 2732 static void fuse_register_polled_file(struct fuse_conn *fc, 2733 struct fuse_file *ff) 2734 { 2735 spin_lock(&fc->lock); 2736 if (RB_EMPTY_NODE(&ff->polled_node)) { 2737 struct rb_node **link, *parent; 2738 2739 link = fuse_find_polled_node(fc, ff->kh, &parent); 2740 BUG_ON(*link); 2741 rb_link_node(&ff->polled_node, parent, link); 2742 rb_insert_color(&ff->polled_node, &fc->polled_files); 2743 } 2744 spin_unlock(&fc->lock); 2745 } 2746 2747 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2748 { 2749 struct fuse_file *ff = file->private_data; 2750 struct fuse_mount *fm = ff->fm; 2751 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2752 struct fuse_poll_out outarg; 2753 FUSE_ARGS(args); 2754 int err; 2755 2756 if (fm->fc->no_poll) 2757 return DEFAULT_POLLMASK; 2758 2759 poll_wait(file, &ff->poll_wait, wait); 2760 inarg.events = mangle_poll(poll_requested_events(wait)); 2761 2762 /* 2763 * Ask for notification iff there's someone waiting for it. 2764 * The client may ignore the flag and always notify. 2765 */ 2766 if (waitqueue_active(&ff->poll_wait)) { 2767 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2768 fuse_register_polled_file(fm->fc, ff); 2769 } 2770 2771 args.opcode = FUSE_POLL; 2772 args.nodeid = ff->nodeid; 2773 args.in_numargs = 1; 2774 args.in_args[0].size = sizeof(inarg); 2775 args.in_args[0].value = &inarg; 2776 args.out_numargs = 1; 2777 args.out_args[0].size = sizeof(outarg); 2778 args.out_args[0].value = &outarg; 2779 err = fuse_simple_request(fm, &args); 2780 2781 if (!err) 2782 return demangle_poll(outarg.revents); 2783 if (err == -ENOSYS) { 2784 fm->fc->no_poll = 1; 2785 return DEFAULT_POLLMASK; 2786 } 2787 return EPOLLERR; 2788 } 2789 EXPORT_SYMBOL_GPL(fuse_file_poll); 2790 2791 /* 2792 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2793 * wakes up the poll waiters. 2794 */ 2795 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2796 struct fuse_notify_poll_wakeup_out *outarg) 2797 { 2798 u64 kh = outarg->kh; 2799 struct rb_node **link; 2800 2801 spin_lock(&fc->lock); 2802 2803 link = fuse_find_polled_node(fc, kh, NULL); 2804 if (*link) { 2805 struct fuse_file *ff; 2806 2807 ff = rb_entry(*link, struct fuse_file, polled_node); 2808 wake_up_interruptible_sync(&ff->poll_wait); 2809 } 2810 2811 spin_unlock(&fc->lock); 2812 return 0; 2813 } 2814 2815 static void fuse_do_truncate(struct file *file) 2816 { 2817 struct inode *inode = file->f_mapping->host; 2818 struct iattr attr; 2819 2820 attr.ia_valid = ATTR_SIZE; 2821 attr.ia_size = i_size_read(inode); 2822 2823 attr.ia_file = file; 2824 attr.ia_valid |= ATTR_FILE; 2825 2826 fuse_do_setattr(file_dentry(file), &attr, file); 2827 } 2828 2829 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2830 { 2831 return round_up(off, fc->max_pages << PAGE_SHIFT); 2832 } 2833 2834 static ssize_t 2835 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2836 { 2837 DECLARE_COMPLETION_ONSTACK(wait); 2838 ssize_t ret = 0; 2839 struct file *file = iocb->ki_filp; 2840 struct fuse_file *ff = file->private_data; 2841 loff_t pos = 0; 2842 struct inode *inode; 2843 loff_t i_size; 2844 size_t count = iov_iter_count(iter), shortened = 0; 2845 loff_t offset = iocb->ki_pos; 2846 struct fuse_io_priv *io; 2847 2848 pos = offset; 2849 inode = file->f_mapping->host; 2850 i_size = i_size_read(inode); 2851 2852 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 2853 return 0; 2854 2855 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2856 if (!io) 2857 return -ENOMEM; 2858 spin_lock_init(&io->lock); 2859 kref_init(&io->refcnt); 2860 io->reqs = 1; 2861 io->bytes = -1; 2862 io->size = 0; 2863 io->offset = offset; 2864 io->write = (iov_iter_rw(iter) == WRITE); 2865 io->err = 0; 2866 /* 2867 * By default, we want to optimize all I/Os with async request 2868 * submission to the client filesystem if supported. 2869 */ 2870 io->async = ff->fm->fc->async_dio; 2871 io->iocb = iocb; 2872 io->blocking = is_sync_kiocb(iocb); 2873 2874 /* optimization for short read */ 2875 if (io->async && !io->write && offset + count > i_size) { 2876 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 2877 shortened = count - iov_iter_count(iter); 2878 count -= shortened; 2879 } 2880 2881 /* 2882 * We cannot asynchronously extend the size of a file. 2883 * In such case the aio will behave exactly like sync io. 2884 */ 2885 if ((offset + count > i_size) && io->write) 2886 io->blocking = true; 2887 2888 if (io->async && io->blocking) { 2889 /* 2890 * Additional reference to keep io around after 2891 * calling fuse_aio_complete() 2892 */ 2893 kref_get(&io->refcnt); 2894 io->done = &wait; 2895 } 2896 2897 if (iov_iter_rw(iter) == WRITE) { 2898 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2899 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 2900 } else { 2901 ret = __fuse_direct_read(io, iter, &pos); 2902 } 2903 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 2904 2905 if (io->async) { 2906 bool blocking = io->blocking; 2907 2908 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2909 2910 /* we have a non-extending, async request, so return */ 2911 if (!blocking) 2912 return -EIOCBQUEUED; 2913 2914 wait_for_completion(&wait); 2915 ret = fuse_get_res_by_io(io); 2916 } 2917 2918 kref_put(&io->refcnt, fuse_io_release); 2919 2920 if (iov_iter_rw(iter) == WRITE) { 2921 fuse_write_update_attr(inode, pos, ret); 2922 if (ret < 0 && offset + count > i_size) 2923 fuse_do_truncate(file); 2924 } 2925 2926 return ret; 2927 } 2928 2929 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 2930 { 2931 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 2932 2933 if (!err) 2934 fuse_sync_writes(inode); 2935 2936 return err; 2937 } 2938 2939 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2940 loff_t length) 2941 { 2942 struct fuse_file *ff = file->private_data; 2943 struct inode *inode = file_inode(file); 2944 struct fuse_inode *fi = get_fuse_inode(inode); 2945 struct fuse_mount *fm = ff->fm; 2946 FUSE_ARGS(args); 2947 struct fuse_fallocate_in inarg = { 2948 .fh = ff->fh, 2949 .offset = offset, 2950 .length = length, 2951 .mode = mode 2952 }; 2953 int err; 2954 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2955 (mode & (FALLOC_FL_PUNCH_HOLE | 2956 FALLOC_FL_ZERO_RANGE)); 2957 2958 bool block_faults = FUSE_IS_DAX(inode) && lock_inode; 2959 2960 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2961 FALLOC_FL_ZERO_RANGE)) 2962 return -EOPNOTSUPP; 2963 2964 if (fm->fc->no_fallocate) 2965 return -EOPNOTSUPP; 2966 2967 if (lock_inode) { 2968 inode_lock(inode); 2969 if (block_faults) { 2970 filemap_invalidate_lock(inode->i_mapping); 2971 err = fuse_dax_break_layouts(inode, 0, 0); 2972 if (err) 2973 goto out; 2974 } 2975 2976 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 2977 loff_t endbyte = offset + length - 1; 2978 2979 err = fuse_writeback_range(inode, offset, endbyte); 2980 if (err) 2981 goto out; 2982 } 2983 } 2984 2985 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2986 offset + length > i_size_read(inode)) { 2987 err = inode_newsize_ok(inode, offset + length); 2988 if (err) 2989 goto out; 2990 } 2991 2992 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2993 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2994 2995 args.opcode = FUSE_FALLOCATE; 2996 args.nodeid = ff->nodeid; 2997 args.in_numargs = 1; 2998 args.in_args[0].size = sizeof(inarg); 2999 args.in_args[0].value = &inarg; 3000 err = fuse_simple_request(fm, &args); 3001 if (err == -ENOSYS) { 3002 fm->fc->no_fallocate = 1; 3003 err = -EOPNOTSUPP; 3004 } 3005 if (err) 3006 goto out; 3007 3008 /* we could have extended the file */ 3009 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3010 if (fuse_write_update_attr(inode, offset + length, length)) 3011 file_update_time(file); 3012 } 3013 3014 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 3015 truncate_pagecache_range(inode, offset, offset + length - 1); 3016 3017 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3018 3019 out: 3020 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3021 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3022 3023 if (block_faults) 3024 filemap_invalidate_unlock(inode->i_mapping); 3025 3026 if (lock_inode) 3027 inode_unlock(inode); 3028 3029 fuse_flush_time_update(inode); 3030 3031 return err; 3032 } 3033 3034 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3035 struct file *file_out, loff_t pos_out, 3036 size_t len, unsigned int flags) 3037 { 3038 struct fuse_file *ff_in = file_in->private_data; 3039 struct fuse_file *ff_out = file_out->private_data; 3040 struct inode *inode_in = file_inode(file_in); 3041 struct inode *inode_out = file_inode(file_out); 3042 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3043 struct fuse_mount *fm = ff_in->fm; 3044 struct fuse_conn *fc = fm->fc; 3045 FUSE_ARGS(args); 3046 struct fuse_copy_file_range_in inarg = { 3047 .fh_in = ff_in->fh, 3048 .off_in = pos_in, 3049 .nodeid_out = ff_out->nodeid, 3050 .fh_out = ff_out->fh, 3051 .off_out = pos_out, 3052 .len = len, 3053 .flags = flags 3054 }; 3055 struct fuse_write_out outarg; 3056 ssize_t err; 3057 /* mark unstable when write-back is not used, and file_out gets 3058 * extended */ 3059 bool is_unstable = (!fc->writeback_cache) && 3060 ((pos_out + len) > inode_out->i_size); 3061 3062 if (fc->no_copy_file_range) 3063 return -EOPNOTSUPP; 3064 3065 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3066 return -EXDEV; 3067 3068 inode_lock(inode_in); 3069 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3070 inode_unlock(inode_in); 3071 if (err) 3072 return err; 3073 3074 inode_lock(inode_out); 3075 3076 err = file_modified(file_out); 3077 if (err) 3078 goto out; 3079 3080 /* 3081 * Write out dirty pages in the destination file before sending the COPY 3082 * request to userspace. After the request is completed, truncate off 3083 * pages (including partial ones) from the cache that have been copied, 3084 * since these contain stale data at that point. 3085 * 3086 * This should be mostly correct, but if the COPY writes to partial 3087 * pages (at the start or end) and the parts not covered by the COPY are 3088 * written through a memory map after calling fuse_writeback_range(), 3089 * then these partial page modifications will be lost on truncation. 3090 * 3091 * It is unlikely that someone would rely on such mixed style 3092 * modifications. Yet this does give less guarantees than if the 3093 * copying was performed with write(2). 3094 * 3095 * To fix this a mapping->invalidate_lock could be used to prevent new 3096 * faults while the copy is ongoing. 3097 */ 3098 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3099 if (err) 3100 goto out; 3101 3102 if (is_unstable) 3103 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3104 3105 args.opcode = FUSE_COPY_FILE_RANGE; 3106 args.nodeid = ff_in->nodeid; 3107 args.in_numargs = 1; 3108 args.in_args[0].size = sizeof(inarg); 3109 args.in_args[0].value = &inarg; 3110 args.out_numargs = 1; 3111 args.out_args[0].size = sizeof(outarg); 3112 args.out_args[0].value = &outarg; 3113 err = fuse_simple_request(fm, &args); 3114 if (err == -ENOSYS) { 3115 fc->no_copy_file_range = 1; 3116 err = -EOPNOTSUPP; 3117 } 3118 if (err) 3119 goto out; 3120 3121 truncate_inode_pages_range(inode_out->i_mapping, 3122 ALIGN_DOWN(pos_out, PAGE_SIZE), 3123 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3124 3125 file_update_time(file_out); 3126 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3127 3128 err = outarg.size; 3129 out: 3130 if (is_unstable) 3131 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3132 3133 inode_unlock(inode_out); 3134 file_accessed(file_in); 3135 3136 fuse_flush_time_update(inode_out); 3137 3138 return err; 3139 } 3140 3141 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3142 struct file *dst_file, loff_t dst_off, 3143 size_t len, unsigned int flags) 3144 { 3145 ssize_t ret; 3146 3147 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3148 len, flags); 3149 3150 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3151 ret = generic_copy_file_range(src_file, src_off, dst_file, 3152 dst_off, len, flags); 3153 return ret; 3154 } 3155 3156 static const struct file_operations fuse_file_operations = { 3157 .llseek = fuse_file_llseek, 3158 .read_iter = fuse_file_read_iter, 3159 .write_iter = fuse_file_write_iter, 3160 .mmap = fuse_file_mmap, 3161 .open = fuse_open, 3162 .flush = fuse_flush, 3163 .release = fuse_release, 3164 .fsync = fuse_fsync, 3165 .lock = fuse_file_lock, 3166 .get_unmapped_area = thp_get_unmapped_area, 3167 .flock = fuse_file_flock, 3168 .splice_read = generic_file_splice_read, 3169 .splice_write = iter_file_splice_write, 3170 .unlocked_ioctl = fuse_file_ioctl, 3171 .compat_ioctl = fuse_file_compat_ioctl, 3172 .poll = fuse_file_poll, 3173 .fallocate = fuse_file_fallocate, 3174 .copy_file_range = fuse_copy_file_range, 3175 }; 3176 3177 static const struct address_space_operations fuse_file_aops = { 3178 .readpage = fuse_readpage, 3179 .readahead = fuse_readahead, 3180 .writepage = fuse_writepage, 3181 .writepages = fuse_writepages, 3182 .launder_folio = fuse_launder_folio, 3183 .dirty_folio = filemap_dirty_folio, 3184 .bmap = fuse_bmap, 3185 .direct_IO = fuse_direct_IO, 3186 .write_begin = fuse_write_begin, 3187 .write_end = fuse_write_end, 3188 }; 3189 3190 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3191 { 3192 struct fuse_inode *fi = get_fuse_inode(inode); 3193 3194 inode->i_fop = &fuse_file_operations; 3195 inode->i_data.a_ops = &fuse_file_aops; 3196 3197 INIT_LIST_HEAD(&fi->write_files); 3198 INIT_LIST_HEAD(&fi->queued_writes); 3199 fi->writectr = 0; 3200 init_waitqueue_head(&fi->page_waitq); 3201 fi->writepages = RB_ROOT; 3202 3203 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3204 fuse_dax_inode_init(inode, flags); 3205 } 3206