xref: /linux/fs/fuse/file.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22 #include <linux/splice.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
26 			  unsigned int open_flags, int opcode,
27 			  struct fuse_open_out *outargp)
28 {
29 	struct fuse_open_in inarg;
30 	FUSE_ARGS(args);
31 
32 	memset(&inarg, 0, sizeof(inarg));
33 	inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
34 	if (!fm->fc->atomic_o_trunc)
35 		inarg.flags &= ~O_TRUNC;
36 
37 	if (fm->fc->handle_killpriv_v2 &&
38 	    (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
39 		inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
40 	}
41 
42 	args.opcode = opcode;
43 	args.nodeid = nodeid;
44 	args.in_numargs = 1;
45 	args.in_args[0].size = sizeof(inarg);
46 	args.in_args[0].value = &inarg;
47 	args.out_numargs = 1;
48 	args.out_args[0].size = sizeof(*outargp);
49 	args.out_args[0].value = outargp;
50 
51 	return fuse_simple_request(fm, &args);
52 }
53 
54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release)
55 {
56 	struct fuse_file *ff;
57 
58 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
59 	if (unlikely(!ff))
60 		return NULL;
61 
62 	ff->fm = fm;
63 	if (release) {
64 		ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT);
65 		if (!ff->args) {
66 			kfree(ff);
67 			return NULL;
68 		}
69 	}
70 
71 	INIT_LIST_HEAD(&ff->write_entry);
72 	refcount_set(&ff->count, 1);
73 	RB_CLEAR_NODE(&ff->polled_node);
74 	init_waitqueue_head(&ff->poll_wait);
75 
76 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
77 
78 	return ff;
79 }
80 
81 void fuse_file_free(struct fuse_file *ff)
82 {
83 	kfree(ff->args);
84 	kfree(ff);
85 }
86 
87 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
88 {
89 	refcount_inc(&ff->count);
90 	return ff;
91 }
92 
93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
94 			     int error)
95 {
96 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
97 
98 	iput(ra->inode);
99 	kfree(ra);
100 }
101 
102 static void fuse_file_put(struct fuse_file *ff, bool sync)
103 {
104 	if (refcount_dec_and_test(&ff->count)) {
105 		struct fuse_release_args *ra = &ff->args->release_args;
106 		struct fuse_args *args = (ra ? &ra->args : NULL);
107 
108 		if (ra && ra->inode)
109 			fuse_file_io_release(ff, ra->inode);
110 
111 		if (!args) {
112 			/* Do nothing when server does not implement 'open' */
113 		} else if (sync) {
114 			fuse_simple_request(ff->fm, args);
115 			fuse_release_end(ff->fm, args, 0);
116 		} else {
117 			args->end = fuse_release_end;
118 			if (fuse_simple_background(ff->fm, args,
119 						   GFP_KERNEL | __GFP_NOFAIL))
120 				fuse_release_end(ff->fm, args, -ENOTCONN);
121 		}
122 		kfree(ff);
123 	}
124 }
125 
126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
127 				 unsigned int open_flags, bool isdir)
128 {
129 	struct fuse_conn *fc = fm->fc;
130 	struct fuse_file *ff;
131 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
132 	bool open = isdir ? !fc->no_opendir : !fc->no_open;
133 
134 	ff = fuse_file_alloc(fm, open);
135 	if (!ff)
136 		return ERR_PTR(-ENOMEM);
137 
138 	ff->fh = 0;
139 	/* Default for no-open */
140 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 	if (open) {
142 		/* Store outarg for fuse_finish_open() */
143 		struct fuse_open_out *outargp = &ff->args->open_outarg;
144 		int err;
145 
146 		err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp);
147 		if (!err) {
148 			ff->fh = outargp->fh;
149 			ff->open_flags = outargp->open_flags;
150 		} else if (err != -ENOSYS) {
151 			fuse_file_free(ff);
152 			return ERR_PTR(err);
153 		} else {
154 			/* No release needed */
155 			kfree(ff->args);
156 			ff->args = NULL;
157 			if (isdir)
158 				fc->no_opendir = 1;
159 			else
160 				fc->no_open = 1;
161 		}
162 	}
163 
164 	if (isdir)
165 		ff->open_flags &= ~FOPEN_DIRECT_IO;
166 
167 	ff->nodeid = nodeid;
168 
169 	return ff;
170 }
171 
172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
173 		 bool isdir)
174 {
175 	struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
176 
177 	if (!IS_ERR(ff))
178 		file->private_data = ff;
179 
180 	return PTR_ERR_OR_ZERO(ff);
181 }
182 EXPORT_SYMBOL_GPL(fuse_do_open);
183 
184 static void fuse_link_write_file(struct file *file)
185 {
186 	struct inode *inode = file_inode(file);
187 	struct fuse_inode *fi = get_fuse_inode(inode);
188 	struct fuse_file *ff = file->private_data;
189 	/*
190 	 * file may be written through mmap, so chain it onto the
191 	 * inodes's write_file list
192 	 */
193 	spin_lock(&fi->lock);
194 	if (list_empty(&ff->write_entry))
195 		list_add(&ff->write_entry, &fi->write_files);
196 	spin_unlock(&fi->lock);
197 }
198 
199 int fuse_finish_open(struct inode *inode, struct file *file)
200 {
201 	struct fuse_file *ff = file->private_data;
202 	struct fuse_conn *fc = get_fuse_conn(inode);
203 	int err;
204 
205 	err = fuse_file_io_open(file, inode);
206 	if (err)
207 		return err;
208 
209 	if (ff->open_flags & FOPEN_STREAM)
210 		stream_open(inode, file);
211 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
212 		nonseekable_open(inode, file);
213 
214 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 		fuse_link_write_file(file);
216 
217 	return 0;
218 }
219 
220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file)
221 {
222 	struct fuse_conn *fc = get_fuse_conn(inode);
223 	struct fuse_inode *fi = get_fuse_inode(inode);
224 
225 	spin_lock(&fi->lock);
226 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
227 	i_size_write(inode, 0);
228 	spin_unlock(&fi->lock);
229 	file_update_time(file);
230 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
231 }
232 
233 static int fuse_open(struct inode *inode, struct file *file)
234 {
235 	struct fuse_mount *fm = get_fuse_mount(inode);
236 	struct fuse_inode *fi = get_fuse_inode(inode);
237 	struct fuse_conn *fc = fm->fc;
238 	struct fuse_file *ff;
239 	int err;
240 	bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc;
241 	bool is_wb_truncate = is_truncate && fc->writeback_cache;
242 	bool dax_truncate = is_truncate && FUSE_IS_DAX(inode);
243 
244 	if (fuse_is_bad(inode))
245 		return -EIO;
246 
247 	err = generic_file_open(inode, file);
248 	if (err)
249 		return err;
250 
251 	if (is_wb_truncate || dax_truncate)
252 		inode_lock(inode);
253 
254 	if (dax_truncate) {
255 		filemap_invalidate_lock(inode->i_mapping);
256 		err = fuse_dax_break_layouts(inode, 0, 0);
257 		if (err)
258 			goto out_inode_unlock;
259 	}
260 
261 	if (is_wb_truncate || dax_truncate)
262 		fuse_set_nowrite(inode);
263 
264 	err = fuse_do_open(fm, get_node_id(inode), file, false);
265 	if (!err) {
266 		ff = file->private_data;
267 		err = fuse_finish_open(inode, file);
268 		if (err)
269 			fuse_sync_release(fi, ff, file->f_flags);
270 		else if (is_truncate)
271 			fuse_truncate_update_attr(inode, file);
272 	}
273 
274 	if (is_wb_truncate || dax_truncate)
275 		fuse_release_nowrite(inode);
276 	if (!err) {
277 		if (is_truncate)
278 			truncate_pagecache(inode, 0);
279 		else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
280 			invalidate_inode_pages2(inode->i_mapping);
281 	}
282 	if (dax_truncate)
283 		filemap_invalidate_unlock(inode->i_mapping);
284 out_inode_unlock:
285 	if (is_wb_truncate || dax_truncate)
286 		inode_unlock(inode);
287 
288 	return err;
289 }
290 
291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
292 				 unsigned int flags, int opcode, bool sync)
293 {
294 	struct fuse_conn *fc = ff->fm->fc;
295 	struct fuse_release_args *ra = &ff->args->release_args;
296 
297 	if (fuse_file_passthrough(ff))
298 		fuse_passthrough_release(ff, fuse_inode_backing(fi));
299 
300 	/* Inode is NULL on error path of fuse_create_open() */
301 	if (likely(fi)) {
302 		spin_lock(&fi->lock);
303 		list_del(&ff->write_entry);
304 		spin_unlock(&fi->lock);
305 	}
306 	spin_lock(&fc->lock);
307 	if (!RB_EMPTY_NODE(&ff->polled_node))
308 		rb_erase(&ff->polled_node, &fc->polled_files);
309 	spin_unlock(&fc->lock);
310 
311 	wake_up_interruptible_all(&ff->poll_wait);
312 
313 	if (!ra)
314 		return;
315 
316 	/* ff->args was used for open outarg */
317 	memset(ff->args, 0, sizeof(*ff->args));
318 	ra->inarg.fh = ff->fh;
319 	ra->inarg.flags = flags;
320 	ra->args.in_numargs = 1;
321 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
322 	ra->args.in_args[0].value = &ra->inarg;
323 	ra->args.opcode = opcode;
324 	ra->args.nodeid = ff->nodeid;
325 	ra->args.force = true;
326 	ra->args.nocreds = true;
327 
328 	/*
329 	 * Hold inode until release is finished.
330 	 * From fuse_sync_release() the refcount is 1 and everything's
331 	 * synchronous, so we are fine with not doing igrab() here.
332 	 */
333 	ra->inode = sync ? NULL : igrab(&fi->inode);
334 }
335 
336 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
337 		       unsigned int open_flags, fl_owner_t id, bool isdir)
338 {
339 	struct fuse_inode *fi = get_fuse_inode(inode);
340 	struct fuse_release_args *ra = &ff->args->release_args;
341 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
342 
343 	fuse_prepare_release(fi, ff, open_flags, opcode, false);
344 
345 	if (ra && ff->flock) {
346 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
347 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
348 	}
349 
350 	/*
351 	 * Normally this will send the RELEASE request, however if
352 	 * some asynchronous READ or WRITE requests are outstanding,
353 	 * the sending will be delayed.
354 	 *
355 	 * Make the release synchronous if this is a fuseblk mount,
356 	 * synchronous RELEASE is allowed (and desirable) in this case
357 	 * because the server can be trusted not to screw up.
358 	 */
359 	fuse_file_put(ff, ff->fm->fc->destroy);
360 }
361 
362 void fuse_release_common(struct file *file, bool isdir)
363 {
364 	fuse_file_release(file_inode(file), file->private_data, file->f_flags,
365 			  (fl_owner_t) file, isdir);
366 }
367 
368 static int fuse_release(struct inode *inode, struct file *file)
369 {
370 	struct fuse_conn *fc = get_fuse_conn(inode);
371 
372 	/*
373 	 * Dirty pages might remain despite write_inode_now() call from
374 	 * fuse_flush() due to writes racing with the close.
375 	 */
376 	if (fc->writeback_cache)
377 		write_inode_now(inode, 1);
378 
379 	fuse_release_common(file, false);
380 
381 	/* return value is ignored by VFS */
382 	return 0;
383 }
384 
385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
386 		       unsigned int flags)
387 {
388 	WARN_ON(refcount_read(&ff->count) > 1);
389 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true);
390 	fuse_file_put(ff, true);
391 }
392 EXPORT_SYMBOL_GPL(fuse_sync_release);
393 
394 /*
395  * Scramble the ID space with XTEA, so that the value of the files_struct
396  * pointer is not exposed to userspace.
397  */
398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
399 {
400 	u32 *k = fc->scramble_key;
401 	u64 v = (unsigned long) id;
402 	u32 v0 = v;
403 	u32 v1 = v >> 32;
404 	u32 sum = 0;
405 	int i;
406 
407 	for (i = 0; i < 32; i++) {
408 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
409 		sum += 0x9E3779B9;
410 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
411 	}
412 
413 	return (u64) v0 + ((u64) v1 << 32);
414 }
415 
416 struct fuse_writepage_args {
417 	struct fuse_io_args ia;
418 	struct rb_node writepages_entry;
419 	struct list_head queue_entry;
420 	struct fuse_writepage_args *next;
421 	struct inode *inode;
422 	struct fuse_sync_bucket *bucket;
423 };
424 
425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
426 					    pgoff_t idx_from, pgoff_t idx_to)
427 {
428 	struct rb_node *n;
429 
430 	n = fi->writepages.rb_node;
431 
432 	while (n) {
433 		struct fuse_writepage_args *wpa;
434 		pgoff_t curr_index;
435 
436 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
437 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
438 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
439 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
440 			n = n->rb_right;
441 		else if (idx_to < curr_index)
442 			n = n->rb_left;
443 		else
444 			return wpa;
445 	}
446 	return NULL;
447 }
448 
449 /*
450  * Check if any page in a range is under writeback
451  *
452  * This is currently done by walking the list of writepage requests
453  * for the inode, which can be pretty inefficient.
454  */
455 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
456 				   pgoff_t idx_to)
457 {
458 	struct fuse_inode *fi = get_fuse_inode(inode);
459 	bool found;
460 
461 	spin_lock(&fi->lock);
462 	found = fuse_find_writeback(fi, idx_from, idx_to);
463 	spin_unlock(&fi->lock);
464 
465 	return found;
466 }
467 
468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
469 {
470 	return fuse_range_is_writeback(inode, index, index);
471 }
472 
473 /*
474  * Wait for page writeback to be completed.
475  *
476  * Since fuse doesn't rely on the VM writeback tracking, this has to
477  * use some other means.
478  */
479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
480 {
481 	struct fuse_inode *fi = get_fuse_inode(inode);
482 
483 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
484 }
485 
486 /*
487  * Wait for all pending writepages on the inode to finish.
488  *
489  * This is currently done by blocking further writes with FUSE_NOWRITE
490  * and waiting for all sent writes to complete.
491  *
492  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
493  * could conflict with truncation.
494  */
495 static void fuse_sync_writes(struct inode *inode)
496 {
497 	fuse_set_nowrite(inode);
498 	fuse_release_nowrite(inode);
499 }
500 
501 static int fuse_flush(struct file *file, fl_owner_t id)
502 {
503 	struct inode *inode = file_inode(file);
504 	struct fuse_mount *fm = get_fuse_mount(inode);
505 	struct fuse_file *ff = file->private_data;
506 	struct fuse_flush_in inarg;
507 	FUSE_ARGS(args);
508 	int err;
509 
510 	if (fuse_is_bad(inode))
511 		return -EIO;
512 
513 	if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
514 		return 0;
515 
516 	err = write_inode_now(inode, 1);
517 	if (err)
518 		return err;
519 
520 	inode_lock(inode);
521 	fuse_sync_writes(inode);
522 	inode_unlock(inode);
523 
524 	err = filemap_check_errors(file->f_mapping);
525 	if (err)
526 		return err;
527 
528 	err = 0;
529 	if (fm->fc->no_flush)
530 		goto inval_attr_out;
531 
532 	memset(&inarg, 0, sizeof(inarg));
533 	inarg.fh = ff->fh;
534 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
535 	args.opcode = FUSE_FLUSH;
536 	args.nodeid = get_node_id(inode);
537 	args.in_numargs = 1;
538 	args.in_args[0].size = sizeof(inarg);
539 	args.in_args[0].value = &inarg;
540 	args.force = true;
541 
542 	err = fuse_simple_request(fm, &args);
543 	if (err == -ENOSYS) {
544 		fm->fc->no_flush = 1;
545 		err = 0;
546 	}
547 
548 inval_attr_out:
549 	/*
550 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
551 	 * enabled, i_blocks from cached attr may not be accurate.
552 	 */
553 	if (!err && fm->fc->writeback_cache)
554 		fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
555 	return err;
556 }
557 
558 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
559 		      int datasync, int opcode)
560 {
561 	struct inode *inode = file->f_mapping->host;
562 	struct fuse_mount *fm = get_fuse_mount(inode);
563 	struct fuse_file *ff = file->private_data;
564 	FUSE_ARGS(args);
565 	struct fuse_fsync_in inarg;
566 
567 	memset(&inarg, 0, sizeof(inarg));
568 	inarg.fh = ff->fh;
569 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
570 	args.opcode = opcode;
571 	args.nodeid = get_node_id(inode);
572 	args.in_numargs = 1;
573 	args.in_args[0].size = sizeof(inarg);
574 	args.in_args[0].value = &inarg;
575 	return fuse_simple_request(fm, &args);
576 }
577 
578 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
579 		      int datasync)
580 {
581 	struct inode *inode = file->f_mapping->host;
582 	struct fuse_conn *fc = get_fuse_conn(inode);
583 	int err;
584 
585 	if (fuse_is_bad(inode))
586 		return -EIO;
587 
588 	inode_lock(inode);
589 
590 	/*
591 	 * Start writeback against all dirty pages of the inode, then
592 	 * wait for all outstanding writes, before sending the FSYNC
593 	 * request.
594 	 */
595 	err = file_write_and_wait_range(file, start, end);
596 	if (err)
597 		goto out;
598 
599 	fuse_sync_writes(inode);
600 
601 	/*
602 	 * Due to implementation of fuse writeback
603 	 * file_write_and_wait_range() does not catch errors.
604 	 * We have to do this directly after fuse_sync_writes()
605 	 */
606 	err = file_check_and_advance_wb_err(file);
607 	if (err)
608 		goto out;
609 
610 	err = sync_inode_metadata(inode, 1);
611 	if (err)
612 		goto out;
613 
614 	if (fc->no_fsync)
615 		goto out;
616 
617 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
618 	if (err == -ENOSYS) {
619 		fc->no_fsync = 1;
620 		err = 0;
621 	}
622 out:
623 	inode_unlock(inode);
624 
625 	return err;
626 }
627 
628 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
629 			 size_t count, int opcode)
630 {
631 	struct fuse_file *ff = file->private_data;
632 	struct fuse_args *args = &ia->ap.args;
633 
634 	ia->read.in.fh = ff->fh;
635 	ia->read.in.offset = pos;
636 	ia->read.in.size = count;
637 	ia->read.in.flags = file->f_flags;
638 	args->opcode = opcode;
639 	args->nodeid = ff->nodeid;
640 	args->in_numargs = 1;
641 	args->in_args[0].size = sizeof(ia->read.in);
642 	args->in_args[0].value = &ia->read.in;
643 	args->out_argvar = true;
644 	args->out_numargs = 1;
645 	args->out_args[0].size = count;
646 }
647 
648 static void fuse_release_user_pages(struct fuse_args_pages *ap,
649 				    bool should_dirty)
650 {
651 	unsigned int i;
652 
653 	for (i = 0; i < ap->num_pages; i++) {
654 		if (should_dirty)
655 			set_page_dirty_lock(ap->pages[i]);
656 		if (ap->args.is_pinned)
657 			unpin_user_page(ap->pages[i]);
658 	}
659 }
660 
661 static void fuse_io_release(struct kref *kref)
662 {
663 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
664 }
665 
666 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
667 {
668 	if (io->err)
669 		return io->err;
670 
671 	if (io->bytes >= 0 && io->write)
672 		return -EIO;
673 
674 	return io->bytes < 0 ? io->size : io->bytes;
675 }
676 
677 /*
678  * In case of short read, the caller sets 'pos' to the position of
679  * actual end of fuse request in IO request. Otherwise, if bytes_requested
680  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
681  *
682  * An example:
683  * User requested DIO read of 64K. It was split into two 32K fuse requests,
684  * both submitted asynchronously. The first of them was ACKed by userspace as
685  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
686  * second request was ACKed as short, e.g. only 1K was read, resulting in
687  * pos == 33K.
688  *
689  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
690  * will be equal to the length of the longest contiguous fragment of
691  * transferred data starting from the beginning of IO request.
692  */
693 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
694 {
695 	int left;
696 
697 	spin_lock(&io->lock);
698 	if (err)
699 		io->err = io->err ? : err;
700 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
701 		io->bytes = pos;
702 
703 	left = --io->reqs;
704 	if (!left && io->blocking)
705 		complete(io->done);
706 	spin_unlock(&io->lock);
707 
708 	if (!left && !io->blocking) {
709 		ssize_t res = fuse_get_res_by_io(io);
710 
711 		if (res >= 0) {
712 			struct inode *inode = file_inode(io->iocb->ki_filp);
713 			struct fuse_conn *fc = get_fuse_conn(inode);
714 			struct fuse_inode *fi = get_fuse_inode(inode);
715 
716 			spin_lock(&fi->lock);
717 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
718 			spin_unlock(&fi->lock);
719 		}
720 
721 		io->iocb->ki_complete(io->iocb, res);
722 	}
723 
724 	kref_put(&io->refcnt, fuse_io_release);
725 }
726 
727 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
728 					  unsigned int npages)
729 {
730 	struct fuse_io_args *ia;
731 
732 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
733 	if (ia) {
734 		ia->io = io;
735 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
736 						&ia->ap.descs);
737 		if (!ia->ap.pages) {
738 			kfree(ia);
739 			ia = NULL;
740 		}
741 	}
742 	return ia;
743 }
744 
745 static void fuse_io_free(struct fuse_io_args *ia)
746 {
747 	kfree(ia->ap.pages);
748 	kfree(ia);
749 }
750 
751 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
752 				  int err)
753 {
754 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
755 	struct fuse_io_priv *io = ia->io;
756 	ssize_t pos = -1;
757 
758 	fuse_release_user_pages(&ia->ap, io->should_dirty);
759 
760 	if (err) {
761 		/* Nothing */
762 	} else if (io->write) {
763 		if (ia->write.out.size > ia->write.in.size) {
764 			err = -EIO;
765 		} else if (ia->write.in.size != ia->write.out.size) {
766 			pos = ia->write.in.offset - io->offset +
767 				ia->write.out.size;
768 		}
769 	} else {
770 		u32 outsize = args->out_args[0].size;
771 
772 		if (ia->read.in.size != outsize)
773 			pos = ia->read.in.offset - io->offset + outsize;
774 	}
775 
776 	fuse_aio_complete(io, err, pos);
777 	fuse_io_free(ia);
778 }
779 
780 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
781 				   struct fuse_io_args *ia, size_t num_bytes)
782 {
783 	ssize_t err;
784 	struct fuse_io_priv *io = ia->io;
785 
786 	spin_lock(&io->lock);
787 	kref_get(&io->refcnt);
788 	io->size += num_bytes;
789 	io->reqs++;
790 	spin_unlock(&io->lock);
791 
792 	ia->ap.args.end = fuse_aio_complete_req;
793 	ia->ap.args.may_block = io->should_dirty;
794 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
795 	if (err)
796 		fuse_aio_complete_req(fm, &ia->ap.args, err);
797 
798 	return num_bytes;
799 }
800 
801 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
802 			      fl_owner_t owner)
803 {
804 	struct file *file = ia->io->iocb->ki_filp;
805 	struct fuse_file *ff = file->private_data;
806 	struct fuse_mount *fm = ff->fm;
807 
808 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
809 	if (owner != NULL) {
810 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
811 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
812 	}
813 
814 	if (ia->io->async)
815 		return fuse_async_req_send(fm, ia, count);
816 
817 	return fuse_simple_request(fm, &ia->ap.args);
818 }
819 
820 static void fuse_read_update_size(struct inode *inode, loff_t size,
821 				  u64 attr_ver)
822 {
823 	struct fuse_conn *fc = get_fuse_conn(inode);
824 	struct fuse_inode *fi = get_fuse_inode(inode);
825 
826 	spin_lock(&fi->lock);
827 	if (attr_ver >= fi->attr_version && size < inode->i_size &&
828 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
829 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
830 		i_size_write(inode, size);
831 	}
832 	spin_unlock(&fi->lock);
833 }
834 
835 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
836 			    struct fuse_args_pages *ap)
837 {
838 	struct fuse_conn *fc = get_fuse_conn(inode);
839 
840 	/*
841 	 * If writeback_cache is enabled, a short read means there's a hole in
842 	 * the file.  Some data after the hole is in page cache, but has not
843 	 * reached the client fs yet.  So the hole is not present there.
844 	 */
845 	if (!fc->writeback_cache) {
846 		loff_t pos = page_offset(ap->pages[0]) + num_read;
847 		fuse_read_update_size(inode, pos, attr_ver);
848 	}
849 }
850 
851 static int fuse_do_readpage(struct file *file, struct page *page)
852 {
853 	struct inode *inode = page->mapping->host;
854 	struct fuse_mount *fm = get_fuse_mount(inode);
855 	loff_t pos = page_offset(page);
856 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
857 	struct fuse_io_args ia = {
858 		.ap.args.page_zeroing = true,
859 		.ap.args.out_pages = true,
860 		.ap.num_pages = 1,
861 		.ap.pages = &page,
862 		.ap.descs = &desc,
863 	};
864 	ssize_t res;
865 	u64 attr_ver;
866 
867 	/*
868 	 * Page writeback can extend beyond the lifetime of the
869 	 * page-cache page, so make sure we read a properly synced
870 	 * page.
871 	 */
872 	fuse_wait_on_page_writeback(inode, page->index);
873 
874 	attr_ver = fuse_get_attr_version(fm->fc);
875 
876 	/* Don't overflow end offset */
877 	if (pos + (desc.length - 1) == LLONG_MAX)
878 		desc.length--;
879 
880 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
881 	res = fuse_simple_request(fm, &ia.ap.args);
882 	if (res < 0)
883 		return res;
884 	/*
885 	 * Short read means EOF.  If file size is larger, truncate it
886 	 */
887 	if (res < desc.length)
888 		fuse_short_read(inode, attr_ver, res, &ia.ap);
889 
890 	SetPageUptodate(page);
891 
892 	return 0;
893 }
894 
895 static int fuse_read_folio(struct file *file, struct folio *folio)
896 {
897 	struct page *page = &folio->page;
898 	struct inode *inode = page->mapping->host;
899 	int err;
900 
901 	err = -EIO;
902 	if (fuse_is_bad(inode))
903 		goto out;
904 
905 	err = fuse_do_readpage(file, page);
906 	fuse_invalidate_atime(inode);
907  out:
908 	unlock_page(page);
909 	return err;
910 }
911 
912 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
913 			       int err)
914 {
915 	int i;
916 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
917 	struct fuse_args_pages *ap = &ia->ap;
918 	size_t count = ia->read.in.size;
919 	size_t num_read = args->out_args[0].size;
920 	struct address_space *mapping = NULL;
921 
922 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
923 		mapping = ap->pages[i]->mapping;
924 
925 	if (mapping) {
926 		struct inode *inode = mapping->host;
927 
928 		/*
929 		 * Short read means EOF. If file size is larger, truncate it
930 		 */
931 		if (!err && num_read < count)
932 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
933 
934 		fuse_invalidate_atime(inode);
935 	}
936 
937 	for (i = 0; i < ap->num_pages; i++) {
938 		struct page *page = ap->pages[i];
939 
940 		if (!err)
941 			SetPageUptodate(page);
942 		else
943 			SetPageError(page);
944 		unlock_page(page);
945 		put_page(page);
946 	}
947 	if (ia->ff)
948 		fuse_file_put(ia->ff, false);
949 
950 	fuse_io_free(ia);
951 }
952 
953 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
954 {
955 	struct fuse_file *ff = file->private_data;
956 	struct fuse_mount *fm = ff->fm;
957 	struct fuse_args_pages *ap = &ia->ap;
958 	loff_t pos = page_offset(ap->pages[0]);
959 	size_t count = ap->num_pages << PAGE_SHIFT;
960 	ssize_t res;
961 	int err;
962 
963 	ap->args.out_pages = true;
964 	ap->args.page_zeroing = true;
965 	ap->args.page_replace = true;
966 
967 	/* Don't overflow end offset */
968 	if (pos + (count - 1) == LLONG_MAX) {
969 		count--;
970 		ap->descs[ap->num_pages - 1].length--;
971 	}
972 	WARN_ON((loff_t) (pos + count) < 0);
973 
974 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
975 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
976 	if (fm->fc->async_read) {
977 		ia->ff = fuse_file_get(ff);
978 		ap->args.end = fuse_readpages_end;
979 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
980 		if (!err)
981 			return;
982 	} else {
983 		res = fuse_simple_request(fm, &ap->args);
984 		err = res < 0 ? res : 0;
985 	}
986 	fuse_readpages_end(fm, &ap->args, err);
987 }
988 
989 static void fuse_readahead(struct readahead_control *rac)
990 {
991 	struct inode *inode = rac->mapping->host;
992 	struct fuse_conn *fc = get_fuse_conn(inode);
993 	unsigned int i, max_pages, nr_pages = 0;
994 
995 	if (fuse_is_bad(inode))
996 		return;
997 
998 	max_pages = min_t(unsigned int, fc->max_pages,
999 			fc->max_read / PAGE_SIZE);
1000 
1001 	for (;;) {
1002 		struct fuse_io_args *ia;
1003 		struct fuse_args_pages *ap;
1004 
1005 		if (fc->num_background >= fc->congestion_threshold &&
1006 		    rac->ra->async_size >= readahead_count(rac))
1007 			/*
1008 			 * Congested and only async pages left, so skip the
1009 			 * rest.
1010 			 */
1011 			break;
1012 
1013 		nr_pages = readahead_count(rac) - nr_pages;
1014 		if (nr_pages > max_pages)
1015 			nr_pages = max_pages;
1016 		if (nr_pages == 0)
1017 			break;
1018 		ia = fuse_io_alloc(NULL, nr_pages);
1019 		if (!ia)
1020 			return;
1021 		ap = &ia->ap;
1022 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
1023 		for (i = 0; i < nr_pages; i++) {
1024 			fuse_wait_on_page_writeback(inode,
1025 						    readahead_index(rac) + i);
1026 			ap->descs[i].length = PAGE_SIZE;
1027 		}
1028 		ap->num_pages = nr_pages;
1029 		fuse_send_readpages(ia, rac->file);
1030 	}
1031 }
1032 
1033 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1034 {
1035 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1036 	struct fuse_conn *fc = get_fuse_conn(inode);
1037 
1038 	/*
1039 	 * In auto invalidate mode, always update attributes on read.
1040 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1041 	 * i_size is up to date).
1042 	 */
1043 	if (fc->auto_inval_data ||
1044 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1045 		int err;
1046 		err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1047 		if (err)
1048 			return err;
1049 	}
1050 
1051 	return generic_file_read_iter(iocb, to);
1052 }
1053 
1054 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1055 				 loff_t pos, size_t count)
1056 {
1057 	struct fuse_args *args = &ia->ap.args;
1058 
1059 	ia->write.in.fh = ff->fh;
1060 	ia->write.in.offset = pos;
1061 	ia->write.in.size = count;
1062 	args->opcode = FUSE_WRITE;
1063 	args->nodeid = ff->nodeid;
1064 	args->in_numargs = 2;
1065 	if (ff->fm->fc->minor < 9)
1066 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1067 	else
1068 		args->in_args[0].size = sizeof(ia->write.in);
1069 	args->in_args[0].value = &ia->write.in;
1070 	args->in_args[1].size = count;
1071 	args->out_numargs = 1;
1072 	args->out_args[0].size = sizeof(ia->write.out);
1073 	args->out_args[0].value = &ia->write.out;
1074 }
1075 
1076 static unsigned int fuse_write_flags(struct kiocb *iocb)
1077 {
1078 	unsigned int flags = iocb->ki_filp->f_flags;
1079 
1080 	if (iocb_is_dsync(iocb))
1081 		flags |= O_DSYNC;
1082 	if (iocb->ki_flags & IOCB_SYNC)
1083 		flags |= O_SYNC;
1084 
1085 	return flags;
1086 }
1087 
1088 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1089 			       size_t count, fl_owner_t owner)
1090 {
1091 	struct kiocb *iocb = ia->io->iocb;
1092 	struct file *file = iocb->ki_filp;
1093 	struct fuse_file *ff = file->private_data;
1094 	struct fuse_mount *fm = ff->fm;
1095 	struct fuse_write_in *inarg = &ia->write.in;
1096 	ssize_t err;
1097 
1098 	fuse_write_args_fill(ia, ff, pos, count);
1099 	inarg->flags = fuse_write_flags(iocb);
1100 	if (owner != NULL) {
1101 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1102 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1103 	}
1104 
1105 	if (ia->io->async)
1106 		return fuse_async_req_send(fm, ia, count);
1107 
1108 	err = fuse_simple_request(fm, &ia->ap.args);
1109 	if (!err && ia->write.out.size > count)
1110 		err = -EIO;
1111 
1112 	return err ?: ia->write.out.size;
1113 }
1114 
1115 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1116 {
1117 	struct fuse_conn *fc = get_fuse_conn(inode);
1118 	struct fuse_inode *fi = get_fuse_inode(inode);
1119 	bool ret = false;
1120 
1121 	spin_lock(&fi->lock);
1122 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1123 	if (written > 0 && pos > inode->i_size) {
1124 		i_size_write(inode, pos);
1125 		ret = true;
1126 	}
1127 	spin_unlock(&fi->lock);
1128 
1129 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1130 
1131 	return ret;
1132 }
1133 
1134 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1135 				     struct kiocb *iocb, struct inode *inode,
1136 				     loff_t pos, size_t count)
1137 {
1138 	struct fuse_args_pages *ap = &ia->ap;
1139 	struct file *file = iocb->ki_filp;
1140 	struct fuse_file *ff = file->private_data;
1141 	struct fuse_mount *fm = ff->fm;
1142 	unsigned int offset, i;
1143 	bool short_write;
1144 	int err;
1145 
1146 	for (i = 0; i < ap->num_pages; i++)
1147 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1148 
1149 	fuse_write_args_fill(ia, ff, pos, count);
1150 	ia->write.in.flags = fuse_write_flags(iocb);
1151 	if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1152 		ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1153 
1154 	err = fuse_simple_request(fm, &ap->args);
1155 	if (!err && ia->write.out.size > count)
1156 		err = -EIO;
1157 
1158 	short_write = ia->write.out.size < count;
1159 	offset = ap->descs[0].offset;
1160 	count = ia->write.out.size;
1161 	for (i = 0; i < ap->num_pages; i++) {
1162 		struct page *page = ap->pages[i];
1163 
1164 		if (err) {
1165 			ClearPageUptodate(page);
1166 		} else {
1167 			if (count >= PAGE_SIZE - offset)
1168 				count -= PAGE_SIZE - offset;
1169 			else {
1170 				if (short_write)
1171 					ClearPageUptodate(page);
1172 				count = 0;
1173 			}
1174 			offset = 0;
1175 		}
1176 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1177 			unlock_page(page);
1178 		put_page(page);
1179 	}
1180 
1181 	return err;
1182 }
1183 
1184 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1185 				     struct address_space *mapping,
1186 				     struct iov_iter *ii, loff_t pos,
1187 				     unsigned int max_pages)
1188 {
1189 	struct fuse_args_pages *ap = &ia->ap;
1190 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1191 	unsigned offset = pos & (PAGE_SIZE - 1);
1192 	size_t count = 0;
1193 	int err;
1194 
1195 	ap->args.in_pages = true;
1196 	ap->descs[0].offset = offset;
1197 
1198 	do {
1199 		size_t tmp;
1200 		struct page *page;
1201 		pgoff_t index = pos >> PAGE_SHIFT;
1202 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1203 				     iov_iter_count(ii));
1204 
1205 		bytes = min_t(size_t, bytes, fc->max_write - count);
1206 
1207  again:
1208 		err = -EFAULT;
1209 		if (fault_in_iov_iter_readable(ii, bytes))
1210 			break;
1211 
1212 		err = -ENOMEM;
1213 		page = grab_cache_page_write_begin(mapping, index);
1214 		if (!page)
1215 			break;
1216 
1217 		if (mapping_writably_mapped(mapping))
1218 			flush_dcache_page(page);
1219 
1220 		tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1221 		flush_dcache_page(page);
1222 
1223 		if (!tmp) {
1224 			unlock_page(page);
1225 			put_page(page);
1226 			goto again;
1227 		}
1228 
1229 		err = 0;
1230 		ap->pages[ap->num_pages] = page;
1231 		ap->descs[ap->num_pages].length = tmp;
1232 		ap->num_pages++;
1233 
1234 		count += tmp;
1235 		pos += tmp;
1236 		offset += tmp;
1237 		if (offset == PAGE_SIZE)
1238 			offset = 0;
1239 
1240 		/* If we copied full page, mark it uptodate */
1241 		if (tmp == PAGE_SIZE)
1242 			SetPageUptodate(page);
1243 
1244 		if (PageUptodate(page)) {
1245 			unlock_page(page);
1246 		} else {
1247 			ia->write.page_locked = true;
1248 			break;
1249 		}
1250 		if (!fc->big_writes)
1251 			break;
1252 	} while (iov_iter_count(ii) && count < fc->max_write &&
1253 		 ap->num_pages < max_pages && offset == 0);
1254 
1255 	return count > 0 ? count : err;
1256 }
1257 
1258 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1259 				     unsigned int max_pages)
1260 {
1261 	return min_t(unsigned int,
1262 		     ((pos + len - 1) >> PAGE_SHIFT) -
1263 		     (pos >> PAGE_SHIFT) + 1,
1264 		     max_pages);
1265 }
1266 
1267 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1268 {
1269 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1270 	struct inode *inode = mapping->host;
1271 	struct fuse_conn *fc = get_fuse_conn(inode);
1272 	struct fuse_inode *fi = get_fuse_inode(inode);
1273 	loff_t pos = iocb->ki_pos;
1274 	int err = 0;
1275 	ssize_t res = 0;
1276 
1277 	if (inode->i_size < pos + iov_iter_count(ii))
1278 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1279 
1280 	do {
1281 		ssize_t count;
1282 		struct fuse_io_args ia = {};
1283 		struct fuse_args_pages *ap = &ia.ap;
1284 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1285 						      fc->max_pages);
1286 
1287 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1288 		if (!ap->pages) {
1289 			err = -ENOMEM;
1290 			break;
1291 		}
1292 
1293 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1294 		if (count <= 0) {
1295 			err = count;
1296 		} else {
1297 			err = fuse_send_write_pages(&ia, iocb, inode,
1298 						    pos, count);
1299 			if (!err) {
1300 				size_t num_written = ia.write.out.size;
1301 
1302 				res += num_written;
1303 				pos += num_written;
1304 
1305 				/* break out of the loop on short write */
1306 				if (num_written != count)
1307 					err = -EIO;
1308 			}
1309 		}
1310 		kfree(ap->pages);
1311 	} while (!err && iov_iter_count(ii));
1312 
1313 	fuse_write_update_attr(inode, pos, res);
1314 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1315 
1316 	if (!res)
1317 		return err;
1318 	iocb->ki_pos += res;
1319 	return res;
1320 }
1321 
1322 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter)
1323 {
1324 	struct inode *inode = file_inode(iocb->ki_filp);
1325 
1326 	return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1327 }
1328 
1329 /*
1330  * @return true if an exclusive lock for direct IO writes is needed
1331  */
1332 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from)
1333 {
1334 	struct file *file = iocb->ki_filp;
1335 	struct fuse_file *ff = file->private_data;
1336 	struct inode *inode = file_inode(iocb->ki_filp);
1337 	struct fuse_inode *fi = get_fuse_inode(inode);
1338 
1339 	/* Server side has to advise that it supports parallel dio writes. */
1340 	if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES))
1341 		return true;
1342 
1343 	/*
1344 	 * Append will need to know the eventual EOF - always needs an
1345 	 * exclusive lock.
1346 	 */
1347 	if (iocb->ki_flags & IOCB_APPEND)
1348 		return true;
1349 
1350 	/* shared locks are not allowed with parallel page cache IO */
1351 	if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state))
1352 		return false;
1353 
1354 	/* Parallel dio beyond EOF is not supported, at least for now. */
1355 	if (fuse_io_past_eof(iocb, from))
1356 		return true;
1357 
1358 	return false;
1359 }
1360 
1361 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from,
1362 			  bool *exclusive)
1363 {
1364 	struct inode *inode = file_inode(iocb->ki_filp);
1365 	struct fuse_inode *fi = get_fuse_inode(inode);
1366 
1367 	*exclusive = fuse_dio_wr_exclusive_lock(iocb, from);
1368 	if (*exclusive) {
1369 		inode_lock(inode);
1370 	} else {
1371 		inode_lock_shared(inode);
1372 		/*
1373 		 * New parallal dio allowed only if inode is not in caching
1374 		 * mode and denies new opens in caching mode. This check
1375 		 * should be performed only after taking shared inode lock.
1376 		 * Previous past eof check was without inode lock and might
1377 		 * have raced, so check it again.
1378 		 */
1379 		if (fuse_io_past_eof(iocb, from) ||
1380 		    fuse_inode_uncached_io_start(fi, NULL) != 0) {
1381 			inode_unlock_shared(inode);
1382 			inode_lock(inode);
1383 			*exclusive = true;
1384 		}
1385 	}
1386 }
1387 
1388 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive)
1389 {
1390 	struct inode *inode = file_inode(iocb->ki_filp);
1391 	struct fuse_inode *fi = get_fuse_inode(inode);
1392 
1393 	if (exclusive) {
1394 		inode_unlock(inode);
1395 	} else {
1396 		/* Allow opens in caching mode after last parallel dio end */
1397 		fuse_inode_uncached_io_end(fi);
1398 		inode_unlock_shared(inode);
1399 	}
1400 }
1401 
1402 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1403 {
1404 	struct file *file = iocb->ki_filp;
1405 	struct address_space *mapping = file->f_mapping;
1406 	ssize_t written = 0;
1407 	struct inode *inode = mapping->host;
1408 	ssize_t err, count;
1409 	struct fuse_conn *fc = get_fuse_conn(inode);
1410 
1411 	if (fc->writeback_cache) {
1412 		/* Update size (EOF optimization) and mode (SUID clearing) */
1413 		err = fuse_update_attributes(mapping->host, file,
1414 					     STATX_SIZE | STATX_MODE);
1415 		if (err)
1416 			return err;
1417 
1418 		if (fc->handle_killpriv_v2 &&
1419 		    setattr_should_drop_suidgid(&nop_mnt_idmap,
1420 						file_inode(file))) {
1421 			goto writethrough;
1422 		}
1423 
1424 		return generic_file_write_iter(iocb, from);
1425 	}
1426 
1427 writethrough:
1428 	inode_lock(inode);
1429 
1430 	err = count = generic_write_checks(iocb, from);
1431 	if (err <= 0)
1432 		goto out;
1433 
1434 	task_io_account_write(count);
1435 
1436 	err = file_remove_privs(file);
1437 	if (err)
1438 		goto out;
1439 
1440 	err = file_update_time(file);
1441 	if (err)
1442 		goto out;
1443 
1444 	if (iocb->ki_flags & IOCB_DIRECT) {
1445 		written = generic_file_direct_write(iocb, from);
1446 		if (written < 0 || !iov_iter_count(from))
1447 			goto out;
1448 		written = direct_write_fallback(iocb, from, written,
1449 				fuse_perform_write(iocb, from));
1450 	} else {
1451 		written = fuse_perform_write(iocb, from);
1452 	}
1453 out:
1454 	inode_unlock(inode);
1455 	if (written > 0)
1456 		written = generic_write_sync(iocb, written);
1457 
1458 	return written ? written : err;
1459 }
1460 
1461 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1462 {
1463 	return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1464 }
1465 
1466 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1467 					size_t max_size)
1468 {
1469 	return min(iov_iter_single_seg_count(ii), max_size);
1470 }
1471 
1472 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1473 			       size_t *nbytesp, int write,
1474 			       unsigned int max_pages)
1475 {
1476 	size_t nbytes = 0;  /* # bytes already packed in req */
1477 	ssize_t ret = 0;
1478 
1479 	/* Special case for kernel I/O: can copy directly into the buffer */
1480 	if (iov_iter_is_kvec(ii)) {
1481 		unsigned long user_addr = fuse_get_user_addr(ii);
1482 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1483 
1484 		if (write)
1485 			ap->args.in_args[1].value = (void *) user_addr;
1486 		else
1487 			ap->args.out_args[0].value = (void *) user_addr;
1488 
1489 		iov_iter_advance(ii, frag_size);
1490 		*nbytesp = frag_size;
1491 		return 0;
1492 	}
1493 
1494 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1495 		unsigned npages;
1496 		size_t start;
1497 		struct page **pt_pages;
1498 
1499 		pt_pages = &ap->pages[ap->num_pages];
1500 		ret = iov_iter_extract_pages(ii, &pt_pages,
1501 					     *nbytesp - nbytes,
1502 					     max_pages - ap->num_pages,
1503 					     0, &start);
1504 		if (ret < 0)
1505 			break;
1506 
1507 		nbytes += ret;
1508 
1509 		ret += start;
1510 		npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1511 
1512 		ap->descs[ap->num_pages].offset = start;
1513 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1514 
1515 		ap->num_pages += npages;
1516 		ap->descs[ap->num_pages - 1].length -=
1517 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1518 	}
1519 
1520 	ap->args.is_pinned = iov_iter_extract_will_pin(ii);
1521 	ap->args.user_pages = true;
1522 	if (write)
1523 		ap->args.in_pages = true;
1524 	else
1525 		ap->args.out_pages = true;
1526 
1527 	*nbytesp = nbytes;
1528 
1529 	return ret < 0 ? ret : 0;
1530 }
1531 
1532 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1533 		       loff_t *ppos, int flags)
1534 {
1535 	int write = flags & FUSE_DIO_WRITE;
1536 	int cuse = flags & FUSE_DIO_CUSE;
1537 	struct file *file = io->iocb->ki_filp;
1538 	struct address_space *mapping = file->f_mapping;
1539 	struct inode *inode = mapping->host;
1540 	struct fuse_file *ff = file->private_data;
1541 	struct fuse_conn *fc = ff->fm->fc;
1542 	size_t nmax = write ? fc->max_write : fc->max_read;
1543 	loff_t pos = *ppos;
1544 	size_t count = iov_iter_count(iter);
1545 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1546 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1547 	ssize_t res = 0;
1548 	int err = 0;
1549 	struct fuse_io_args *ia;
1550 	unsigned int max_pages;
1551 	bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO;
1552 
1553 	max_pages = iov_iter_npages(iter, fc->max_pages);
1554 	ia = fuse_io_alloc(io, max_pages);
1555 	if (!ia)
1556 		return -ENOMEM;
1557 
1558 	if (fopen_direct_io && fc->direct_io_allow_mmap) {
1559 		res = filemap_write_and_wait_range(mapping, pos, pos + count - 1);
1560 		if (res) {
1561 			fuse_io_free(ia);
1562 			return res;
1563 		}
1564 	}
1565 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1566 		if (!write)
1567 			inode_lock(inode);
1568 		fuse_sync_writes(inode);
1569 		if (!write)
1570 			inode_unlock(inode);
1571 	}
1572 
1573 	if (fopen_direct_io && write) {
1574 		res = invalidate_inode_pages2_range(mapping, idx_from, idx_to);
1575 		if (res) {
1576 			fuse_io_free(ia);
1577 			return res;
1578 		}
1579 	}
1580 
1581 	io->should_dirty = !write && user_backed_iter(iter);
1582 	while (count) {
1583 		ssize_t nres;
1584 		fl_owner_t owner = current->files;
1585 		size_t nbytes = min(count, nmax);
1586 
1587 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1588 					  max_pages);
1589 		if (err && !nbytes)
1590 			break;
1591 
1592 		if (write) {
1593 			if (!capable(CAP_FSETID))
1594 				ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1595 
1596 			nres = fuse_send_write(ia, pos, nbytes, owner);
1597 		} else {
1598 			nres = fuse_send_read(ia, pos, nbytes, owner);
1599 		}
1600 
1601 		if (!io->async || nres < 0) {
1602 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1603 			fuse_io_free(ia);
1604 		}
1605 		ia = NULL;
1606 		if (nres < 0) {
1607 			iov_iter_revert(iter, nbytes);
1608 			err = nres;
1609 			break;
1610 		}
1611 		WARN_ON(nres > nbytes);
1612 
1613 		count -= nres;
1614 		res += nres;
1615 		pos += nres;
1616 		if (nres != nbytes) {
1617 			iov_iter_revert(iter, nbytes - nres);
1618 			break;
1619 		}
1620 		if (count) {
1621 			max_pages = iov_iter_npages(iter, fc->max_pages);
1622 			ia = fuse_io_alloc(io, max_pages);
1623 			if (!ia)
1624 				break;
1625 		}
1626 	}
1627 	if (ia)
1628 		fuse_io_free(ia);
1629 	if (res > 0)
1630 		*ppos = pos;
1631 
1632 	return res > 0 ? res : err;
1633 }
1634 EXPORT_SYMBOL_GPL(fuse_direct_io);
1635 
1636 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1637 				  struct iov_iter *iter,
1638 				  loff_t *ppos)
1639 {
1640 	ssize_t res;
1641 	struct inode *inode = file_inode(io->iocb->ki_filp);
1642 
1643 	res = fuse_direct_io(io, iter, ppos, 0);
1644 
1645 	fuse_invalidate_atime(inode);
1646 
1647 	return res;
1648 }
1649 
1650 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1651 
1652 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1653 {
1654 	ssize_t res;
1655 
1656 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1657 		res = fuse_direct_IO(iocb, to);
1658 	} else {
1659 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1660 
1661 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1662 	}
1663 
1664 	return res;
1665 }
1666 
1667 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1668 {
1669 	struct inode *inode = file_inode(iocb->ki_filp);
1670 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1671 	ssize_t res;
1672 	bool exclusive;
1673 
1674 	fuse_dio_lock(iocb, from, &exclusive);
1675 	res = generic_write_checks(iocb, from);
1676 	if (res > 0) {
1677 		task_io_account_write(res);
1678 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1679 			res = fuse_direct_IO(iocb, from);
1680 		} else {
1681 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1682 					     FUSE_DIO_WRITE);
1683 			fuse_write_update_attr(inode, iocb->ki_pos, res);
1684 		}
1685 	}
1686 	fuse_dio_unlock(iocb, exclusive);
1687 
1688 	return res;
1689 }
1690 
1691 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1692 {
1693 	struct file *file = iocb->ki_filp;
1694 	struct fuse_file *ff = file->private_data;
1695 	struct inode *inode = file_inode(file);
1696 
1697 	if (fuse_is_bad(inode))
1698 		return -EIO;
1699 
1700 	if (FUSE_IS_DAX(inode))
1701 		return fuse_dax_read_iter(iocb, to);
1702 
1703 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1704 	if (ff->open_flags & FOPEN_DIRECT_IO)
1705 		return fuse_direct_read_iter(iocb, to);
1706 	else if (fuse_file_passthrough(ff))
1707 		return fuse_passthrough_read_iter(iocb, to);
1708 	else
1709 		return fuse_cache_read_iter(iocb, to);
1710 }
1711 
1712 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1713 {
1714 	struct file *file = iocb->ki_filp;
1715 	struct fuse_file *ff = file->private_data;
1716 	struct inode *inode = file_inode(file);
1717 
1718 	if (fuse_is_bad(inode))
1719 		return -EIO;
1720 
1721 	if (FUSE_IS_DAX(inode))
1722 		return fuse_dax_write_iter(iocb, from);
1723 
1724 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1725 	if (ff->open_flags & FOPEN_DIRECT_IO)
1726 		return fuse_direct_write_iter(iocb, from);
1727 	else if (fuse_file_passthrough(ff))
1728 		return fuse_passthrough_write_iter(iocb, from);
1729 	else
1730 		return fuse_cache_write_iter(iocb, from);
1731 }
1732 
1733 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos,
1734 				struct pipe_inode_info *pipe, size_t len,
1735 				unsigned int flags)
1736 {
1737 	struct fuse_file *ff = in->private_data;
1738 
1739 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1740 	if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1741 		return fuse_passthrough_splice_read(in, ppos, pipe, len, flags);
1742 	else
1743 		return filemap_splice_read(in, ppos, pipe, len, flags);
1744 }
1745 
1746 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out,
1747 				 loff_t *ppos, size_t len, unsigned int flags)
1748 {
1749 	struct fuse_file *ff = out->private_data;
1750 
1751 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1752 	if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1753 		return fuse_passthrough_splice_write(pipe, out, ppos, len, flags);
1754 	else
1755 		return iter_file_splice_write(pipe, out, ppos, len, flags);
1756 }
1757 
1758 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1759 {
1760 	struct fuse_args_pages *ap = &wpa->ia.ap;
1761 	int i;
1762 
1763 	if (wpa->bucket)
1764 		fuse_sync_bucket_dec(wpa->bucket);
1765 
1766 	for (i = 0; i < ap->num_pages; i++)
1767 		__free_page(ap->pages[i]);
1768 
1769 	if (wpa->ia.ff)
1770 		fuse_file_put(wpa->ia.ff, false);
1771 
1772 	kfree(ap->pages);
1773 	kfree(wpa);
1774 }
1775 
1776 static void fuse_writepage_finish(struct fuse_mount *fm,
1777 				  struct fuse_writepage_args *wpa)
1778 {
1779 	struct fuse_args_pages *ap = &wpa->ia.ap;
1780 	struct inode *inode = wpa->inode;
1781 	struct fuse_inode *fi = get_fuse_inode(inode);
1782 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1783 	int i;
1784 
1785 	for (i = 0; i < ap->num_pages; i++) {
1786 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1787 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1788 		wb_writeout_inc(&bdi->wb);
1789 	}
1790 	wake_up(&fi->page_waitq);
1791 }
1792 
1793 /* Called under fi->lock, may release and reacquire it */
1794 static void fuse_send_writepage(struct fuse_mount *fm,
1795 				struct fuse_writepage_args *wpa, loff_t size)
1796 __releases(fi->lock)
1797 __acquires(fi->lock)
1798 {
1799 	struct fuse_writepage_args *aux, *next;
1800 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1801 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1802 	struct fuse_args *args = &wpa->ia.ap.args;
1803 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1804 	int err;
1805 
1806 	fi->writectr++;
1807 	if (inarg->offset + data_size <= size) {
1808 		inarg->size = data_size;
1809 	} else if (inarg->offset < size) {
1810 		inarg->size = size - inarg->offset;
1811 	} else {
1812 		/* Got truncated off completely */
1813 		goto out_free;
1814 	}
1815 
1816 	args->in_args[1].size = inarg->size;
1817 	args->force = true;
1818 	args->nocreds = true;
1819 
1820 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1821 	if (err == -ENOMEM) {
1822 		spin_unlock(&fi->lock);
1823 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1824 		spin_lock(&fi->lock);
1825 	}
1826 
1827 	/* Fails on broken connection only */
1828 	if (unlikely(err))
1829 		goto out_free;
1830 
1831 	return;
1832 
1833  out_free:
1834 	fi->writectr--;
1835 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1836 	fuse_writepage_finish(fm, wpa);
1837 	spin_unlock(&fi->lock);
1838 
1839 	/* After fuse_writepage_finish() aux request list is private */
1840 	for (aux = wpa->next; aux; aux = next) {
1841 		next = aux->next;
1842 		aux->next = NULL;
1843 		fuse_writepage_free(aux);
1844 	}
1845 
1846 	fuse_writepage_free(wpa);
1847 	spin_lock(&fi->lock);
1848 }
1849 
1850 /*
1851  * If fi->writectr is positive (no truncate or fsync going on) send
1852  * all queued writepage requests.
1853  *
1854  * Called with fi->lock
1855  */
1856 void fuse_flush_writepages(struct inode *inode)
1857 __releases(fi->lock)
1858 __acquires(fi->lock)
1859 {
1860 	struct fuse_mount *fm = get_fuse_mount(inode);
1861 	struct fuse_inode *fi = get_fuse_inode(inode);
1862 	loff_t crop = i_size_read(inode);
1863 	struct fuse_writepage_args *wpa;
1864 
1865 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1866 		wpa = list_entry(fi->queued_writes.next,
1867 				 struct fuse_writepage_args, queue_entry);
1868 		list_del_init(&wpa->queue_entry);
1869 		fuse_send_writepage(fm, wpa, crop);
1870 	}
1871 }
1872 
1873 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1874 						struct fuse_writepage_args *wpa)
1875 {
1876 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1877 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1878 	struct rb_node **p = &root->rb_node;
1879 	struct rb_node  *parent = NULL;
1880 
1881 	WARN_ON(!wpa->ia.ap.num_pages);
1882 	while (*p) {
1883 		struct fuse_writepage_args *curr;
1884 		pgoff_t curr_index;
1885 
1886 		parent = *p;
1887 		curr = rb_entry(parent, struct fuse_writepage_args,
1888 				writepages_entry);
1889 		WARN_ON(curr->inode != wpa->inode);
1890 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1891 
1892 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1893 			p = &(*p)->rb_right;
1894 		else if (idx_to < curr_index)
1895 			p = &(*p)->rb_left;
1896 		else
1897 			return curr;
1898 	}
1899 
1900 	rb_link_node(&wpa->writepages_entry, parent, p);
1901 	rb_insert_color(&wpa->writepages_entry, root);
1902 	return NULL;
1903 }
1904 
1905 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1906 {
1907 	WARN_ON(fuse_insert_writeback(root, wpa));
1908 }
1909 
1910 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1911 			       int error)
1912 {
1913 	struct fuse_writepage_args *wpa =
1914 		container_of(args, typeof(*wpa), ia.ap.args);
1915 	struct inode *inode = wpa->inode;
1916 	struct fuse_inode *fi = get_fuse_inode(inode);
1917 	struct fuse_conn *fc = get_fuse_conn(inode);
1918 
1919 	mapping_set_error(inode->i_mapping, error);
1920 	/*
1921 	 * A writeback finished and this might have updated mtime/ctime on
1922 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1923 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1924 	 * is enabled, we trust local ctime/mtime.
1925 	 */
1926 	if (!fc->writeback_cache)
1927 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1928 	spin_lock(&fi->lock);
1929 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1930 	while (wpa->next) {
1931 		struct fuse_mount *fm = get_fuse_mount(inode);
1932 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1933 		struct fuse_writepage_args *next = wpa->next;
1934 
1935 		wpa->next = next->next;
1936 		next->next = NULL;
1937 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1938 		tree_insert(&fi->writepages, next);
1939 
1940 		/*
1941 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1942 		 * based on primary request size.
1943 		 *
1944 		 * 1st case (trivial): there are no concurrent activities using
1945 		 * fuse_set/release_nowrite.  Then we're on safe side because
1946 		 * fuse_flush_writepages() would call fuse_send_writepage()
1947 		 * anyway.
1948 		 *
1949 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1950 		 * now for completion of all in-flight requests.  This happens
1951 		 * rarely and no more than once per page, so this should be
1952 		 * okay.
1953 		 *
1954 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1955 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1956 		 * that fuse_set_nowrite returned implies that all in-flight
1957 		 * requests were completed along with all of their secondary
1958 		 * requests.  Further primary requests are blocked by negative
1959 		 * writectr.  Hence there cannot be any in-flight requests and
1960 		 * no invocations of fuse_writepage_end() while we're in
1961 		 * fuse_set_nowrite..fuse_release_nowrite section.
1962 		 */
1963 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1964 	}
1965 	fi->writectr--;
1966 	fuse_writepage_finish(fm, wpa);
1967 	spin_unlock(&fi->lock);
1968 	fuse_writepage_free(wpa);
1969 }
1970 
1971 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1972 {
1973 	struct fuse_file *ff;
1974 
1975 	spin_lock(&fi->lock);
1976 	ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1977 				      write_entry);
1978 	if (ff)
1979 		fuse_file_get(ff);
1980 	spin_unlock(&fi->lock);
1981 
1982 	return ff;
1983 }
1984 
1985 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1986 {
1987 	struct fuse_file *ff = __fuse_write_file_get(fi);
1988 	WARN_ON(!ff);
1989 	return ff;
1990 }
1991 
1992 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1993 {
1994 	struct fuse_inode *fi = get_fuse_inode(inode);
1995 	struct fuse_file *ff;
1996 	int err;
1997 
1998 	/*
1999 	 * Inode is always written before the last reference is dropped and
2000 	 * hence this should not be reached from reclaim.
2001 	 *
2002 	 * Writing back the inode from reclaim can deadlock if the request
2003 	 * processing itself needs an allocation.  Allocations triggering
2004 	 * reclaim while serving a request can't be prevented, because it can
2005 	 * involve any number of unrelated userspace processes.
2006 	 */
2007 	WARN_ON(wbc->for_reclaim);
2008 
2009 	ff = __fuse_write_file_get(fi);
2010 	err = fuse_flush_times(inode, ff);
2011 	if (ff)
2012 		fuse_file_put(ff, false);
2013 
2014 	return err;
2015 }
2016 
2017 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
2018 {
2019 	struct fuse_writepage_args *wpa;
2020 	struct fuse_args_pages *ap;
2021 
2022 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
2023 	if (wpa) {
2024 		ap = &wpa->ia.ap;
2025 		ap->num_pages = 0;
2026 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
2027 		if (!ap->pages) {
2028 			kfree(wpa);
2029 			wpa = NULL;
2030 		}
2031 	}
2032 	return wpa;
2033 
2034 }
2035 
2036 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
2037 					 struct fuse_writepage_args *wpa)
2038 {
2039 	if (!fc->sync_fs)
2040 		return;
2041 
2042 	rcu_read_lock();
2043 	/* Prevent resurrection of dead bucket in unlikely race with syncfs */
2044 	do {
2045 		wpa->bucket = rcu_dereference(fc->curr_bucket);
2046 	} while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
2047 	rcu_read_unlock();
2048 }
2049 
2050 static int fuse_writepage_locked(struct folio *folio)
2051 {
2052 	struct address_space *mapping = folio->mapping;
2053 	struct inode *inode = mapping->host;
2054 	struct fuse_conn *fc = get_fuse_conn(inode);
2055 	struct fuse_inode *fi = get_fuse_inode(inode);
2056 	struct fuse_writepage_args *wpa;
2057 	struct fuse_args_pages *ap;
2058 	struct folio *tmp_folio;
2059 	int error = -ENOMEM;
2060 
2061 	folio_start_writeback(folio);
2062 
2063 	wpa = fuse_writepage_args_alloc();
2064 	if (!wpa)
2065 		goto err;
2066 	ap = &wpa->ia.ap;
2067 
2068 	tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2069 	if (!tmp_folio)
2070 		goto err_free;
2071 
2072 	error = -EIO;
2073 	wpa->ia.ff = fuse_write_file_get(fi);
2074 	if (!wpa->ia.ff)
2075 		goto err_nofile;
2076 
2077 	fuse_writepage_add_to_bucket(fc, wpa);
2078 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, folio_pos(folio), 0);
2079 
2080 	folio_copy(tmp_folio, folio);
2081 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2082 	wpa->next = NULL;
2083 	ap->args.in_pages = true;
2084 	ap->num_pages = 1;
2085 	ap->pages[0] = &tmp_folio->page;
2086 	ap->descs[0].offset = 0;
2087 	ap->descs[0].length = PAGE_SIZE;
2088 	ap->args.end = fuse_writepage_end;
2089 	wpa->inode = inode;
2090 
2091 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2092 	node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP);
2093 
2094 	spin_lock(&fi->lock);
2095 	tree_insert(&fi->writepages, wpa);
2096 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2097 	fuse_flush_writepages(inode);
2098 	spin_unlock(&fi->lock);
2099 
2100 	folio_end_writeback(folio);
2101 
2102 	return 0;
2103 
2104 err_nofile:
2105 	folio_put(tmp_folio);
2106 err_free:
2107 	kfree(wpa);
2108 err:
2109 	mapping_set_error(folio->mapping, error);
2110 	folio_end_writeback(folio);
2111 	return error;
2112 }
2113 
2114 struct fuse_fill_wb_data {
2115 	struct fuse_writepage_args *wpa;
2116 	struct fuse_file *ff;
2117 	struct inode *inode;
2118 	struct page **orig_pages;
2119 	unsigned int max_pages;
2120 };
2121 
2122 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2123 {
2124 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
2125 	struct fuse_conn *fc = get_fuse_conn(data->inode);
2126 	struct page **pages;
2127 	struct fuse_page_desc *descs;
2128 	unsigned int npages = min_t(unsigned int,
2129 				    max_t(unsigned int, data->max_pages * 2,
2130 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2131 				    fc->max_pages);
2132 	WARN_ON(npages <= data->max_pages);
2133 
2134 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2135 	if (!pages)
2136 		return false;
2137 
2138 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2139 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2140 	kfree(ap->pages);
2141 	ap->pages = pages;
2142 	ap->descs = descs;
2143 	data->max_pages = npages;
2144 
2145 	return true;
2146 }
2147 
2148 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2149 {
2150 	struct fuse_writepage_args *wpa = data->wpa;
2151 	struct inode *inode = data->inode;
2152 	struct fuse_inode *fi = get_fuse_inode(inode);
2153 	int num_pages = wpa->ia.ap.num_pages;
2154 	int i;
2155 
2156 	wpa->ia.ff = fuse_file_get(data->ff);
2157 	spin_lock(&fi->lock);
2158 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2159 	fuse_flush_writepages(inode);
2160 	spin_unlock(&fi->lock);
2161 
2162 	for (i = 0; i < num_pages; i++)
2163 		end_page_writeback(data->orig_pages[i]);
2164 }
2165 
2166 /*
2167  * Check under fi->lock if the page is under writeback, and insert it onto the
2168  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2169  * one already added for a page at this offset.  If there's none, then insert
2170  * this new request onto the auxiliary list, otherwise reuse the existing one by
2171  * swapping the new temp page with the old one.
2172  */
2173 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2174 			       struct page *page)
2175 {
2176 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2177 	struct fuse_writepage_args *tmp;
2178 	struct fuse_writepage_args *old_wpa;
2179 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2180 
2181 	WARN_ON(new_ap->num_pages != 0);
2182 	new_ap->num_pages = 1;
2183 
2184 	spin_lock(&fi->lock);
2185 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2186 	if (!old_wpa) {
2187 		spin_unlock(&fi->lock);
2188 		return true;
2189 	}
2190 
2191 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2192 		pgoff_t curr_index;
2193 
2194 		WARN_ON(tmp->inode != new_wpa->inode);
2195 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2196 		if (curr_index == page->index) {
2197 			WARN_ON(tmp->ia.ap.num_pages != 1);
2198 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2199 			break;
2200 		}
2201 	}
2202 
2203 	if (!tmp) {
2204 		new_wpa->next = old_wpa->next;
2205 		old_wpa->next = new_wpa;
2206 	}
2207 
2208 	spin_unlock(&fi->lock);
2209 
2210 	if (tmp) {
2211 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2212 
2213 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2214 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2215 		wb_writeout_inc(&bdi->wb);
2216 		fuse_writepage_free(new_wpa);
2217 	}
2218 
2219 	return false;
2220 }
2221 
2222 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2223 				     struct fuse_args_pages *ap,
2224 				     struct fuse_fill_wb_data *data)
2225 {
2226 	WARN_ON(!ap->num_pages);
2227 
2228 	/*
2229 	 * Being under writeback is unlikely but possible.  For example direct
2230 	 * read to an mmaped fuse file will set the page dirty twice; once when
2231 	 * the pages are faulted with get_user_pages(), and then after the read
2232 	 * completed.
2233 	 */
2234 	if (fuse_page_is_writeback(data->inode, page->index))
2235 		return true;
2236 
2237 	/* Reached max pages */
2238 	if (ap->num_pages == fc->max_pages)
2239 		return true;
2240 
2241 	/* Reached max write bytes */
2242 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2243 		return true;
2244 
2245 	/* Discontinuity */
2246 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2247 		return true;
2248 
2249 	/* Need to grow the pages array?  If so, did the expansion fail? */
2250 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2251 		return true;
2252 
2253 	return false;
2254 }
2255 
2256 static int fuse_writepages_fill(struct folio *folio,
2257 		struct writeback_control *wbc, void *_data)
2258 {
2259 	struct fuse_fill_wb_data *data = _data;
2260 	struct fuse_writepage_args *wpa = data->wpa;
2261 	struct fuse_args_pages *ap = &wpa->ia.ap;
2262 	struct inode *inode = data->inode;
2263 	struct fuse_inode *fi = get_fuse_inode(inode);
2264 	struct fuse_conn *fc = get_fuse_conn(inode);
2265 	struct page *tmp_page;
2266 	int err;
2267 
2268 	if (!data->ff) {
2269 		err = -EIO;
2270 		data->ff = fuse_write_file_get(fi);
2271 		if (!data->ff)
2272 			goto out_unlock;
2273 	}
2274 
2275 	if (wpa && fuse_writepage_need_send(fc, &folio->page, ap, data)) {
2276 		fuse_writepages_send(data);
2277 		data->wpa = NULL;
2278 	}
2279 
2280 	err = -ENOMEM;
2281 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2282 	if (!tmp_page)
2283 		goto out_unlock;
2284 
2285 	/*
2286 	 * The page must not be redirtied until the writeout is completed
2287 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2288 	 * there could be more than one temporary page instance for each real
2289 	 * page.
2290 	 *
2291 	 * This is ensured by holding the page lock in page_mkwrite() while
2292 	 * checking fuse_page_is_writeback().  We already hold the page lock
2293 	 * since clear_page_dirty_for_io() and keep it held until we add the
2294 	 * request to the fi->writepages list and increment ap->num_pages.
2295 	 * After this fuse_page_is_writeback() will indicate that the page is
2296 	 * under writeback, so we can release the page lock.
2297 	 */
2298 	if (data->wpa == NULL) {
2299 		err = -ENOMEM;
2300 		wpa = fuse_writepage_args_alloc();
2301 		if (!wpa) {
2302 			__free_page(tmp_page);
2303 			goto out_unlock;
2304 		}
2305 		fuse_writepage_add_to_bucket(fc, wpa);
2306 
2307 		data->max_pages = 1;
2308 
2309 		ap = &wpa->ia.ap;
2310 		fuse_write_args_fill(&wpa->ia, data->ff, folio_pos(folio), 0);
2311 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2312 		wpa->next = NULL;
2313 		ap->args.in_pages = true;
2314 		ap->args.end = fuse_writepage_end;
2315 		ap->num_pages = 0;
2316 		wpa->inode = inode;
2317 	}
2318 	folio_start_writeback(folio);
2319 
2320 	copy_highpage(tmp_page, &folio->page);
2321 	ap->pages[ap->num_pages] = tmp_page;
2322 	ap->descs[ap->num_pages].offset = 0;
2323 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2324 	data->orig_pages[ap->num_pages] = &folio->page;
2325 
2326 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2327 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2328 
2329 	err = 0;
2330 	if (data->wpa) {
2331 		/*
2332 		 * Protected by fi->lock against concurrent access by
2333 		 * fuse_page_is_writeback().
2334 		 */
2335 		spin_lock(&fi->lock);
2336 		ap->num_pages++;
2337 		spin_unlock(&fi->lock);
2338 	} else if (fuse_writepage_add(wpa, &folio->page)) {
2339 		data->wpa = wpa;
2340 	} else {
2341 		folio_end_writeback(folio);
2342 	}
2343 out_unlock:
2344 	folio_unlock(folio);
2345 
2346 	return err;
2347 }
2348 
2349 static int fuse_writepages(struct address_space *mapping,
2350 			   struct writeback_control *wbc)
2351 {
2352 	struct inode *inode = mapping->host;
2353 	struct fuse_conn *fc = get_fuse_conn(inode);
2354 	struct fuse_fill_wb_data data;
2355 	int err;
2356 
2357 	err = -EIO;
2358 	if (fuse_is_bad(inode))
2359 		goto out;
2360 
2361 	if (wbc->sync_mode == WB_SYNC_NONE &&
2362 	    fc->num_background >= fc->congestion_threshold)
2363 		return 0;
2364 
2365 	data.inode = inode;
2366 	data.wpa = NULL;
2367 	data.ff = NULL;
2368 
2369 	err = -ENOMEM;
2370 	data.orig_pages = kcalloc(fc->max_pages,
2371 				  sizeof(struct page *),
2372 				  GFP_NOFS);
2373 	if (!data.orig_pages)
2374 		goto out;
2375 
2376 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2377 	if (data.wpa) {
2378 		WARN_ON(!data.wpa->ia.ap.num_pages);
2379 		fuse_writepages_send(&data);
2380 	}
2381 	if (data.ff)
2382 		fuse_file_put(data.ff, false);
2383 
2384 	kfree(data.orig_pages);
2385 out:
2386 	return err;
2387 }
2388 
2389 /*
2390  * It's worthy to make sure that space is reserved on disk for the write,
2391  * but how to implement it without killing performance need more thinking.
2392  */
2393 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2394 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
2395 {
2396 	pgoff_t index = pos >> PAGE_SHIFT;
2397 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2398 	struct page *page;
2399 	loff_t fsize;
2400 	int err = -ENOMEM;
2401 
2402 	WARN_ON(!fc->writeback_cache);
2403 
2404 	page = grab_cache_page_write_begin(mapping, index);
2405 	if (!page)
2406 		goto error;
2407 
2408 	fuse_wait_on_page_writeback(mapping->host, page->index);
2409 
2410 	if (PageUptodate(page) || len == PAGE_SIZE)
2411 		goto success;
2412 	/*
2413 	 * Check if the start this page comes after the end of file, in which
2414 	 * case the readpage can be optimized away.
2415 	 */
2416 	fsize = i_size_read(mapping->host);
2417 	if (fsize <= (pos & PAGE_MASK)) {
2418 		size_t off = pos & ~PAGE_MASK;
2419 		if (off)
2420 			zero_user_segment(page, 0, off);
2421 		goto success;
2422 	}
2423 	err = fuse_do_readpage(file, page);
2424 	if (err)
2425 		goto cleanup;
2426 success:
2427 	*pagep = page;
2428 	return 0;
2429 
2430 cleanup:
2431 	unlock_page(page);
2432 	put_page(page);
2433 error:
2434 	return err;
2435 }
2436 
2437 static int fuse_write_end(struct file *file, struct address_space *mapping,
2438 		loff_t pos, unsigned len, unsigned copied,
2439 		struct page *page, void *fsdata)
2440 {
2441 	struct inode *inode = page->mapping->host;
2442 
2443 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2444 	if (!copied)
2445 		goto unlock;
2446 
2447 	pos += copied;
2448 	if (!PageUptodate(page)) {
2449 		/* Zero any unwritten bytes at the end of the page */
2450 		size_t endoff = pos & ~PAGE_MASK;
2451 		if (endoff)
2452 			zero_user_segment(page, endoff, PAGE_SIZE);
2453 		SetPageUptodate(page);
2454 	}
2455 
2456 	if (pos > inode->i_size)
2457 		i_size_write(inode, pos);
2458 
2459 	set_page_dirty(page);
2460 
2461 unlock:
2462 	unlock_page(page);
2463 	put_page(page);
2464 
2465 	return copied;
2466 }
2467 
2468 static int fuse_launder_folio(struct folio *folio)
2469 {
2470 	int err = 0;
2471 	if (folio_clear_dirty_for_io(folio)) {
2472 		struct inode *inode = folio->mapping->host;
2473 
2474 		/* Serialize with pending writeback for the same page */
2475 		fuse_wait_on_page_writeback(inode, folio->index);
2476 		err = fuse_writepage_locked(folio);
2477 		if (!err)
2478 			fuse_wait_on_page_writeback(inode, folio->index);
2479 	}
2480 	return err;
2481 }
2482 
2483 /*
2484  * Write back dirty data/metadata now (there may not be any suitable
2485  * open files later for data)
2486  */
2487 static void fuse_vma_close(struct vm_area_struct *vma)
2488 {
2489 	int err;
2490 
2491 	err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2492 	mapping_set_error(vma->vm_file->f_mapping, err);
2493 }
2494 
2495 /*
2496  * Wait for writeback against this page to complete before allowing it
2497  * to be marked dirty again, and hence written back again, possibly
2498  * before the previous writepage completed.
2499  *
2500  * Block here, instead of in ->writepage(), so that the userspace fs
2501  * can only block processes actually operating on the filesystem.
2502  *
2503  * Otherwise unprivileged userspace fs would be able to block
2504  * unrelated:
2505  *
2506  * - page migration
2507  * - sync(2)
2508  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2509  */
2510 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2511 {
2512 	struct page *page = vmf->page;
2513 	struct inode *inode = file_inode(vmf->vma->vm_file);
2514 
2515 	file_update_time(vmf->vma->vm_file);
2516 	lock_page(page);
2517 	if (page->mapping != inode->i_mapping) {
2518 		unlock_page(page);
2519 		return VM_FAULT_NOPAGE;
2520 	}
2521 
2522 	fuse_wait_on_page_writeback(inode, page->index);
2523 	return VM_FAULT_LOCKED;
2524 }
2525 
2526 static const struct vm_operations_struct fuse_file_vm_ops = {
2527 	.close		= fuse_vma_close,
2528 	.fault		= filemap_fault,
2529 	.map_pages	= filemap_map_pages,
2530 	.page_mkwrite	= fuse_page_mkwrite,
2531 };
2532 
2533 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2534 {
2535 	struct fuse_file *ff = file->private_data;
2536 	struct fuse_conn *fc = ff->fm->fc;
2537 	struct inode *inode = file_inode(file);
2538 	int rc;
2539 
2540 	/* DAX mmap is superior to direct_io mmap */
2541 	if (FUSE_IS_DAX(inode))
2542 		return fuse_dax_mmap(file, vma);
2543 
2544 	/*
2545 	 * If inode is in passthrough io mode, because it has some file open
2546 	 * in passthrough mode, either mmap to backing file or fail mmap,
2547 	 * because mixing cached mmap and passthrough io mode is not allowed.
2548 	 */
2549 	if (fuse_file_passthrough(ff))
2550 		return fuse_passthrough_mmap(file, vma);
2551 	else if (fuse_inode_backing(get_fuse_inode(inode)))
2552 		return -ENODEV;
2553 
2554 	/*
2555 	 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT,
2556 	 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP.
2557 	 */
2558 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2559 		/*
2560 		 * Can't provide the coherency needed for MAP_SHARED
2561 		 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set.
2562 		 */
2563 		if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap)
2564 			return -ENODEV;
2565 
2566 		invalidate_inode_pages2(file->f_mapping);
2567 
2568 		if (!(vma->vm_flags & VM_MAYSHARE)) {
2569 			/* MAP_PRIVATE */
2570 			return generic_file_mmap(file, vma);
2571 		}
2572 
2573 		/*
2574 		 * First mmap of direct_io file enters caching inode io mode.
2575 		 * Also waits for parallel dio writers to go into serial mode
2576 		 * (exclusive instead of shared lock).
2577 		 * After first mmap, the inode stays in caching io mode until
2578 		 * the direct_io file release.
2579 		 */
2580 		rc = fuse_file_cached_io_open(inode, ff);
2581 		if (rc)
2582 			return rc;
2583 	}
2584 
2585 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2586 		fuse_link_write_file(file);
2587 
2588 	file_accessed(file);
2589 	vma->vm_ops = &fuse_file_vm_ops;
2590 	return 0;
2591 }
2592 
2593 static int convert_fuse_file_lock(struct fuse_conn *fc,
2594 				  const struct fuse_file_lock *ffl,
2595 				  struct file_lock *fl)
2596 {
2597 	switch (ffl->type) {
2598 	case F_UNLCK:
2599 		break;
2600 
2601 	case F_RDLCK:
2602 	case F_WRLCK:
2603 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2604 		    ffl->end < ffl->start)
2605 			return -EIO;
2606 
2607 		fl->fl_start = ffl->start;
2608 		fl->fl_end = ffl->end;
2609 
2610 		/*
2611 		 * Convert pid into init's pid namespace.  The locks API will
2612 		 * translate it into the caller's pid namespace.
2613 		 */
2614 		rcu_read_lock();
2615 		fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2616 		rcu_read_unlock();
2617 		break;
2618 
2619 	default:
2620 		return -EIO;
2621 	}
2622 	fl->c.flc_type = ffl->type;
2623 	return 0;
2624 }
2625 
2626 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2627 			 const struct file_lock *fl, int opcode, pid_t pid,
2628 			 int flock, struct fuse_lk_in *inarg)
2629 {
2630 	struct inode *inode = file_inode(file);
2631 	struct fuse_conn *fc = get_fuse_conn(inode);
2632 	struct fuse_file *ff = file->private_data;
2633 
2634 	memset(inarg, 0, sizeof(*inarg));
2635 	inarg->fh = ff->fh;
2636 	inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner);
2637 	inarg->lk.start = fl->fl_start;
2638 	inarg->lk.end = fl->fl_end;
2639 	inarg->lk.type = fl->c.flc_type;
2640 	inarg->lk.pid = pid;
2641 	if (flock)
2642 		inarg->lk_flags |= FUSE_LK_FLOCK;
2643 	args->opcode = opcode;
2644 	args->nodeid = get_node_id(inode);
2645 	args->in_numargs = 1;
2646 	args->in_args[0].size = sizeof(*inarg);
2647 	args->in_args[0].value = inarg;
2648 }
2649 
2650 static int fuse_getlk(struct file *file, struct file_lock *fl)
2651 {
2652 	struct inode *inode = file_inode(file);
2653 	struct fuse_mount *fm = get_fuse_mount(inode);
2654 	FUSE_ARGS(args);
2655 	struct fuse_lk_in inarg;
2656 	struct fuse_lk_out outarg;
2657 	int err;
2658 
2659 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2660 	args.out_numargs = 1;
2661 	args.out_args[0].size = sizeof(outarg);
2662 	args.out_args[0].value = &outarg;
2663 	err = fuse_simple_request(fm, &args);
2664 	if (!err)
2665 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2666 
2667 	return err;
2668 }
2669 
2670 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2671 {
2672 	struct inode *inode = file_inode(file);
2673 	struct fuse_mount *fm = get_fuse_mount(inode);
2674 	FUSE_ARGS(args);
2675 	struct fuse_lk_in inarg;
2676 	int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2677 	struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL;
2678 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2679 	int err;
2680 
2681 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2682 		/* NLM needs asynchronous locks, which we don't support yet */
2683 		return -ENOLCK;
2684 	}
2685 
2686 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2687 	err = fuse_simple_request(fm, &args);
2688 
2689 	/* locking is restartable */
2690 	if (err == -EINTR)
2691 		err = -ERESTARTSYS;
2692 
2693 	return err;
2694 }
2695 
2696 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2697 {
2698 	struct inode *inode = file_inode(file);
2699 	struct fuse_conn *fc = get_fuse_conn(inode);
2700 	int err;
2701 
2702 	if (cmd == F_CANCELLK) {
2703 		err = 0;
2704 	} else if (cmd == F_GETLK) {
2705 		if (fc->no_lock) {
2706 			posix_test_lock(file, fl);
2707 			err = 0;
2708 		} else
2709 			err = fuse_getlk(file, fl);
2710 	} else {
2711 		if (fc->no_lock)
2712 			err = posix_lock_file(file, fl, NULL);
2713 		else
2714 			err = fuse_setlk(file, fl, 0);
2715 	}
2716 	return err;
2717 }
2718 
2719 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2720 {
2721 	struct inode *inode = file_inode(file);
2722 	struct fuse_conn *fc = get_fuse_conn(inode);
2723 	int err;
2724 
2725 	if (fc->no_flock) {
2726 		err = locks_lock_file_wait(file, fl);
2727 	} else {
2728 		struct fuse_file *ff = file->private_data;
2729 
2730 		/* emulate flock with POSIX locks */
2731 		ff->flock = true;
2732 		err = fuse_setlk(file, fl, 1);
2733 	}
2734 
2735 	return err;
2736 }
2737 
2738 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2739 {
2740 	struct inode *inode = mapping->host;
2741 	struct fuse_mount *fm = get_fuse_mount(inode);
2742 	FUSE_ARGS(args);
2743 	struct fuse_bmap_in inarg;
2744 	struct fuse_bmap_out outarg;
2745 	int err;
2746 
2747 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2748 		return 0;
2749 
2750 	memset(&inarg, 0, sizeof(inarg));
2751 	inarg.block = block;
2752 	inarg.blocksize = inode->i_sb->s_blocksize;
2753 	args.opcode = FUSE_BMAP;
2754 	args.nodeid = get_node_id(inode);
2755 	args.in_numargs = 1;
2756 	args.in_args[0].size = sizeof(inarg);
2757 	args.in_args[0].value = &inarg;
2758 	args.out_numargs = 1;
2759 	args.out_args[0].size = sizeof(outarg);
2760 	args.out_args[0].value = &outarg;
2761 	err = fuse_simple_request(fm, &args);
2762 	if (err == -ENOSYS)
2763 		fm->fc->no_bmap = 1;
2764 
2765 	return err ? 0 : outarg.block;
2766 }
2767 
2768 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2769 {
2770 	struct inode *inode = file->f_mapping->host;
2771 	struct fuse_mount *fm = get_fuse_mount(inode);
2772 	struct fuse_file *ff = file->private_data;
2773 	FUSE_ARGS(args);
2774 	struct fuse_lseek_in inarg = {
2775 		.fh = ff->fh,
2776 		.offset = offset,
2777 		.whence = whence
2778 	};
2779 	struct fuse_lseek_out outarg;
2780 	int err;
2781 
2782 	if (fm->fc->no_lseek)
2783 		goto fallback;
2784 
2785 	args.opcode = FUSE_LSEEK;
2786 	args.nodeid = ff->nodeid;
2787 	args.in_numargs = 1;
2788 	args.in_args[0].size = sizeof(inarg);
2789 	args.in_args[0].value = &inarg;
2790 	args.out_numargs = 1;
2791 	args.out_args[0].size = sizeof(outarg);
2792 	args.out_args[0].value = &outarg;
2793 	err = fuse_simple_request(fm, &args);
2794 	if (err) {
2795 		if (err == -ENOSYS) {
2796 			fm->fc->no_lseek = 1;
2797 			goto fallback;
2798 		}
2799 		return err;
2800 	}
2801 
2802 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2803 
2804 fallback:
2805 	err = fuse_update_attributes(inode, file, STATX_SIZE);
2806 	if (!err)
2807 		return generic_file_llseek(file, offset, whence);
2808 	else
2809 		return err;
2810 }
2811 
2812 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2813 {
2814 	loff_t retval;
2815 	struct inode *inode = file_inode(file);
2816 
2817 	switch (whence) {
2818 	case SEEK_SET:
2819 	case SEEK_CUR:
2820 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2821 		retval = generic_file_llseek(file, offset, whence);
2822 		break;
2823 	case SEEK_END:
2824 		inode_lock(inode);
2825 		retval = fuse_update_attributes(inode, file, STATX_SIZE);
2826 		if (!retval)
2827 			retval = generic_file_llseek(file, offset, whence);
2828 		inode_unlock(inode);
2829 		break;
2830 	case SEEK_HOLE:
2831 	case SEEK_DATA:
2832 		inode_lock(inode);
2833 		retval = fuse_lseek(file, offset, whence);
2834 		inode_unlock(inode);
2835 		break;
2836 	default:
2837 		retval = -EINVAL;
2838 	}
2839 
2840 	return retval;
2841 }
2842 
2843 /*
2844  * All files which have been polled are linked to RB tree
2845  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2846  * find the matching one.
2847  */
2848 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2849 					      struct rb_node **parent_out)
2850 {
2851 	struct rb_node **link = &fc->polled_files.rb_node;
2852 	struct rb_node *last = NULL;
2853 
2854 	while (*link) {
2855 		struct fuse_file *ff;
2856 
2857 		last = *link;
2858 		ff = rb_entry(last, struct fuse_file, polled_node);
2859 
2860 		if (kh < ff->kh)
2861 			link = &last->rb_left;
2862 		else if (kh > ff->kh)
2863 			link = &last->rb_right;
2864 		else
2865 			return link;
2866 	}
2867 
2868 	if (parent_out)
2869 		*parent_out = last;
2870 	return link;
2871 }
2872 
2873 /*
2874  * The file is about to be polled.  Make sure it's on the polled_files
2875  * RB tree.  Note that files once added to the polled_files tree are
2876  * not removed before the file is released.  This is because a file
2877  * polled once is likely to be polled again.
2878  */
2879 static void fuse_register_polled_file(struct fuse_conn *fc,
2880 				      struct fuse_file *ff)
2881 {
2882 	spin_lock(&fc->lock);
2883 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2884 		struct rb_node **link, *parent;
2885 
2886 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2887 		BUG_ON(*link);
2888 		rb_link_node(&ff->polled_node, parent, link);
2889 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2890 	}
2891 	spin_unlock(&fc->lock);
2892 }
2893 
2894 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2895 {
2896 	struct fuse_file *ff = file->private_data;
2897 	struct fuse_mount *fm = ff->fm;
2898 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2899 	struct fuse_poll_out outarg;
2900 	FUSE_ARGS(args);
2901 	int err;
2902 
2903 	if (fm->fc->no_poll)
2904 		return DEFAULT_POLLMASK;
2905 
2906 	poll_wait(file, &ff->poll_wait, wait);
2907 	inarg.events = mangle_poll(poll_requested_events(wait));
2908 
2909 	/*
2910 	 * Ask for notification iff there's someone waiting for it.
2911 	 * The client may ignore the flag and always notify.
2912 	 */
2913 	if (waitqueue_active(&ff->poll_wait)) {
2914 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2915 		fuse_register_polled_file(fm->fc, ff);
2916 	}
2917 
2918 	args.opcode = FUSE_POLL;
2919 	args.nodeid = ff->nodeid;
2920 	args.in_numargs = 1;
2921 	args.in_args[0].size = sizeof(inarg);
2922 	args.in_args[0].value = &inarg;
2923 	args.out_numargs = 1;
2924 	args.out_args[0].size = sizeof(outarg);
2925 	args.out_args[0].value = &outarg;
2926 	err = fuse_simple_request(fm, &args);
2927 
2928 	if (!err)
2929 		return demangle_poll(outarg.revents);
2930 	if (err == -ENOSYS) {
2931 		fm->fc->no_poll = 1;
2932 		return DEFAULT_POLLMASK;
2933 	}
2934 	return EPOLLERR;
2935 }
2936 EXPORT_SYMBOL_GPL(fuse_file_poll);
2937 
2938 /*
2939  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2940  * wakes up the poll waiters.
2941  */
2942 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2943 			    struct fuse_notify_poll_wakeup_out *outarg)
2944 {
2945 	u64 kh = outarg->kh;
2946 	struct rb_node **link;
2947 
2948 	spin_lock(&fc->lock);
2949 
2950 	link = fuse_find_polled_node(fc, kh, NULL);
2951 	if (*link) {
2952 		struct fuse_file *ff;
2953 
2954 		ff = rb_entry(*link, struct fuse_file, polled_node);
2955 		wake_up_interruptible_sync(&ff->poll_wait);
2956 	}
2957 
2958 	spin_unlock(&fc->lock);
2959 	return 0;
2960 }
2961 
2962 static void fuse_do_truncate(struct file *file)
2963 {
2964 	struct inode *inode = file->f_mapping->host;
2965 	struct iattr attr;
2966 
2967 	attr.ia_valid = ATTR_SIZE;
2968 	attr.ia_size = i_size_read(inode);
2969 
2970 	attr.ia_file = file;
2971 	attr.ia_valid |= ATTR_FILE;
2972 
2973 	fuse_do_setattr(file_dentry(file), &attr, file);
2974 }
2975 
2976 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2977 {
2978 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2979 }
2980 
2981 static ssize_t
2982 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2983 {
2984 	DECLARE_COMPLETION_ONSTACK(wait);
2985 	ssize_t ret = 0;
2986 	struct file *file = iocb->ki_filp;
2987 	struct fuse_file *ff = file->private_data;
2988 	loff_t pos = 0;
2989 	struct inode *inode;
2990 	loff_t i_size;
2991 	size_t count = iov_iter_count(iter), shortened = 0;
2992 	loff_t offset = iocb->ki_pos;
2993 	struct fuse_io_priv *io;
2994 
2995 	pos = offset;
2996 	inode = file->f_mapping->host;
2997 	i_size = i_size_read(inode);
2998 
2999 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3000 		return 0;
3001 
3002 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3003 	if (!io)
3004 		return -ENOMEM;
3005 	spin_lock_init(&io->lock);
3006 	kref_init(&io->refcnt);
3007 	io->reqs = 1;
3008 	io->bytes = -1;
3009 	io->size = 0;
3010 	io->offset = offset;
3011 	io->write = (iov_iter_rw(iter) == WRITE);
3012 	io->err = 0;
3013 	/*
3014 	 * By default, we want to optimize all I/Os with async request
3015 	 * submission to the client filesystem if supported.
3016 	 */
3017 	io->async = ff->fm->fc->async_dio;
3018 	io->iocb = iocb;
3019 	io->blocking = is_sync_kiocb(iocb);
3020 
3021 	/* optimization for short read */
3022 	if (io->async && !io->write && offset + count > i_size) {
3023 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3024 		shortened = count - iov_iter_count(iter);
3025 		count -= shortened;
3026 	}
3027 
3028 	/*
3029 	 * We cannot asynchronously extend the size of a file.
3030 	 * In such case the aio will behave exactly like sync io.
3031 	 */
3032 	if ((offset + count > i_size) && io->write)
3033 		io->blocking = true;
3034 
3035 	if (io->async && io->blocking) {
3036 		/*
3037 		 * Additional reference to keep io around after
3038 		 * calling fuse_aio_complete()
3039 		 */
3040 		kref_get(&io->refcnt);
3041 		io->done = &wait;
3042 	}
3043 
3044 	if (iov_iter_rw(iter) == WRITE) {
3045 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3046 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3047 	} else {
3048 		ret = __fuse_direct_read(io, iter, &pos);
3049 	}
3050 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3051 
3052 	if (io->async) {
3053 		bool blocking = io->blocking;
3054 
3055 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3056 
3057 		/* we have a non-extending, async request, so return */
3058 		if (!blocking)
3059 			return -EIOCBQUEUED;
3060 
3061 		wait_for_completion(&wait);
3062 		ret = fuse_get_res_by_io(io);
3063 	}
3064 
3065 	kref_put(&io->refcnt, fuse_io_release);
3066 
3067 	if (iov_iter_rw(iter) == WRITE) {
3068 		fuse_write_update_attr(inode, pos, ret);
3069 		/* For extending writes we already hold exclusive lock */
3070 		if (ret < 0 && offset + count > i_size)
3071 			fuse_do_truncate(file);
3072 	}
3073 
3074 	return ret;
3075 }
3076 
3077 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3078 {
3079 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3080 
3081 	if (!err)
3082 		fuse_sync_writes(inode);
3083 
3084 	return err;
3085 }
3086 
3087 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3088 				loff_t length)
3089 {
3090 	struct fuse_file *ff = file->private_data;
3091 	struct inode *inode = file_inode(file);
3092 	struct fuse_inode *fi = get_fuse_inode(inode);
3093 	struct fuse_mount *fm = ff->fm;
3094 	FUSE_ARGS(args);
3095 	struct fuse_fallocate_in inarg = {
3096 		.fh = ff->fh,
3097 		.offset = offset,
3098 		.length = length,
3099 		.mode = mode
3100 	};
3101 	int err;
3102 	bool block_faults = FUSE_IS_DAX(inode) &&
3103 		(!(mode & FALLOC_FL_KEEP_SIZE) ||
3104 		 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3105 
3106 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3107 		     FALLOC_FL_ZERO_RANGE))
3108 		return -EOPNOTSUPP;
3109 
3110 	if (fm->fc->no_fallocate)
3111 		return -EOPNOTSUPP;
3112 
3113 	inode_lock(inode);
3114 	if (block_faults) {
3115 		filemap_invalidate_lock(inode->i_mapping);
3116 		err = fuse_dax_break_layouts(inode, 0, 0);
3117 		if (err)
3118 			goto out;
3119 	}
3120 
3121 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3122 		loff_t endbyte = offset + length - 1;
3123 
3124 		err = fuse_writeback_range(inode, offset, endbyte);
3125 		if (err)
3126 			goto out;
3127 	}
3128 
3129 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3130 	    offset + length > i_size_read(inode)) {
3131 		err = inode_newsize_ok(inode, offset + length);
3132 		if (err)
3133 			goto out;
3134 	}
3135 
3136 	err = file_modified(file);
3137 	if (err)
3138 		goto out;
3139 
3140 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3141 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3142 
3143 	args.opcode = FUSE_FALLOCATE;
3144 	args.nodeid = ff->nodeid;
3145 	args.in_numargs = 1;
3146 	args.in_args[0].size = sizeof(inarg);
3147 	args.in_args[0].value = &inarg;
3148 	err = fuse_simple_request(fm, &args);
3149 	if (err == -ENOSYS) {
3150 		fm->fc->no_fallocate = 1;
3151 		err = -EOPNOTSUPP;
3152 	}
3153 	if (err)
3154 		goto out;
3155 
3156 	/* we could have extended the file */
3157 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3158 		if (fuse_write_update_attr(inode, offset + length, length))
3159 			file_update_time(file);
3160 	}
3161 
3162 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3163 		truncate_pagecache_range(inode, offset, offset + length - 1);
3164 
3165 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3166 
3167 out:
3168 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3169 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3170 
3171 	if (block_faults)
3172 		filemap_invalidate_unlock(inode->i_mapping);
3173 
3174 	inode_unlock(inode);
3175 
3176 	fuse_flush_time_update(inode);
3177 
3178 	return err;
3179 }
3180 
3181 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3182 				      struct file *file_out, loff_t pos_out,
3183 				      size_t len, unsigned int flags)
3184 {
3185 	struct fuse_file *ff_in = file_in->private_data;
3186 	struct fuse_file *ff_out = file_out->private_data;
3187 	struct inode *inode_in = file_inode(file_in);
3188 	struct inode *inode_out = file_inode(file_out);
3189 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3190 	struct fuse_mount *fm = ff_in->fm;
3191 	struct fuse_conn *fc = fm->fc;
3192 	FUSE_ARGS(args);
3193 	struct fuse_copy_file_range_in inarg = {
3194 		.fh_in = ff_in->fh,
3195 		.off_in = pos_in,
3196 		.nodeid_out = ff_out->nodeid,
3197 		.fh_out = ff_out->fh,
3198 		.off_out = pos_out,
3199 		.len = len,
3200 		.flags = flags
3201 	};
3202 	struct fuse_write_out outarg;
3203 	ssize_t err;
3204 	/* mark unstable when write-back is not used, and file_out gets
3205 	 * extended */
3206 	bool is_unstable = (!fc->writeback_cache) &&
3207 			   ((pos_out + len) > inode_out->i_size);
3208 
3209 	if (fc->no_copy_file_range)
3210 		return -EOPNOTSUPP;
3211 
3212 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3213 		return -EXDEV;
3214 
3215 	inode_lock(inode_in);
3216 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3217 	inode_unlock(inode_in);
3218 	if (err)
3219 		return err;
3220 
3221 	inode_lock(inode_out);
3222 
3223 	err = file_modified(file_out);
3224 	if (err)
3225 		goto out;
3226 
3227 	/*
3228 	 * Write out dirty pages in the destination file before sending the COPY
3229 	 * request to userspace.  After the request is completed, truncate off
3230 	 * pages (including partial ones) from the cache that have been copied,
3231 	 * since these contain stale data at that point.
3232 	 *
3233 	 * This should be mostly correct, but if the COPY writes to partial
3234 	 * pages (at the start or end) and the parts not covered by the COPY are
3235 	 * written through a memory map after calling fuse_writeback_range(),
3236 	 * then these partial page modifications will be lost on truncation.
3237 	 *
3238 	 * It is unlikely that someone would rely on such mixed style
3239 	 * modifications.  Yet this does give less guarantees than if the
3240 	 * copying was performed with write(2).
3241 	 *
3242 	 * To fix this a mapping->invalidate_lock could be used to prevent new
3243 	 * faults while the copy is ongoing.
3244 	 */
3245 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3246 	if (err)
3247 		goto out;
3248 
3249 	if (is_unstable)
3250 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3251 
3252 	args.opcode = FUSE_COPY_FILE_RANGE;
3253 	args.nodeid = ff_in->nodeid;
3254 	args.in_numargs = 1;
3255 	args.in_args[0].size = sizeof(inarg);
3256 	args.in_args[0].value = &inarg;
3257 	args.out_numargs = 1;
3258 	args.out_args[0].size = sizeof(outarg);
3259 	args.out_args[0].value = &outarg;
3260 	err = fuse_simple_request(fm, &args);
3261 	if (err == -ENOSYS) {
3262 		fc->no_copy_file_range = 1;
3263 		err = -EOPNOTSUPP;
3264 	}
3265 	if (err)
3266 		goto out;
3267 
3268 	truncate_inode_pages_range(inode_out->i_mapping,
3269 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3270 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3271 
3272 	file_update_time(file_out);
3273 	fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3274 
3275 	err = outarg.size;
3276 out:
3277 	if (is_unstable)
3278 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3279 
3280 	inode_unlock(inode_out);
3281 	file_accessed(file_in);
3282 
3283 	fuse_flush_time_update(inode_out);
3284 
3285 	return err;
3286 }
3287 
3288 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3289 				    struct file *dst_file, loff_t dst_off,
3290 				    size_t len, unsigned int flags)
3291 {
3292 	ssize_t ret;
3293 
3294 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3295 				     len, flags);
3296 
3297 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3298 		ret = splice_copy_file_range(src_file, src_off, dst_file,
3299 					     dst_off, len);
3300 	return ret;
3301 }
3302 
3303 static const struct file_operations fuse_file_operations = {
3304 	.llseek		= fuse_file_llseek,
3305 	.read_iter	= fuse_file_read_iter,
3306 	.write_iter	= fuse_file_write_iter,
3307 	.mmap		= fuse_file_mmap,
3308 	.open		= fuse_open,
3309 	.flush		= fuse_flush,
3310 	.release	= fuse_release,
3311 	.fsync		= fuse_fsync,
3312 	.lock		= fuse_file_lock,
3313 	.get_unmapped_area = thp_get_unmapped_area,
3314 	.flock		= fuse_file_flock,
3315 	.splice_read	= fuse_splice_read,
3316 	.splice_write	= fuse_splice_write,
3317 	.unlocked_ioctl	= fuse_file_ioctl,
3318 	.compat_ioctl	= fuse_file_compat_ioctl,
3319 	.poll		= fuse_file_poll,
3320 	.fallocate	= fuse_file_fallocate,
3321 	.copy_file_range = fuse_copy_file_range,
3322 };
3323 
3324 static const struct address_space_operations fuse_file_aops  = {
3325 	.read_folio	= fuse_read_folio,
3326 	.readahead	= fuse_readahead,
3327 	.writepages	= fuse_writepages,
3328 	.launder_folio	= fuse_launder_folio,
3329 	.dirty_folio	= filemap_dirty_folio,
3330 	.migrate_folio	= filemap_migrate_folio,
3331 	.bmap		= fuse_bmap,
3332 	.direct_IO	= fuse_direct_IO,
3333 	.write_begin	= fuse_write_begin,
3334 	.write_end	= fuse_write_end,
3335 };
3336 
3337 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3338 {
3339 	struct fuse_inode *fi = get_fuse_inode(inode);
3340 
3341 	inode->i_fop = &fuse_file_operations;
3342 	inode->i_data.a_ops = &fuse_file_aops;
3343 
3344 	INIT_LIST_HEAD(&fi->write_files);
3345 	INIT_LIST_HEAD(&fi->queued_writes);
3346 	fi->writectr = 0;
3347 	fi->iocachectr = 0;
3348 	init_waitqueue_head(&fi->page_waitq);
3349 	init_waitqueue_head(&fi->direct_io_waitq);
3350 	fi->writepages = RB_ROOT;
3351 
3352 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3353 		fuse_dax_inode_init(inode, flags);
3354 }
3355