xref: /linux/fs/fuse/file.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22 #include <linux/splice.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
26 			  unsigned int open_flags, int opcode,
27 			  struct fuse_open_out *outargp)
28 {
29 	struct fuse_open_in inarg;
30 	FUSE_ARGS(args);
31 
32 	memset(&inarg, 0, sizeof(inarg));
33 	inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
34 	if (!fm->fc->atomic_o_trunc)
35 		inarg.flags &= ~O_TRUNC;
36 
37 	if (fm->fc->handle_killpriv_v2 &&
38 	    (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
39 		inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
40 	}
41 
42 	args.opcode = opcode;
43 	args.nodeid = nodeid;
44 	args.in_numargs = 1;
45 	args.in_args[0].size = sizeof(inarg);
46 	args.in_args[0].value = &inarg;
47 	args.out_numargs = 1;
48 	args.out_args[0].size = sizeof(*outargp);
49 	args.out_args[0].value = outargp;
50 
51 	return fuse_simple_request(fm, &args);
52 }
53 
54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release)
55 {
56 	struct fuse_file *ff;
57 
58 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
59 	if (unlikely(!ff))
60 		return NULL;
61 
62 	ff->fm = fm;
63 	if (release) {
64 		ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT);
65 		if (!ff->args) {
66 			kfree(ff);
67 			return NULL;
68 		}
69 	}
70 
71 	INIT_LIST_HEAD(&ff->write_entry);
72 	refcount_set(&ff->count, 1);
73 	RB_CLEAR_NODE(&ff->polled_node);
74 	init_waitqueue_head(&ff->poll_wait);
75 
76 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
77 
78 	return ff;
79 }
80 
81 void fuse_file_free(struct fuse_file *ff)
82 {
83 	kfree(ff->args);
84 	kfree(ff);
85 }
86 
87 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
88 {
89 	refcount_inc(&ff->count);
90 	return ff;
91 }
92 
93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
94 			     int error)
95 {
96 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
97 
98 	iput(ra->inode);
99 	kfree(ra);
100 }
101 
102 static void fuse_file_put(struct fuse_file *ff, bool sync)
103 {
104 	if (refcount_dec_and_test(&ff->count)) {
105 		struct fuse_release_args *ra = &ff->args->release_args;
106 		struct fuse_args *args = (ra ? &ra->args : NULL);
107 
108 		if (ra && ra->inode)
109 			fuse_file_io_release(ff, ra->inode);
110 
111 		if (!args) {
112 			/* Do nothing when server does not implement 'open' */
113 		} else if (sync) {
114 			fuse_simple_request(ff->fm, args);
115 			fuse_release_end(ff->fm, args, 0);
116 		} else {
117 			args->end = fuse_release_end;
118 			if (fuse_simple_background(ff->fm, args,
119 						   GFP_KERNEL | __GFP_NOFAIL))
120 				fuse_release_end(ff->fm, args, -ENOTCONN);
121 		}
122 		kfree(ff);
123 	}
124 }
125 
126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
127 				 unsigned int open_flags, bool isdir)
128 {
129 	struct fuse_conn *fc = fm->fc;
130 	struct fuse_file *ff;
131 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
132 	bool open = isdir ? !fc->no_opendir : !fc->no_open;
133 
134 	ff = fuse_file_alloc(fm, open);
135 	if (!ff)
136 		return ERR_PTR(-ENOMEM);
137 
138 	ff->fh = 0;
139 	/* Default for no-open */
140 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 	if (open) {
142 		/* Store outarg for fuse_finish_open() */
143 		struct fuse_open_out *outargp = &ff->args->open_outarg;
144 		int err;
145 
146 		err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp);
147 		if (!err) {
148 			ff->fh = outargp->fh;
149 			ff->open_flags = outargp->open_flags;
150 		} else if (err != -ENOSYS) {
151 			fuse_file_free(ff);
152 			return ERR_PTR(err);
153 		} else {
154 			/* No release needed */
155 			kfree(ff->args);
156 			ff->args = NULL;
157 			if (isdir)
158 				fc->no_opendir = 1;
159 			else
160 				fc->no_open = 1;
161 		}
162 	}
163 
164 	if (isdir)
165 		ff->open_flags &= ~FOPEN_DIRECT_IO;
166 
167 	ff->nodeid = nodeid;
168 
169 	return ff;
170 }
171 
172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
173 		 bool isdir)
174 {
175 	struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
176 
177 	if (!IS_ERR(ff))
178 		file->private_data = ff;
179 
180 	return PTR_ERR_OR_ZERO(ff);
181 }
182 EXPORT_SYMBOL_GPL(fuse_do_open);
183 
184 static void fuse_link_write_file(struct file *file)
185 {
186 	struct inode *inode = file_inode(file);
187 	struct fuse_inode *fi = get_fuse_inode(inode);
188 	struct fuse_file *ff = file->private_data;
189 	/*
190 	 * file may be written through mmap, so chain it onto the
191 	 * inodes's write_file list
192 	 */
193 	spin_lock(&fi->lock);
194 	if (list_empty(&ff->write_entry))
195 		list_add(&ff->write_entry, &fi->write_files);
196 	spin_unlock(&fi->lock);
197 }
198 
199 int fuse_finish_open(struct inode *inode, struct file *file)
200 {
201 	struct fuse_file *ff = file->private_data;
202 	struct fuse_conn *fc = get_fuse_conn(inode);
203 	int err;
204 
205 	err = fuse_file_io_open(file, inode);
206 	if (err)
207 		return err;
208 
209 	if (ff->open_flags & FOPEN_STREAM)
210 		stream_open(inode, file);
211 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
212 		nonseekable_open(inode, file);
213 
214 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 		fuse_link_write_file(file);
216 
217 	return 0;
218 }
219 
220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file)
221 {
222 	struct fuse_conn *fc = get_fuse_conn(inode);
223 	struct fuse_inode *fi = get_fuse_inode(inode);
224 
225 	spin_lock(&fi->lock);
226 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
227 	i_size_write(inode, 0);
228 	spin_unlock(&fi->lock);
229 	file_update_time(file);
230 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
231 }
232 
233 static int fuse_open(struct inode *inode, struct file *file)
234 {
235 	struct fuse_mount *fm = get_fuse_mount(inode);
236 	struct fuse_inode *fi = get_fuse_inode(inode);
237 	struct fuse_conn *fc = fm->fc;
238 	struct fuse_file *ff;
239 	int err;
240 	bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc;
241 	bool is_wb_truncate = is_truncate && fc->writeback_cache;
242 	bool dax_truncate = is_truncate && FUSE_IS_DAX(inode);
243 
244 	if (fuse_is_bad(inode))
245 		return -EIO;
246 
247 	err = generic_file_open(inode, file);
248 	if (err)
249 		return err;
250 
251 	if (is_wb_truncate || dax_truncate)
252 		inode_lock(inode);
253 
254 	if (dax_truncate) {
255 		filemap_invalidate_lock(inode->i_mapping);
256 		err = fuse_dax_break_layouts(inode, 0, 0);
257 		if (err)
258 			goto out_inode_unlock;
259 	}
260 
261 	if (is_wb_truncate || dax_truncate)
262 		fuse_set_nowrite(inode);
263 
264 	err = fuse_do_open(fm, get_node_id(inode), file, false);
265 	if (!err) {
266 		ff = file->private_data;
267 		err = fuse_finish_open(inode, file);
268 		if (err)
269 			fuse_sync_release(fi, ff, file->f_flags);
270 		else if (is_truncate)
271 			fuse_truncate_update_attr(inode, file);
272 	}
273 
274 	if (is_wb_truncate || dax_truncate)
275 		fuse_release_nowrite(inode);
276 	if (!err) {
277 		if (is_truncate)
278 			truncate_pagecache(inode, 0);
279 		else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
280 			invalidate_inode_pages2(inode->i_mapping);
281 	}
282 	if (dax_truncate)
283 		filemap_invalidate_unlock(inode->i_mapping);
284 out_inode_unlock:
285 	if (is_wb_truncate || dax_truncate)
286 		inode_unlock(inode);
287 
288 	return err;
289 }
290 
291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
292 				 unsigned int flags, int opcode, bool sync)
293 {
294 	struct fuse_conn *fc = ff->fm->fc;
295 	struct fuse_release_args *ra = &ff->args->release_args;
296 
297 	if (fuse_file_passthrough(ff))
298 		fuse_passthrough_release(ff, fuse_inode_backing(fi));
299 
300 	/* Inode is NULL on error path of fuse_create_open() */
301 	if (likely(fi)) {
302 		spin_lock(&fi->lock);
303 		list_del(&ff->write_entry);
304 		spin_unlock(&fi->lock);
305 	}
306 	spin_lock(&fc->lock);
307 	if (!RB_EMPTY_NODE(&ff->polled_node))
308 		rb_erase(&ff->polled_node, &fc->polled_files);
309 	spin_unlock(&fc->lock);
310 
311 	wake_up_interruptible_all(&ff->poll_wait);
312 
313 	if (!ra)
314 		return;
315 
316 	/* ff->args was used for open outarg */
317 	memset(ff->args, 0, sizeof(*ff->args));
318 	ra->inarg.fh = ff->fh;
319 	ra->inarg.flags = flags;
320 	ra->args.in_numargs = 1;
321 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
322 	ra->args.in_args[0].value = &ra->inarg;
323 	ra->args.opcode = opcode;
324 	ra->args.nodeid = ff->nodeid;
325 	ra->args.force = true;
326 	ra->args.nocreds = true;
327 
328 	/*
329 	 * Hold inode until release is finished.
330 	 * From fuse_sync_release() the refcount is 1 and everything's
331 	 * synchronous, so we are fine with not doing igrab() here.
332 	 */
333 	ra->inode = sync ? NULL : igrab(&fi->inode);
334 }
335 
336 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
337 		       unsigned int open_flags, fl_owner_t id, bool isdir)
338 {
339 	struct fuse_inode *fi = get_fuse_inode(inode);
340 	struct fuse_release_args *ra = &ff->args->release_args;
341 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
342 
343 	fuse_prepare_release(fi, ff, open_flags, opcode, false);
344 
345 	if (ra && ff->flock) {
346 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
347 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
348 	}
349 
350 	/*
351 	 * Normally this will send the RELEASE request, however if
352 	 * some asynchronous READ or WRITE requests are outstanding,
353 	 * the sending will be delayed.
354 	 *
355 	 * Make the release synchronous if this is a fuseblk mount,
356 	 * synchronous RELEASE is allowed (and desirable) in this case
357 	 * because the server can be trusted not to screw up.
358 	 */
359 	fuse_file_put(ff, ff->fm->fc->destroy);
360 }
361 
362 void fuse_release_common(struct file *file, bool isdir)
363 {
364 	fuse_file_release(file_inode(file), file->private_data, file->f_flags,
365 			  (fl_owner_t) file, isdir);
366 }
367 
368 static int fuse_release(struct inode *inode, struct file *file)
369 {
370 	struct fuse_conn *fc = get_fuse_conn(inode);
371 
372 	/*
373 	 * Dirty pages might remain despite write_inode_now() call from
374 	 * fuse_flush() due to writes racing with the close.
375 	 */
376 	if (fc->writeback_cache)
377 		write_inode_now(inode, 1);
378 
379 	fuse_release_common(file, false);
380 
381 	/* return value is ignored by VFS */
382 	return 0;
383 }
384 
385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
386 		       unsigned int flags)
387 {
388 	WARN_ON(refcount_read(&ff->count) > 1);
389 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true);
390 	fuse_file_put(ff, true);
391 }
392 EXPORT_SYMBOL_GPL(fuse_sync_release);
393 
394 /*
395  * Scramble the ID space with XTEA, so that the value of the files_struct
396  * pointer is not exposed to userspace.
397  */
398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
399 {
400 	u32 *k = fc->scramble_key;
401 	u64 v = (unsigned long) id;
402 	u32 v0 = v;
403 	u32 v1 = v >> 32;
404 	u32 sum = 0;
405 	int i;
406 
407 	for (i = 0; i < 32; i++) {
408 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
409 		sum += 0x9E3779B9;
410 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
411 	}
412 
413 	return (u64) v0 + ((u64) v1 << 32);
414 }
415 
416 struct fuse_writepage_args {
417 	struct fuse_io_args ia;
418 	struct rb_node writepages_entry;
419 	struct list_head queue_entry;
420 	struct fuse_writepage_args *next;
421 	struct inode *inode;
422 	struct fuse_sync_bucket *bucket;
423 };
424 
425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
426 					    pgoff_t idx_from, pgoff_t idx_to)
427 {
428 	struct rb_node *n;
429 
430 	n = fi->writepages.rb_node;
431 
432 	while (n) {
433 		struct fuse_writepage_args *wpa;
434 		pgoff_t curr_index;
435 
436 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
437 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
438 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
439 		if (idx_from >= curr_index + wpa->ia.ap.num_folios)
440 			n = n->rb_right;
441 		else if (idx_to < curr_index)
442 			n = n->rb_left;
443 		else
444 			return wpa;
445 	}
446 	return NULL;
447 }
448 
449 /*
450  * Check if any page in a range is under writeback
451  */
452 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
453 				   pgoff_t idx_to)
454 {
455 	struct fuse_inode *fi = get_fuse_inode(inode);
456 	bool found;
457 
458 	if (RB_EMPTY_ROOT(&fi->writepages))
459 		return false;
460 
461 	spin_lock(&fi->lock);
462 	found = fuse_find_writeback(fi, idx_from, idx_to);
463 	spin_unlock(&fi->lock);
464 
465 	return found;
466 }
467 
468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
469 {
470 	return fuse_range_is_writeback(inode, index, index);
471 }
472 
473 /*
474  * Wait for page writeback to be completed.
475  *
476  * Since fuse doesn't rely on the VM writeback tracking, this has to
477  * use some other means.
478  */
479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
480 {
481 	struct fuse_inode *fi = get_fuse_inode(inode);
482 
483 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
484 }
485 
486 static inline bool fuse_folio_is_writeback(struct inode *inode,
487 					   struct folio *folio)
488 {
489 	pgoff_t last = folio_next_index(folio) - 1;
490 	return fuse_range_is_writeback(inode, folio_index(folio), last);
491 }
492 
493 static void fuse_wait_on_folio_writeback(struct inode *inode,
494 					 struct folio *folio)
495 {
496 	struct fuse_inode *fi = get_fuse_inode(inode);
497 
498 	wait_event(fi->page_waitq, !fuse_folio_is_writeback(inode, folio));
499 }
500 
501 /*
502  * Wait for all pending writepages on the inode to finish.
503  *
504  * This is currently done by blocking further writes with FUSE_NOWRITE
505  * and waiting for all sent writes to complete.
506  *
507  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
508  * could conflict with truncation.
509  */
510 static void fuse_sync_writes(struct inode *inode)
511 {
512 	fuse_set_nowrite(inode);
513 	fuse_release_nowrite(inode);
514 }
515 
516 static int fuse_flush(struct file *file, fl_owner_t id)
517 {
518 	struct inode *inode = file_inode(file);
519 	struct fuse_mount *fm = get_fuse_mount(inode);
520 	struct fuse_file *ff = file->private_data;
521 	struct fuse_flush_in inarg;
522 	FUSE_ARGS(args);
523 	int err;
524 
525 	if (fuse_is_bad(inode))
526 		return -EIO;
527 
528 	if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
529 		return 0;
530 
531 	err = write_inode_now(inode, 1);
532 	if (err)
533 		return err;
534 
535 	inode_lock(inode);
536 	fuse_sync_writes(inode);
537 	inode_unlock(inode);
538 
539 	err = filemap_check_errors(file->f_mapping);
540 	if (err)
541 		return err;
542 
543 	err = 0;
544 	if (fm->fc->no_flush)
545 		goto inval_attr_out;
546 
547 	memset(&inarg, 0, sizeof(inarg));
548 	inarg.fh = ff->fh;
549 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
550 	args.opcode = FUSE_FLUSH;
551 	args.nodeid = get_node_id(inode);
552 	args.in_numargs = 1;
553 	args.in_args[0].size = sizeof(inarg);
554 	args.in_args[0].value = &inarg;
555 	args.force = true;
556 
557 	err = fuse_simple_request(fm, &args);
558 	if (err == -ENOSYS) {
559 		fm->fc->no_flush = 1;
560 		err = 0;
561 	}
562 
563 inval_attr_out:
564 	/*
565 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
566 	 * enabled, i_blocks from cached attr may not be accurate.
567 	 */
568 	if (!err && fm->fc->writeback_cache)
569 		fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
570 	return err;
571 }
572 
573 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
574 		      int datasync, int opcode)
575 {
576 	struct inode *inode = file->f_mapping->host;
577 	struct fuse_mount *fm = get_fuse_mount(inode);
578 	struct fuse_file *ff = file->private_data;
579 	FUSE_ARGS(args);
580 	struct fuse_fsync_in inarg;
581 
582 	memset(&inarg, 0, sizeof(inarg));
583 	inarg.fh = ff->fh;
584 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
585 	args.opcode = opcode;
586 	args.nodeid = get_node_id(inode);
587 	args.in_numargs = 1;
588 	args.in_args[0].size = sizeof(inarg);
589 	args.in_args[0].value = &inarg;
590 	return fuse_simple_request(fm, &args);
591 }
592 
593 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
594 		      int datasync)
595 {
596 	struct inode *inode = file->f_mapping->host;
597 	struct fuse_conn *fc = get_fuse_conn(inode);
598 	int err;
599 
600 	if (fuse_is_bad(inode))
601 		return -EIO;
602 
603 	inode_lock(inode);
604 
605 	/*
606 	 * Start writeback against all dirty pages of the inode, then
607 	 * wait for all outstanding writes, before sending the FSYNC
608 	 * request.
609 	 */
610 	err = file_write_and_wait_range(file, start, end);
611 	if (err)
612 		goto out;
613 
614 	fuse_sync_writes(inode);
615 
616 	/*
617 	 * Due to implementation of fuse writeback
618 	 * file_write_and_wait_range() does not catch errors.
619 	 * We have to do this directly after fuse_sync_writes()
620 	 */
621 	err = file_check_and_advance_wb_err(file);
622 	if (err)
623 		goto out;
624 
625 	err = sync_inode_metadata(inode, 1);
626 	if (err)
627 		goto out;
628 
629 	if (fc->no_fsync)
630 		goto out;
631 
632 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
633 	if (err == -ENOSYS) {
634 		fc->no_fsync = 1;
635 		err = 0;
636 	}
637 out:
638 	inode_unlock(inode);
639 
640 	return err;
641 }
642 
643 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
644 			 size_t count, int opcode)
645 {
646 	struct fuse_file *ff = file->private_data;
647 	struct fuse_args *args = &ia->ap.args;
648 
649 	ia->read.in.fh = ff->fh;
650 	ia->read.in.offset = pos;
651 	ia->read.in.size = count;
652 	ia->read.in.flags = file->f_flags;
653 	args->opcode = opcode;
654 	args->nodeid = ff->nodeid;
655 	args->in_numargs = 1;
656 	args->in_args[0].size = sizeof(ia->read.in);
657 	args->in_args[0].value = &ia->read.in;
658 	args->out_argvar = true;
659 	args->out_numargs = 1;
660 	args->out_args[0].size = count;
661 }
662 
663 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres,
664 				    bool should_dirty)
665 {
666 	unsigned int i;
667 
668 	for (i = 0; i < ap->num_folios; i++) {
669 		if (should_dirty)
670 			folio_mark_dirty_lock(ap->folios[i]);
671 		if (ap->args.is_pinned)
672 			unpin_folio(ap->folios[i]);
673 	}
674 
675 	if (nres > 0 && ap->args.invalidate_vmap)
676 		invalidate_kernel_vmap_range(ap->args.vmap_base, nres);
677 }
678 
679 static void fuse_io_release(struct kref *kref)
680 {
681 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
682 }
683 
684 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
685 {
686 	if (io->err)
687 		return io->err;
688 
689 	if (io->bytes >= 0 && io->write)
690 		return -EIO;
691 
692 	return io->bytes < 0 ? io->size : io->bytes;
693 }
694 
695 /*
696  * In case of short read, the caller sets 'pos' to the position of
697  * actual end of fuse request in IO request. Otherwise, if bytes_requested
698  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
699  *
700  * An example:
701  * User requested DIO read of 64K. It was split into two 32K fuse requests,
702  * both submitted asynchronously. The first of them was ACKed by userspace as
703  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
704  * second request was ACKed as short, e.g. only 1K was read, resulting in
705  * pos == 33K.
706  *
707  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
708  * will be equal to the length of the longest contiguous fragment of
709  * transferred data starting from the beginning of IO request.
710  */
711 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
712 {
713 	int left;
714 
715 	spin_lock(&io->lock);
716 	if (err)
717 		io->err = io->err ? : err;
718 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
719 		io->bytes = pos;
720 
721 	left = --io->reqs;
722 	if (!left && io->blocking)
723 		complete(io->done);
724 	spin_unlock(&io->lock);
725 
726 	if (!left && !io->blocking) {
727 		ssize_t res = fuse_get_res_by_io(io);
728 
729 		if (res >= 0) {
730 			struct inode *inode = file_inode(io->iocb->ki_filp);
731 			struct fuse_conn *fc = get_fuse_conn(inode);
732 			struct fuse_inode *fi = get_fuse_inode(inode);
733 
734 			spin_lock(&fi->lock);
735 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
736 			spin_unlock(&fi->lock);
737 		}
738 
739 		io->iocb->ki_complete(io->iocb, res);
740 	}
741 
742 	kref_put(&io->refcnt, fuse_io_release);
743 }
744 
745 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
746 						 unsigned int nfolios)
747 {
748 	struct fuse_io_args *ia;
749 
750 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
751 	if (ia) {
752 		ia->io = io;
753 		ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL,
754 						  &ia->ap.descs);
755 		if (!ia->ap.folios) {
756 			kfree(ia);
757 			ia = NULL;
758 		}
759 	}
760 	return ia;
761 }
762 
763 static void fuse_io_free(struct fuse_io_args *ia)
764 {
765 	kfree(ia->ap.folios);
766 	kfree(ia);
767 }
768 
769 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
770 				  int err)
771 {
772 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
773 	struct fuse_io_priv *io = ia->io;
774 	ssize_t pos = -1;
775 	size_t nres;
776 
777 	if (err) {
778 		/* Nothing */
779 	} else if (io->write) {
780 		if (ia->write.out.size > ia->write.in.size) {
781 			err = -EIO;
782 		} else {
783 			nres = ia->write.out.size;
784 			if (ia->write.in.size != ia->write.out.size)
785 				pos = ia->write.in.offset - io->offset +
786 				      ia->write.out.size;
787 		}
788 	} else {
789 		u32 outsize = args->out_args[0].size;
790 
791 		nres = outsize;
792 		if (ia->read.in.size != outsize)
793 			pos = ia->read.in.offset - io->offset + outsize;
794 	}
795 
796 	fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty);
797 
798 	fuse_aio_complete(io, err, pos);
799 	fuse_io_free(ia);
800 }
801 
802 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
803 				   struct fuse_io_args *ia, size_t num_bytes)
804 {
805 	ssize_t err;
806 	struct fuse_io_priv *io = ia->io;
807 
808 	spin_lock(&io->lock);
809 	kref_get(&io->refcnt);
810 	io->size += num_bytes;
811 	io->reqs++;
812 	spin_unlock(&io->lock);
813 
814 	ia->ap.args.end = fuse_aio_complete_req;
815 	ia->ap.args.may_block = io->should_dirty;
816 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
817 	if (err)
818 		fuse_aio_complete_req(fm, &ia->ap.args, err);
819 
820 	return num_bytes;
821 }
822 
823 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
824 			      fl_owner_t owner)
825 {
826 	struct file *file = ia->io->iocb->ki_filp;
827 	struct fuse_file *ff = file->private_data;
828 	struct fuse_mount *fm = ff->fm;
829 
830 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
831 	if (owner != NULL) {
832 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
833 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
834 	}
835 
836 	if (ia->io->async)
837 		return fuse_async_req_send(fm, ia, count);
838 
839 	return fuse_simple_request(fm, &ia->ap.args);
840 }
841 
842 static void fuse_read_update_size(struct inode *inode, loff_t size,
843 				  u64 attr_ver)
844 {
845 	struct fuse_conn *fc = get_fuse_conn(inode);
846 	struct fuse_inode *fi = get_fuse_inode(inode);
847 
848 	spin_lock(&fi->lock);
849 	if (attr_ver >= fi->attr_version && size < inode->i_size &&
850 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
851 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
852 		i_size_write(inode, size);
853 	}
854 	spin_unlock(&fi->lock);
855 }
856 
857 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
858 			    struct fuse_args_pages *ap)
859 {
860 	struct fuse_conn *fc = get_fuse_conn(inode);
861 
862 	/*
863 	 * If writeback_cache is enabled, a short read means there's a hole in
864 	 * the file.  Some data after the hole is in page cache, but has not
865 	 * reached the client fs yet.  So the hole is not present there.
866 	 */
867 	if (!fc->writeback_cache) {
868 		loff_t pos = folio_pos(ap->folios[0]) + num_read;
869 		fuse_read_update_size(inode, pos, attr_ver);
870 	}
871 }
872 
873 static int fuse_do_readfolio(struct file *file, struct folio *folio)
874 {
875 	struct inode *inode = folio->mapping->host;
876 	struct fuse_mount *fm = get_fuse_mount(inode);
877 	loff_t pos = folio_pos(folio);
878 	struct fuse_folio_desc desc = { .length = PAGE_SIZE };
879 	struct fuse_io_args ia = {
880 		.ap.args.page_zeroing = true,
881 		.ap.args.out_pages = true,
882 		.ap.num_folios = 1,
883 		.ap.folios = &folio,
884 		.ap.descs = &desc,
885 	};
886 	ssize_t res;
887 	u64 attr_ver;
888 
889 	/*
890 	 * With the temporary pages that are used to complete writeback, we can
891 	 * have writeback that extends beyond the lifetime of the folio.  So
892 	 * make sure we read a properly synced folio.
893 	 */
894 	fuse_wait_on_folio_writeback(inode, folio);
895 
896 	attr_ver = fuse_get_attr_version(fm->fc);
897 
898 	/* Don't overflow end offset */
899 	if (pos + (desc.length - 1) == LLONG_MAX)
900 		desc.length--;
901 
902 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
903 	res = fuse_simple_request(fm, &ia.ap.args);
904 	if (res < 0)
905 		return res;
906 	/*
907 	 * Short read means EOF.  If file size is larger, truncate it
908 	 */
909 	if (res < desc.length)
910 		fuse_short_read(inode, attr_ver, res, &ia.ap);
911 
912 	folio_mark_uptodate(folio);
913 
914 	return 0;
915 }
916 
917 static int fuse_read_folio(struct file *file, struct folio *folio)
918 {
919 	struct inode *inode = folio->mapping->host;
920 	int err;
921 
922 	err = -EIO;
923 	if (fuse_is_bad(inode))
924 		goto out;
925 
926 	err = fuse_do_readfolio(file, folio);
927 	fuse_invalidate_atime(inode);
928  out:
929 	folio_unlock(folio);
930 	return err;
931 }
932 
933 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
934 			       int err)
935 {
936 	int i;
937 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
938 	struct fuse_args_pages *ap = &ia->ap;
939 	size_t count = ia->read.in.size;
940 	size_t num_read = args->out_args[0].size;
941 	struct address_space *mapping = NULL;
942 
943 	for (i = 0; mapping == NULL && i < ap->num_folios; i++)
944 		mapping = ap->folios[i]->mapping;
945 
946 	if (mapping) {
947 		struct inode *inode = mapping->host;
948 
949 		/*
950 		 * Short read means EOF. If file size is larger, truncate it
951 		 */
952 		if (!err && num_read < count)
953 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
954 
955 		fuse_invalidate_atime(inode);
956 	}
957 
958 	for (i = 0; i < ap->num_folios; i++)
959 		folio_end_read(ap->folios[i], !err);
960 	if (ia->ff)
961 		fuse_file_put(ia->ff, false);
962 
963 	fuse_io_free(ia);
964 }
965 
966 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
967 {
968 	struct fuse_file *ff = file->private_data;
969 	struct fuse_mount *fm = ff->fm;
970 	struct fuse_args_pages *ap = &ia->ap;
971 	loff_t pos = folio_pos(ap->folios[0]);
972 	/* Currently, all folios in FUSE are one page */
973 	size_t count = ap->num_folios << PAGE_SHIFT;
974 	ssize_t res;
975 	int err;
976 
977 	ap->args.out_pages = true;
978 	ap->args.page_zeroing = true;
979 	ap->args.page_replace = true;
980 
981 	/* Don't overflow end offset */
982 	if (pos + (count - 1) == LLONG_MAX) {
983 		count--;
984 		ap->descs[ap->num_folios - 1].length--;
985 	}
986 	WARN_ON((loff_t) (pos + count) < 0);
987 
988 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
989 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
990 	if (fm->fc->async_read) {
991 		ia->ff = fuse_file_get(ff);
992 		ap->args.end = fuse_readpages_end;
993 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
994 		if (!err)
995 			return;
996 	} else {
997 		res = fuse_simple_request(fm, &ap->args);
998 		err = res < 0 ? res : 0;
999 	}
1000 	fuse_readpages_end(fm, &ap->args, err);
1001 }
1002 
1003 static void fuse_readahead(struct readahead_control *rac)
1004 {
1005 	struct inode *inode = rac->mapping->host;
1006 	struct fuse_inode *fi = get_fuse_inode(inode);
1007 	struct fuse_conn *fc = get_fuse_conn(inode);
1008 	unsigned int max_pages, nr_pages;
1009 	pgoff_t first = readahead_index(rac);
1010 	pgoff_t last = first + readahead_count(rac) - 1;
1011 
1012 	if (fuse_is_bad(inode))
1013 		return;
1014 
1015 	wait_event(fi->page_waitq, !fuse_range_is_writeback(inode, first, last));
1016 
1017 	max_pages = min_t(unsigned int, fc->max_pages,
1018 			fc->max_read / PAGE_SIZE);
1019 
1020 	/*
1021 	 * This is only accurate the first time through, since readahead_folio()
1022 	 * doesn't update readahead_count() from the previous folio until the
1023 	 * next call.  Grab nr_pages here so we know how many pages we're going
1024 	 * to have to process.  This means that we will exit here with
1025 	 * readahead_count() == folio_nr_pages(last_folio), but we will have
1026 	 * consumed all of the folios, and read_pages() will call
1027 	 * readahead_folio() again which will clean up the rac.
1028 	 */
1029 	nr_pages = readahead_count(rac);
1030 
1031 	while (nr_pages) {
1032 		struct fuse_io_args *ia;
1033 		struct fuse_args_pages *ap;
1034 		struct folio *folio;
1035 		unsigned cur_pages = min(max_pages, nr_pages);
1036 
1037 		if (fc->num_background >= fc->congestion_threshold &&
1038 		    rac->ra->async_size >= readahead_count(rac))
1039 			/*
1040 			 * Congested and only async pages left, so skip the
1041 			 * rest.
1042 			 */
1043 			break;
1044 
1045 		ia = fuse_io_alloc(NULL, cur_pages);
1046 		if (!ia)
1047 			return;
1048 		ap = &ia->ap;
1049 
1050 		while (ap->num_folios < cur_pages) {
1051 			folio = readahead_folio(rac);
1052 			ap->folios[ap->num_folios] = folio;
1053 			ap->descs[ap->num_folios].length = folio_size(folio);
1054 			ap->num_folios++;
1055 		}
1056 		fuse_send_readpages(ia, rac->file);
1057 		nr_pages -= cur_pages;
1058 	}
1059 }
1060 
1061 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1062 {
1063 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1064 	struct fuse_conn *fc = get_fuse_conn(inode);
1065 
1066 	/*
1067 	 * In auto invalidate mode, always update attributes on read.
1068 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1069 	 * i_size is up to date).
1070 	 */
1071 	if (fc->auto_inval_data ||
1072 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1073 		int err;
1074 		err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1075 		if (err)
1076 			return err;
1077 	}
1078 
1079 	return generic_file_read_iter(iocb, to);
1080 }
1081 
1082 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1083 				 loff_t pos, size_t count)
1084 {
1085 	struct fuse_args *args = &ia->ap.args;
1086 
1087 	ia->write.in.fh = ff->fh;
1088 	ia->write.in.offset = pos;
1089 	ia->write.in.size = count;
1090 	args->opcode = FUSE_WRITE;
1091 	args->nodeid = ff->nodeid;
1092 	args->in_numargs = 2;
1093 	if (ff->fm->fc->minor < 9)
1094 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1095 	else
1096 		args->in_args[0].size = sizeof(ia->write.in);
1097 	args->in_args[0].value = &ia->write.in;
1098 	args->in_args[1].size = count;
1099 	args->out_numargs = 1;
1100 	args->out_args[0].size = sizeof(ia->write.out);
1101 	args->out_args[0].value = &ia->write.out;
1102 }
1103 
1104 static unsigned int fuse_write_flags(struct kiocb *iocb)
1105 {
1106 	unsigned int flags = iocb->ki_filp->f_flags;
1107 
1108 	if (iocb_is_dsync(iocb))
1109 		flags |= O_DSYNC;
1110 	if (iocb->ki_flags & IOCB_SYNC)
1111 		flags |= O_SYNC;
1112 
1113 	return flags;
1114 }
1115 
1116 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1117 			       size_t count, fl_owner_t owner)
1118 {
1119 	struct kiocb *iocb = ia->io->iocb;
1120 	struct file *file = iocb->ki_filp;
1121 	struct fuse_file *ff = file->private_data;
1122 	struct fuse_mount *fm = ff->fm;
1123 	struct fuse_write_in *inarg = &ia->write.in;
1124 	ssize_t err;
1125 
1126 	fuse_write_args_fill(ia, ff, pos, count);
1127 	inarg->flags = fuse_write_flags(iocb);
1128 	if (owner != NULL) {
1129 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1130 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1131 	}
1132 
1133 	if (ia->io->async)
1134 		return fuse_async_req_send(fm, ia, count);
1135 
1136 	err = fuse_simple_request(fm, &ia->ap.args);
1137 	if (!err && ia->write.out.size > count)
1138 		err = -EIO;
1139 
1140 	return err ?: ia->write.out.size;
1141 }
1142 
1143 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1144 {
1145 	struct fuse_conn *fc = get_fuse_conn(inode);
1146 	struct fuse_inode *fi = get_fuse_inode(inode);
1147 	bool ret = false;
1148 
1149 	spin_lock(&fi->lock);
1150 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1151 	if (written > 0 && pos > inode->i_size) {
1152 		i_size_write(inode, pos);
1153 		ret = true;
1154 	}
1155 	spin_unlock(&fi->lock);
1156 
1157 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1158 
1159 	return ret;
1160 }
1161 
1162 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1163 				     struct kiocb *iocb, struct inode *inode,
1164 				     loff_t pos, size_t count)
1165 {
1166 	struct fuse_args_pages *ap = &ia->ap;
1167 	struct file *file = iocb->ki_filp;
1168 	struct fuse_file *ff = file->private_data;
1169 	struct fuse_mount *fm = ff->fm;
1170 	unsigned int offset, i;
1171 	bool short_write;
1172 	int err;
1173 
1174 	for (i = 0; i < ap->num_folios; i++)
1175 		fuse_wait_on_folio_writeback(inode, ap->folios[i]);
1176 
1177 	fuse_write_args_fill(ia, ff, pos, count);
1178 	ia->write.in.flags = fuse_write_flags(iocb);
1179 	if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1180 		ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1181 
1182 	err = fuse_simple_request(fm, &ap->args);
1183 	if (!err && ia->write.out.size > count)
1184 		err = -EIO;
1185 
1186 	short_write = ia->write.out.size < count;
1187 	offset = ap->descs[0].offset;
1188 	count = ia->write.out.size;
1189 	for (i = 0; i < ap->num_folios; i++) {
1190 		struct folio *folio = ap->folios[i];
1191 
1192 		if (err) {
1193 			folio_clear_uptodate(folio);
1194 		} else {
1195 			if (count >= folio_size(folio) - offset)
1196 				count -= folio_size(folio) - offset;
1197 			else {
1198 				if (short_write)
1199 					folio_clear_uptodate(folio);
1200 				count = 0;
1201 			}
1202 			offset = 0;
1203 		}
1204 		if (ia->write.folio_locked && (i == ap->num_folios - 1))
1205 			folio_unlock(folio);
1206 		folio_put(folio);
1207 	}
1208 
1209 	return err;
1210 }
1211 
1212 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1213 				     struct address_space *mapping,
1214 				     struct iov_iter *ii, loff_t pos,
1215 				     unsigned int max_pages)
1216 {
1217 	struct fuse_args_pages *ap = &ia->ap;
1218 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1219 	unsigned offset = pos & (PAGE_SIZE - 1);
1220 	unsigned int nr_pages = 0;
1221 	size_t count = 0;
1222 	int err;
1223 
1224 	ap->args.in_pages = true;
1225 	ap->descs[0].offset = offset;
1226 
1227 	do {
1228 		size_t tmp;
1229 		struct folio *folio;
1230 		pgoff_t index = pos >> PAGE_SHIFT;
1231 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1232 				     iov_iter_count(ii));
1233 
1234 		bytes = min_t(size_t, bytes, fc->max_write - count);
1235 
1236  again:
1237 		err = -EFAULT;
1238 		if (fault_in_iov_iter_readable(ii, bytes))
1239 			break;
1240 
1241 		folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1242 					    mapping_gfp_mask(mapping));
1243 		if (IS_ERR(folio)) {
1244 			err = PTR_ERR(folio);
1245 			break;
1246 		}
1247 
1248 		if (mapping_writably_mapped(mapping))
1249 			flush_dcache_folio(folio);
1250 
1251 		tmp = copy_folio_from_iter_atomic(folio, offset, bytes, ii);
1252 		flush_dcache_folio(folio);
1253 
1254 		if (!tmp) {
1255 			folio_unlock(folio);
1256 			folio_put(folio);
1257 			goto again;
1258 		}
1259 
1260 		err = 0;
1261 		ap->folios[ap->num_folios] = folio;
1262 		ap->descs[ap->num_folios].length = tmp;
1263 		ap->num_folios++;
1264 		nr_pages++;
1265 
1266 		count += tmp;
1267 		pos += tmp;
1268 		offset += tmp;
1269 		if (offset == PAGE_SIZE)
1270 			offset = 0;
1271 
1272 		/* If we copied full page, mark it uptodate */
1273 		if (tmp == PAGE_SIZE)
1274 			folio_mark_uptodate(folio);
1275 
1276 		if (folio_test_uptodate(folio)) {
1277 			folio_unlock(folio);
1278 		} else {
1279 			ia->write.folio_locked = true;
1280 			break;
1281 		}
1282 		if (!fc->big_writes)
1283 			break;
1284 	} while (iov_iter_count(ii) && count < fc->max_write &&
1285 		 nr_pages < max_pages && offset == 0);
1286 
1287 	return count > 0 ? count : err;
1288 }
1289 
1290 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1291 				     unsigned int max_pages)
1292 {
1293 	return min_t(unsigned int,
1294 		     ((pos + len - 1) >> PAGE_SHIFT) -
1295 		     (pos >> PAGE_SHIFT) + 1,
1296 		     max_pages);
1297 }
1298 
1299 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1300 {
1301 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1302 	struct inode *inode = mapping->host;
1303 	struct fuse_conn *fc = get_fuse_conn(inode);
1304 	struct fuse_inode *fi = get_fuse_inode(inode);
1305 	loff_t pos = iocb->ki_pos;
1306 	int err = 0;
1307 	ssize_t res = 0;
1308 
1309 	if (inode->i_size < pos + iov_iter_count(ii))
1310 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1311 
1312 	do {
1313 		ssize_t count;
1314 		struct fuse_io_args ia = {};
1315 		struct fuse_args_pages *ap = &ia.ap;
1316 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1317 						      fc->max_pages);
1318 
1319 		ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1320 		if (!ap->folios) {
1321 			err = -ENOMEM;
1322 			break;
1323 		}
1324 
1325 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1326 		if (count <= 0) {
1327 			err = count;
1328 		} else {
1329 			err = fuse_send_write_pages(&ia, iocb, inode,
1330 						    pos, count);
1331 			if (!err) {
1332 				size_t num_written = ia.write.out.size;
1333 
1334 				res += num_written;
1335 				pos += num_written;
1336 
1337 				/* break out of the loop on short write */
1338 				if (num_written != count)
1339 					err = -EIO;
1340 			}
1341 		}
1342 		kfree(ap->folios);
1343 	} while (!err && iov_iter_count(ii));
1344 
1345 	fuse_write_update_attr(inode, pos, res);
1346 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1347 
1348 	if (!res)
1349 		return err;
1350 	iocb->ki_pos += res;
1351 	return res;
1352 }
1353 
1354 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter)
1355 {
1356 	struct inode *inode = file_inode(iocb->ki_filp);
1357 
1358 	return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1359 }
1360 
1361 /*
1362  * @return true if an exclusive lock for direct IO writes is needed
1363  */
1364 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from)
1365 {
1366 	struct file *file = iocb->ki_filp;
1367 	struct fuse_file *ff = file->private_data;
1368 	struct inode *inode = file_inode(iocb->ki_filp);
1369 	struct fuse_inode *fi = get_fuse_inode(inode);
1370 
1371 	/* Server side has to advise that it supports parallel dio writes. */
1372 	if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES))
1373 		return true;
1374 
1375 	/*
1376 	 * Append will need to know the eventual EOF - always needs an
1377 	 * exclusive lock.
1378 	 */
1379 	if (iocb->ki_flags & IOCB_APPEND)
1380 		return true;
1381 
1382 	/* shared locks are not allowed with parallel page cache IO */
1383 	if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state))
1384 		return true;
1385 
1386 	/* Parallel dio beyond EOF is not supported, at least for now. */
1387 	if (fuse_io_past_eof(iocb, from))
1388 		return true;
1389 
1390 	return false;
1391 }
1392 
1393 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from,
1394 			  bool *exclusive)
1395 {
1396 	struct inode *inode = file_inode(iocb->ki_filp);
1397 	struct fuse_inode *fi = get_fuse_inode(inode);
1398 
1399 	*exclusive = fuse_dio_wr_exclusive_lock(iocb, from);
1400 	if (*exclusive) {
1401 		inode_lock(inode);
1402 	} else {
1403 		inode_lock_shared(inode);
1404 		/*
1405 		 * New parallal dio allowed only if inode is not in caching
1406 		 * mode and denies new opens in caching mode. This check
1407 		 * should be performed only after taking shared inode lock.
1408 		 * Previous past eof check was without inode lock and might
1409 		 * have raced, so check it again.
1410 		 */
1411 		if (fuse_io_past_eof(iocb, from) ||
1412 		    fuse_inode_uncached_io_start(fi, NULL) != 0) {
1413 			inode_unlock_shared(inode);
1414 			inode_lock(inode);
1415 			*exclusive = true;
1416 		}
1417 	}
1418 }
1419 
1420 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive)
1421 {
1422 	struct inode *inode = file_inode(iocb->ki_filp);
1423 	struct fuse_inode *fi = get_fuse_inode(inode);
1424 
1425 	if (exclusive) {
1426 		inode_unlock(inode);
1427 	} else {
1428 		/* Allow opens in caching mode after last parallel dio end */
1429 		fuse_inode_uncached_io_end(fi);
1430 		inode_unlock_shared(inode);
1431 	}
1432 }
1433 
1434 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1435 {
1436 	struct file *file = iocb->ki_filp;
1437 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1438 	struct address_space *mapping = file->f_mapping;
1439 	ssize_t written = 0;
1440 	struct inode *inode = mapping->host;
1441 	ssize_t err, count;
1442 	struct fuse_conn *fc = get_fuse_conn(inode);
1443 
1444 	if (fc->writeback_cache) {
1445 		/* Update size (EOF optimization) and mode (SUID clearing) */
1446 		err = fuse_update_attributes(mapping->host, file,
1447 					     STATX_SIZE | STATX_MODE);
1448 		if (err)
1449 			return err;
1450 
1451 		if (fc->handle_killpriv_v2 &&
1452 		    setattr_should_drop_suidgid(idmap,
1453 						file_inode(file))) {
1454 			goto writethrough;
1455 		}
1456 
1457 		return generic_file_write_iter(iocb, from);
1458 	}
1459 
1460 writethrough:
1461 	inode_lock(inode);
1462 
1463 	err = count = generic_write_checks(iocb, from);
1464 	if (err <= 0)
1465 		goto out;
1466 
1467 	task_io_account_write(count);
1468 
1469 	err = kiocb_modified(iocb);
1470 	if (err)
1471 		goto out;
1472 
1473 	if (iocb->ki_flags & IOCB_DIRECT) {
1474 		written = generic_file_direct_write(iocb, from);
1475 		if (written < 0 || !iov_iter_count(from))
1476 			goto out;
1477 		written = direct_write_fallback(iocb, from, written,
1478 				fuse_perform_write(iocb, from));
1479 	} else {
1480 		written = fuse_perform_write(iocb, from);
1481 	}
1482 out:
1483 	inode_unlock(inode);
1484 	if (written > 0)
1485 		written = generic_write_sync(iocb, written);
1486 
1487 	return written ? written : err;
1488 }
1489 
1490 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1491 {
1492 	return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1493 }
1494 
1495 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1496 					size_t max_size)
1497 {
1498 	return min(iov_iter_single_seg_count(ii), max_size);
1499 }
1500 
1501 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1502 			       size_t *nbytesp, int write,
1503 			       unsigned int max_pages,
1504 			       bool use_pages_for_kvec_io)
1505 {
1506 	bool flush_or_invalidate = false;
1507 	unsigned int nr_pages = 0;
1508 	size_t nbytes = 0;  /* # bytes already packed in req */
1509 	ssize_t ret = 0;
1510 
1511 	/* Special case for kernel I/O: can copy directly into the buffer.
1512 	 * However if the implementation of fuse_conn requires pages instead of
1513 	 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead.
1514 	 */
1515 	if (iov_iter_is_kvec(ii)) {
1516 		void *user_addr = (void *)fuse_get_user_addr(ii);
1517 
1518 		if (!use_pages_for_kvec_io) {
1519 			size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1520 
1521 			if (write)
1522 				ap->args.in_args[1].value = user_addr;
1523 			else
1524 				ap->args.out_args[0].value = user_addr;
1525 
1526 			iov_iter_advance(ii, frag_size);
1527 			*nbytesp = frag_size;
1528 			return 0;
1529 		}
1530 
1531 		if (is_vmalloc_addr(user_addr)) {
1532 			ap->args.vmap_base = user_addr;
1533 			flush_or_invalidate = true;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Until there is support for iov_iter_extract_folios(), we have to
1539 	 * manually extract pages using iov_iter_extract_pages() and then
1540 	 * copy that to a folios array.
1541 	 */
1542 	struct page **pages = kzalloc(max_pages * sizeof(struct page *),
1543 				      GFP_KERNEL);
1544 	if (!pages) {
1545 		ret = -ENOMEM;
1546 		goto out;
1547 	}
1548 
1549 	while (nbytes < *nbytesp && nr_pages < max_pages) {
1550 		unsigned nfolios, i;
1551 		size_t start;
1552 
1553 		ret = iov_iter_extract_pages(ii, &pages,
1554 					     *nbytesp - nbytes,
1555 					     max_pages - nr_pages,
1556 					     0, &start);
1557 		if (ret < 0)
1558 			break;
1559 
1560 		nbytes += ret;
1561 
1562 		nfolios = DIV_ROUND_UP(ret + start, PAGE_SIZE);
1563 
1564 		for (i = 0; i < nfolios; i++) {
1565 			struct folio *folio = page_folio(pages[i]);
1566 			unsigned int offset = start +
1567 				(folio_page_idx(folio, pages[i]) << PAGE_SHIFT);
1568 			unsigned int len = min_t(unsigned int, ret, PAGE_SIZE - start);
1569 
1570 			ap->descs[ap->num_folios].offset = offset;
1571 			ap->descs[ap->num_folios].length = len;
1572 			ap->folios[ap->num_folios] = folio;
1573 			start = 0;
1574 			ret -= len;
1575 			ap->num_folios++;
1576 		}
1577 
1578 		nr_pages += nfolios;
1579 	}
1580 	kfree(pages);
1581 
1582 	if (write && flush_or_invalidate)
1583 		flush_kernel_vmap_range(ap->args.vmap_base, nbytes);
1584 
1585 	ap->args.invalidate_vmap = !write && flush_or_invalidate;
1586 	ap->args.is_pinned = iov_iter_extract_will_pin(ii);
1587 	ap->args.user_pages = true;
1588 	if (write)
1589 		ap->args.in_pages = true;
1590 	else
1591 		ap->args.out_pages = true;
1592 
1593 out:
1594 	*nbytesp = nbytes;
1595 
1596 	return ret < 0 ? ret : 0;
1597 }
1598 
1599 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1600 		       loff_t *ppos, int flags)
1601 {
1602 	int write = flags & FUSE_DIO_WRITE;
1603 	int cuse = flags & FUSE_DIO_CUSE;
1604 	struct file *file = io->iocb->ki_filp;
1605 	struct address_space *mapping = file->f_mapping;
1606 	struct inode *inode = mapping->host;
1607 	struct fuse_file *ff = file->private_data;
1608 	struct fuse_conn *fc = ff->fm->fc;
1609 	size_t nmax = write ? fc->max_write : fc->max_read;
1610 	loff_t pos = *ppos;
1611 	size_t count = iov_iter_count(iter);
1612 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1613 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1614 	ssize_t res = 0;
1615 	int err = 0;
1616 	struct fuse_io_args *ia;
1617 	unsigned int max_pages;
1618 	bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO;
1619 
1620 	max_pages = iov_iter_npages(iter, fc->max_pages);
1621 	ia = fuse_io_alloc(io, max_pages);
1622 	if (!ia)
1623 		return -ENOMEM;
1624 
1625 	if (fopen_direct_io && fc->direct_io_allow_mmap) {
1626 		res = filemap_write_and_wait_range(mapping, pos, pos + count - 1);
1627 		if (res) {
1628 			fuse_io_free(ia);
1629 			return res;
1630 		}
1631 	}
1632 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1633 		if (!write)
1634 			inode_lock(inode);
1635 		fuse_sync_writes(inode);
1636 		if (!write)
1637 			inode_unlock(inode);
1638 	}
1639 
1640 	if (fopen_direct_io && write) {
1641 		res = invalidate_inode_pages2_range(mapping, idx_from, idx_to);
1642 		if (res) {
1643 			fuse_io_free(ia);
1644 			return res;
1645 		}
1646 	}
1647 
1648 	io->should_dirty = !write && user_backed_iter(iter);
1649 	while (count) {
1650 		ssize_t nres;
1651 		fl_owner_t owner = current->files;
1652 		size_t nbytes = min(count, nmax);
1653 
1654 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1655 					  max_pages, fc->use_pages_for_kvec_io);
1656 		if (err && !nbytes)
1657 			break;
1658 
1659 		if (write) {
1660 			if (!capable(CAP_FSETID))
1661 				ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1662 
1663 			nres = fuse_send_write(ia, pos, nbytes, owner);
1664 		} else {
1665 			nres = fuse_send_read(ia, pos, nbytes, owner);
1666 		}
1667 
1668 		if (!io->async || nres < 0) {
1669 			fuse_release_user_pages(&ia->ap, nres, io->should_dirty);
1670 			fuse_io_free(ia);
1671 		}
1672 		ia = NULL;
1673 		if (nres < 0) {
1674 			iov_iter_revert(iter, nbytes);
1675 			err = nres;
1676 			break;
1677 		}
1678 		WARN_ON(nres > nbytes);
1679 
1680 		count -= nres;
1681 		res += nres;
1682 		pos += nres;
1683 		if (nres != nbytes) {
1684 			iov_iter_revert(iter, nbytes - nres);
1685 			break;
1686 		}
1687 		if (count) {
1688 			max_pages = iov_iter_npages(iter, fc->max_pages);
1689 			ia = fuse_io_alloc(io, max_pages);
1690 			if (!ia)
1691 				break;
1692 		}
1693 	}
1694 	if (ia)
1695 		fuse_io_free(ia);
1696 	if (res > 0)
1697 		*ppos = pos;
1698 
1699 	return res > 0 ? res : err;
1700 }
1701 EXPORT_SYMBOL_GPL(fuse_direct_io);
1702 
1703 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1704 				  struct iov_iter *iter,
1705 				  loff_t *ppos)
1706 {
1707 	ssize_t res;
1708 	struct inode *inode = file_inode(io->iocb->ki_filp);
1709 
1710 	res = fuse_direct_io(io, iter, ppos, 0);
1711 
1712 	fuse_invalidate_atime(inode);
1713 
1714 	return res;
1715 }
1716 
1717 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1718 
1719 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1720 {
1721 	ssize_t res;
1722 
1723 	if (!is_sync_kiocb(iocb)) {
1724 		res = fuse_direct_IO(iocb, to);
1725 	} else {
1726 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1727 
1728 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1729 	}
1730 
1731 	return res;
1732 }
1733 
1734 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1735 {
1736 	struct inode *inode = file_inode(iocb->ki_filp);
1737 	ssize_t res;
1738 	bool exclusive;
1739 
1740 	fuse_dio_lock(iocb, from, &exclusive);
1741 	res = generic_write_checks(iocb, from);
1742 	if (res > 0) {
1743 		task_io_account_write(res);
1744 		if (!is_sync_kiocb(iocb)) {
1745 			res = fuse_direct_IO(iocb, from);
1746 		} else {
1747 			struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1748 
1749 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1750 					     FUSE_DIO_WRITE);
1751 			fuse_write_update_attr(inode, iocb->ki_pos, res);
1752 		}
1753 	}
1754 	fuse_dio_unlock(iocb, exclusive);
1755 
1756 	return res;
1757 }
1758 
1759 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1760 {
1761 	struct file *file = iocb->ki_filp;
1762 	struct fuse_file *ff = file->private_data;
1763 	struct inode *inode = file_inode(file);
1764 
1765 	if (fuse_is_bad(inode))
1766 		return -EIO;
1767 
1768 	if (FUSE_IS_DAX(inode))
1769 		return fuse_dax_read_iter(iocb, to);
1770 
1771 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1772 	if (ff->open_flags & FOPEN_DIRECT_IO)
1773 		return fuse_direct_read_iter(iocb, to);
1774 	else if (fuse_file_passthrough(ff))
1775 		return fuse_passthrough_read_iter(iocb, to);
1776 	else
1777 		return fuse_cache_read_iter(iocb, to);
1778 }
1779 
1780 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1781 {
1782 	struct file *file = iocb->ki_filp;
1783 	struct fuse_file *ff = file->private_data;
1784 	struct inode *inode = file_inode(file);
1785 
1786 	if (fuse_is_bad(inode))
1787 		return -EIO;
1788 
1789 	if (FUSE_IS_DAX(inode))
1790 		return fuse_dax_write_iter(iocb, from);
1791 
1792 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1793 	if (ff->open_flags & FOPEN_DIRECT_IO)
1794 		return fuse_direct_write_iter(iocb, from);
1795 	else if (fuse_file_passthrough(ff))
1796 		return fuse_passthrough_write_iter(iocb, from);
1797 	else
1798 		return fuse_cache_write_iter(iocb, from);
1799 }
1800 
1801 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos,
1802 				struct pipe_inode_info *pipe, size_t len,
1803 				unsigned int flags)
1804 {
1805 	struct fuse_file *ff = in->private_data;
1806 
1807 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1808 	if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1809 		return fuse_passthrough_splice_read(in, ppos, pipe, len, flags);
1810 	else
1811 		return filemap_splice_read(in, ppos, pipe, len, flags);
1812 }
1813 
1814 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out,
1815 				 loff_t *ppos, size_t len, unsigned int flags)
1816 {
1817 	struct fuse_file *ff = out->private_data;
1818 
1819 	/* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1820 	if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1821 		return fuse_passthrough_splice_write(pipe, out, ppos, len, flags);
1822 	else
1823 		return iter_file_splice_write(pipe, out, ppos, len, flags);
1824 }
1825 
1826 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1827 {
1828 	struct fuse_args_pages *ap = &wpa->ia.ap;
1829 	int i;
1830 
1831 	if (wpa->bucket)
1832 		fuse_sync_bucket_dec(wpa->bucket);
1833 
1834 	for (i = 0; i < ap->num_folios; i++)
1835 		folio_put(ap->folios[i]);
1836 
1837 	fuse_file_put(wpa->ia.ff, false);
1838 
1839 	kfree(ap->folios);
1840 	kfree(wpa);
1841 }
1842 
1843 static void fuse_writepage_finish_stat(struct inode *inode, struct folio *folio)
1844 {
1845 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1846 
1847 	dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1848 	node_stat_sub_folio(folio, NR_WRITEBACK_TEMP);
1849 	wb_writeout_inc(&bdi->wb);
1850 }
1851 
1852 static void fuse_writepage_finish(struct fuse_writepage_args *wpa)
1853 {
1854 	struct fuse_args_pages *ap = &wpa->ia.ap;
1855 	struct inode *inode = wpa->inode;
1856 	struct fuse_inode *fi = get_fuse_inode(inode);
1857 	int i;
1858 
1859 	for (i = 0; i < ap->num_folios; i++)
1860 		fuse_writepage_finish_stat(inode, ap->folios[i]);
1861 
1862 	wake_up(&fi->page_waitq);
1863 }
1864 
1865 /* Called under fi->lock, may release and reacquire it */
1866 static void fuse_send_writepage(struct fuse_mount *fm,
1867 				struct fuse_writepage_args *wpa, loff_t size)
1868 __releases(fi->lock)
1869 __acquires(fi->lock)
1870 {
1871 	struct fuse_writepage_args *aux, *next;
1872 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1873 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1874 	struct fuse_args *args = &wpa->ia.ap.args;
1875 	/* Currently, all folios in FUSE are one page */
1876 	__u64 data_size = wpa->ia.ap.num_folios * PAGE_SIZE;
1877 	int err;
1878 
1879 	fi->writectr++;
1880 	if (inarg->offset + data_size <= size) {
1881 		inarg->size = data_size;
1882 	} else if (inarg->offset < size) {
1883 		inarg->size = size - inarg->offset;
1884 	} else {
1885 		/* Got truncated off completely */
1886 		goto out_free;
1887 	}
1888 
1889 	args->in_args[1].size = inarg->size;
1890 	args->force = true;
1891 	args->nocreds = true;
1892 
1893 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1894 	if (err == -ENOMEM) {
1895 		spin_unlock(&fi->lock);
1896 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1897 		spin_lock(&fi->lock);
1898 	}
1899 
1900 	/* Fails on broken connection only */
1901 	if (unlikely(err))
1902 		goto out_free;
1903 
1904 	return;
1905 
1906  out_free:
1907 	fi->writectr--;
1908 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1909 	fuse_writepage_finish(wpa);
1910 	spin_unlock(&fi->lock);
1911 
1912 	/* After rb_erase() aux request list is private */
1913 	for (aux = wpa->next; aux; aux = next) {
1914 		next = aux->next;
1915 		aux->next = NULL;
1916 		fuse_writepage_finish_stat(aux->inode,
1917 					   aux->ia.ap.folios[0]);
1918 		fuse_writepage_free(aux);
1919 	}
1920 
1921 	fuse_writepage_free(wpa);
1922 	spin_lock(&fi->lock);
1923 }
1924 
1925 /*
1926  * If fi->writectr is positive (no truncate or fsync going on) send
1927  * all queued writepage requests.
1928  *
1929  * Called with fi->lock
1930  */
1931 void fuse_flush_writepages(struct inode *inode)
1932 __releases(fi->lock)
1933 __acquires(fi->lock)
1934 {
1935 	struct fuse_mount *fm = get_fuse_mount(inode);
1936 	struct fuse_inode *fi = get_fuse_inode(inode);
1937 	loff_t crop = i_size_read(inode);
1938 	struct fuse_writepage_args *wpa;
1939 
1940 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1941 		wpa = list_entry(fi->queued_writes.next,
1942 				 struct fuse_writepage_args, queue_entry);
1943 		list_del_init(&wpa->queue_entry);
1944 		fuse_send_writepage(fm, wpa, crop);
1945 	}
1946 }
1947 
1948 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1949 						struct fuse_writepage_args *wpa)
1950 {
1951 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1952 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_folios - 1;
1953 	struct rb_node **p = &root->rb_node;
1954 	struct rb_node  *parent = NULL;
1955 
1956 	WARN_ON(!wpa->ia.ap.num_folios);
1957 	while (*p) {
1958 		struct fuse_writepage_args *curr;
1959 		pgoff_t curr_index;
1960 
1961 		parent = *p;
1962 		curr = rb_entry(parent, struct fuse_writepage_args,
1963 				writepages_entry);
1964 		WARN_ON(curr->inode != wpa->inode);
1965 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1966 
1967 		if (idx_from >= curr_index + curr->ia.ap.num_folios)
1968 			p = &(*p)->rb_right;
1969 		else if (idx_to < curr_index)
1970 			p = &(*p)->rb_left;
1971 		else
1972 			return curr;
1973 	}
1974 
1975 	rb_link_node(&wpa->writepages_entry, parent, p);
1976 	rb_insert_color(&wpa->writepages_entry, root);
1977 	return NULL;
1978 }
1979 
1980 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1981 {
1982 	WARN_ON(fuse_insert_writeback(root, wpa));
1983 }
1984 
1985 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1986 			       int error)
1987 {
1988 	struct fuse_writepage_args *wpa =
1989 		container_of(args, typeof(*wpa), ia.ap.args);
1990 	struct inode *inode = wpa->inode;
1991 	struct fuse_inode *fi = get_fuse_inode(inode);
1992 	struct fuse_conn *fc = get_fuse_conn(inode);
1993 
1994 	mapping_set_error(inode->i_mapping, error);
1995 	/*
1996 	 * A writeback finished and this might have updated mtime/ctime on
1997 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1998 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1999 	 * is enabled, we trust local ctime/mtime.
2000 	 */
2001 	if (!fc->writeback_cache)
2002 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
2003 	spin_lock(&fi->lock);
2004 	rb_erase(&wpa->writepages_entry, &fi->writepages);
2005 	while (wpa->next) {
2006 		struct fuse_mount *fm = get_fuse_mount(inode);
2007 		struct fuse_write_in *inarg = &wpa->ia.write.in;
2008 		struct fuse_writepage_args *next = wpa->next;
2009 
2010 		wpa->next = next->next;
2011 		next->next = NULL;
2012 		tree_insert(&fi->writepages, next);
2013 
2014 		/*
2015 		 * Skip fuse_flush_writepages() to make it easy to crop requests
2016 		 * based on primary request size.
2017 		 *
2018 		 * 1st case (trivial): there are no concurrent activities using
2019 		 * fuse_set/release_nowrite.  Then we're on safe side because
2020 		 * fuse_flush_writepages() would call fuse_send_writepage()
2021 		 * anyway.
2022 		 *
2023 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
2024 		 * now for completion of all in-flight requests.  This happens
2025 		 * rarely and no more than once per page, so this should be
2026 		 * okay.
2027 		 *
2028 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
2029 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
2030 		 * that fuse_set_nowrite returned implies that all in-flight
2031 		 * requests were completed along with all of their secondary
2032 		 * requests.  Further primary requests are blocked by negative
2033 		 * writectr.  Hence there cannot be any in-flight requests and
2034 		 * no invocations of fuse_writepage_end() while we're in
2035 		 * fuse_set_nowrite..fuse_release_nowrite section.
2036 		 */
2037 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
2038 	}
2039 	fi->writectr--;
2040 	fuse_writepage_finish(wpa);
2041 	spin_unlock(&fi->lock);
2042 	fuse_writepage_free(wpa);
2043 }
2044 
2045 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
2046 {
2047 	struct fuse_file *ff;
2048 
2049 	spin_lock(&fi->lock);
2050 	ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
2051 				      write_entry);
2052 	if (ff)
2053 		fuse_file_get(ff);
2054 	spin_unlock(&fi->lock);
2055 
2056 	return ff;
2057 }
2058 
2059 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
2060 {
2061 	struct fuse_file *ff = __fuse_write_file_get(fi);
2062 	WARN_ON(!ff);
2063 	return ff;
2064 }
2065 
2066 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
2067 {
2068 	struct fuse_inode *fi = get_fuse_inode(inode);
2069 	struct fuse_file *ff;
2070 	int err;
2071 
2072 	/*
2073 	 * Inode is always written before the last reference is dropped and
2074 	 * hence this should not be reached from reclaim.
2075 	 *
2076 	 * Writing back the inode from reclaim can deadlock if the request
2077 	 * processing itself needs an allocation.  Allocations triggering
2078 	 * reclaim while serving a request can't be prevented, because it can
2079 	 * involve any number of unrelated userspace processes.
2080 	 */
2081 	WARN_ON(wbc->for_reclaim);
2082 
2083 	ff = __fuse_write_file_get(fi);
2084 	err = fuse_flush_times(inode, ff);
2085 	if (ff)
2086 		fuse_file_put(ff, false);
2087 
2088 	return err;
2089 }
2090 
2091 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
2092 {
2093 	struct fuse_writepage_args *wpa;
2094 	struct fuse_args_pages *ap;
2095 
2096 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
2097 	if (wpa) {
2098 		ap = &wpa->ia.ap;
2099 		ap->num_folios = 0;
2100 		ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs);
2101 		if (!ap->folios) {
2102 			kfree(wpa);
2103 			wpa = NULL;
2104 		}
2105 	}
2106 	return wpa;
2107 
2108 }
2109 
2110 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
2111 					 struct fuse_writepage_args *wpa)
2112 {
2113 	if (!fc->sync_fs)
2114 		return;
2115 
2116 	rcu_read_lock();
2117 	/* Prevent resurrection of dead bucket in unlikely race with syncfs */
2118 	do {
2119 		wpa->bucket = rcu_dereference(fc->curr_bucket);
2120 	} while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
2121 	rcu_read_unlock();
2122 }
2123 
2124 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio,
2125 					  struct folio *tmp_folio, uint32_t folio_index)
2126 {
2127 	struct inode *inode = folio->mapping->host;
2128 	struct fuse_args_pages *ap = &wpa->ia.ap;
2129 
2130 	folio_copy(tmp_folio, folio);
2131 
2132 	ap->folios[folio_index] = tmp_folio;
2133 	ap->descs[folio_index].offset = 0;
2134 	ap->descs[folio_index].length = PAGE_SIZE;
2135 
2136 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2137 	node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP);
2138 }
2139 
2140 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio,
2141 							     struct fuse_file *ff)
2142 {
2143 	struct inode *inode = folio->mapping->host;
2144 	struct fuse_conn *fc = get_fuse_conn(inode);
2145 	struct fuse_writepage_args *wpa;
2146 	struct fuse_args_pages *ap;
2147 
2148 	wpa = fuse_writepage_args_alloc();
2149 	if (!wpa)
2150 		return NULL;
2151 
2152 	fuse_writepage_add_to_bucket(fc, wpa);
2153 	fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio), 0);
2154 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2155 	wpa->inode = inode;
2156 	wpa->ia.ff = ff;
2157 
2158 	ap = &wpa->ia.ap;
2159 	ap->args.in_pages = true;
2160 	ap->args.end = fuse_writepage_end;
2161 
2162 	return wpa;
2163 }
2164 
2165 static int fuse_writepage_locked(struct folio *folio)
2166 {
2167 	struct address_space *mapping = folio->mapping;
2168 	struct inode *inode = mapping->host;
2169 	struct fuse_inode *fi = get_fuse_inode(inode);
2170 	struct fuse_writepage_args *wpa;
2171 	struct fuse_args_pages *ap;
2172 	struct folio *tmp_folio;
2173 	struct fuse_file *ff;
2174 	int error = -ENOMEM;
2175 
2176 	tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2177 	if (!tmp_folio)
2178 		goto err;
2179 
2180 	error = -EIO;
2181 	ff = fuse_write_file_get(fi);
2182 	if (!ff)
2183 		goto err_nofile;
2184 
2185 	wpa = fuse_writepage_args_setup(folio, ff);
2186 	error = -ENOMEM;
2187 	if (!wpa)
2188 		goto err_writepage_args;
2189 
2190 	ap = &wpa->ia.ap;
2191 	ap->num_folios = 1;
2192 
2193 	folio_start_writeback(folio);
2194 	fuse_writepage_args_page_fill(wpa, folio, tmp_folio, 0);
2195 
2196 	spin_lock(&fi->lock);
2197 	tree_insert(&fi->writepages, wpa);
2198 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2199 	fuse_flush_writepages(inode);
2200 	spin_unlock(&fi->lock);
2201 
2202 	folio_end_writeback(folio);
2203 
2204 	return 0;
2205 
2206 err_writepage_args:
2207 	fuse_file_put(ff, false);
2208 err_nofile:
2209 	folio_put(tmp_folio);
2210 err:
2211 	mapping_set_error(folio->mapping, error);
2212 	return error;
2213 }
2214 
2215 struct fuse_fill_wb_data {
2216 	struct fuse_writepage_args *wpa;
2217 	struct fuse_file *ff;
2218 	struct inode *inode;
2219 	struct folio **orig_folios;
2220 	unsigned int max_folios;
2221 };
2222 
2223 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2224 {
2225 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
2226 	struct fuse_conn *fc = get_fuse_conn(data->inode);
2227 	struct folio **folios;
2228 	struct fuse_folio_desc *descs;
2229 	unsigned int nfolios = min_t(unsigned int,
2230 				     max_t(unsigned int, data->max_folios * 2,
2231 					   FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2232 				    fc->max_pages);
2233 	WARN_ON(nfolios <= data->max_folios);
2234 
2235 	folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs);
2236 	if (!folios)
2237 		return false;
2238 
2239 	memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios);
2240 	memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios);
2241 	kfree(ap->folios);
2242 	ap->folios = folios;
2243 	ap->descs = descs;
2244 	data->max_folios = nfolios;
2245 
2246 	return true;
2247 }
2248 
2249 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2250 {
2251 	struct fuse_writepage_args *wpa = data->wpa;
2252 	struct inode *inode = data->inode;
2253 	struct fuse_inode *fi = get_fuse_inode(inode);
2254 	int num_folios = wpa->ia.ap.num_folios;
2255 	int i;
2256 
2257 	spin_lock(&fi->lock);
2258 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2259 	fuse_flush_writepages(inode);
2260 	spin_unlock(&fi->lock);
2261 
2262 	for (i = 0; i < num_folios; i++)
2263 		folio_end_writeback(data->orig_folios[i]);
2264 }
2265 
2266 /*
2267  * Check under fi->lock if the page is under writeback, and insert it onto the
2268  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2269  * one already added for a page at this offset.  If there's none, then insert
2270  * this new request onto the auxiliary list, otherwise reuse the existing one by
2271  * swapping the new temp page with the old one.
2272  */
2273 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2274 			       struct folio *folio)
2275 {
2276 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2277 	struct fuse_writepage_args *tmp;
2278 	struct fuse_writepage_args *old_wpa;
2279 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2280 
2281 	WARN_ON(new_ap->num_folios != 0);
2282 	new_ap->num_folios = 1;
2283 
2284 	spin_lock(&fi->lock);
2285 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2286 	if (!old_wpa) {
2287 		spin_unlock(&fi->lock);
2288 		return true;
2289 	}
2290 
2291 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2292 		pgoff_t curr_index;
2293 
2294 		WARN_ON(tmp->inode != new_wpa->inode);
2295 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2296 		if (curr_index == folio->index) {
2297 			WARN_ON(tmp->ia.ap.num_folios != 1);
2298 			swap(tmp->ia.ap.folios[0], new_ap->folios[0]);
2299 			break;
2300 		}
2301 	}
2302 
2303 	if (!tmp) {
2304 		new_wpa->next = old_wpa->next;
2305 		old_wpa->next = new_wpa;
2306 	}
2307 
2308 	spin_unlock(&fi->lock);
2309 
2310 	if (tmp) {
2311 		fuse_writepage_finish_stat(new_wpa->inode,
2312 					   folio);
2313 		fuse_writepage_free(new_wpa);
2314 	}
2315 
2316 	return false;
2317 }
2318 
2319 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct folio *folio,
2320 				     struct fuse_args_pages *ap,
2321 				     struct fuse_fill_wb_data *data)
2322 {
2323 	WARN_ON(!ap->num_folios);
2324 
2325 	/*
2326 	 * Being under writeback is unlikely but possible.  For example direct
2327 	 * read to an mmaped fuse file will set the page dirty twice; once when
2328 	 * the pages are faulted with get_user_pages(), and then after the read
2329 	 * completed.
2330 	 */
2331 	if (fuse_folio_is_writeback(data->inode, folio))
2332 		return true;
2333 
2334 	/* Reached max pages */
2335 	if (ap->num_folios == fc->max_pages)
2336 		return true;
2337 
2338 	/* Reached max write bytes */
2339 	if ((ap->num_folios + 1) * PAGE_SIZE > fc->max_write)
2340 		return true;
2341 
2342 	/* Discontinuity */
2343 	if (data->orig_folios[ap->num_folios - 1]->index + 1 != folio_index(folio))
2344 		return true;
2345 
2346 	/* Need to grow the pages array?  If so, did the expansion fail? */
2347 	if (ap->num_folios == data->max_folios && !fuse_pages_realloc(data))
2348 		return true;
2349 
2350 	return false;
2351 }
2352 
2353 static int fuse_writepages_fill(struct folio *folio,
2354 		struct writeback_control *wbc, void *_data)
2355 {
2356 	struct fuse_fill_wb_data *data = _data;
2357 	struct fuse_writepage_args *wpa = data->wpa;
2358 	struct fuse_args_pages *ap = &wpa->ia.ap;
2359 	struct inode *inode = data->inode;
2360 	struct fuse_inode *fi = get_fuse_inode(inode);
2361 	struct fuse_conn *fc = get_fuse_conn(inode);
2362 	struct folio *tmp_folio;
2363 	int err;
2364 
2365 	if (!data->ff) {
2366 		err = -EIO;
2367 		data->ff = fuse_write_file_get(fi);
2368 		if (!data->ff)
2369 			goto out_unlock;
2370 	}
2371 
2372 	if (wpa && fuse_writepage_need_send(fc, folio, ap, data)) {
2373 		fuse_writepages_send(data);
2374 		data->wpa = NULL;
2375 	}
2376 
2377 	err = -ENOMEM;
2378 	tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2379 	if (!tmp_folio)
2380 		goto out_unlock;
2381 
2382 	/*
2383 	 * The page must not be redirtied until the writeout is completed
2384 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2385 	 * there could be more than one temporary page instance for each real
2386 	 * page.
2387 	 *
2388 	 * This is ensured by holding the page lock in page_mkwrite() while
2389 	 * checking fuse_page_is_writeback().  We already hold the page lock
2390 	 * since clear_page_dirty_for_io() and keep it held until we add the
2391 	 * request to the fi->writepages list and increment ap->num_folios.
2392 	 * After this fuse_page_is_writeback() will indicate that the page is
2393 	 * under writeback, so we can release the page lock.
2394 	 */
2395 	if (data->wpa == NULL) {
2396 		err = -ENOMEM;
2397 		wpa = fuse_writepage_args_setup(folio, data->ff);
2398 		if (!wpa) {
2399 			folio_put(tmp_folio);
2400 			goto out_unlock;
2401 		}
2402 		fuse_file_get(wpa->ia.ff);
2403 		data->max_folios = 1;
2404 		ap = &wpa->ia.ap;
2405 	}
2406 	folio_start_writeback(folio);
2407 
2408 	fuse_writepage_args_page_fill(wpa, folio, tmp_folio, ap->num_folios);
2409 	data->orig_folios[ap->num_folios] = folio;
2410 
2411 	err = 0;
2412 	if (data->wpa) {
2413 		/*
2414 		 * Protected by fi->lock against concurrent access by
2415 		 * fuse_page_is_writeback().
2416 		 */
2417 		spin_lock(&fi->lock);
2418 		ap->num_folios++;
2419 		spin_unlock(&fi->lock);
2420 	} else if (fuse_writepage_add(wpa, folio)) {
2421 		data->wpa = wpa;
2422 	} else {
2423 		folio_end_writeback(folio);
2424 	}
2425 out_unlock:
2426 	folio_unlock(folio);
2427 
2428 	return err;
2429 }
2430 
2431 static int fuse_writepages(struct address_space *mapping,
2432 			   struct writeback_control *wbc)
2433 {
2434 	struct inode *inode = mapping->host;
2435 	struct fuse_conn *fc = get_fuse_conn(inode);
2436 	struct fuse_fill_wb_data data;
2437 	int err;
2438 
2439 	err = -EIO;
2440 	if (fuse_is_bad(inode))
2441 		goto out;
2442 
2443 	if (wbc->sync_mode == WB_SYNC_NONE &&
2444 	    fc->num_background >= fc->congestion_threshold)
2445 		return 0;
2446 
2447 	data.inode = inode;
2448 	data.wpa = NULL;
2449 	data.ff = NULL;
2450 
2451 	err = -ENOMEM;
2452 	data.orig_folios = kcalloc(fc->max_pages,
2453 				   sizeof(struct folio *),
2454 				   GFP_NOFS);
2455 	if (!data.orig_folios)
2456 		goto out;
2457 
2458 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2459 	if (data.wpa) {
2460 		WARN_ON(!data.wpa->ia.ap.num_folios);
2461 		fuse_writepages_send(&data);
2462 	}
2463 	if (data.ff)
2464 		fuse_file_put(data.ff, false);
2465 
2466 	kfree(data.orig_folios);
2467 out:
2468 	return err;
2469 }
2470 
2471 /*
2472  * It's worthy to make sure that space is reserved on disk for the write,
2473  * but how to implement it without killing performance need more thinking.
2474  */
2475 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2476 		loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
2477 {
2478 	pgoff_t index = pos >> PAGE_SHIFT;
2479 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2480 	struct folio *folio;
2481 	loff_t fsize;
2482 	int err = -ENOMEM;
2483 
2484 	WARN_ON(!fc->writeback_cache);
2485 
2486 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2487 			mapping_gfp_mask(mapping));
2488 	if (IS_ERR(folio))
2489 		goto error;
2490 
2491 	fuse_wait_on_page_writeback(mapping->host, folio->index);
2492 
2493 	if (folio_test_uptodate(folio) || len >= folio_size(folio))
2494 		goto success;
2495 	/*
2496 	 * Check if the start of this folio comes after the end of file,
2497 	 * in which case the readpage can be optimized away.
2498 	 */
2499 	fsize = i_size_read(mapping->host);
2500 	if (fsize <= folio_pos(folio)) {
2501 		size_t off = offset_in_folio(folio, pos);
2502 		if (off)
2503 			folio_zero_segment(folio, 0, off);
2504 		goto success;
2505 	}
2506 	err = fuse_do_readfolio(file, folio);
2507 	if (err)
2508 		goto cleanup;
2509 success:
2510 	*foliop = folio;
2511 	return 0;
2512 
2513 cleanup:
2514 	folio_unlock(folio);
2515 	folio_put(folio);
2516 error:
2517 	return err;
2518 }
2519 
2520 static int fuse_write_end(struct file *file, struct address_space *mapping,
2521 		loff_t pos, unsigned len, unsigned copied,
2522 		struct folio *folio, void *fsdata)
2523 {
2524 	struct inode *inode = folio->mapping->host;
2525 
2526 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2527 	if (!copied)
2528 		goto unlock;
2529 
2530 	pos += copied;
2531 	if (!folio_test_uptodate(folio)) {
2532 		/* Zero any unwritten bytes at the end of the page */
2533 		size_t endoff = pos & ~PAGE_MASK;
2534 		if (endoff)
2535 			folio_zero_segment(folio, endoff, PAGE_SIZE);
2536 		folio_mark_uptodate(folio);
2537 	}
2538 
2539 	if (pos > inode->i_size)
2540 		i_size_write(inode, pos);
2541 
2542 	folio_mark_dirty(folio);
2543 
2544 unlock:
2545 	folio_unlock(folio);
2546 	folio_put(folio);
2547 
2548 	return copied;
2549 }
2550 
2551 static int fuse_launder_folio(struct folio *folio)
2552 {
2553 	int err = 0;
2554 	if (folio_clear_dirty_for_io(folio)) {
2555 		struct inode *inode = folio->mapping->host;
2556 
2557 		/* Serialize with pending writeback for the same page */
2558 		fuse_wait_on_page_writeback(inode, folio->index);
2559 		err = fuse_writepage_locked(folio);
2560 		if (!err)
2561 			fuse_wait_on_page_writeback(inode, folio->index);
2562 	}
2563 	return err;
2564 }
2565 
2566 /*
2567  * Write back dirty data/metadata now (there may not be any suitable
2568  * open files later for data)
2569  */
2570 static void fuse_vma_close(struct vm_area_struct *vma)
2571 {
2572 	int err;
2573 
2574 	err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2575 	mapping_set_error(vma->vm_file->f_mapping, err);
2576 }
2577 
2578 /*
2579  * Wait for writeback against this page to complete before allowing it
2580  * to be marked dirty again, and hence written back again, possibly
2581  * before the previous writepage completed.
2582  *
2583  * Block here, instead of in ->writepage(), so that the userspace fs
2584  * can only block processes actually operating on the filesystem.
2585  *
2586  * Otherwise unprivileged userspace fs would be able to block
2587  * unrelated:
2588  *
2589  * - page migration
2590  * - sync(2)
2591  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2592  */
2593 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2594 {
2595 	struct folio *folio = page_folio(vmf->page);
2596 	struct inode *inode = file_inode(vmf->vma->vm_file);
2597 
2598 	file_update_time(vmf->vma->vm_file);
2599 	folio_lock(folio);
2600 	if (folio->mapping != inode->i_mapping) {
2601 		folio_unlock(folio);
2602 		return VM_FAULT_NOPAGE;
2603 	}
2604 
2605 	fuse_wait_on_folio_writeback(inode, folio);
2606 	return VM_FAULT_LOCKED;
2607 }
2608 
2609 static const struct vm_operations_struct fuse_file_vm_ops = {
2610 	.close		= fuse_vma_close,
2611 	.fault		= filemap_fault,
2612 	.map_pages	= filemap_map_pages,
2613 	.page_mkwrite	= fuse_page_mkwrite,
2614 };
2615 
2616 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2617 {
2618 	struct fuse_file *ff = file->private_data;
2619 	struct fuse_conn *fc = ff->fm->fc;
2620 	struct inode *inode = file_inode(file);
2621 	int rc;
2622 
2623 	/* DAX mmap is superior to direct_io mmap */
2624 	if (FUSE_IS_DAX(inode))
2625 		return fuse_dax_mmap(file, vma);
2626 
2627 	/*
2628 	 * If inode is in passthrough io mode, because it has some file open
2629 	 * in passthrough mode, either mmap to backing file or fail mmap,
2630 	 * because mixing cached mmap and passthrough io mode is not allowed.
2631 	 */
2632 	if (fuse_file_passthrough(ff))
2633 		return fuse_passthrough_mmap(file, vma);
2634 	else if (fuse_inode_backing(get_fuse_inode(inode)))
2635 		return -ENODEV;
2636 
2637 	/*
2638 	 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT,
2639 	 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP.
2640 	 */
2641 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2642 		/*
2643 		 * Can't provide the coherency needed for MAP_SHARED
2644 		 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set.
2645 		 */
2646 		if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap)
2647 			return -ENODEV;
2648 
2649 		invalidate_inode_pages2(file->f_mapping);
2650 
2651 		if (!(vma->vm_flags & VM_MAYSHARE)) {
2652 			/* MAP_PRIVATE */
2653 			return generic_file_mmap(file, vma);
2654 		}
2655 
2656 		/*
2657 		 * First mmap of direct_io file enters caching inode io mode.
2658 		 * Also waits for parallel dio writers to go into serial mode
2659 		 * (exclusive instead of shared lock).
2660 		 * After first mmap, the inode stays in caching io mode until
2661 		 * the direct_io file release.
2662 		 */
2663 		rc = fuse_file_cached_io_open(inode, ff);
2664 		if (rc)
2665 			return rc;
2666 	}
2667 
2668 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2669 		fuse_link_write_file(file);
2670 
2671 	file_accessed(file);
2672 	vma->vm_ops = &fuse_file_vm_ops;
2673 	return 0;
2674 }
2675 
2676 static int convert_fuse_file_lock(struct fuse_conn *fc,
2677 				  const struct fuse_file_lock *ffl,
2678 				  struct file_lock *fl)
2679 {
2680 	switch (ffl->type) {
2681 	case F_UNLCK:
2682 		break;
2683 
2684 	case F_RDLCK:
2685 	case F_WRLCK:
2686 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2687 		    ffl->end < ffl->start)
2688 			return -EIO;
2689 
2690 		fl->fl_start = ffl->start;
2691 		fl->fl_end = ffl->end;
2692 
2693 		/*
2694 		 * Convert pid into init's pid namespace.  The locks API will
2695 		 * translate it into the caller's pid namespace.
2696 		 */
2697 		rcu_read_lock();
2698 		fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2699 		rcu_read_unlock();
2700 		break;
2701 
2702 	default:
2703 		return -EIO;
2704 	}
2705 	fl->c.flc_type = ffl->type;
2706 	return 0;
2707 }
2708 
2709 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2710 			 const struct file_lock *fl, int opcode, pid_t pid,
2711 			 int flock, struct fuse_lk_in *inarg)
2712 {
2713 	struct inode *inode = file_inode(file);
2714 	struct fuse_conn *fc = get_fuse_conn(inode);
2715 	struct fuse_file *ff = file->private_data;
2716 
2717 	memset(inarg, 0, sizeof(*inarg));
2718 	inarg->fh = ff->fh;
2719 	inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner);
2720 	inarg->lk.start = fl->fl_start;
2721 	inarg->lk.end = fl->fl_end;
2722 	inarg->lk.type = fl->c.flc_type;
2723 	inarg->lk.pid = pid;
2724 	if (flock)
2725 		inarg->lk_flags |= FUSE_LK_FLOCK;
2726 	args->opcode = opcode;
2727 	args->nodeid = get_node_id(inode);
2728 	args->in_numargs = 1;
2729 	args->in_args[0].size = sizeof(*inarg);
2730 	args->in_args[0].value = inarg;
2731 }
2732 
2733 static int fuse_getlk(struct file *file, struct file_lock *fl)
2734 {
2735 	struct inode *inode = file_inode(file);
2736 	struct fuse_mount *fm = get_fuse_mount(inode);
2737 	FUSE_ARGS(args);
2738 	struct fuse_lk_in inarg;
2739 	struct fuse_lk_out outarg;
2740 	int err;
2741 
2742 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2743 	args.out_numargs = 1;
2744 	args.out_args[0].size = sizeof(outarg);
2745 	args.out_args[0].value = &outarg;
2746 	err = fuse_simple_request(fm, &args);
2747 	if (!err)
2748 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2749 
2750 	return err;
2751 }
2752 
2753 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2754 {
2755 	struct inode *inode = file_inode(file);
2756 	struct fuse_mount *fm = get_fuse_mount(inode);
2757 	FUSE_ARGS(args);
2758 	struct fuse_lk_in inarg;
2759 	int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2760 	struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL;
2761 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2762 	int err;
2763 
2764 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2765 		/* NLM needs asynchronous locks, which we don't support yet */
2766 		return -ENOLCK;
2767 	}
2768 
2769 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2770 	err = fuse_simple_request(fm, &args);
2771 
2772 	/* locking is restartable */
2773 	if (err == -EINTR)
2774 		err = -ERESTARTSYS;
2775 
2776 	return err;
2777 }
2778 
2779 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2780 {
2781 	struct inode *inode = file_inode(file);
2782 	struct fuse_conn *fc = get_fuse_conn(inode);
2783 	int err;
2784 
2785 	if (cmd == F_CANCELLK) {
2786 		err = 0;
2787 	} else if (cmd == F_GETLK) {
2788 		if (fc->no_lock) {
2789 			posix_test_lock(file, fl);
2790 			err = 0;
2791 		} else
2792 			err = fuse_getlk(file, fl);
2793 	} else {
2794 		if (fc->no_lock)
2795 			err = posix_lock_file(file, fl, NULL);
2796 		else
2797 			err = fuse_setlk(file, fl, 0);
2798 	}
2799 	return err;
2800 }
2801 
2802 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2803 {
2804 	struct inode *inode = file_inode(file);
2805 	struct fuse_conn *fc = get_fuse_conn(inode);
2806 	int err;
2807 
2808 	if (fc->no_flock) {
2809 		err = locks_lock_file_wait(file, fl);
2810 	} else {
2811 		struct fuse_file *ff = file->private_data;
2812 
2813 		/* emulate flock with POSIX locks */
2814 		ff->flock = true;
2815 		err = fuse_setlk(file, fl, 1);
2816 	}
2817 
2818 	return err;
2819 }
2820 
2821 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2822 {
2823 	struct inode *inode = mapping->host;
2824 	struct fuse_mount *fm = get_fuse_mount(inode);
2825 	FUSE_ARGS(args);
2826 	struct fuse_bmap_in inarg;
2827 	struct fuse_bmap_out outarg;
2828 	int err;
2829 
2830 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2831 		return 0;
2832 
2833 	memset(&inarg, 0, sizeof(inarg));
2834 	inarg.block = block;
2835 	inarg.blocksize = inode->i_sb->s_blocksize;
2836 	args.opcode = FUSE_BMAP;
2837 	args.nodeid = get_node_id(inode);
2838 	args.in_numargs = 1;
2839 	args.in_args[0].size = sizeof(inarg);
2840 	args.in_args[0].value = &inarg;
2841 	args.out_numargs = 1;
2842 	args.out_args[0].size = sizeof(outarg);
2843 	args.out_args[0].value = &outarg;
2844 	err = fuse_simple_request(fm, &args);
2845 	if (err == -ENOSYS)
2846 		fm->fc->no_bmap = 1;
2847 
2848 	return err ? 0 : outarg.block;
2849 }
2850 
2851 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2852 {
2853 	struct inode *inode = file->f_mapping->host;
2854 	struct fuse_mount *fm = get_fuse_mount(inode);
2855 	struct fuse_file *ff = file->private_data;
2856 	FUSE_ARGS(args);
2857 	struct fuse_lseek_in inarg = {
2858 		.fh = ff->fh,
2859 		.offset = offset,
2860 		.whence = whence
2861 	};
2862 	struct fuse_lseek_out outarg;
2863 	int err;
2864 
2865 	if (fm->fc->no_lseek)
2866 		goto fallback;
2867 
2868 	args.opcode = FUSE_LSEEK;
2869 	args.nodeid = ff->nodeid;
2870 	args.in_numargs = 1;
2871 	args.in_args[0].size = sizeof(inarg);
2872 	args.in_args[0].value = &inarg;
2873 	args.out_numargs = 1;
2874 	args.out_args[0].size = sizeof(outarg);
2875 	args.out_args[0].value = &outarg;
2876 	err = fuse_simple_request(fm, &args);
2877 	if (err) {
2878 		if (err == -ENOSYS) {
2879 			fm->fc->no_lseek = 1;
2880 			goto fallback;
2881 		}
2882 		return err;
2883 	}
2884 
2885 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2886 
2887 fallback:
2888 	err = fuse_update_attributes(inode, file, STATX_SIZE);
2889 	if (!err)
2890 		return generic_file_llseek(file, offset, whence);
2891 	else
2892 		return err;
2893 }
2894 
2895 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2896 {
2897 	loff_t retval;
2898 	struct inode *inode = file_inode(file);
2899 
2900 	switch (whence) {
2901 	case SEEK_SET:
2902 	case SEEK_CUR:
2903 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2904 		retval = generic_file_llseek(file, offset, whence);
2905 		break;
2906 	case SEEK_END:
2907 		inode_lock(inode);
2908 		retval = fuse_update_attributes(inode, file, STATX_SIZE);
2909 		if (!retval)
2910 			retval = generic_file_llseek(file, offset, whence);
2911 		inode_unlock(inode);
2912 		break;
2913 	case SEEK_HOLE:
2914 	case SEEK_DATA:
2915 		inode_lock(inode);
2916 		retval = fuse_lseek(file, offset, whence);
2917 		inode_unlock(inode);
2918 		break;
2919 	default:
2920 		retval = -EINVAL;
2921 	}
2922 
2923 	return retval;
2924 }
2925 
2926 /*
2927  * All files which have been polled are linked to RB tree
2928  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2929  * find the matching one.
2930  */
2931 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2932 					      struct rb_node **parent_out)
2933 {
2934 	struct rb_node **link = &fc->polled_files.rb_node;
2935 	struct rb_node *last = NULL;
2936 
2937 	while (*link) {
2938 		struct fuse_file *ff;
2939 
2940 		last = *link;
2941 		ff = rb_entry(last, struct fuse_file, polled_node);
2942 
2943 		if (kh < ff->kh)
2944 			link = &last->rb_left;
2945 		else if (kh > ff->kh)
2946 			link = &last->rb_right;
2947 		else
2948 			return link;
2949 	}
2950 
2951 	if (parent_out)
2952 		*parent_out = last;
2953 	return link;
2954 }
2955 
2956 /*
2957  * The file is about to be polled.  Make sure it's on the polled_files
2958  * RB tree.  Note that files once added to the polled_files tree are
2959  * not removed before the file is released.  This is because a file
2960  * polled once is likely to be polled again.
2961  */
2962 static void fuse_register_polled_file(struct fuse_conn *fc,
2963 				      struct fuse_file *ff)
2964 {
2965 	spin_lock(&fc->lock);
2966 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2967 		struct rb_node **link, *parent;
2968 
2969 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2970 		BUG_ON(*link);
2971 		rb_link_node(&ff->polled_node, parent, link);
2972 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2973 	}
2974 	spin_unlock(&fc->lock);
2975 }
2976 
2977 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2978 {
2979 	struct fuse_file *ff = file->private_data;
2980 	struct fuse_mount *fm = ff->fm;
2981 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2982 	struct fuse_poll_out outarg;
2983 	FUSE_ARGS(args);
2984 	int err;
2985 
2986 	if (fm->fc->no_poll)
2987 		return DEFAULT_POLLMASK;
2988 
2989 	poll_wait(file, &ff->poll_wait, wait);
2990 	inarg.events = mangle_poll(poll_requested_events(wait));
2991 
2992 	/*
2993 	 * Ask for notification iff there's someone waiting for it.
2994 	 * The client may ignore the flag and always notify.
2995 	 */
2996 	if (waitqueue_active(&ff->poll_wait)) {
2997 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2998 		fuse_register_polled_file(fm->fc, ff);
2999 	}
3000 
3001 	args.opcode = FUSE_POLL;
3002 	args.nodeid = ff->nodeid;
3003 	args.in_numargs = 1;
3004 	args.in_args[0].size = sizeof(inarg);
3005 	args.in_args[0].value = &inarg;
3006 	args.out_numargs = 1;
3007 	args.out_args[0].size = sizeof(outarg);
3008 	args.out_args[0].value = &outarg;
3009 	err = fuse_simple_request(fm, &args);
3010 
3011 	if (!err)
3012 		return demangle_poll(outarg.revents);
3013 	if (err == -ENOSYS) {
3014 		fm->fc->no_poll = 1;
3015 		return DEFAULT_POLLMASK;
3016 	}
3017 	return EPOLLERR;
3018 }
3019 EXPORT_SYMBOL_GPL(fuse_file_poll);
3020 
3021 /*
3022  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3023  * wakes up the poll waiters.
3024  */
3025 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3026 			    struct fuse_notify_poll_wakeup_out *outarg)
3027 {
3028 	u64 kh = outarg->kh;
3029 	struct rb_node **link;
3030 
3031 	spin_lock(&fc->lock);
3032 
3033 	link = fuse_find_polled_node(fc, kh, NULL);
3034 	if (*link) {
3035 		struct fuse_file *ff;
3036 
3037 		ff = rb_entry(*link, struct fuse_file, polled_node);
3038 		wake_up_interruptible_sync(&ff->poll_wait);
3039 	}
3040 
3041 	spin_unlock(&fc->lock);
3042 	return 0;
3043 }
3044 
3045 static void fuse_do_truncate(struct file *file)
3046 {
3047 	struct inode *inode = file->f_mapping->host;
3048 	struct iattr attr;
3049 
3050 	attr.ia_valid = ATTR_SIZE;
3051 	attr.ia_size = i_size_read(inode);
3052 
3053 	attr.ia_file = file;
3054 	attr.ia_valid |= ATTR_FILE;
3055 
3056 	fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file);
3057 }
3058 
3059 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3060 {
3061 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3062 }
3063 
3064 static ssize_t
3065 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3066 {
3067 	DECLARE_COMPLETION_ONSTACK(wait);
3068 	ssize_t ret = 0;
3069 	struct file *file = iocb->ki_filp;
3070 	struct fuse_file *ff = file->private_data;
3071 	loff_t pos = 0;
3072 	struct inode *inode;
3073 	loff_t i_size;
3074 	size_t count = iov_iter_count(iter), shortened = 0;
3075 	loff_t offset = iocb->ki_pos;
3076 	struct fuse_io_priv *io;
3077 
3078 	pos = offset;
3079 	inode = file->f_mapping->host;
3080 	i_size = i_size_read(inode);
3081 
3082 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3083 		return 0;
3084 
3085 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3086 	if (!io)
3087 		return -ENOMEM;
3088 	spin_lock_init(&io->lock);
3089 	kref_init(&io->refcnt);
3090 	io->reqs = 1;
3091 	io->bytes = -1;
3092 	io->size = 0;
3093 	io->offset = offset;
3094 	io->write = (iov_iter_rw(iter) == WRITE);
3095 	io->err = 0;
3096 	/*
3097 	 * By default, we want to optimize all I/Os with async request
3098 	 * submission to the client filesystem if supported.
3099 	 */
3100 	io->async = ff->fm->fc->async_dio;
3101 	io->iocb = iocb;
3102 	io->blocking = is_sync_kiocb(iocb);
3103 
3104 	/* optimization for short read */
3105 	if (io->async && !io->write && offset + count > i_size) {
3106 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3107 		shortened = count - iov_iter_count(iter);
3108 		count -= shortened;
3109 	}
3110 
3111 	/*
3112 	 * We cannot asynchronously extend the size of a file.
3113 	 * In such case the aio will behave exactly like sync io.
3114 	 */
3115 	if ((offset + count > i_size) && io->write)
3116 		io->blocking = true;
3117 
3118 	if (io->async && io->blocking) {
3119 		/*
3120 		 * Additional reference to keep io around after
3121 		 * calling fuse_aio_complete()
3122 		 */
3123 		kref_get(&io->refcnt);
3124 		io->done = &wait;
3125 	}
3126 
3127 	if (iov_iter_rw(iter) == WRITE) {
3128 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3129 		fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3130 	} else {
3131 		ret = __fuse_direct_read(io, iter, &pos);
3132 	}
3133 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3134 
3135 	if (io->async) {
3136 		bool blocking = io->blocking;
3137 
3138 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3139 
3140 		/* we have a non-extending, async request, so return */
3141 		if (!blocking)
3142 			return -EIOCBQUEUED;
3143 
3144 		wait_for_completion(&wait);
3145 		ret = fuse_get_res_by_io(io);
3146 	}
3147 
3148 	kref_put(&io->refcnt, fuse_io_release);
3149 
3150 	if (iov_iter_rw(iter) == WRITE) {
3151 		fuse_write_update_attr(inode, pos, ret);
3152 		/* For extending writes we already hold exclusive lock */
3153 		if (ret < 0 && offset + count > i_size)
3154 			fuse_do_truncate(file);
3155 	}
3156 
3157 	return ret;
3158 }
3159 
3160 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3161 {
3162 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3163 
3164 	if (!err)
3165 		fuse_sync_writes(inode);
3166 
3167 	return err;
3168 }
3169 
3170 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3171 				loff_t length)
3172 {
3173 	struct fuse_file *ff = file->private_data;
3174 	struct inode *inode = file_inode(file);
3175 	struct fuse_inode *fi = get_fuse_inode(inode);
3176 	struct fuse_mount *fm = ff->fm;
3177 	FUSE_ARGS(args);
3178 	struct fuse_fallocate_in inarg = {
3179 		.fh = ff->fh,
3180 		.offset = offset,
3181 		.length = length,
3182 		.mode = mode
3183 	};
3184 	int err;
3185 	bool block_faults = FUSE_IS_DAX(inode) &&
3186 		(!(mode & FALLOC_FL_KEEP_SIZE) ||
3187 		 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3188 
3189 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3190 		     FALLOC_FL_ZERO_RANGE))
3191 		return -EOPNOTSUPP;
3192 
3193 	if (fm->fc->no_fallocate)
3194 		return -EOPNOTSUPP;
3195 
3196 	inode_lock(inode);
3197 	if (block_faults) {
3198 		filemap_invalidate_lock(inode->i_mapping);
3199 		err = fuse_dax_break_layouts(inode, 0, 0);
3200 		if (err)
3201 			goto out;
3202 	}
3203 
3204 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3205 		loff_t endbyte = offset + length - 1;
3206 
3207 		err = fuse_writeback_range(inode, offset, endbyte);
3208 		if (err)
3209 			goto out;
3210 	}
3211 
3212 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3213 	    offset + length > i_size_read(inode)) {
3214 		err = inode_newsize_ok(inode, offset + length);
3215 		if (err)
3216 			goto out;
3217 	}
3218 
3219 	err = file_modified(file);
3220 	if (err)
3221 		goto out;
3222 
3223 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3224 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3225 
3226 	args.opcode = FUSE_FALLOCATE;
3227 	args.nodeid = ff->nodeid;
3228 	args.in_numargs = 1;
3229 	args.in_args[0].size = sizeof(inarg);
3230 	args.in_args[0].value = &inarg;
3231 	err = fuse_simple_request(fm, &args);
3232 	if (err == -ENOSYS) {
3233 		fm->fc->no_fallocate = 1;
3234 		err = -EOPNOTSUPP;
3235 	}
3236 	if (err)
3237 		goto out;
3238 
3239 	/* we could have extended the file */
3240 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3241 		if (fuse_write_update_attr(inode, offset + length, length))
3242 			file_update_time(file);
3243 	}
3244 
3245 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3246 		truncate_pagecache_range(inode, offset, offset + length - 1);
3247 
3248 	fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3249 
3250 out:
3251 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3252 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3253 
3254 	if (block_faults)
3255 		filemap_invalidate_unlock(inode->i_mapping);
3256 
3257 	inode_unlock(inode);
3258 
3259 	fuse_flush_time_update(inode);
3260 
3261 	return err;
3262 }
3263 
3264 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3265 				      struct file *file_out, loff_t pos_out,
3266 				      size_t len, unsigned int flags)
3267 {
3268 	struct fuse_file *ff_in = file_in->private_data;
3269 	struct fuse_file *ff_out = file_out->private_data;
3270 	struct inode *inode_in = file_inode(file_in);
3271 	struct inode *inode_out = file_inode(file_out);
3272 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3273 	struct fuse_mount *fm = ff_in->fm;
3274 	struct fuse_conn *fc = fm->fc;
3275 	FUSE_ARGS(args);
3276 	struct fuse_copy_file_range_in inarg = {
3277 		.fh_in = ff_in->fh,
3278 		.off_in = pos_in,
3279 		.nodeid_out = ff_out->nodeid,
3280 		.fh_out = ff_out->fh,
3281 		.off_out = pos_out,
3282 		.len = len,
3283 		.flags = flags
3284 	};
3285 	struct fuse_write_out outarg;
3286 	ssize_t err;
3287 	/* mark unstable when write-back is not used, and file_out gets
3288 	 * extended */
3289 	bool is_unstable = (!fc->writeback_cache) &&
3290 			   ((pos_out + len) > inode_out->i_size);
3291 
3292 	if (fc->no_copy_file_range)
3293 		return -EOPNOTSUPP;
3294 
3295 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3296 		return -EXDEV;
3297 
3298 	inode_lock(inode_in);
3299 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3300 	inode_unlock(inode_in);
3301 	if (err)
3302 		return err;
3303 
3304 	inode_lock(inode_out);
3305 
3306 	err = file_modified(file_out);
3307 	if (err)
3308 		goto out;
3309 
3310 	/*
3311 	 * Write out dirty pages in the destination file before sending the COPY
3312 	 * request to userspace.  After the request is completed, truncate off
3313 	 * pages (including partial ones) from the cache that have been copied,
3314 	 * since these contain stale data at that point.
3315 	 *
3316 	 * This should be mostly correct, but if the COPY writes to partial
3317 	 * pages (at the start or end) and the parts not covered by the COPY are
3318 	 * written through a memory map after calling fuse_writeback_range(),
3319 	 * then these partial page modifications will be lost on truncation.
3320 	 *
3321 	 * It is unlikely that someone would rely on such mixed style
3322 	 * modifications.  Yet this does give less guarantees than if the
3323 	 * copying was performed with write(2).
3324 	 *
3325 	 * To fix this a mapping->invalidate_lock could be used to prevent new
3326 	 * faults while the copy is ongoing.
3327 	 */
3328 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3329 	if (err)
3330 		goto out;
3331 
3332 	if (is_unstable)
3333 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3334 
3335 	args.opcode = FUSE_COPY_FILE_RANGE;
3336 	args.nodeid = ff_in->nodeid;
3337 	args.in_numargs = 1;
3338 	args.in_args[0].size = sizeof(inarg);
3339 	args.in_args[0].value = &inarg;
3340 	args.out_numargs = 1;
3341 	args.out_args[0].size = sizeof(outarg);
3342 	args.out_args[0].value = &outarg;
3343 	err = fuse_simple_request(fm, &args);
3344 	if (err == -ENOSYS) {
3345 		fc->no_copy_file_range = 1;
3346 		err = -EOPNOTSUPP;
3347 	}
3348 	if (err)
3349 		goto out;
3350 
3351 	truncate_inode_pages_range(inode_out->i_mapping,
3352 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3353 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3354 
3355 	file_update_time(file_out);
3356 	fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3357 
3358 	err = outarg.size;
3359 out:
3360 	if (is_unstable)
3361 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3362 
3363 	inode_unlock(inode_out);
3364 	file_accessed(file_in);
3365 
3366 	fuse_flush_time_update(inode_out);
3367 
3368 	return err;
3369 }
3370 
3371 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3372 				    struct file *dst_file, loff_t dst_off,
3373 				    size_t len, unsigned int flags)
3374 {
3375 	ssize_t ret;
3376 
3377 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3378 				     len, flags);
3379 
3380 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3381 		ret = splice_copy_file_range(src_file, src_off, dst_file,
3382 					     dst_off, len);
3383 	return ret;
3384 }
3385 
3386 static const struct file_operations fuse_file_operations = {
3387 	.llseek		= fuse_file_llseek,
3388 	.read_iter	= fuse_file_read_iter,
3389 	.write_iter	= fuse_file_write_iter,
3390 	.mmap		= fuse_file_mmap,
3391 	.open		= fuse_open,
3392 	.flush		= fuse_flush,
3393 	.release	= fuse_release,
3394 	.fsync		= fuse_fsync,
3395 	.lock		= fuse_file_lock,
3396 	.get_unmapped_area = thp_get_unmapped_area,
3397 	.flock		= fuse_file_flock,
3398 	.splice_read	= fuse_splice_read,
3399 	.splice_write	= fuse_splice_write,
3400 	.unlocked_ioctl	= fuse_file_ioctl,
3401 	.compat_ioctl	= fuse_file_compat_ioctl,
3402 	.poll		= fuse_file_poll,
3403 	.fallocate	= fuse_file_fallocate,
3404 	.copy_file_range = fuse_copy_file_range,
3405 };
3406 
3407 static const struct address_space_operations fuse_file_aops  = {
3408 	.read_folio	= fuse_read_folio,
3409 	.readahead	= fuse_readahead,
3410 	.writepages	= fuse_writepages,
3411 	.launder_folio	= fuse_launder_folio,
3412 	.dirty_folio	= filemap_dirty_folio,
3413 	.migrate_folio	= filemap_migrate_folio,
3414 	.bmap		= fuse_bmap,
3415 	.direct_IO	= fuse_direct_IO,
3416 	.write_begin	= fuse_write_begin,
3417 	.write_end	= fuse_write_end,
3418 };
3419 
3420 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3421 {
3422 	struct fuse_inode *fi = get_fuse_inode(inode);
3423 
3424 	inode->i_fop = &fuse_file_operations;
3425 	inode->i_data.a_ops = &fuse_file_aops;
3426 
3427 	INIT_LIST_HEAD(&fi->write_files);
3428 	INIT_LIST_HEAD(&fi->queued_writes);
3429 	fi->writectr = 0;
3430 	fi->iocachectr = 0;
3431 	init_waitqueue_head(&fi->page_waitq);
3432 	init_waitqueue_head(&fi->direct_io_waitq);
3433 	fi->writepages = RB_ROOT;
3434 
3435 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3436 		fuse_dax_inode_init(inode, flags);
3437 }
3438