1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 #include <linux/filelock.h> 22 #include <linux/splice.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 26 unsigned int open_flags, int opcode, 27 struct fuse_open_out *outargp) 28 { 29 struct fuse_open_in inarg; 30 FUSE_ARGS(args); 31 32 memset(&inarg, 0, sizeof(inarg)); 33 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 34 if (!fm->fc->atomic_o_trunc) 35 inarg.flags &= ~O_TRUNC; 36 37 if (fm->fc->handle_killpriv_v2 && 38 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 39 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 40 } 41 42 args.opcode = opcode; 43 args.nodeid = nodeid; 44 args.in_numargs = 1; 45 args.in_args[0].size = sizeof(inarg); 46 args.in_args[0].value = &inarg; 47 args.out_numargs = 1; 48 args.out_args[0].size = sizeof(*outargp); 49 args.out_args[0].value = outargp; 50 51 return fuse_simple_request(fm, &args); 52 } 53 54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release) 55 { 56 struct fuse_file *ff; 57 58 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 59 if (unlikely(!ff)) 60 return NULL; 61 62 ff->fm = fm; 63 if (release) { 64 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT); 65 if (!ff->args) { 66 kfree(ff); 67 return NULL; 68 } 69 } 70 71 INIT_LIST_HEAD(&ff->write_entry); 72 refcount_set(&ff->count, 1); 73 RB_CLEAR_NODE(&ff->polled_node); 74 init_waitqueue_head(&ff->poll_wait); 75 76 ff->kh = atomic64_inc_return(&fm->fc->khctr); 77 78 return ff; 79 } 80 81 void fuse_file_free(struct fuse_file *ff) 82 { 83 kfree(ff->args); 84 kfree(ff); 85 } 86 87 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 88 { 89 refcount_inc(&ff->count); 90 return ff; 91 } 92 93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 94 int error) 95 { 96 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 97 98 iput(ra->inode); 99 kfree(ra); 100 } 101 102 static void fuse_file_put(struct fuse_file *ff, bool sync) 103 { 104 if (refcount_dec_and_test(&ff->count)) { 105 struct fuse_release_args *ra = &ff->args->release_args; 106 struct fuse_args *args = (ra ? &ra->args : NULL); 107 108 if (ra && ra->inode) 109 fuse_file_io_release(ff, ra->inode); 110 111 if (!args) { 112 /* Do nothing when server does not implement 'open' */ 113 } else if (sync) { 114 fuse_simple_request(ff->fm, args); 115 fuse_release_end(ff->fm, args, 0); 116 } else { 117 args->end = fuse_release_end; 118 if (fuse_simple_background(ff->fm, args, 119 GFP_KERNEL | __GFP_NOFAIL)) 120 fuse_release_end(ff->fm, args, -ENOTCONN); 121 } 122 kfree(ff); 123 } 124 } 125 126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 127 unsigned int open_flags, bool isdir) 128 { 129 struct fuse_conn *fc = fm->fc; 130 struct fuse_file *ff; 131 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 132 bool open = isdir ? !fc->no_opendir : !fc->no_open; 133 134 ff = fuse_file_alloc(fm, open); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (open) { 142 /* Store outarg for fuse_finish_open() */ 143 struct fuse_open_out *outargp = &ff->args->open_outarg; 144 int err; 145 146 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp); 147 if (!err) { 148 ff->fh = outargp->fh; 149 ff->open_flags = outargp->open_flags; 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 /* No release needed */ 155 kfree(ff->args); 156 ff->args = NULL; 157 if (isdir) 158 fc->no_opendir = 1; 159 else 160 fc->no_open = 1; 161 } 162 } 163 164 if (isdir) 165 ff->open_flags &= ~FOPEN_DIRECT_IO; 166 167 ff->nodeid = nodeid; 168 169 return ff; 170 } 171 172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 173 bool isdir) 174 { 175 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 176 177 if (!IS_ERR(ff)) 178 file->private_data = ff; 179 180 return PTR_ERR_OR_ZERO(ff); 181 } 182 EXPORT_SYMBOL_GPL(fuse_do_open); 183 184 static void fuse_link_write_file(struct file *file) 185 { 186 struct inode *inode = file_inode(file); 187 struct fuse_inode *fi = get_fuse_inode(inode); 188 struct fuse_file *ff = file->private_data; 189 /* 190 * file may be written through mmap, so chain it onto the 191 * inodes's write_file list 192 */ 193 spin_lock(&fi->lock); 194 if (list_empty(&ff->write_entry)) 195 list_add(&ff->write_entry, &fi->write_files); 196 spin_unlock(&fi->lock); 197 } 198 199 int fuse_finish_open(struct inode *inode, struct file *file) 200 { 201 struct fuse_file *ff = file->private_data; 202 struct fuse_conn *fc = get_fuse_conn(inode); 203 int err; 204 205 err = fuse_file_io_open(file, inode); 206 if (err) 207 return err; 208 209 if (ff->open_flags & FOPEN_STREAM) 210 stream_open(inode, file); 211 else if (ff->open_flags & FOPEN_NONSEEKABLE) 212 nonseekable_open(inode, file); 213 214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 215 fuse_link_write_file(file); 216 217 return 0; 218 } 219 220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file) 221 { 222 struct fuse_conn *fc = get_fuse_conn(inode); 223 struct fuse_inode *fi = get_fuse_inode(inode); 224 225 spin_lock(&fi->lock); 226 fi->attr_version = atomic64_inc_return(&fc->attr_version); 227 i_size_write(inode, 0); 228 spin_unlock(&fi->lock); 229 file_update_time(file); 230 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 231 } 232 233 static int fuse_open(struct inode *inode, struct file *file) 234 { 235 struct fuse_mount *fm = get_fuse_mount(inode); 236 struct fuse_inode *fi = get_fuse_inode(inode); 237 struct fuse_conn *fc = fm->fc; 238 struct fuse_file *ff; 239 int err; 240 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc; 241 bool is_wb_truncate = is_truncate && fc->writeback_cache; 242 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode); 243 244 if (fuse_is_bad(inode)) 245 return -EIO; 246 247 err = generic_file_open(inode, file); 248 if (err) 249 return err; 250 251 if (is_wb_truncate || dax_truncate) 252 inode_lock(inode); 253 254 if (dax_truncate) { 255 filemap_invalidate_lock(inode->i_mapping); 256 err = fuse_dax_break_layouts(inode, 0, 0); 257 if (err) 258 goto out_inode_unlock; 259 } 260 261 if (is_wb_truncate || dax_truncate) 262 fuse_set_nowrite(inode); 263 264 err = fuse_do_open(fm, get_node_id(inode), file, false); 265 if (!err) { 266 ff = file->private_data; 267 err = fuse_finish_open(inode, file); 268 if (err) 269 fuse_sync_release(fi, ff, file->f_flags); 270 else if (is_truncate) 271 fuse_truncate_update_attr(inode, file); 272 } 273 274 if (is_wb_truncate || dax_truncate) 275 fuse_release_nowrite(inode); 276 if (!err) { 277 if (is_truncate) 278 truncate_pagecache(inode, 0); 279 else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 280 invalidate_inode_pages2(inode->i_mapping); 281 } 282 if (dax_truncate) 283 filemap_invalidate_unlock(inode->i_mapping); 284 out_inode_unlock: 285 if (is_wb_truncate || dax_truncate) 286 inode_unlock(inode); 287 288 return err; 289 } 290 291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 292 unsigned int flags, int opcode, bool sync) 293 { 294 struct fuse_conn *fc = ff->fm->fc; 295 struct fuse_release_args *ra = &ff->args->release_args; 296 297 if (fuse_file_passthrough(ff)) 298 fuse_passthrough_release(ff, fuse_inode_backing(fi)); 299 300 /* Inode is NULL on error path of fuse_create_open() */ 301 if (likely(fi)) { 302 spin_lock(&fi->lock); 303 list_del(&ff->write_entry); 304 spin_unlock(&fi->lock); 305 } 306 spin_lock(&fc->lock); 307 if (!RB_EMPTY_NODE(&ff->polled_node)) 308 rb_erase(&ff->polled_node, &fc->polled_files); 309 spin_unlock(&fc->lock); 310 311 wake_up_interruptible_all(&ff->poll_wait); 312 313 if (!ra) 314 return; 315 316 /* ff->args was used for open outarg */ 317 memset(ff->args, 0, sizeof(*ff->args)); 318 ra->inarg.fh = ff->fh; 319 ra->inarg.flags = flags; 320 ra->args.in_numargs = 1; 321 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 322 ra->args.in_args[0].value = &ra->inarg; 323 ra->args.opcode = opcode; 324 ra->args.nodeid = ff->nodeid; 325 ra->args.force = true; 326 ra->args.nocreds = true; 327 328 /* 329 * Hold inode until release is finished. 330 * From fuse_sync_release() the refcount is 1 and everything's 331 * synchronous, so we are fine with not doing igrab() here. 332 */ 333 ra->inode = sync ? NULL : igrab(&fi->inode); 334 } 335 336 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 337 unsigned int open_flags, fl_owner_t id, bool isdir) 338 { 339 struct fuse_inode *fi = get_fuse_inode(inode); 340 struct fuse_release_args *ra = &ff->args->release_args; 341 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 342 343 fuse_prepare_release(fi, ff, open_flags, opcode, false); 344 345 if (ra && ff->flock) { 346 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 347 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 348 } 349 350 /* 351 * Normally this will send the RELEASE request, however if 352 * some asynchronous READ or WRITE requests are outstanding, 353 * the sending will be delayed. 354 * 355 * Make the release synchronous if this is a fuseblk mount, 356 * synchronous RELEASE is allowed (and desirable) in this case 357 * because the server can be trusted not to screw up. 358 */ 359 fuse_file_put(ff, ff->fm->fc->destroy); 360 } 361 362 void fuse_release_common(struct file *file, bool isdir) 363 { 364 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 365 (fl_owner_t) file, isdir); 366 } 367 368 static int fuse_release(struct inode *inode, struct file *file) 369 { 370 struct fuse_conn *fc = get_fuse_conn(inode); 371 372 /* 373 * Dirty pages might remain despite write_inode_now() call from 374 * fuse_flush() due to writes racing with the close. 375 */ 376 if (fc->writeback_cache) 377 write_inode_now(inode, 1); 378 379 fuse_release_common(file, false); 380 381 /* return value is ignored by VFS */ 382 return 0; 383 } 384 385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 386 unsigned int flags) 387 { 388 WARN_ON(refcount_read(&ff->count) > 1); 389 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true); 390 fuse_file_put(ff, true); 391 } 392 EXPORT_SYMBOL_GPL(fuse_sync_release); 393 394 /* 395 * Scramble the ID space with XTEA, so that the value of the files_struct 396 * pointer is not exposed to userspace. 397 */ 398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 399 { 400 u32 *k = fc->scramble_key; 401 u64 v = (unsigned long) id; 402 u32 v0 = v; 403 u32 v1 = v >> 32; 404 u32 sum = 0; 405 int i; 406 407 for (i = 0; i < 32; i++) { 408 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 409 sum += 0x9E3779B9; 410 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 411 } 412 413 return (u64) v0 + ((u64) v1 << 32); 414 } 415 416 struct fuse_writepage_args { 417 struct fuse_io_args ia; 418 struct rb_node writepages_entry; 419 struct list_head queue_entry; 420 struct fuse_writepage_args *next; 421 struct inode *inode; 422 struct fuse_sync_bucket *bucket; 423 }; 424 425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 426 pgoff_t idx_from, pgoff_t idx_to) 427 { 428 struct rb_node *n; 429 430 n = fi->writepages.rb_node; 431 432 while (n) { 433 struct fuse_writepage_args *wpa; 434 pgoff_t curr_index; 435 436 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 437 WARN_ON(get_fuse_inode(wpa->inode) != fi); 438 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 439 if (idx_from >= curr_index + wpa->ia.ap.num_folios) 440 n = n->rb_right; 441 else if (idx_to < curr_index) 442 n = n->rb_left; 443 else 444 return wpa; 445 } 446 return NULL; 447 } 448 449 /* 450 * Check if any page in a range is under writeback 451 */ 452 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 453 pgoff_t idx_to) 454 { 455 struct fuse_inode *fi = get_fuse_inode(inode); 456 bool found; 457 458 if (RB_EMPTY_ROOT(&fi->writepages)) 459 return false; 460 461 spin_lock(&fi->lock); 462 found = fuse_find_writeback(fi, idx_from, idx_to); 463 spin_unlock(&fi->lock); 464 465 return found; 466 } 467 468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 469 { 470 return fuse_range_is_writeback(inode, index, index); 471 } 472 473 /* 474 * Wait for page writeback to be completed. 475 * 476 * Since fuse doesn't rely on the VM writeback tracking, this has to 477 * use some other means. 478 */ 479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 480 { 481 struct fuse_inode *fi = get_fuse_inode(inode); 482 483 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 484 } 485 486 static inline bool fuse_folio_is_writeback(struct inode *inode, 487 struct folio *folio) 488 { 489 pgoff_t last = folio_next_index(folio) - 1; 490 return fuse_range_is_writeback(inode, folio_index(folio), last); 491 } 492 493 static void fuse_wait_on_folio_writeback(struct inode *inode, 494 struct folio *folio) 495 { 496 struct fuse_inode *fi = get_fuse_inode(inode); 497 498 wait_event(fi->page_waitq, !fuse_folio_is_writeback(inode, folio)); 499 } 500 501 /* 502 * Wait for all pending writepages on the inode to finish. 503 * 504 * This is currently done by blocking further writes with FUSE_NOWRITE 505 * and waiting for all sent writes to complete. 506 * 507 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 508 * could conflict with truncation. 509 */ 510 static void fuse_sync_writes(struct inode *inode) 511 { 512 fuse_set_nowrite(inode); 513 fuse_release_nowrite(inode); 514 } 515 516 static int fuse_flush(struct file *file, fl_owner_t id) 517 { 518 struct inode *inode = file_inode(file); 519 struct fuse_mount *fm = get_fuse_mount(inode); 520 struct fuse_file *ff = file->private_data; 521 struct fuse_flush_in inarg; 522 FUSE_ARGS(args); 523 int err; 524 525 if (fuse_is_bad(inode)) 526 return -EIO; 527 528 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 529 return 0; 530 531 err = write_inode_now(inode, 1); 532 if (err) 533 return err; 534 535 inode_lock(inode); 536 fuse_sync_writes(inode); 537 inode_unlock(inode); 538 539 err = filemap_check_errors(file->f_mapping); 540 if (err) 541 return err; 542 543 err = 0; 544 if (fm->fc->no_flush) 545 goto inval_attr_out; 546 547 memset(&inarg, 0, sizeof(inarg)); 548 inarg.fh = ff->fh; 549 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 550 args.opcode = FUSE_FLUSH; 551 args.nodeid = get_node_id(inode); 552 args.in_numargs = 1; 553 args.in_args[0].size = sizeof(inarg); 554 args.in_args[0].value = &inarg; 555 args.force = true; 556 557 err = fuse_simple_request(fm, &args); 558 if (err == -ENOSYS) { 559 fm->fc->no_flush = 1; 560 err = 0; 561 } 562 563 inval_attr_out: 564 /* 565 * In memory i_blocks is not maintained by fuse, if writeback cache is 566 * enabled, i_blocks from cached attr may not be accurate. 567 */ 568 if (!err && fm->fc->writeback_cache) 569 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 570 return err; 571 } 572 573 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 574 int datasync, int opcode) 575 { 576 struct inode *inode = file->f_mapping->host; 577 struct fuse_mount *fm = get_fuse_mount(inode); 578 struct fuse_file *ff = file->private_data; 579 FUSE_ARGS(args); 580 struct fuse_fsync_in inarg; 581 582 memset(&inarg, 0, sizeof(inarg)); 583 inarg.fh = ff->fh; 584 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 585 args.opcode = opcode; 586 args.nodeid = get_node_id(inode); 587 args.in_numargs = 1; 588 args.in_args[0].size = sizeof(inarg); 589 args.in_args[0].value = &inarg; 590 return fuse_simple_request(fm, &args); 591 } 592 593 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 594 int datasync) 595 { 596 struct inode *inode = file->f_mapping->host; 597 struct fuse_conn *fc = get_fuse_conn(inode); 598 int err; 599 600 if (fuse_is_bad(inode)) 601 return -EIO; 602 603 inode_lock(inode); 604 605 /* 606 * Start writeback against all dirty pages of the inode, then 607 * wait for all outstanding writes, before sending the FSYNC 608 * request. 609 */ 610 err = file_write_and_wait_range(file, start, end); 611 if (err) 612 goto out; 613 614 fuse_sync_writes(inode); 615 616 /* 617 * Due to implementation of fuse writeback 618 * file_write_and_wait_range() does not catch errors. 619 * We have to do this directly after fuse_sync_writes() 620 */ 621 err = file_check_and_advance_wb_err(file); 622 if (err) 623 goto out; 624 625 err = sync_inode_metadata(inode, 1); 626 if (err) 627 goto out; 628 629 if (fc->no_fsync) 630 goto out; 631 632 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 633 if (err == -ENOSYS) { 634 fc->no_fsync = 1; 635 err = 0; 636 } 637 out: 638 inode_unlock(inode); 639 640 return err; 641 } 642 643 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 644 size_t count, int opcode) 645 { 646 struct fuse_file *ff = file->private_data; 647 struct fuse_args *args = &ia->ap.args; 648 649 ia->read.in.fh = ff->fh; 650 ia->read.in.offset = pos; 651 ia->read.in.size = count; 652 ia->read.in.flags = file->f_flags; 653 args->opcode = opcode; 654 args->nodeid = ff->nodeid; 655 args->in_numargs = 1; 656 args->in_args[0].size = sizeof(ia->read.in); 657 args->in_args[0].value = &ia->read.in; 658 args->out_argvar = true; 659 args->out_numargs = 1; 660 args->out_args[0].size = count; 661 } 662 663 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres, 664 bool should_dirty) 665 { 666 unsigned int i; 667 668 for (i = 0; i < ap->num_folios; i++) { 669 if (should_dirty) 670 folio_mark_dirty_lock(ap->folios[i]); 671 if (ap->args.is_pinned) 672 unpin_folio(ap->folios[i]); 673 } 674 675 if (nres > 0 && ap->args.invalidate_vmap) 676 invalidate_kernel_vmap_range(ap->args.vmap_base, nres); 677 } 678 679 static void fuse_io_release(struct kref *kref) 680 { 681 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 682 } 683 684 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 685 { 686 if (io->err) 687 return io->err; 688 689 if (io->bytes >= 0 && io->write) 690 return -EIO; 691 692 return io->bytes < 0 ? io->size : io->bytes; 693 } 694 695 /* 696 * In case of short read, the caller sets 'pos' to the position of 697 * actual end of fuse request in IO request. Otherwise, if bytes_requested 698 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 699 * 700 * An example: 701 * User requested DIO read of 64K. It was split into two 32K fuse requests, 702 * both submitted asynchronously. The first of them was ACKed by userspace as 703 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 704 * second request was ACKed as short, e.g. only 1K was read, resulting in 705 * pos == 33K. 706 * 707 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 708 * will be equal to the length of the longest contiguous fragment of 709 * transferred data starting from the beginning of IO request. 710 */ 711 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 712 { 713 int left; 714 715 spin_lock(&io->lock); 716 if (err) 717 io->err = io->err ? : err; 718 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 719 io->bytes = pos; 720 721 left = --io->reqs; 722 if (!left && io->blocking) 723 complete(io->done); 724 spin_unlock(&io->lock); 725 726 if (!left && !io->blocking) { 727 ssize_t res = fuse_get_res_by_io(io); 728 729 if (res >= 0) { 730 struct inode *inode = file_inode(io->iocb->ki_filp); 731 struct fuse_conn *fc = get_fuse_conn(inode); 732 struct fuse_inode *fi = get_fuse_inode(inode); 733 734 spin_lock(&fi->lock); 735 fi->attr_version = atomic64_inc_return(&fc->attr_version); 736 spin_unlock(&fi->lock); 737 } 738 739 io->iocb->ki_complete(io->iocb, res); 740 } 741 742 kref_put(&io->refcnt, fuse_io_release); 743 } 744 745 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 746 unsigned int nfolios) 747 { 748 struct fuse_io_args *ia; 749 750 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 751 if (ia) { 752 ia->io = io; 753 ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL, 754 &ia->ap.descs); 755 if (!ia->ap.folios) { 756 kfree(ia); 757 ia = NULL; 758 } 759 } 760 return ia; 761 } 762 763 static void fuse_io_free(struct fuse_io_args *ia) 764 { 765 kfree(ia->ap.folios); 766 kfree(ia); 767 } 768 769 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 770 int err) 771 { 772 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 773 struct fuse_io_priv *io = ia->io; 774 ssize_t pos = -1; 775 size_t nres; 776 777 if (err) { 778 /* Nothing */ 779 } else if (io->write) { 780 if (ia->write.out.size > ia->write.in.size) { 781 err = -EIO; 782 } else { 783 nres = ia->write.out.size; 784 if (ia->write.in.size != ia->write.out.size) 785 pos = ia->write.in.offset - io->offset + 786 ia->write.out.size; 787 } 788 } else { 789 u32 outsize = args->out_args[0].size; 790 791 nres = outsize; 792 if (ia->read.in.size != outsize) 793 pos = ia->read.in.offset - io->offset + outsize; 794 } 795 796 fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty); 797 798 fuse_aio_complete(io, err, pos); 799 fuse_io_free(ia); 800 } 801 802 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 803 struct fuse_io_args *ia, size_t num_bytes) 804 { 805 ssize_t err; 806 struct fuse_io_priv *io = ia->io; 807 808 spin_lock(&io->lock); 809 kref_get(&io->refcnt); 810 io->size += num_bytes; 811 io->reqs++; 812 spin_unlock(&io->lock); 813 814 ia->ap.args.end = fuse_aio_complete_req; 815 ia->ap.args.may_block = io->should_dirty; 816 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 817 if (err) 818 fuse_aio_complete_req(fm, &ia->ap.args, err); 819 820 return num_bytes; 821 } 822 823 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 824 fl_owner_t owner) 825 { 826 struct file *file = ia->io->iocb->ki_filp; 827 struct fuse_file *ff = file->private_data; 828 struct fuse_mount *fm = ff->fm; 829 830 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 831 if (owner != NULL) { 832 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 833 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 834 } 835 836 if (ia->io->async) 837 return fuse_async_req_send(fm, ia, count); 838 839 return fuse_simple_request(fm, &ia->ap.args); 840 } 841 842 static void fuse_read_update_size(struct inode *inode, loff_t size, 843 u64 attr_ver) 844 { 845 struct fuse_conn *fc = get_fuse_conn(inode); 846 struct fuse_inode *fi = get_fuse_inode(inode); 847 848 spin_lock(&fi->lock); 849 if (attr_ver >= fi->attr_version && size < inode->i_size && 850 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 851 fi->attr_version = atomic64_inc_return(&fc->attr_version); 852 i_size_write(inode, size); 853 } 854 spin_unlock(&fi->lock); 855 } 856 857 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 858 struct fuse_args_pages *ap) 859 { 860 struct fuse_conn *fc = get_fuse_conn(inode); 861 862 /* 863 * If writeback_cache is enabled, a short read means there's a hole in 864 * the file. Some data after the hole is in page cache, but has not 865 * reached the client fs yet. So the hole is not present there. 866 */ 867 if (!fc->writeback_cache) { 868 loff_t pos = folio_pos(ap->folios[0]) + num_read; 869 fuse_read_update_size(inode, pos, attr_ver); 870 } 871 } 872 873 static int fuse_do_readfolio(struct file *file, struct folio *folio) 874 { 875 struct inode *inode = folio->mapping->host; 876 struct fuse_mount *fm = get_fuse_mount(inode); 877 loff_t pos = folio_pos(folio); 878 struct fuse_folio_desc desc = { .length = PAGE_SIZE }; 879 struct fuse_io_args ia = { 880 .ap.args.page_zeroing = true, 881 .ap.args.out_pages = true, 882 .ap.num_folios = 1, 883 .ap.folios = &folio, 884 .ap.descs = &desc, 885 }; 886 ssize_t res; 887 u64 attr_ver; 888 889 /* 890 * With the temporary pages that are used to complete writeback, we can 891 * have writeback that extends beyond the lifetime of the folio. So 892 * make sure we read a properly synced folio. 893 */ 894 fuse_wait_on_folio_writeback(inode, folio); 895 896 attr_ver = fuse_get_attr_version(fm->fc); 897 898 /* Don't overflow end offset */ 899 if (pos + (desc.length - 1) == LLONG_MAX) 900 desc.length--; 901 902 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 903 res = fuse_simple_request(fm, &ia.ap.args); 904 if (res < 0) 905 return res; 906 /* 907 * Short read means EOF. If file size is larger, truncate it 908 */ 909 if (res < desc.length) 910 fuse_short_read(inode, attr_ver, res, &ia.ap); 911 912 folio_mark_uptodate(folio); 913 914 return 0; 915 } 916 917 static int fuse_read_folio(struct file *file, struct folio *folio) 918 { 919 struct inode *inode = folio->mapping->host; 920 int err; 921 922 err = -EIO; 923 if (fuse_is_bad(inode)) 924 goto out; 925 926 err = fuse_do_readfolio(file, folio); 927 fuse_invalidate_atime(inode); 928 out: 929 folio_unlock(folio); 930 return err; 931 } 932 933 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 934 int err) 935 { 936 int i; 937 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 938 struct fuse_args_pages *ap = &ia->ap; 939 size_t count = ia->read.in.size; 940 size_t num_read = args->out_args[0].size; 941 struct address_space *mapping = NULL; 942 943 for (i = 0; mapping == NULL && i < ap->num_folios; i++) 944 mapping = ap->folios[i]->mapping; 945 946 if (mapping) { 947 struct inode *inode = mapping->host; 948 949 /* 950 * Short read means EOF. If file size is larger, truncate it 951 */ 952 if (!err && num_read < count) 953 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 954 955 fuse_invalidate_atime(inode); 956 } 957 958 for (i = 0; i < ap->num_folios; i++) 959 folio_end_read(ap->folios[i], !err); 960 if (ia->ff) 961 fuse_file_put(ia->ff, false); 962 963 fuse_io_free(ia); 964 } 965 966 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 967 { 968 struct fuse_file *ff = file->private_data; 969 struct fuse_mount *fm = ff->fm; 970 struct fuse_args_pages *ap = &ia->ap; 971 loff_t pos = folio_pos(ap->folios[0]); 972 /* Currently, all folios in FUSE are one page */ 973 size_t count = ap->num_folios << PAGE_SHIFT; 974 ssize_t res; 975 int err; 976 977 ap->args.out_pages = true; 978 ap->args.page_zeroing = true; 979 ap->args.page_replace = true; 980 981 /* Don't overflow end offset */ 982 if (pos + (count - 1) == LLONG_MAX) { 983 count--; 984 ap->descs[ap->num_folios - 1].length--; 985 } 986 WARN_ON((loff_t) (pos + count) < 0); 987 988 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 989 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 990 if (fm->fc->async_read) { 991 ia->ff = fuse_file_get(ff); 992 ap->args.end = fuse_readpages_end; 993 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 994 if (!err) 995 return; 996 } else { 997 res = fuse_simple_request(fm, &ap->args); 998 err = res < 0 ? res : 0; 999 } 1000 fuse_readpages_end(fm, &ap->args, err); 1001 } 1002 1003 static void fuse_readahead(struct readahead_control *rac) 1004 { 1005 struct inode *inode = rac->mapping->host; 1006 struct fuse_inode *fi = get_fuse_inode(inode); 1007 struct fuse_conn *fc = get_fuse_conn(inode); 1008 unsigned int max_pages, nr_pages; 1009 pgoff_t first = readahead_index(rac); 1010 pgoff_t last = first + readahead_count(rac) - 1; 1011 1012 if (fuse_is_bad(inode)) 1013 return; 1014 1015 wait_event(fi->page_waitq, !fuse_range_is_writeback(inode, first, last)); 1016 1017 max_pages = min_t(unsigned int, fc->max_pages, 1018 fc->max_read / PAGE_SIZE); 1019 1020 /* 1021 * This is only accurate the first time through, since readahead_folio() 1022 * doesn't update readahead_count() from the previous folio until the 1023 * next call. Grab nr_pages here so we know how many pages we're going 1024 * to have to process. This means that we will exit here with 1025 * readahead_count() == folio_nr_pages(last_folio), but we will have 1026 * consumed all of the folios, and read_pages() will call 1027 * readahead_folio() again which will clean up the rac. 1028 */ 1029 nr_pages = readahead_count(rac); 1030 1031 while (nr_pages) { 1032 struct fuse_io_args *ia; 1033 struct fuse_args_pages *ap; 1034 struct folio *folio; 1035 unsigned cur_pages = min(max_pages, nr_pages); 1036 1037 if (fc->num_background >= fc->congestion_threshold && 1038 rac->ra->async_size >= readahead_count(rac)) 1039 /* 1040 * Congested and only async pages left, so skip the 1041 * rest. 1042 */ 1043 break; 1044 1045 ia = fuse_io_alloc(NULL, cur_pages); 1046 if (!ia) 1047 return; 1048 ap = &ia->ap; 1049 1050 while (ap->num_folios < cur_pages) { 1051 folio = readahead_folio(rac); 1052 ap->folios[ap->num_folios] = folio; 1053 ap->descs[ap->num_folios].length = folio_size(folio); 1054 ap->num_folios++; 1055 } 1056 fuse_send_readpages(ia, rac->file); 1057 nr_pages -= cur_pages; 1058 } 1059 } 1060 1061 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 1062 { 1063 struct inode *inode = iocb->ki_filp->f_mapping->host; 1064 struct fuse_conn *fc = get_fuse_conn(inode); 1065 1066 /* 1067 * In auto invalidate mode, always update attributes on read. 1068 * Otherwise, only update if we attempt to read past EOF (to ensure 1069 * i_size is up to date). 1070 */ 1071 if (fc->auto_inval_data || 1072 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1073 int err; 1074 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1075 if (err) 1076 return err; 1077 } 1078 1079 return generic_file_read_iter(iocb, to); 1080 } 1081 1082 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1083 loff_t pos, size_t count) 1084 { 1085 struct fuse_args *args = &ia->ap.args; 1086 1087 ia->write.in.fh = ff->fh; 1088 ia->write.in.offset = pos; 1089 ia->write.in.size = count; 1090 args->opcode = FUSE_WRITE; 1091 args->nodeid = ff->nodeid; 1092 args->in_numargs = 2; 1093 if (ff->fm->fc->minor < 9) 1094 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1095 else 1096 args->in_args[0].size = sizeof(ia->write.in); 1097 args->in_args[0].value = &ia->write.in; 1098 args->in_args[1].size = count; 1099 args->out_numargs = 1; 1100 args->out_args[0].size = sizeof(ia->write.out); 1101 args->out_args[0].value = &ia->write.out; 1102 } 1103 1104 static unsigned int fuse_write_flags(struct kiocb *iocb) 1105 { 1106 unsigned int flags = iocb->ki_filp->f_flags; 1107 1108 if (iocb_is_dsync(iocb)) 1109 flags |= O_DSYNC; 1110 if (iocb->ki_flags & IOCB_SYNC) 1111 flags |= O_SYNC; 1112 1113 return flags; 1114 } 1115 1116 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1117 size_t count, fl_owner_t owner) 1118 { 1119 struct kiocb *iocb = ia->io->iocb; 1120 struct file *file = iocb->ki_filp; 1121 struct fuse_file *ff = file->private_data; 1122 struct fuse_mount *fm = ff->fm; 1123 struct fuse_write_in *inarg = &ia->write.in; 1124 ssize_t err; 1125 1126 fuse_write_args_fill(ia, ff, pos, count); 1127 inarg->flags = fuse_write_flags(iocb); 1128 if (owner != NULL) { 1129 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1130 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1131 } 1132 1133 if (ia->io->async) 1134 return fuse_async_req_send(fm, ia, count); 1135 1136 err = fuse_simple_request(fm, &ia->ap.args); 1137 if (!err && ia->write.out.size > count) 1138 err = -EIO; 1139 1140 return err ?: ia->write.out.size; 1141 } 1142 1143 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1144 { 1145 struct fuse_conn *fc = get_fuse_conn(inode); 1146 struct fuse_inode *fi = get_fuse_inode(inode); 1147 bool ret = false; 1148 1149 spin_lock(&fi->lock); 1150 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1151 if (written > 0 && pos > inode->i_size) { 1152 i_size_write(inode, pos); 1153 ret = true; 1154 } 1155 spin_unlock(&fi->lock); 1156 1157 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1158 1159 return ret; 1160 } 1161 1162 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1163 struct kiocb *iocb, struct inode *inode, 1164 loff_t pos, size_t count) 1165 { 1166 struct fuse_args_pages *ap = &ia->ap; 1167 struct file *file = iocb->ki_filp; 1168 struct fuse_file *ff = file->private_data; 1169 struct fuse_mount *fm = ff->fm; 1170 unsigned int offset, i; 1171 bool short_write; 1172 int err; 1173 1174 for (i = 0; i < ap->num_folios; i++) 1175 fuse_wait_on_folio_writeback(inode, ap->folios[i]); 1176 1177 fuse_write_args_fill(ia, ff, pos, count); 1178 ia->write.in.flags = fuse_write_flags(iocb); 1179 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1180 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1181 1182 err = fuse_simple_request(fm, &ap->args); 1183 if (!err && ia->write.out.size > count) 1184 err = -EIO; 1185 1186 short_write = ia->write.out.size < count; 1187 offset = ap->descs[0].offset; 1188 count = ia->write.out.size; 1189 for (i = 0; i < ap->num_folios; i++) { 1190 struct folio *folio = ap->folios[i]; 1191 1192 if (err) { 1193 folio_clear_uptodate(folio); 1194 } else { 1195 if (count >= folio_size(folio) - offset) 1196 count -= folio_size(folio) - offset; 1197 else { 1198 if (short_write) 1199 folio_clear_uptodate(folio); 1200 count = 0; 1201 } 1202 offset = 0; 1203 } 1204 if (ia->write.folio_locked && (i == ap->num_folios - 1)) 1205 folio_unlock(folio); 1206 folio_put(folio); 1207 } 1208 1209 return err; 1210 } 1211 1212 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1213 struct address_space *mapping, 1214 struct iov_iter *ii, loff_t pos, 1215 unsigned int max_pages) 1216 { 1217 struct fuse_args_pages *ap = &ia->ap; 1218 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1219 unsigned offset = pos & (PAGE_SIZE - 1); 1220 unsigned int nr_pages = 0; 1221 size_t count = 0; 1222 int err; 1223 1224 ap->args.in_pages = true; 1225 ap->descs[0].offset = offset; 1226 1227 do { 1228 size_t tmp; 1229 struct folio *folio; 1230 pgoff_t index = pos >> PAGE_SHIFT; 1231 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1232 iov_iter_count(ii)); 1233 1234 bytes = min_t(size_t, bytes, fc->max_write - count); 1235 1236 again: 1237 err = -EFAULT; 1238 if (fault_in_iov_iter_readable(ii, bytes)) 1239 break; 1240 1241 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1242 mapping_gfp_mask(mapping)); 1243 if (IS_ERR(folio)) { 1244 err = PTR_ERR(folio); 1245 break; 1246 } 1247 1248 if (mapping_writably_mapped(mapping)) 1249 flush_dcache_folio(folio); 1250 1251 tmp = copy_folio_from_iter_atomic(folio, offset, bytes, ii); 1252 flush_dcache_folio(folio); 1253 1254 if (!tmp) { 1255 folio_unlock(folio); 1256 folio_put(folio); 1257 goto again; 1258 } 1259 1260 err = 0; 1261 ap->folios[ap->num_folios] = folio; 1262 ap->descs[ap->num_folios].length = tmp; 1263 ap->num_folios++; 1264 nr_pages++; 1265 1266 count += tmp; 1267 pos += tmp; 1268 offset += tmp; 1269 if (offset == PAGE_SIZE) 1270 offset = 0; 1271 1272 /* If we copied full page, mark it uptodate */ 1273 if (tmp == PAGE_SIZE) 1274 folio_mark_uptodate(folio); 1275 1276 if (folio_test_uptodate(folio)) { 1277 folio_unlock(folio); 1278 } else { 1279 ia->write.folio_locked = true; 1280 break; 1281 } 1282 if (!fc->big_writes) 1283 break; 1284 } while (iov_iter_count(ii) && count < fc->max_write && 1285 nr_pages < max_pages && offset == 0); 1286 1287 return count > 0 ? count : err; 1288 } 1289 1290 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1291 unsigned int max_pages) 1292 { 1293 return min_t(unsigned int, 1294 ((pos + len - 1) >> PAGE_SHIFT) - 1295 (pos >> PAGE_SHIFT) + 1, 1296 max_pages); 1297 } 1298 1299 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii) 1300 { 1301 struct address_space *mapping = iocb->ki_filp->f_mapping; 1302 struct inode *inode = mapping->host; 1303 struct fuse_conn *fc = get_fuse_conn(inode); 1304 struct fuse_inode *fi = get_fuse_inode(inode); 1305 loff_t pos = iocb->ki_pos; 1306 int err = 0; 1307 ssize_t res = 0; 1308 1309 if (inode->i_size < pos + iov_iter_count(ii)) 1310 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1311 1312 do { 1313 ssize_t count; 1314 struct fuse_io_args ia = {}; 1315 struct fuse_args_pages *ap = &ia.ap; 1316 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1317 fc->max_pages); 1318 1319 ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1320 if (!ap->folios) { 1321 err = -ENOMEM; 1322 break; 1323 } 1324 1325 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1326 if (count <= 0) { 1327 err = count; 1328 } else { 1329 err = fuse_send_write_pages(&ia, iocb, inode, 1330 pos, count); 1331 if (!err) { 1332 size_t num_written = ia.write.out.size; 1333 1334 res += num_written; 1335 pos += num_written; 1336 1337 /* break out of the loop on short write */ 1338 if (num_written != count) 1339 err = -EIO; 1340 } 1341 } 1342 kfree(ap->folios); 1343 } while (!err && iov_iter_count(ii)); 1344 1345 fuse_write_update_attr(inode, pos, res); 1346 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1347 1348 if (!res) 1349 return err; 1350 iocb->ki_pos += res; 1351 return res; 1352 } 1353 1354 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter) 1355 { 1356 struct inode *inode = file_inode(iocb->ki_filp); 1357 1358 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode); 1359 } 1360 1361 /* 1362 * @return true if an exclusive lock for direct IO writes is needed 1363 */ 1364 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from) 1365 { 1366 struct file *file = iocb->ki_filp; 1367 struct fuse_file *ff = file->private_data; 1368 struct inode *inode = file_inode(iocb->ki_filp); 1369 struct fuse_inode *fi = get_fuse_inode(inode); 1370 1371 /* Server side has to advise that it supports parallel dio writes. */ 1372 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES)) 1373 return true; 1374 1375 /* 1376 * Append will need to know the eventual EOF - always needs an 1377 * exclusive lock. 1378 */ 1379 if (iocb->ki_flags & IOCB_APPEND) 1380 return true; 1381 1382 /* shared locks are not allowed with parallel page cache IO */ 1383 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state)) 1384 return true; 1385 1386 /* Parallel dio beyond EOF is not supported, at least for now. */ 1387 if (fuse_io_past_eof(iocb, from)) 1388 return true; 1389 1390 return false; 1391 } 1392 1393 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from, 1394 bool *exclusive) 1395 { 1396 struct inode *inode = file_inode(iocb->ki_filp); 1397 struct fuse_inode *fi = get_fuse_inode(inode); 1398 1399 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from); 1400 if (*exclusive) { 1401 inode_lock(inode); 1402 } else { 1403 inode_lock_shared(inode); 1404 /* 1405 * New parallal dio allowed only if inode is not in caching 1406 * mode and denies new opens in caching mode. This check 1407 * should be performed only after taking shared inode lock. 1408 * Previous past eof check was without inode lock and might 1409 * have raced, so check it again. 1410 */ 1411 if (fuse_io_past_eof(iocb, from) || 1412 fuse_inode_uncached_io_start(fi, NULL) != 0) { 1413 inode_unlock_shared(inode); 1414 inode_lock(inode); 1415 *exclusive = true; 1416 } 1417 } 1418 } 1419 1420 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive) 1421 { 1422 struct inode *inode = file_inode(iocb->ki_filp); 1423 struct fuse_inode *fi = get_fuse_inode(inode); 1424 1425 if (exclusive) { 1426 inode_unlock(inode); 1427 } else { 1428 /* Allow opens in caching mode after last parallel dio end */ 1429 fuse_inode_uncached_io_end(fi); 1430 inode_unlock_shared(inode); 1431 } 1432 } 1433 1434 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1435 { 1436 struct file *file = iocb->ki_filp; 1437 struct mnt_idmap *idmap = file_mnt_idmap(file); 1438 struct address_space *mapping = file->f_mapping; 1439 ssize_t written = 0; 1440 struct inode *inode = mapping->host; 1441 ssize_t err, count; 1442 struct fuse_conn *fc = get_fuse_conn(inode); 1443 1444 if (fc->writeback_cache) { 1445 /* Update size (EOF optimization) and mode (SUID clearing) */ 1446 err = fuse_update_attributes(mapping->host, file, 1447 STATX_SIZE | STATX_MODE); 1448 if (err) 1449 return err; 1450 1451 if (fc->handle_killpriv_v2 && 1452 setattr_should_drop_suidgid(idmap, 1453 file_inode(file))) { 1454 goto writethrough; 1455 } 1456 1457 return generic_file_write_iter(iocb, from); 1458 } 1459 1460 writethrough: 1461 inode_lock(inode); 1462 1463 err = count = generic_write_checks(iocb, from); 1464 if (err <= 0) 1465 goto out; 1466 1467 task_io_account_write(count); 1468 1469 err = kiocb_modified(iocb); 1470 if (err) 1471 goto out; 1472 1473 if (iocb->ki_flags & IOCB_DIRECT) { 1474 written = generic_file_direct_write(iocb, from); 1475 if (written < 0 || !iov_iter_count(from)) 1476 goto out; 1477 written = direct_write_fallback(iocb, from, written, 1478 fuse_perform_write(iocb, from)); 1479 } else { 1480 written = fuse_perform_write(iocb, from); 1481 } 1482 out: 1483 inode_unlock(inode); 1484 if (written > 0) 1485 written = generic_write_sync(iocb, written); 1486 1487 return written ? written : err; 1488 } 1489 1490 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1491 { 1492 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset; 1493 } 1494 1495 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1496 size_t max_size) 1497 { 1498 return min(iov_iter_single_seg_count(ii), max_size); 1499 } 1500 1501 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1502 size_t *nbytesp, int write, 1503 unsigned int max_pages, 1504 bool use_pages_for_kvec_io) 1505 { 1506 bool flush_or_invalidate = false; 1507 unsigned int nr_pages = 0; 1508 size_t nbytes = 0; /* # bytes already packed in req */ 1509 ssize_t ret = 0; 1510 1511 /* Special case for kernel I/O: can copy directly into the buffer. 1512 * However if the implementation of fuse_conn requires pages instead of 1513 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead. 1514 */ 1515 if (iov_iter_is_kvec(ii)) { 1516 void *user_addr = (void *)fuse_get_user_addr(ii); 1517 1518 if (!use_pages_for_kvec_io) { 1519 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1520 1521 if (write) 1522 ap->args.in_args[1].value = user_addr; 1523 else 1524 ap->args.out_args[0].value = user_addr; 1525 1526 iov_iter_advance(ii, frag_size); 1527 *nbytesp = frag_size; 1528 return 0; 1529 } 1530 1531 if (is_vmalloc_addr(user_addr)) { 1532 ap->args.vmap_base = user_addr; 1533 flush_or_invalidate = true; 1534 } 1535 } 1536 1537 /* 1538 * Until there is support for iov_iter_extract_folios(), we have to 1539 * manually extract pages using iov_iter_extract_pages() and then 1540 * copy that to a folios array. 1541 */ 1542 struct page **pages = kzalloc(max_pages * sizeof(struct page *), 1543 GFP_KERNEL); 1544 if (!pages) { 1545 ret = -ENOMEM; 1546 goto out; 1547 } 1548 1549 while (nbytes < *nbytesp && nr_pages < max_pages) { 1550 unsigned nfolios, i; 1551 size_t start; 1552 1553 ret = iov_iter_extract_pages(ii, &pages, 1554 *nbytesp - nbytes, 1555 max_pages - nr_pages, 1556 0, &start); 1557 if (ret < 0) 1558 break; 1559 1560 nbytes += ret; 1561 1562 nfolios = DIV_ROUND_UP(ret + start, PAGE_SIZE); 1563 1564 for (i = 0; i < nfolios; i++) { 1565 struct folio *folio = page_folio(pages[i]); 1566 unsigned int offset = start + 1567 (folio_page_idx(folio, pages[i]) << PAGE_SHIFT); 1568 unsigned int len = min_t(unsigned int, ret, PAGE_SIZE - start); 1569 1570 ap->descs[ap->num_folios].offset = offset; 1571 ap->descs[ap->num_folios].length = len; 1572 ap->folios[ap->num_folios] = folio; 1573 start = 0; 1574 ret -= len; 1575 ap->num_folios++; 1576 } 1577 1578 nr_pages += nfolios; 1579 } 1580 kfree(pages); 1581 1582 if (write && flush_or_invalidate) 1583 flush_kernel_vmap_range(ap->args.vmap_base, nbytes); 1584 1585 ap->args.invalidate_vmap = !write && flush_or_invalidate; 1586 ap->args.is_pinned = iov_iter_extract_will_pin(ii); 1587 ap->args.user_pages = true; 1588 if (write) 1589 ap->args.in_pages = true; 1590 else 1591 ap->args.out_pages = true; 1592 1593 out: 1594 *nbytesp = nbytes; 1595 1596 return ret < 0 ? ret : 0; 1597 } 1598 1599 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1600 loff_t *ppos, int flags) 1601 { 1602 int write = flags & FUSE_DIO_WRITE; 1603 int cuse = flags & FUSE_DIO_CUSE; 1604 struct file *file = io->iocb->ki_filp; 1605 struct address_space *mapping = file->f_mapping; 1606 struct inode *inode = mapping->host; 1607 struct fuse_file *ff = file->private_data; 1608 struct fuse_conn *fc = ff->fm->fc; 1609 size_t nmax = write ? fc->max_write : fc->max_read; 1610 loff_t pos = *ppos; 1611 size_t count = iov_iter_count(iter); 1612 pgoff_t idx_from = pos >> PAGE_SHIFT; 1613 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1614 ssize_t res = 0; 1615 int err = 0; 1616 struct fuse_io_args *ia; 1617 unsigned int max_pages; 1618 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO; 1619 1620 max_pages = iov_iter_npages(iter, fc->max_pages); 1621 ia = fuse_io_alloc(io, max_pages); 1622 if (!ia) 1623 return -ENOMEM; 1624 1625 if (fopen_direct_io && fc->direct_io_allow_mmap) { 1626 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1); 1627 if (res) { 1628 fuse_io_free(ia); 1629 return res; 1630 } 1631 } 1632 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1633 if (!write) 1634 inode_lock(inode); 1635 fuse_sync_writes(inode); 1636 if (!write) 1637 inode_unlock(inode); 1638 } 1639 1640 if (fopen_direct_io && write) { 1641 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to); 1642 if (res) { 1643 fuse_io_free(ia); 1644 return res; 1645 } 1646 } 1647 1648 io->should_dirty = !write && user_backed_iter(iter); 1649 while (count) { 1650 ssize_t nres; 1651 fl_owner_t owner = current->files; 1652 size_t nbytes = min(count, nmax); 1653 1654 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1655 max_pages, fc->use_pages_for_kvec_io); 1656 if (err && !nbytes) 1657 break; 1658 1659 if (write) { 1660 if (!capable(CAP_FSETID)) 1661 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1662 1663 nres = fuse_send_write(ia, pos, nbytes, owner); 1664 } else { 1665 nres = fuse_send_read(ia, pos, nbytes, owner); 1666 } 1667 1668 if (!io->async || nres < 0) { 1669 fuse_release_user_pages(&ia->ap, nres, io->should_dirty); 1670 fuse_io_free(ia); 1671 } 1672 ia = NULL; 1673 if (nres < 0) { 1674 iov_iter_revert(iter, nbytes); 1675 err = nres; 1676 break; 1677 } 1678 WARN_ON(nres > nbytes); 1679 1680 count -= nres; 1681 res += nres; 1682 pos += nres; 1683 if (nres != nbytes) { 1684 iov_iter_revert(iter, nbytes - nres); 1685 break; 1686 } 1687 if (count) { 1688 max_pages = iov_iter_npages(iter, fc->max_pages); 1689 ia = fuse_io_alloc(io, max_pages); 1690 if (!ia) 1691 break; 1692 } 1693 } 1694 if (ia) 1695 fuse_io_free(ia); 1696 if (res > 0) 1697 *ppos = pos; 1698 1699 return res > 0 ? res : err; 1700 } 1701 EXPORT_SYMBOL_GPL(fuse_direct_io); 1702 1703 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1704 struct iov_iter *iter, 1705 loff_t *ppos) 1706 { 1707 ssize_t res; 1708 struct inode *inode = file_inode(io->iocb->ki_filp); 1709 1710 res = fuse_direct_io(io, iter, ppos, 0); 1711 1712 fuse_invalidate_atime(inode); 1713 1714 return res; 1715 } 1716 1717 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1718 1719 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1720 { 1721 ssize_t res; 1722 1723 if (!is_sync_kiocb(iocb)) { 1724 res = fuse_direct_IO(iocb, to); 1725 } else { 1726 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1727 1728 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1729 } 1730 1731 return res; 1732 } 1733 1734 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1735 { 1736 struct inode *inode = file_inode(iocb->ki_filp); 1737 ssize_t res; 1738 bool exclusive; 1739 1740 fuse_dio_lock(iocb, from, &exclusive); 1741 res = generic_write_checks(iocb, from); 1742 if (res > 0) { 1743 task_io_account_write(res); 1744 if (!is_sync_kiocb(iocb)) { 1745 res = fuse_direct_IO(iocb, from); 1746 } else { 1747 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1748 1749 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1750 FUSE_DIO_WRITE); 1751 fuse_write_update_attr(inode, iocb->ki_pos, res); 1752 } 1753 } 1754 fuse_dio_unlock(iocb, exclusive); 1755 1756 return res; 1757 } 1758 1759 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1760 { 1761 struct file *file = iocb->ki_filp; 1762 struct fuse_file *ff = file->private_data; 1763 struct inode *inode = file_inode(file); 1764 1765 if (fuse_is_bad(inode)) 1766 return -EIO; 1767 1768 if (FUSE_IS_DAX(inode)) 1769 return fuse_dax_read_iter(iocb, to); 1770 1771 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1772 if (ff->open_flags & FOPEN_DIRECT_IO) 1773 return fuse_direct_read_iter(iocb, to); 1774 else if (fuse_file_passthrough(ff)) 1775 return fuse_passthrough_read_iter(iocb, to); 1776 else 1777 return fuse_cache_read_iter(iocb, to); 1778 } 1779 1780 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1781 { 1782 struct file *file = iocb->ki_filp; 1783 struct fuse_file *ff = file->private_data; 1784 struct inode *inode = file_inode(file); 1785 1786 if (fuse_is_bad(inode)) 1787 return -EIO; 1788 1789 if (FUSE_IS_DAX(inode)) 1790 return fuse_dax_write_iter(iocb, from); 1791 1792 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1793 if (ff->open_flags & FOPEN_DIRECT_IO) 1794 return fuse_direct_write_iter(iocb, from); 1795 else if (fuse_file_passthrough(ff)) 1796 return fuse_passthrough_write_iter(iocb, from); 1797 else 1798 return fuse_cache_write_iter(iocb, from); 1799 } 1800 1801 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos, 1802 struct pipe_inode_info *pipe, size_t len, 1803 unsigned int flags) 1804 { 1805 struct fuse_file *ff = in->private_data; 1806 1807 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1808 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1809 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags); 1810 else 1811 return filemap_splice_read(in, ppos, pipe, len, flags); 1812 } 1813 1814 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out, 1815 loff_t *ppos, size_t len, unsigned int flags) 1816 { 1817 struct fuse_file *ff = out->private_data; 1818 1819 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1820 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1821 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags); 1822 else 1823 return iter_file_splice_write(pipe, out, ppos, len, flags); 1824 } 1825 1826 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1827 { 1828 struct fuse_args_pages *ap = &wpa->ia.ap; 1829 int i; 1830 1831 if (wpa->bucket) 1832 fuse_sync_bucket_dec(wpa->bucket); 1833 1834 for (i = 0; i < ap->num_folios; i++) 1835 folio_put(ap->folios[i]); 1836 1837 fuse_file_put(wpa->ia.ff, false); 1838 1839 kfree(ap->folios); 1840 kfree(wpa); 1841 } 1842 1843 static void fuse_writepage_finish_stat(struct inode *inode, struct folio *folio) 1844 { 1845 struct backing_dev_info *bdi = inode_to_bdi(inode); 1846 1847 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1848 node_stat_sub_folio(folio, NR_WRITEBACK_TEMP); 1849 wb_writeout_inc(&bdi->wb); 1850 } 1851 1852 static void fuse_writepage_finish(struct fuse_writepage_args *wpa) 1853 { 1854 struct fuse_args_pages *ap = &wpa->ia.ap; 1855 struct inode *inode = wpa->inode; 1856 struct fuse_inode *fi = get_fuse_inode(inode); 1857 int i; 1858 1859 for (i = 0; i < ap->num_folios; i++) 1860 fuse_writepage_finish_stat(inode, ap->folios[i]); 1861 1862 wake_up(&fi->page_waitq); 1863 } 1864 1865 /* Called under fi->lock, may release and reacquire it */ 1866 static void fuse_send_writepage(struct fuse_mount *fm, 1867 struct fuse_writepage_args *wpa, loff_t size) 1868 __releases(fi->lock) 1869 __acquires(fi->lock) 1870 { 1871 struct fuse_writepage_args *aux, *next; 1872 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1873 struct fuse_write_in *inarg = &wpa->ia.write.in; 1874 struct fuse_args *args = &wpa->ia.ap.args; 1875 /* Currently, all folios in FUSE are one page */ 1876 __u64 data_size = wpa->ia.ap.num_folios * PAGE_SIZE; 1877 int err; 1878 1879 fi->writectr++; 1880 if (inarg->offset + data_size <= size) { 1881 inarg->size = data_size; 1882 } else if (inarg->offset < size) { 1883 inarg->size = size - inarg->offset; 1884 } else { 1885 /* Got truncated off completely */ 1886 goto out_free; 1887 } 1888 1889 args->in_args[1].size = inarg->size; 1890 args->force = true; 1891 args->nocreds = true; 1892 1893 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1894 if (err == -ENOMEM) { 1895 spin_unlock(&fi->lock); 1896 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1897 spin_lock(&fi->lock); 1898 } 1899 1900 /* Fails on broken connection only */ 1901 if (unlikely(err)) 1902 goto out_free; 1903 1904 return; 1905 1906 out_free: 1907 fi->writectr--; 1908 rb_erase(&wpa->writepages_entry, &fi->writepages); 1909 fuse_writepage_finish(wpa); 1910 spin_unlock(&fi->lock); 1911 1912 /* After rb_erase() aux request list is private */ 1913 for (aux = wpa->next; aux; aux = next) { 1914 next = aux->next; 1915 aux->next = NULL; 1916 fuse_writepage_finish_stat(aux->inode, 1917 aux->ia.ap.folios[0]); 1918 fuse_writepage_free(aux); 1919 } 1920 1921 fuse_writepage_free(wpa); 1922 spin_lock(&fi->lock); 1923 } 1924 1925 /* 1926 * If fi->writectr is positive (no truncate or fsync going on) send 1927 * all queued writepage requests. 1928 * 1929 * Called with fi->lock 1930 */ 1931 void fuse_flush_writepages(struct inode *inode) 1932 __releases(fi->lock) 1933 __acquires(fi->lock) 1934 { 1935 struct fuse_mount *fm = get_fuse_mount(inode); 1936 struct fuse_inode *fi = get_fuse_inode(inode); 1937 loff_t crop = i_size_read(inode); 1938 struct fuse_writepage_args *wpa; 1939 1940 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1941 wpa = list_entry(fi->queued_writes.next, 1942 struct fuse_writepage_args, queue_entry); 1943 list_del_init(&wpa->queue_entry); 1944 fuse_send_writepage(fm, wpa, crop); 1945 } 1946 } 1947 1948 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1949 struct fuse_writepage_args *wpa) 1950 { 1951 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1952 pgoff_t idx_to = idx_from + wpa->ia.ap.num_folios - 1; 1953 struct rb_node **p = &root->rb_node; 1954 struct rb_node *parent = NULL; 1955 1956 WARN_ON(!wpa->ia.ap.num_folios); 1957 while (*p) { 1958 struct fuse_writepage_args *curr; 1959 pgoff_t curr_index; 1960 1961 parent = *p; 1962 curr = rb_entry(parent, struct fuse_writepage_args, 1963 writepages_entry); 1964 WARN_ON(curr->inode != wpa->inode); 1965 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1966 1967 if (idx_from >= curr_index + curr->ia.ap.num_folios) 1968 p = &(*p)->rb_right; 1969 else if (idx_to < curr_index) 1970 p = &(*p)->rb_left; 1971 else 1972 return curr; 1973 } 1974 1975 rb_link_node(&wpa->writepages_entry, parent, p); 1976 rb_insert_color(&wpa->writepages_entry, root); 1977 return NULL; 1978 } 1979 1980 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1981 { 1982 WARN_ON(fuse_insert_writeback(root, wpa)); 1983 } 1984 1985 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1986 int error) 1987 { 1988 struct fuse_writepage_args *wpa = 1989 container_of(args, typeof(*wpa), ia.ap.args); 1990 struct inode *inode = wpa->inode; 1991 struct fuse_inode *fi = get_fuse_inode(inode); 1992 struct fuse_conn *fc = get_fuse_conn(inode); 1993 1994 mapping_set_error(inode->i_mapping, error); 1995 /* 1996 * A writeback finished and this might have updated mtime/ctime on 1997 * server making local mtime/ctime stale. Hence invalidate attrs. 1998 * Do this only if writeback_cache is not enabled. If writeback_cache 1999 * is enabled, we trust local ctime/mtime. 2000 */ 2001 if (!fc->writeback_cache) 2002 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 2003 spin_lock(&fi->lock); 2004 rb_erase(&wpa->writepages_entry, &fi->writepages); 2005 while (wpa->next) { 2006 struct fuse_mount *fm = get_fuse_mount(inode); 2007 struct fuse_write_in *inarg = &wpa->ia.write.in; 2008 struct fuse_writepage_args *next = wpa->next; 2009 2010 wpa->next = next->next; 2011 next->next = NULL; 2012 tree_insert(&fi->writepages, next); 2013 2014 /* 2015 * Skip fuse_flush_writepages() to make it easy to crop requests 2016 * based on primary request size. 2017 * 2018 * 1st case (trivial): there are no concurrent activities using 2019 * fuse_set/release_nowrite. Then we're on safe side because 2020 * fuse_flush_writepages() would call fuse_send_writepage() 2021 * anyway. 2022 * 2023 * 2nd case: someone called fuse_set_nowrite and it is waiting 2024 * now for completion of all in-flight requests. This happens 2025 * rarely and no more than once per page, so this should be 2026 * okay. 2027 * 2028 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 2029 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 2030 * that fuse_set_nowrite returned implies that all in-flight 2031 * requests were completed along with all of their secondary 2032 * requests. Further primary requests are blocked by negative 2033 * writectr. Hence there cannot be any in-flight requests and 2034 * no invocations of fuse_writepage_end() while we're in 2035 * fuse_set_nowrite..fuse_release_nowrite section. 2036 */ 2037 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 2038 } 2039 fi->writectr--; 2040 fuse_writepage_finish(wpa); 2041 spin_unlock(&fi->lock); 2042 fuse_writepage_free(wpa); 2043 } 2044 2045 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 2046 { 2047 struct fuse_file *ff; 2048 2049 spin_lock(&fi->lock); 2050 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 2051 write_entry); 2052 if (ff) 2053 fuse_file_get(ff); 2054 spin_unlock(&fi->lock); 2055 2056 return ff; 2057 } 2058 2059 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 2060 { 2061 struct fuse_file *ff = __fuse_write_file_get(fi); 2062 WARN_ON(!ff); 2063 return ff; 2064 } 2065 2066 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 2067 { 2068 struct fuse_inode *fi = get_fuse_inode(inode); 2069 struct fuse_file *ff; 2070 int err; 2071 2072 /* 2073 * Inode is always written before the last reference is dropped and 2074 * hence this should not be reached from reclaim. 2075 * 2076 * Writing back the inode from reclaim can deadlock if the request 2077 * processing itself needs an allocation. Allocations triggering 2078 * reclaim while serving a request can't be prevented, because it can 2079 * involve any number of unrelated userspace processes. 2080 */ 2081 WARN_ON(wbc->for_reclaim); 2082 2083 ff = __fuse_write_file_get(fi); 2084 err = fuse_flush_times(inode, ff); 2085 if (ff) 2086 fuse_file_put(ff, false); 2087 2088 return err; 2089 } 2090 2091 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 2092 { 2093 struct fuse_writepage_args *wpa; 2094 struct fuse_args_pages *ap; 2095 2096 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 2097 if (wpa) { 2098 ap = &wpa->ia.ap; 2099 ap->num_folios = 0; 2100 ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs); 2101 if (!ap->folios) { 2102 kfree(wpa); 2103 wpa = NULL; 2104 } 2105 } 2106 return wpa; 2107 2108 } 2109 2110 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 2111 struct fuse_writepage_args *wpa) 2112 { 2113 if (!fc->sync_fs) 2114 return; 2115 2116 rcu_read_lock(); 2117 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 2118 do { 2119 wpa->bucket = rcu_dereference(fc->curr_bucket); 2120 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 2121 rcu_read_unlock(); 2122 } 2123 2124 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio, 2125 struct folio *tmp_folio, uint32_t folio_index) 2126 { 2127 struct inode *inode = folio->mapping->host; 2128 struct fuse_args_pages *ap = &wpa->ia.ap; 2129 2130 folio_copy(tmp_folio, folio); 2131 2132 ap->folios[folio_index] = tmp_folio; 2133 ap->descs[folio_index].offset = 0; 2134 ap->descs[folio_index].length = PAGE_SIZE; 2135 2136 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2137 node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP); 2138 } 2139 2140 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio, 2141 struct fuse_file *ff) 2142 { 2143 struct inode *inode = folio->mapping->host; 2144 struct fuse_conn *fc = get_fuse_conn(inode); 2145 struct fuse_writepage_args *wpa; 2146 struct fuse_args_pages *ap; 2147 2148 wpa = fuse_writepage_args_alloc(); 2149 if (!wpa) 2150 return NULL; 2151 2152 fuse_writepage_add_to_bucket(fc, wpa); 2153 fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio), 0); 2154 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2155 wpa->inode = inode; 2156 wpa->ia.ff = ff; 2157 2158 ap = &wpa->ia.ap; 2159 ap->args.in_pages = true; 2160 ap->args.end = fuse_writepage_end; 2161 2162 return wpa; 2163 } 2164 2165 static int fuse_writepage_locked(struct folio *folio) 2166 { 2167 struct address_space *mapping = folio->mapping; 2168 struct inode *inode = mapping->host; 2169 struct fuse_inode *fi = get_fuse_inode(inode); 2170 struct fuse_writepage_args *wpa; 2171 struct fuse_args_pages *ap; 2172 struct folio *tmp_folio; 2173 struct fuse_file *ff; 2174 int error = -ENOMEM; 2175 2176 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2177 if (!tmp_folio) 2178 goto err; 2179 2180 error = -EIO; 2181 ff = fuse_write_file_get(fi); 2182 if (!ff) 2183 goto err_nofile; 2184 2185 wpa = fuse_writepage_args_setup(folio, ff); 2186 error = -ENOMEM; 2187 if (!wpa) 2188 goto err_writepage_args; 2189 2190 ap = &wpa->ia.ap; 2191 ap->num_folios = 1; 2192 2193 folio_start_writeback(folio); 2194 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, 0); 2195 2196 spin_lock(&fi->lock); 2197 tree_insert(&fi->writepages, wpa); 2198 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2199 fuse_flush_writepages(inode); 2200 spin_unlock(&fi->lock); 2201 2202 folio_end_writeback(folio); 2203 2204 return 0; 2205 2206 err_writepage_args: 2207 fuse_file_put(ff, false); 2208 err_nofile: 2209 folio_put(tmp_folio); 2210 err: 2211 mapping_set_error(folio->mapping, error); 2212 return error; 2213 } 2214 2215 struct fuse_fill_wb_data { 2216 struct fuse_writepage_args *wpa; 2217 struct fuse_file *ff; 2218 struct inode *inode; 2219 struct folio **orig_folios; 2220 unsigned int max_folios; 2221 }; 2222 2223 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 2224 { 2225 struct fuse_args_pages *ap = &data->wpa->ia.ap; 2226 struct fuse_conn *fc = get_fuse_conn(data->inode); 2227 struct folio **folios; 2228 struct fuse_folio_desc *descs; 2229 unsigned int nfolios = min_t(unsigned int, 2230 max_t(unsigned int, data->max_folios * 2, 2231 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2232 fc->max_pages); 2233 WARN_ON(nfolios <= data->max_folios); 2234 2235 folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs); 2236 if (!folios) 2237 return false; 2238 2239 memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios); 2240 memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios); 2241 kfree(ap->folios); 2242 ap->folios = folios; 2243 ap->descs = descs; 2244 data->max_folios = nfolios; 2245 2246 return true; 2247 } 2248 2249 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2250 { 2251 struct fuse_writepage_args *wpa = data->wpa; 2252 struct inode *inode = data->inode; 2253 struct fuse_inode *fi = get_fuse_inode(inode); 2254 int num_folios = wpa->ia.ap.num_folios; 2255 int i; 2256 2257 spin_lock(&fi->lock); 2258 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2259 fuse_flush_writepages(inode); 2260 spin_unlock(&fi->lock); 2261 2262 for (i = 0; i < num_folios; i++) 2263 folio_end_writeback(data->orig_folios[i]); 2264 } 2265 2266 /* 2267 * Check under fi->lock if the page is under writeback, and insert it onto the 2268 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2269 * one already added for a page at this offset. If there's none, then insert 2270 * this new request onto the auxiliary list, otherwise reuse the existing one by 2271 * swapping the new temp page with the old one. 2272 */ 2273 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2274 struct folio *folio) 2275 { 2276 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2277 struct fuse_writepage_args *tmp; 2278 struct fuse_writepage_args *old_wpa; 2279 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2280 2281 WARN_ON(new_ap->num_folios != 0); 2282 new_ap->num_folios = 1; 2283 2284 spin_lock(&fi->lock); 2285 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2286 if (!old_wpa) { 2287 spin_unlock(&fi->lock); 2288 return true; 2289 } 2290 2291 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2292 pgoff_t curr_index; 2293 2294 WARN_ON(tmp->inode != new_wpa->inode); 2295 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2296 if (curr_index == folio->index) { 2297 WARN_ON(tmp->ia.ap.num_folios != 1); 2298 swap(tmp->ia.ap.folios[0], new_ap->folios[0]); 2299 break; 2300 } 2301 } 2302 2303 if (!tmp) { 2304 new_wpa->next = old_wpa->next; 2305 old_wpa->next = new_wpa; 2306 } 2307 2308 spin_unlock(&fi->lock); 2309 2310 if (tmp) { 2311 fuse_writepage_finish_stat(new_wpa->inode, 2312 folio); 2313 fuse_writepage_free(new_wpa); 2314 } 2315 2316 return false; 2317 } 2318 2319 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct folio *folio, 2320 struct fuse_args_pages *ap, 2321 struct fuse_fill_wb_data *data) 2322 { 2323 WARN_ON(!ap->num_folios); 2324 2325 /* 2326 * Being under writeback is unlikely but possible. For example direct 2327 * read to an mmaped fuse file will set the page dirty twice; once when 2328 * the pages are faulted with get_user_pages(), and then after the read 2329 * completed. 2330 */ 2331 if (fuse_folio_is_writeback(data->inode, folio)) 2332 return true; 2333 2334 /* Reached max pages */ 2335 if (ap->num_folios == fc->max_pages) 2336 return true; 2337 2338 /* Reached max write bytes */ 2339 if ((ap->num_folios + 1) * PAGE_SIZE > fc->max_write) 2340 return true; 2341 2342 /* Discontinuity */ 2343 if (data->orig_folios[ap->num_folios - 1]->index + 1 != folio_index(folio)) 2344 return true; 2345 2346 /* Need to grow the pages array? If so, did the expansion fail? */ 2347 if (ap->num_folios == data->max_folios && !fuse_pages_realloc(data)) 2348 return true; 2349 2350 return false; 2351 } 2352 2353 static int fuse_writepages_fill(struct folio *folio, 2354 struct writeback_control *wbc, void *_data) 2355 { 2356 struct fuse_fill_wb_data *data = _data; 2357 struct fuse_writepage_args *wpa = data->wpa; 2358 struct fuse_args_pages *ap = &wpa->ia.ap; 2359 struct inode *inode = data->inode; 2360 struct fuse_inode *fi = get_fuse_inode(inode); 2361 struct fuse_conn *fc = get_fuse_conn(inode); 2362 struct folio *tmp_folio; 2363 int err; 2364 2365 if (!data->ff) { 2366 err = -EIO; 2367 data->ff = fuse_write_file_get(fi); 2368 if (!data->ff) 2369 goto out_unlock; 2370 } 2371 2372 if (wpa && fuse_writepage_need_send(fc, folio, ap, data)) { 2373 fuse_writepages_send(data); 2374 data->wpa = NULL; 2375 } 2376 2377 err = -ENOMEM; 2378 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2379 if (!tmp_folio) 2380 goto out_unlock; 2381 2382 /* 2383 * The page must not be redirtied until the writeout is completed 2384 * (i.e. userspace has sent a reply to the write request). Otherwise 2385 * there could be more than one temporary page instance for each real 2386 * page. 2387 * 2388 * This is ensured by holding the page lock in page_mkwrite() while 2389 * checking fuse_page_is_writeback(). We already hold the page lock 2390 * since clear_page_dirty_for_io() and keep it held until we add the 2391 * request to the fi->writepages list and increment ap->num_folios. 2392 * After this fuse_page_is_writeback() will indicate that the page is 2393 * under writeback, so we can release the page lock. 2394 */ 2395 if (data->wpa == NULL) { 2396 err = -ENOMEM; 2397 wpa = fuse_writepage_args_setup(folio, data->ff); 2398 if (!wpa) { 2399 folio_put(tmp_folio); 2400 goto out_unlock; 2401 } 2402 fuse_file_get(wpa->ia.ff); 2403 data->max_folios = 1; 2404 ap = &wpa->ia.ap; 2405 } 2406 folio_start_writeback(folio); 2407 2408 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, ap->num_folios); 2409 data->orig_folios[ap->num_folios] = folio; 2410 2411 err = 0; 2412 if (data->wpa) { 2413 /* 2414 * Protected by fi->lock against concurrent access by 2415 * fuse_page_is_writeback(). 2416 */ 2417 spin_lock(&fi->lock); 2418 ap->num_folios++; 2419 spin_unlock(&fi->lock); 2420 } else if (fuse_writepage_add(wpa, folio)) { 2421 data->wpa = wpa; 2422 } else { 2423 folio_end_writeback(folio); 2424 } 2425 out_unlock: 2426 folio_unlock(folio); 2427 2428 return err; 2429 } 2430 2431 static int fuse_writepages(struct address_space *mapping, 2432 struct writeback_control *wbc) 2433 { 2434 struct inode *inode = mapping->host; 2435 struct fuse_conn *fc = get_fuse_conn(inode); 2436 struct fuse_fill_wb_data data; 2437 int err; 2438 2439 err = -EIO; 2440 if (fuse_is_bad(inode)) 2441 goto out; 2442 2443 if (wbc->sync_mode == WB_SYNC_NONE && 2444 fc->num_background >= fc->congestion_threshold) 2445 return 0; 2446 2447 data.inode = inode; 2448 data.wpa = NULL; 2449 data.ff = NULL; 2450 2451 err = -ENOMEM; 2452 data.orig_folios = kcalloc(fc->max_pages, 2453 sizeof(struct folio *), 2454 GFP_NOFS); 2455 if (!data.orig_folios) 2456 goto out; 2457 2458 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2459 if (data.wpa) { 2460 WARN_ON(!data.wpa->ia.ap.num_folios); 2461 fuse_writepages_send(&data); 2462 } 2463 if (data.ff) 2464 fuse_file_put(data.ff, false); 2465 2466 kfree(data.orig_folios); 2467 out: 2468 return err; 2469 } 2470 2471 /* 2472 * It's worthy to make sure that space is reserved on disk for the write, 2473 * but how to implement it without killing performance need more thinking. 2474 */ 2475 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2476 loff_t pos, unsigned len, struct folio **foliop, void **fsdata) 2477 { 2478 pgoff_t index = pos >> PAGE_SHIFT; 2479 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2480 struct folio *folio; 2481 loff_t fsize; 2482 int err = -ENOMEM; 2483 2484 WARN_ON(!fc->writeback_cache); 2485 2486 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2487 mapping_gfp_mask(mapping)); 2488 if (IS_ERR(folio)) 2489 goto error; 2490 2491 fuse_wait_on_page_writeback(mapping->host, folio->index); 2492 2493 if (folio_test_uptodate(folio) || len >= folio_size(folio)) 2494 goto success; 2495 /* 2496 * Check if the start of this folio comes after the end of file, 2497 * in which case the readpage can be optimized away. 2498 */ 2499 fsize = i_size_read(mapping->host); 2500 if (fsize <= folio_pos(folio)) { 2501 size_t off = offset_in_folio(folio, pos); 2502 if (off) 2503 folio_zero_segment(folio, 0, off); 2504 goto success; 2505 } 2506 err = fuse_do_readfolio(file, folio); 2507 if (err) 2508 goto cleanup; 2509 success: 2510 *foliop = folio; 2511 return 0; 2512 2513 cleanup: 2514 folio_unlock(folio); 2515 folio_put(folio); 2516 error: 2517 return err; 2518 } 2519 2520 static int fuse_write_end(struct file *file, struct address_space *mapping, 2521 loff_t pos, unsigned len, unsigned copied, 2522 struct folio *folio, void *fsdata) 2523 { 2524 struct inode *inode = folio->mapping->host; 2525 2526 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2527 if (!copied) 2528 goto unlock; 2529 2530 pos += copied; 2531 if (!folio_test_uptodate(folio)) { 2532 /* Zero any unwritten bytes at the end of the page */ 2533 size_t endoff = pos & ~PAGE_MASK; 2534 if (endoff) 2535 folio_zero_segment(folio, endoff, PAGE_SIZE); 2536 folio_mark_uptodate(folio); 2537 } 2538 2539 if (pos > inode->i_size) 2540 i_size_write(inode, pos); 2541 2542 folio_mark_dirty(folio); 2543 2544 unlock: 2545 folio_unlock(folio); 2546 folio_put(folio); 2547 2548 return copied; 2549 } 2550 2551 static int fuse_launder_folio(struct folio *folio) 2552 { 2553 int err = 0; 2554 if (folio_clear_dirty_for_io(folio)) { 2555 struct inode *inode = folio->mapping->host; 2556 2557 /* Serialize with pending writeback for the same page */ 2558 fuse_wait_on_page_writeback(inode, folio->index); 2559 err = fuse_writepage_locked(folio); 2560 if (!err) 2561 fuse_wait_on_page_writeback(inode, folio->index); 2562 } 2563 return err; 2564 } 2565 2566 /* 2567 * Write back dirty data/metadata now (there may not be any suitable 2568 * open files later for data) 2569 */ 2570 static void fuse_vma_close(struct vm_area_struct *vma) 2571 { 2572 int err; 2573 2574 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2575 mapping_set_error(vma->vm_file->f_mapping, err); 2576 } 2577 2578 /* 2579 * Wait for writeback against this page to complete before allowing it 2580 * to be marked dirty again, and hence written back again, possibly 2581 * before the previous writepage completed. 2582 * 2583 * Block here, instead of in ->writepage(), so that the userspace fs 2584 * can only block processes actually operating on the filesystem. 2585 * 2586 * Otherwise unprivileged userspace fs would be able to block 2587 * unrelated: 2588 * 2589 * - page migration 2590 * - sync(2) 2591 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2592 */ 2593 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2594 { 2595 struct folio *folio = page_folio(vmf->page); 2596 struct inode *inode = file_inode(vmf->vma->vm_file); 2597 2598 file_update_time(vmf->vma->vm_file); 2599 folio_lock(folio); 2600 if (folio->mapping != inode->i_mapping) { 2601 folio_unlock(folio); 2602 return VM_FAULT_NOPAGE; 2603 } 2604 2605 fuse_wait_on_folio_writeback(inode, folio); 2606 return VM_FAULT_LOCKED; 2607 } 2608 2609 static const struct vm_operations_struct fuse_file_vm_ops = { 2610 .close = fuse_vma_close, 2611 .fault = filemap_fault, 2612 .map_pages = filemap_map_pages, 2613 .page_mkwrite = fuse_page_mkwrite, 2614 }; 2615 2616 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2617 { 2618 struct fuse_file *ff = file->private_data; 2619 struct fuse_conn *fc = ff->fm->fc; 2620 struct inode *inode = file_inode(file); 2621 int rc; 2622 2623 /* DAX mmap is superior to direct_io mmap */ 2624 if (FUSE_IS_DAX(inode)) 2625 return fuse_dax_mmap(file, vma); 2626 2627 /* 2628 * If inode is in passthrough io mode, because it has some file open 2629 * in passthrough mode, either mmap to backing file or fail mmap, 2630 * because mixing cached mmap and passthrough io mode is not allowed. 2631 */ 2632 if (fuse_file_passthrough(ff)) 2633 return fuse_passthrough_mmap(file, vma); 2634 else if (fuse_inode_backing(get_fuse_inode(inode))) 2635 return -ENODEV; 2636 2637 /* 2638 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT, 2639 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP. 2640 */ 2641 if (ff->open_flags & FOPEN_DIRECT_IO) { 2642 /* 2643 * Can't provide the coherency needed for MAP_SHARED 2644 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set. 2645 */ 2646 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap) 2647 return -ENODEV; 2648 2649 invalidate_inode_pages2(file->f_mapping); 2650 2651 if (!(vma->vm_flags & VM_MAYSHARE)) { 2652 /* MAP_PRIVATE */ 2653 return generic_file_mmap(file, vma); 2654 } 2655 2656 /* 2657 * First mmap of direct_io file enters caching inode io mode. 2658 * Also waits for parallel dio writers to go into serial mode 2659 * (exclusive instead of shared lock). 2660 * After first mmap, the inode stays in caching io mode until 2661 * the direct_io file release. 2662 */ 2663 rc = fuse_file_cached_io_open(inode, ff); 2664 if (rc) 2665 return rc; 2666 } 2667 2668 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2669 fuse_link_write_file(file); 2670 2671 file_accessed(file); 2672 vma->vm_ops = &fuse_file_vm_ops; 2673 return 0; 2674 } 2675 2676 static int convert_fuse_file_lock(struct fuse_conn *fc, 2677 const struct fuse_file_lock *ffl, 2678 struct file_lock *fl) 2679 { 2680 switch (ffl->type) { 2681 case F_UNLCK: 2682 break; 2683 2684 case F_RDLCK: 2685 case F_WRLCK: 2686 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2687 ffl->end < ffl->start) 2688 return -EIO; 2689 2690 fl->fl_start = ffl->start; 2691 fl->fl_end = ffl->end; 2692 2693 /* 2694 * Convert pid into init's pid namespace. The locks API will 2695 * translate it into the caller's pid namespace. 2696 */ 2697 rcu_read_lock(); 2698 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2699 rcu_read_unlock(); 2700 break; 2701 2702 default: 2703 return -EIO; 2704 } 2705 fl->c.flc_type = ffl->type; 2706 return 0; 2707 } 2708 2709 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2710 const struct file_lock *fl, int opcode, pid_t pid, 2711 int flock, struct fuse_lk_in *inarg) 2712 { 2713 struct inode *inode = file_inode(file); 2714 struct fuse_conn *fc = get_fuse_conn(inode); 2715 struct fuse_file *ff = file->private_data; 2716 2717 memset(inarg, 0, sizeof(*inarg)); 2718 inarg->fh = ff->fh; 2719 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner); 2720 inarg->lk.start = fl->fl_start; 2721 inarg->lk.end = fl->fl_end; 2722 inarg->lk.type = fl->c.flc_type; 2723 inarg->lk.pid = pid; 2724 if (flock) 2725 inarg->lk_flags |= FUSE_LK_FLOCK; 2726 args->opcode = opcode; 2727 args->nodeid = get_node_id(inode); 2728 args->in_numargs = 1; 2729 args->in_args[0].size = sizeof(*inarg); 2730 args->in_args[0].value = inarg; 2731 } 2732 2733 static int fuse_getlk(struct file *file, struct file_lock *fl) 2734 { 2735 struct inode *inode = file_inode(file); 2736 struct fuse_mount *fm = get_fuse_mount(inode); 2737 FUSE_ARGS(args); 2738 struct fuse_lk_in inarg; 2739 struct fuse_lk_out outarg; 2740 int err; 2741 2742 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2743 args.out_numargs = 1; 2744 args.out_args[0].size = sizeof(outarg); 2745 args.out_args[0].value = &outarg; 2746 err = fuse_simple_request(fm, &args); 2747 if (!err) 2748 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2749 2750 return err; 2751 } 2752 2753 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2754 { 2755 struct inode *inode = file_inode(file); 2756 struct fuse_mount *fm = get_fuse_mount(inode); 2757 FUSE_ARGS(args); 2758 struct fuse_lk_in inarg; 2759 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2760 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL; 2761 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2762 int err; 2763 2764 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2765 /* NLM needs asynchronous locks, which we don't support yet */ 2766 return -ENOLCK; 2767 } 2768 2769 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2770 err = fuse_simple_request(fm, &args); 2771 2772 /* locking is restartable */ 2773 if (err == -EINTR) 2774 err = -ERESTARTSYS; 2775 2776 return err; 2777 } 2778 2779 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2780 { 2781 struct inode *inode = file_inode(file); 2782 struct fuse_conn *fc = get_fuse_conn(inode); 2783 int err; 2784 2785 if (cmd == F_CANCELLK) { 2786 err = 0; 2787 } else if (cmd == F_GETLK) { 2788 if (fc->no_lock) { 2789 posix_test_lock(file, fl); 2790 err = 0; 2791 } else 2792 err = fuse_getlk(file, fl); 2793 } else { 2794 if (fc->no_lock) 2795 err = posix_lock_file(file, fl, NULL); 2796 else 2797 err = fuse_setlk(file, fl, 0); 2798 } 2799 return err; 2800 } 2801 2802 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2803 { 2804 struct inode *inode = file_inode(file); 2805 struct fuse_conn *fc = get_fuse_conn(inode); 2806 int err; 2807 2808 if (fc->no_flock) { 2809 err = locks_lock_file_wait(file, fl); 2810 } else { 2811 struct fuse_file *ff = file->private_data; 2812 2813 /* emulate flock with POSIX locks */ 2814 ff->flock = true; 2815 err = fuse_setlk(file, fl, 1); 2816 } 2817 2818 return err; 2819 } 2820 2821 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2822 { 2823 struct inode *inode = mapping->host; 2824 struct fuse_mount *fm = get_fuse_mount(inode); 2825 FUSE_ARGS(args); 2826 struct fuse_bmap_in inarg; 2827 struct fuse_bmap_out outarg; 2828 int err; 2829 2830 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2831 return 0; 2832 2833 memset(&inarg, 0, sizeof(inarg)); 2834 inarg.block = block; 2835 inarg.blocksize = inode->i_sb->s_blocksize; 2836 args.opcode = FUSE_BMAP; 2837 args.nodeid = get_node_id(inode); 2838 args.in_numargs = 1; 2839 args.in_args[0].size = sizeof(inarg); 2840 args.in_args[0].value = &inarg; 2841 args.out_numargs = 1; 2842 args.out_args[0].size = sizeof(outarg); 2843 args.out_args[0].value = &outarg; 2844 err = fuse_simple_request(fm, &args); 2845 if (err == -ENOSYS) 2846 fm->fc->no_bmap = 1; 2847 2848 return err ? 0 : outarg.block; 2849 } 2850 2851 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2852 { 2853 struct inode *inode = file->f_mapping->host; 2854 struct fuse_mount *fm = get_fuse_mount(inode); 2855 struct fuse_file *ff = file->private_data; 2856 FUSE_ARGS(args); 2857 struct fuse_lseek_in inarg = { 2858 .fh = ff->fh, 2859 .offset = offset, 2860 .whence = whence 2861 }; 2862 struct fuse_lseek_out outarg; 2863 int err; 2864 2865 if (fm->fc->no_lseek) 2866 goto fallback; 2867 2868 args.opcode = FUSE_LSEEK; 2869 args.nodeid = ff->nodeid; 2870 args.in_numargs = 1; 2871 args.in_args[0].size = sizeof(inarg); 2872 args.in_args[0].value = &inarg; 2873 args.out_numargs = 1; 2874 args.out_args[0].size = sizeof(outarg); 2875 args.out_args[0].value = &outarg; 2876 err = fuse_simple_request(fm, &args); 2877 if (err) { 2878 if (err == -ENOSYS) { 2879 fm->fc->no_lseek = 1; 2880 goto fallback; 2881 } 2882 return err; 2883 } 2884 2885 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2886 2887 fallback: 2888 err = fuse_update_attributes(inode, file, STATX_SIZE); 2889 if (!err) 2890 return generic_file_llseek(file, offset, whence); 2891 else 2892 return err; 2893 } 2894 2895 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2896 { 2897 loff_t retval; 2898 struct inode *inode = file_inode(file); 2899 2900 switch (whence) { 2901 case SEEK_SET: 2902 case SEEK_CUR: 2903 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2904 retval = generic_file_llseek(file, offset, whence); 2905 break; 2906 case SEEK_END: 2907 inode_lock(inode); 2908 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2909 if (!retval) 2910 retval = generic_file_llseek(file, offset, whence); 2911 inode_unlock(inode); 2912 break; 2913 case SEEK_HOLE: 2914 case SEEK_DATA: 2915 inode_lock(inode); 2916 retval = fuse_lseek(file, offset, whence); 2917 inode_unlock(inode); 2918 break; 2919 default: 2920 retval = -EINVAL; 2921 } 2922 2923 return retval; 2924 } 2925 2926 /* 2927 * All files which have been polled are linked to RB tree 2928 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2929 * find the matching one. 2930 */ 2931 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2932 struct rb_node **parent_out) 2933 { 2934 struct rb_node **link = &fc->polled_files.rb_node; 2935 struct rb_node *last = NULL; 2936 2937 while (*link) { 2938 struct fuse_file *ff; 2939 2940 last = *link; 2941 ff = rb_entry(last, struct fuse_file, polled_node); 2942 2943 if (kh < ff->kh) 2944 link = &last->rb_left; 2945 else if (kh > ff->kh) 2946 link = &last->rb_right; 2947 else 2948 return link; 2949 } 2950 2951 if (parent_out) 2952 *parent_out = last; 2953 return link; 2954 } 2955 2956 /* 2957 * The file is about to be polled. Make sure it's on the polled_files 2958 * RB tree. Note that files once added to the polled_files tree are 2959 * not removed before the file is released. This is because a file 2960 * polled once is likely to be polled again. 2961 */ 2962 static void fuse_register_polled_file(struct fuse_conn *fc, 2963 struct fuse_file *ff) 2964 { 2965 spin_lock(&fc->lock); 2966 if (RB_EMPTY_NODE(&ff->polled_node)) { 2967 struct rb_node **link, *parent; 2968 2969 link = fuse_find_polled_node(fc, ff->kh, &parent); 2970 BUG_ON(*link); 2971 rb_link_node(&ff->polled_node, parent, link); 2972 rb_insert_color(&ff->polled_node, &fc->polled_files); 2973 } 2974 spin_unlock(&fc->lock); 2975 } 2976 2977 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2978 { 2979 struct fuse_file *ff = file->private_data; 2980 struct fuse_mount *fm = ff->fm; 2981 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2982 struct fuse_poll_out outarg; 2983 FUSE_ARGS(args); 2984 int err; 2985 2986 if (fm->fc->no_poll) 2987 return DEFAULT_POLLMASK; 2988 2989 poll_wait(file, &ff->poll_wait, wait); 2990 inarg.events = mangle_poll(poll_requested_events(wait)); 2991 2992 /* 2993 * Ask for notification iff there's someone waiting for it. 2994 * The client may ignore the flag and always notify. 2995 */ 2996 if (waitqueue_active(&ff->poll_wait)) { 2997 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2998 fuse_register_polled_file(fm->fc, ff); 2999 } 3000 3001 args.opcode = FUSE_POLL; 3002 args.nodeid = ff->nodeid; 3003 args.in_numargs = 1; 3004 args.in_args[0].size = sizeof(inarg); 3005 args.in_args[0].value = &inarg; 3006 args.out_numargs = 1; 3007 args.out_args[0].size = sizeof(outarg); 3008 args.out_args[0].value = &outarg; 3009 err = fuse_simple_request(fm, &args); 3010 3011 if (!err) 3012 return demangle_poll(outarg.revents); 3013 if (err == -ENOSYS) { 3014 fm->fc->no_poll = 1; 3015 return DEFAULT_POLLMASK; 3016 } 3017 return EPOLLERR; 3018 } 3019 EXPORT_SYMBOL_GPL(fuse_file_poll); 3020 3021 /* 3022 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 3023 * wakes up the poll waiters. 3024 */ 3025 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3026 struct fuse_notify_poll_wakeup_out *outarg) 3027 { 3028 u64 kh = outarg->kh; 3029 struct rb_node **link; 3030 3031 spin_lock(&fc->lock); 3032 3033 link = fuse_find_polled_node(fc, kh, NULL); 3034 if (*link) { 3035 struct fuse_file *ff; 3036 3037 ff = rb_entry(*link, struct fuse_file, polled_node); 3038 wake_up_interruptible_sync(&ff->poll_wait); 3039 } 3040 3041 spin_unlock(&fc->lock); 3042 return 0; 3043 } 3044 3045 static void fuse_do_truncate(struct file *file) 3046 { 3047 struct inode *inode = file->f_mapping->host; 3048 struct iattr attr; 3049 3050 attr.ia_valid = ATTR_SIZE; 3051 attr.ia_size = i_size_read(inode); 3052 3053 attr.ia_file = file; 3054 attr.ia_valid |= ATTR_FILE; 3055 3056 fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file); 3057 } 3058 3059 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3060 { 3061 return round_up(off, fc->max_pages << PAGE_SHIFT); 3062 } 3063 3064 static ssize_t 3065 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3066 { 3067 DECLARE_COMPLETION_ONSTACK(wait); 3068 ssize_t ret = 0; 3069 struct file *file = iocb->ki_filp; 3070 struct fuse_file *ff = file->private_data; 3071 loff_t pos = 0; 3072 struct inode *inode; 3073 loff_t i_size; 3074 size_t count = iov_iter_count(iter), shortened = 0; 3075 loff_t offset = iocb->ki_pos; 3076 struct fuse_io_priv *io; 3077 3078 pos = offset; 3079 inode = file->f_mapping->host; 3080 i_size = i_size_read(inode); 3081 3082 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 3083 return 0; 3084 3085 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3086 if (!io) 3087 return -ENOMEM; 3088 spin_lock_init(&io->lock); 3089 kref_init(&io->refcnt); 3090 io->reqs = 1; 3091 io->bytes = -1; 3092 io->size = 0; 3093 io->offset = offset; 3094 io->write = (iov_iter_rw(iter) == WRITE); 3095 io->err = 0; 3096 /* 3097 * By default, we want to optimize all I/Os with async request 3098 * submission to the client filesystem if supported. 3099 */ 3100 io->async = ff->fm->fc->async_dio; 3101 io->iocb = iocb; 3102 io->blocking = is_sync_kiocb(iocb); 3103 3104 /* optimization for short read */ 3105 if (io->async && !io->write && offset + count > i_size) { 3106 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 3107 shortened = count - iov_iter_count(iter); 3108 count -= shortened; 3109 } 3110 3111 /* 3112 * We cannot asynchronously extend the size of a file. 3113 * In such case the aio will behave exactly like sync io. 3114 */ 3115 if ((offset + count > i_size) && io->write) 3116 io->blocking = true; 3117 3118 if (io->async && io->blocking) { 3119 /* 3120 * Additional reference to keep io around after 3121 * calling fuse_aio_complete() 3122 */ 3123 kref_get(&io->refcnt); 3124 io->done = &wait; 3125 } 3126 3127 if (iov_iter_rw(iter) == WRITE) { 3128 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3129 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3130 } else { 3131 ret = __fuse_direct_read(io, iter, &pos); 3132 } 3133 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 3134 3135 if (io->async) { 3136 bool blocking = io->blocking; 3137 3138 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3139 3140 /* we have a non-extending, async request, so return */ 3141 if (!blocking) 3142 return -EIOCBQUEUED; 3143 3144 wait_for_completion(&wait); 3145 ret = fuse_get_res_by_io(io); 3146 } 3147 3148 kref_put(&io->refcnt, fuse_io_release); 3149 3150 if (iov_iter_rw(iter) == WRITE) { 3151 fuse_write_update_attr(inode, pos, ret); 3152 /* For extending writes we already hold exclusive lock */ 3153 if (ret < 0 && offset + count > i_size) 3154 fuse_do_truncate(file); 3155 } 3156 3157 return ret; 3158 } 3159 3160 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3161 { 3162 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 3163 3164 if (!err) 3165 fuse_sync_writes(inode); 3166 3167 return err; 3168 } 3169 3170 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3171 loff_t length) 3172 { 3173 struct fuse_file *ff = file->private_data; 3174 struct inode *inode = file_inode(file); 3175 struct fuse_inode *fi = get_fuse_inode(inode); 3176 struct fuse_mount *fm = ff->fm; 3177 FUSE_ARGS(args); 3178 struct fuse_fallocate_in inarg = { 3179 .fh = ff->fh, 3180 .offset = offset, 3181 .length = length, 3182 .mode = mode 3183 }; 3184 int err; 3185 bool block_faults = FUSE_IS_DAX(inode) && 3186 (!(mode & FALLOC_FL_KEEP_SIZE) || 3187 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))); 3188 3189 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3190 FALLOC_FL_ZERO_RANGE)) 3191 return -EOPNOTSUPP; 3192 3193 if (fm->fc->no_fallocate) 3194 return -EOPNOTSUPP; 3195 3196 inode_lock(inode); 3197 if (block_faults) { 3198 filemap_invalidate_lock(inode->i_mapping); 3199 err = fuse_dax_break_layouts(inode, 0, 0); 3200 if (err) 3201 goto out; 3202 } 3203 3204 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 3205 loff_t endbyte = offset + length - 1; 3206 3207 err = fuse_writeback_range(inode, offset, endbyte); 3208 if (err) 3209 goto out; 3210 } 3211 3212 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3213 offset + length > i_size_read(inode)) { 3214 err = inode_newsize_ok(inode, offset + length); 3215 if (err) 3216 goto out; 3217 } 3218 3219 err = file_modified(file); 3220 if (err) 3221 goto out; 3222 3223 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3224 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3225 3226 args.opcode = FUSE_FALLOCATE; 3227 args.nodeid = ff->nodeid; 3228 args.in_numargs = 1; 3229 args.in_args[0].size = sizeof(inarg); 3230 args.in_args[0].value = &inarg; 3231 err = fuse_simple_request(fm, &args); 3232 if (err == -ENOSYS) { 3233 fm->fc->no_fallocate = 1; 3234 err = -EOPNOTSUPP; 3235 } 3236 if (err) 3237 goto out; 3238 3239 /* we could have extended the file */ 3240 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3241 if (fuse_write_update_attr(inode, offset + length, length)) 3242 file_update_time(file); 3243 } 3244 3245 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 3246 truncate_pagecache_range(inode, offset, offset + length - 1); 3247 3248 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3249 3250 out: 3251 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3252 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3253 3254 if (block_faults) 3255 filemap_invalidate_unlock(inode->i_mapping); 3256 3257 inode_unlock(inode); 3258 3259 fuse_flush_time_update(inode); 3260 3261 return err; 3262 } 3263 3264 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3265 struct file *file_out, loff_t pos_out, 3266 size_t len, unsigned int flags) 3267 { 3268 struct fuse_file *ff_in = file_in->private_data; 3269 struct fuse_file *ff_out = file_out->private_data; 3270 struct inode *inode_in = file_inode(file_in); 3271 struct inode *inode_out = file_inode(file_out); 3272 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3273 struct fuse_mount *fm = ff_in->fm; 3274 struct fuse_conn *fc = fm->fc; 3275 FUSE_ARGS(args); 3276 struct fuse_copy_file_range_in inarg = { 3277 .fh_in = ff_in->fh, 3278 .off_in = pos_in, 3279 .nodeid_out = ff_out->nodeid, 3280 .fh_out = ff_out->fh, 3281 .off_out = pos_out, 3282 .len = len, 3283 .flags = flags 3284 }; 3285 struct fuse_write_out outarg; 3286 ssize_t err; 3287 /* mark unstable when write-back is not used, and file_out gets 3288 * extended */ 3289 bool is_unstable = (!fc->writeback_cache) && 3290 ((pos_out + len) > inode_out->i_size); 3291 3292 if (fc->no_copy_file_range) 3293 return -EOPNOTSUPP; 3294 3295 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3296 return -EXDEV; 3297 3298 inode_lock(inode_in); 3299 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3300 inode_unlock(inode_in); 3301 if (err) 3302 return err; 3303 3304 inode_lock(inode_out); 3305 3306 err = file_modified(file_out); 3307 if (err) 3308 goto out; 3309 3310 /* 3311 * Write out dirty pages in the destination file before sending the COPY 3312 * request to userspace. After the request is completed, truncate off 3313 * pages (including partial ones) from the cache that have been copied, 3314 * since these contain stale data at that point. 3315 * 3316 * This should be mostly correct, but if the COPY writes to partial 3317 * pages (at the start or end) and the parts not covered by the COPY are 3318 * written through a memory map after calling fuse_writeback_range(), 3319 * then these partial page modifications will be lost on truncation. 3320 * 3321 * It is unlikely that someone would rely on such mixed style 3322 * modifications. Yet this does give less guarantees than if the 3323 * copying was performed with write(2). 3324 * 3325 * To fix this a mapping->invalidate_lock could be used to prevent new 3326 * faults while the copy is ongoing. 3327 */ 3328 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3329 if (err) 3330 goto out; 3331 3332 if (is_unstable) 3333 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3334 3335 args.opcode = FUSE_COPY_FILE_RANGE; 3336 args.nodeid = ff_in->nodeid; 3337 args.in_numargs = 1; 3338 args.in_args[0].size = sizeof(inarg); 3339 args.in_args[0].value = &inarg; 3340 args.out_numargs = 1; 3341 args.out_args[0].size = sizeof(outarg); 3342 args.out_args[0].value = &outarg; 3343 err = fuse_simple_request(fm, &args); 3344 if (err == -ENOSYS) { 3345 fc->no_copy_file_range = 1; 3346 err = -EOPNOTSUPP; 3347 } 3348 if (err) 3349 goto out; 3350 3351 truncate_inode_pages_range(inode_out->i_mapping, 3352 ALIGN_DOWN(pos_out, PAGE_SIZE), 3353 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3354 3355 file_update_time(file_out); 3356 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3357 3358 err = outarg.size; 3359 out: 3360 if (is_unstable) 3361 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3362 3363 inode_unlock(inode_out); 3364 file_accessed(file_in); 3365 3366 fuse_flush_time_update(inode_out); 3367 3368 return err; 3369 } 3370 3371 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3372 struct file *dst_file, loff_t dst_off, 3373 size_t len, unsigned int flags) 3374 { 3375 ssize_t ret; 3376 3377 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3378 len, flags); 3379 3380 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3381 ret = splice_copy_file_range(src_file, src_off, dst_file, 3382 dst_off, len); 3383 return ret; 3384 } 3385 3386 static const struct file_operations fuse_file_operations = { 3387 .llseek = fuse_file_llseek, 3388 .read_iter = fuse_file_read_iter, 3389 .write_iter = fuse_file_write_iter, 3390 .mmap = fuse_file_mmap, 3391 .open = fuse_open, 3392 .flush = fuse_flush, 3393 .release = fuse_release, 3394 .fsync = fuse_fsync, 3395 .lock = fuse_file_lock, 3396 .get_unmapped_area = thp_get_unmapped_area, 3397 .flock = fuse_file_flock, 3398 .splice_read = fuse_splice_read, 3399 .splice_write = fuse_splice_write, 3400 .unlocked_ioctl = fuse_file_ioctl, 3401 .compat_ioctl = fuse_file_compat_ioctl, 3402 .poll = fuse_file_poll, 3403 .fallocate = fuse_file_fallocate, 3404 .copy_file_range = fuse_copy_file_range, 3405 }; 3406 3407 static const struct address_space_operations fuse_file_aops = { 3408 .read_folio = fuse_read_folio, 3409 .readahead = fuse_readahead, 3410 .writepages = fuse_writepages, 3411 .launder_folio = fuse_launder_folio, 3412 .dirty_folio = filemap_dirty_folio, 3413 .migrate_folio = filemap_migrate_folio, 3414 .bmap = fuse_bmap, 3415 .direct_IO = fuse_direct_IO, 3416 .write_begin = fuse_write_begin, 3417 .write_end = fuse_write_end, 3418 }; 3419 3420 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3421 { 3422 struct fuse_inode *fi = get_fuse_inode(inode); 3423 3424 inode->i_fop = &fuse_file_operations; 3425 inode->i_data.a_ops = &fuse_file_aops; 3426 3427 INIT_LIST_HEAD(&fi->write_files); 3428 INIT_LIST_HEAD(&fi->queued_writes); 3429 fi->writectr = 0; 3430 fi->iocachectr = 0; 3431 init_waitqueue_head(&fi->page_waitq); 3432 init_waitqueue_head(&fi->direct_io_waitq); 3433 fi->writepages = RB_ROOT; 3434 3435 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3436 fuse_dax_inode_init(inode, flags); 3437 } 3438