1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 #include <linux/filelock.h> 22 #include <linux/splice.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 26 unsigned int open_flags, int opcode, 27 struct fuse_open_out *outargp) 28 { 29 struct fuse_open_in inarg; 30 FUSE_ARGS(args); 31 32 memset(&inarg, 0, sizeof(inarg)); 33 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 34 if (!fm->fc->atomic_o_trunc) 35 inarg.flags &= ~O_TRUNC; 36 37 if (fm->fc->handle_killpriv_v2 && 38 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 39 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 40 } 41 42 args.opcode = opcode; 43 args.nodeid = nodeid; 44 args.in_numargs = 1; 45 args.in_args[0].size = sizeof(inarg); 46 args.in_args[0].value = &inarg; 47 args.out_numargs = 1; 48 args.out_args[0].size = sizeof(*outargp); 49 args.out_args[0].value = outargp; 50 51 return fuse_simple_request(fm, &args); 52 } 53 54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release) 55 { 56 struct fuse_file *ff; 57 58 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 59 if (unlikely(!ff)) 60 return NULL; 61 62 ff->fm = fm; 63 if (release) { 64 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT); 65 if (!ff->args) { 66 kfree(ff); 67 return NULL; 68 } 69 } 70 71 INIT_LIST_HEAD(&ff->write_entry); 72 refcount_set(&ff->count, 1); 73 RB_CLEAR_NODE(&ff->polled_node); 74 init_waitqueue_head(&ff->poll_wait); 75 76 ff->kh = atomic64_inc_return(&fm->fc->khctr); 77 78 return ff; 79 } 80 81 void fuse_file_free(struct fuse_file *ff) 82 { 83 kfree(ff->args); 84 kfree(ff); 85 } 86 87 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 88 { 89 refcount_inc(&ff->count); 90 return ff; 91 } 92 93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 94 int error) 95 { 96 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 97 98 iput(ra->inode); 99 kfree(ra); 100 } 101 102 static void fuse_file_put(struct fuse_file *ff, bool sync) 103 { 104 if (refcount_dec_and_test(&ff->count)) { 105 struct fuse_release_args *ra = &ff->args->release_args; 106 struct fuse_args *args = (ra ? &ra->args : NULL); 107 108 if (ra && ra->inode) 109 fuse_file_io_release(ff, ra->inode); 110 111 if (!args) { 112 /* Do nothing when server does not implement 'open' */ 113 } else if (sync) { 114 fuse_simple_request(ff->fm, args); 115 fuse_release_end(ff->fm, args, 0); 116 } else { 117 args->end = fuse_release_end; 118 if (fuse_simple_background(ff->fm, args, 119 GFP_KERNEL | __GFP_NOFAIL)) 120 fuse_release_end(ff->fm, args, -ENOTCONN); 121 } 122 kfree(ff); 123 } 124 } 125 126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 127 unsigned int open_flags, bool isdir) 128 { 129 struct fuse_conn *fc = fm->fc; 130 struct fuse_file *ff; 131 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 132 bool open = isdir ? !fc->no_opendir : !fc->no_open; 133 134 ff = fuse_file_alloc(fm, open); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (open) { 142 /* Store outarg for fuse_finish_open() */ 143 struct fuse_open_out *outargp = &ff->args->open_outarg; 144 int err; 145 146 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp); 147 if (!err) { 148 ff->fh = outargp->fh; 149 ff->open_flags = outargp->open_flags; 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 /* No release needed */ 155 kfree(ff->args); 156 ff->args = NULL; 157 if (isdir) 158 fc->no_opendir = 1; 159 else 160 fc->no_open = 1; 161 } 162 } 163 164 if (isdir) 165 ff->open_flags &= ~FOPEN_DIRECT_IO; 166 167 ff->nodeid = nodeid; 168 169 return ff; 170 } 171 172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 173 bool isdir) 174 { 175 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 176 177 if (!IS_ERR(ff)) 178 file->private_data = ff; 179 180 return PTR_ERR_OR_ZERO(ff); 181 } 182 EXPORT_SYMBOL_GPL(fuse_do_open); 183 184 static void fuse_link_write_file(struct file *file) 185 { 186 struct inode *inode = file_inode(file); 187 struct fuse_inode *fi = get_fuse_inode(inode); 188 struct fuse_file *ff = file->private_data; 189 /* 190 * file may be written through mmap, so chain it onto the 191 * inodes's write_file list 192 */ 193 spin_lock(&fi->lock); 194 if (list_empty(&ff->write_entry)) 195 list_add(&ff->write_entry, &fi->write_files); 196 spin_unlock(&fi->lock); 197 } 198 199 int fuse_finish_open(struct inode *inode, struct file *file) 200 { 201 struct fuse_file *ff = file->private_data; 202 struct fuse_conn *fc = get_fuse_conn(inode); 203 int err; 204 205 err = fuse_file_io_open(file, inode); 206 if (err) 207 return err; 208 209 if (ff->open_flags & FOPEN_STREAM) 210 stream_open(inode, file); 211 else if (ff->open_flags & FOPEN_NONSEEKABLE) 212 nonseekable_open(inode, file); 213 214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 215 fuse_link_write_file(file); 216 217 return 0; 218 } 219 220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file) 221 { 222 struct fuse_conn *fc = get_fuse_conn(inode); 223 struct fuse_inode *fi = get_fuse_inode(inode); 224 225 spin_lock(&fi->lock); 226 fi->attr_version = atomic64_inc_return(&fc->attr_version); 227 i_size_write(inode, 0); 228 spin_unlock(&fi->lock); 229 file_update_time(file); 230 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 231 } 232 233 static int fuse_open(struct inode *inode, struct file *file) 234 { 235 struct fuse_mount *fm = get_fuse_mount(inode); 236 struct fuse_inode *fi = get_fuse_inode(inode); 237 struct fuse_conn *fc = fm->fc; 238 struct fuse_file *ff; 239 int err; 240 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc; 241 bool is_wb_truncate = is_truncate && fc->writeback_cache; 242 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode); 243 244 if (fuse_is_bad(inode)) 245 return -EIO; 246 247 err = generic_file_open(inode, file); 248 if (err) 249 return err; 250 251 if (is_wb_truncate || dax_truncate) 252 inode_lock(inode); 253 254 if (dax_truncate) { 255 filemap_invalidate_lock(inode->i_mapping); 256 err = fuse_dax_break_layouts(inode, 0, 0); 257 if (err) 258 goto out_inode_unlock; 259 } 260 261 if (is_wb_truncate || dax_truncate) 262 fuse_set_nowrite(inode); 263 264 err = fuse_do_open(fm, get_node_id(inode), file, false); 265 if (!err) { 266 ff = file->private_data; 267 err = fuse_finish_open(inode, file); 268 if (err) 269 fuse_sync_release(fi, ff, file->f_flags); 270 else if (is_truncate) 271 fuse_truncate_update_attr(inode, file); 272 } 273 274 if (is_wb_truncate || dax_truncate) 275 fuse_release_nowrite(inode); 276 if (!err) { 277 if (is_truncate) 278 truncate_pagecache(inode, 0); 279 else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 280 invalidate_inode_pages2(inode->i_mapping); 281 } 282 if (dax_truncate) 283 filemap_invalidate_unlock(inode->i_mapping); 284 out_inode_unlock: 285 if (is_wb_truncate || dax_truncate) 286 inode_unlock(inode); 287 288 return err; 289 } 290 291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 292 unsigned int flags, int opcode, bool sync) 293 { 294 struct fuse_conn *fc = ff->fm->fc; 295 struct fuse_release_args *ra = &ff->args->release_args; 296 297 if (fuse_file_passthrough(ff)) 298 fuse_passthrough_release(ff, fuse_inode_backing(fi)); 299 300 /* Inode is NULL on error path of fuse_create_open() */ 301 if (likely(fi)) { 302 spin_lock(&fi->lock); 303 list_del(&ff->write_entry); 304 spin_unlock(&fi->lock); 305 } 306 spin_lock(&fc->lock); 307 if (!RB_EMPTY_NODE(&ff->polled_node)) 308 rb_erase(&ff->polled_node, &fc->polled_files); 309 spin_unlock(&fc->lock); 310 311 wake_up_interruptible_all(&ff->poll_wait); 312 313 if (!ra) 314 return; 315 316 /* ff->args was used for open outarg */ 317 memset(ff->args, 0, sizeof(*ff->args)); 318 ra->inarg.fh = ff->fh; 319 ra->inarg.flags = flags; 320 ra->args.in_numargs = 1; 321 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 322 ra->args.in_args[0].value = &ra->inarg; 323 ra->args.opcode = opcode; 324 ra->args.nodeid = ff->nodeid; 325 ra->args.force = true; 326 ra->args.nocreds = true; 327 328 /* 329 * Hold inode until release is finished. 330 * From fuse_sync_release() the refcount is 1 and everything's 331 * synchronous, so we are fine with not doing igrab() here. 332 */ 333 ra->inode = sync ? NULL : igrab(&fi->inode); 334 } 335 336 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 337 unsigned int open_flags, fl_owner_t id, bool isdir) 338 { 339 struct fuse_inode *fi = get_fuse_inode(inode); 340 struct fuse_release_args *ra = &ff->args->release_args; 341 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 342 343 fuse_prepare_release(fi, ff, open_flags, opcode, false); 344 345 if (ra && ff->flock) { 346 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 347 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 348 } 349 350 /* 351 * Normally this will send the RELEASE request, however if 352 * some asynchronous READ or WRITE requests are outstanding, 353 * the sending will be delayed. 354 * 355 * Make the release synchronous if this is a fuseblk mount, 356 * synchronous RELEASE is allowed (and desirable) in this case 357 * because the server can be trusted not to screw up. 358 */ 359 fuse_file_put(ff, ff->fm->fc->destroy); 360 } 361 362 void fuse_release_common(struct file *file, bool isdir) 363 { 364 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 365 (fl_owner_t) file, isdir); 366 } 367 368 static int fuse_release(struct inode *inode, struct file *file) 369 { 370 struct fuse_conn *fc = get_fuse_conn(inode); 371 372 /* 373 * Dirty pages might remain despite write_inode_now() call from 374 * fuse_flush() due to writes racing with the close. 375 */ 376 if (fc->writeback_cache) 377 write_inode_now(inode, 1); 378 379 fuse_release_common(file, false); 380 381 /* return value is ignored by VFS */ 382 return 0; 383 } 384 385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 386 unsigned int flags) 387 { 388 WARN_ON(refcount_read(&ff->count) > 1); 389 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true); 390 fuse_file_put(ff, true); 391 } 392 EXPORT_SYMBOL_GPL(fuse_sync_release); 393 394 /* 395 * Scramble the ID space with XTEA, so that the value of the files_struct 396 * pointer is not exposed to userspace. 397 */ 398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 399 { 400 u32 *k = fc->scramble_key; 401 u64 v = (unsigned long) id; 402 u32 v0 = v; 403 u32 v1 = v >> 32; 404 u32 sum = 0; 405 int i; 406 407 for (i = 0; i < 32; i++) { 408 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 409 sum += 0x9E3779B9; 410 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 411 } 412 413 return (u64) v0 + ((u64) v1 << 32); 414 } 415 416 struct fuse_writepage_args { 417 struct fuse_io_args ia; 418 struct rb_node writepages_entry; 419 struct list_head queue_entry; 420 struct fuse_writepage_args *next; 421 struct inode *inode; 422 struct fuse_sync_bucket *bucket; 423 }; 424 425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 426 pgoff_t idx_from, pgoff_t idx_to) 427 { 428 struct rb_node *n; 429 430 n = fi->writepages.rb_node; 431 432 while (n) { 433 struct fuse_writepage_args *wpa; 434 pgoff_t curr_index; 435 436 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 437 WARN_ON(get_fuse_inode(wpa->inode) != fi); 438 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 439 if (idx_from >= curr_index + wpa->ia.ap.num_folios) 440 n = n->rb_right; 441 else if (idx_to < curr_index) 442 n = n->rb_left; 443 else 444 return wpa; 445 } 446 return NULL; 447 } 448 449 /* 450 * Check if any page in a range is under writeback 451 */ 452 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 453 pgoff_t idx_to) 454 { 455 struct fuse_inode *fi = get_fuse_inode(inode); 456 bool found; 457 458 if (RB_EMPTY_ROOT(&fi->writepages)) 459 return false; 460 461 spin_lock(&fi->lock); 462 found = fuse_find_writeback(fi, idx_from, idx_to); 463 spin_unlock(&fi->lock); 464 465 return found; 466 } 467 468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 469 { 470 return fuse_range_is_writeback(inode, index, index); 471 } 472 473 /* 474 * Wait for page writeback to be completed. 475 * 476 * Since fuse doesn't rely on the VM writeback tracking, this has to 477 * use some other means. 478 */ 479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 480 { 481 struct fuse_inode *fi = get_fuse_inode(inode); 482 483 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 484 } 485 486 static inline bool fuse_folio_is_writeback(struct inode *inode, 487 struct folio *folio) 488 { 489 pgoff_t last = folio_next_index(folio) - 1; 490 return fuse_range_is_writeback(inode, folio_index(folio), last); 491 } 492 493 static void fuse_wait_on_folio_writeback(struct inode *inode, 494 struct folio *folio) 495 { 496 struct fuse_inode *fi = get_fuse_inode(inode); 497 498 wait_event(fi->page_waitq, !fuse_folio_is_writeback(inode, folio)); 499 } 500 501 /* 502 * Wait for all pending writepages on the inode to finish. 503 * 504 * This is currently done by blocking further writes with FUSE_NOWRITE 505 * and waiting for all sent writes to complete. 506 * 507 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 508 * could conflict with truncation. 509 */ 510 static void fuse_sync_writes(struct inode *inode) 511 { 512 fuse_set_nowrite(inode); 513 fuse_release_nowrite(inode); 514 } 515 516 static int fuse_flush(struct file *file, fl_owner_t id) 517 { 518 struct inode *inode = file_inode(file); 519 struct fuse_mount *fm = get_fuse_mount(inode); 520 struct fuse_file *ff = file->private_data; 521 struct fuse_flush_in inarg; 522 FUSE_ARGS(args); 523 int err; 524 525 if (fuse_is_bad(inode)) 526 return -EIO; 527 528 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 529 return 0; 530 531 err = write_inode_now(inode, 1); 532 if (err) 533 return err; 534 535 inode_lock(inode); 536 fuse_sync_writes(inode); 537 inode_unlock(inode); 538 539 err = filemap_check_errors(file->f_mapping); 540 if (err) 541 return err; 542 543 err = 0; 544 if (fm->fc->no_flush) 545 goto inval_attr_out; 546 547 memset(&inarg, 0, sizeof(inarg)); 548 inarg.fh = ff->fh; 549 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 550 args.opcode = FUSE_FLUSH; 551 args.nodeid = get_node_id(inode); 552 args.in_numargs = 1; 553 args.in_args[0].size = sizeof(inarg); 554 args.in_args[0].value = &inarg; 555 args.force = true; 556 557 err = fuse_simple_request(fm, &args); 558 if (err == -ENOSYS) { 559 fm->fc->no_flush = 1; 560 err = 0; 561 } 562 563 inval_attr_out: 564 /* 565 * In memory i_blocks is not maintained by fuse, if writeback cache is 566 * enabled, i_blocks from cached attr may not be accurate. 567 */ 568 if (!err && fm->fc->writeback_cache) 569 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 570 return err; 571 } 572 573 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 574 int datasync, int opcode) 575 { 576 struct inode *inode = file->f_mapping->host; 577 struct fuse_mount *fm = get_fuse_mount(inode); 578 struct fuse_file *ff = file->private_data; 579 FUSE_ARGS(args); 580 struct fuse_fsync_in inarg; 581 582 memset(&inarg, 0, sizeof(inarg)); 583 inarg.fh = ff->fh; 584 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 585 args.opcode = opcode; 586 args.nodeid = get_node_id(inode); 587 args.in_numargs = 1; 588 args.in_args[0].size = sizeof(inarg); 589 args.in_args[0].value = &inarg; 590 return fuse_simple_request(fm, &args); 591 } 592 593 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 594 int datasync) 595 { 596 struct inode *inode = file->f_mapping->host; 597 struct fuse_conn *fc = get_fuse_conn(inode); 598 int err; 599 600 if (fuse_is_bad(inode)) 601 return -EIO; 602 603 inode_lock(inode); 604 605 /* 606 * Start writeback against all dirty pages of the inode, then 607 * wait for all outstanding writes, before sending the FSYNC 608 * request. 609 */ 610 err = file_write_and_wait_range(file, start, end); 611 if (err) 612 goto out; 613 614 fuse_sync_writes(inode); 615 616 /* 617 * Due to implementation of fuse writeback 618 * file_write_and_wait_range() does not catch errors. 619 * We have to do this directly after fuse_sync_writes() 620 */ 621 err = file_check_and_advance_wb_err(file); 622 if (err) 623 goto out; 624 625 err = sync_inode_metadata(inode, 1); 626 if (err) 627 goto out; 628 629 if (fc->no_fsync) 630 goto out; 631 632 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 633 if (err == -ENOSYS) { 634 fc->no_fsync = 1; 635 err = 0; 636 } 637 out: 638 inode_unlock(inode); 639 640 return err; 641 } 642 643 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 644 size_t count, int opcode) 645 { 646 struct fuse_file *ff = file->private_data; 647 struct fuse_args *args = &ia->ap.args; 648 649 ia->read.in.fh = ff->fh; 650 ia->read.in.offset = pos; 651 ia->read.in.size = count; 652 ia->read.in.flags = file->f_flags; 653 args->opcode = opcode; 654 args->nodeid = ff->nodeid; 655 args->in_numargs = 1; 656 args->in_args[0].size = sizeof(ia->read.in); 657 args->in_args[0].value = &ia->read.in; 658 args->out_argvar = true; 659 args->out_numargs = 1; 660 args->out_args[0].size = count; 661 } 662 663 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres, 664 bool should_dirty) 665 { 666 unsigned int i; 667 668 for (i = 0; i < ap->num_folios; i++) { 669 if (should_dirty) 670 folio_mark_dirty_lock(ap->folios[i]); 671 if (ap->args.is_pinned) 672 unpin_folio(ap->folios[i]); 673 } 674 675 if (nres > 0 && ap->args.invalidate_vmap) 676 invalidate_kernel_vmap_range(ap->args.vmap_base, nres); 677 } 678 679 static void fuse_io_release(struct kref *kref) 680 { 681 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 682 } 683 684 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 685 { 686 if (io->err) 687 return io->err; 688 689 if (io->bytes >= 0 && io->write) 690 return -EIO; 691 692 return io->bytes < 0 ? io->size : io->bytes; 693 } 694 695 /* 696 * In case of short read, the caller sets 'pos' to the position of 697 * actual end of fuse request in IO request. Otherwise, if bytes_requested 698 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 699 * 700 * An example: 701 * User requested DIO read of 64K. It was split into two 32K fuse requests, 702 * both submitted asynchronously. The first of them was ACKed by userspace as 703 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 704 * second request was ACKed as short, e.g. only 1K was read, resulting in 705 * pos == 33K. 706 * 707 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 708 * will be equal to the length of the longest contiguous fragment of 709 * transferred data starting from the beginning of IO request. 710 */ 711 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 712 { 713 int left; 714 715 spin_lock(&io->lock); 716 if (err) 717 io->err = io->err ? : err; 718 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 719 io->bytes = pos; 720 721 left = --io->reqs; 722 if (!left && io->blocking) 723 complete(io->done); 724 spin_unlock(&io->lock); 725 726 if (!left && !io->blocking) { 727 ssize_t res = fuse_get_res_by_io(io); 728 729 if (res >= 0) { 730 struct inode *inode = file_inode(io->iocb->ki_filp); 731 struct fuse_conn *fc = get_fuse_conn(inode); 732 struct fuse_inode *fi = get_fuse_inode(inode); 733 734 spin_lock(&fi->lock); 735 fi->attr_version = atomic64_inc_return(&fc->attr_version); 736 spin_unlock(&fi->lock); 737 } 738 739 io->iocb->ki_complete(io->iocb, res); 740 } 741 742 kref_put(&io->refcnt, fuse_io_release); 743 } 744 745 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 746 unsigned int nfolios) 747 { 748 struct fuse_io_args *ia; 749 750 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 751 if (ia) { 752 ia->io = io; 753 ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL, 754 &ia->ap.descs); 755 if (!ia->ap.folios) { 756 kfree(ia); 757 ia = NULL; 758 } 759 } 760 return ia; 761 } 762 763 static void fuse_io_free(struct fuse_io_args *ia) 764 { 765 kfree(ia->ap.folios); 766 kfree(ia); 767 } 768 769 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 770 int err) 771 { 772 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 773 struct fuse_io_priv *io = ia->io; 774 ssize_t pos = -1; 775 size_t nres; 776 777 if (err) { 778 /* Nothing */ 779 } else if (io->write) { 780 if (ia->write.out.size > ia->write.in.size) { 781 err = -EIO; 782 } else { 783 nres = ia->write.out.size; 784 if (ia->write.in.size != ia->write.out.size) 785 pos = ia->write.in.offset - io->offset + 786 ia->write.out.size; 787 } 788 } else { 789 u32 outsize = args->out_args[0].size; 790 791 nres = outsize; 792 if (ia->read.in.size != outsize) 793 pos = ia->read.in.offset - io->offset + outsize; 794 } 795 796 fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty); 797 798 fuse_aio_complete(io, err, pos); 799 fuse_io_free(ia); 800 } 801 802 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 803 struct fuse_io_args *ia, size_t num_bytes) 804 { 805 ssize_t err; 806 struct fuse_io_priv *io = ia->io; 807 808 spin_lock(&io->lock); 809 kref_get(&io->refcnt); 810 io->size += num_bytes; 811 io->reqs++; 812 spin_unlock(&io->lock); 813 814 ia->ap.args.end = fuse_aio_complete_req; 815 ia->ap.args.may_block = io->should_dirty; 816 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 817 if (err) 818 fuse_aio_complete_req(fm, &ia->ap.args, err); 819 820 return num_bytes; 821 } 822 823 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 824 fl_owner_t owner) 825 { 826 struct file *file = ia->io->iocb->ki_filp; 827 struct fuse_file *ff = file->private_data; 828 struct fuse_mount *fm = ff->fm; 829 830 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 831 if (owner != NULL) { 832 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 833 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 834 } 835 836 if (ia->io->async) 837 return fuse_async_req_send(fm, ia, count); 838 839 return fuse_simple_request(fm, &ia->ap.args); 840 } 841 842 static void fuse_read_update_size(struct inode *inode, loff_t size, 843 u64 attr_ver) 844 { 845 struct fuse_conn *fc = get_fuse_conn(inode); 846 struct fuse_inode *fi = get_fuse_inode(inode); 847 848 spin_lock(&fi->lock); 849 if (attr_ver >= fi->attr_version && size < inode->i_size && 850 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 851 fi->attr_version = atomic64_inc_return(&fc->attr_version); 852 i_size_write(inode, size); 853 } 854 spin_unlock(&fi->lock); 855 } 856 857 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 858 struct fuse_args_pages *ap) 859 { 860 struct fuse_conn *fc = get_fuse_conn(inode); 861 862 /* 863 * If writeback_cache is enabled, a short read means there's a hole in 864 * the file. Some data after the hole is in page cache, but has not 865 * reached the client fs yet. So the hole is not present there. 866 */ 867 if (!fc->writeback_cache) { 868 loff_t pos = folio_pos(ap->folios[0]) + num_read; 869 fuse_read_update_size(inode, pos, attr_ver); 870 } 871 } 872 873 static int fuse_do_readfolio(struct file *file, struct folio *folio) 874 { 875 struct inode *inode = folio->mapping->host; 876 struct fuse_mount *fm = get_fuse_mount(inode); 877 loff_t pos = folio_pos(folio); 878 struct fuse_folio_desc desc = { .length = PAGE_SIZE }; 879 struct fuse_io_args ia = { 880 .ap.args.page_zeroing = true, 881 .ap.args.out_pages = true, 882 .ap.num_folios = 1, 883 .ap.folios = &folio, 884 .ap.descs = &desc, 885 }; 886 ssize_t res; 887 u64 attr_ver; 888 889 /* 890 * With the temporary pages that are used to complete writeback, we can 891 * have writeback that extends beyond the lifetime of the folio. So 892 * make sure we read a properly synced folio. 893 */ 894 fuse_wait_on_folio_writeback(inode, folio); 895 896 attr_ver = fuse_get_attr_version(fm->fc); 897 898 /* Don't overflow end offset */ 899 if (pos + (desc.length - 1) == LLONG_MAX) 900 desc.length--; 901 902 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 903 res = fuse_simple_request(fm, &ia.ap.args); 904 if (res < 0) 905 return res; 906 /* 907 * Short read means EOF. If file size is larger, truncate it 908 */ 909 if (res < desc.length) 910 fuse_short_read(inode, attr_ver, res, &ia.ap); 911 912 folio_mark_uptodate(folio); 913 914 return 0; 915 } 916 917 static int fuse_read_folio(struct file *file, struct folio *folio) 918 { 919 struct inode *inode = folio->mapping->host; 920 int err; 921 922 err = -EIO; 923 if (fuse_is_bad(inode)) 924 goto out; 925 926 err = fuse_do_readfolio(file, folio); 927 fuse_invalidate_atime(inode); 928 out: 929 folio_unlock(folio); 930 return err; 931 } 932 933 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 934 int err) 935 { 936 int i; 937 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 938 struct fuse_args_pages *ap = &ia->ap; 939 size_t count = ia->read.in.size; 940 size_t num_read = args->out_args[0].size; 941 struct address_space *mapping = NULL; 942 943 for (i = 0; mapping == NULL && i < ap->num_folios; i++) 944 mapping = ap->folios[i]->mapping; 945 946 if (mapping) { 947 struct inode *inode = mapping->host; 948 949 /* 950 * Short read means EOF. If file size is larger, truncate it 951 */ 952 if (!err && num_read < count) 953 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 954 955 fuse_invalidate_atime(inode); 956 } 957 958 for (i = 0; i < ap->num_folios; i++) { 959 folio_end_read(ap->folios[i], !err); 960 folio_put(ap->folios[i]); 961 } 962 if (ia->ff) 963 fuse_file_put(ia->ff, false); 964 965 fuse_io_free(ia); 966 } 967 968 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 969 { 970 struct fuse_file *ff = file->private_data; 971 struct fuse_mount *fm = ff->fm; 972 struct fuse_args_pages *ap = &ia->ap; 973 loff_t pos = folio_pos(ap->folios[0]); 974 /* Currently, all folios in FUSE are one page */ 975 size_t count = ap->num_folios << PAGE_SHIFT; 976 ssize_t res; 977 int err; 978 979 ap->args.out_pages = true; 980 ap->args.page_zeroing = true; 981 ap->args.page_replace = true; 982 983 /* Don't overflow end offset */ 984 if (pos + (count - 1) == LLONG_MAX) { 985 count--; 986 ap->descs[ap->num_folios - 1].length--; 987 } 988 WARN_ON((loff_t) (pos + count) < 0); 989 990 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 991 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 992 if (fm->fc->async_read) { 993 ia->ff = fuse_file_get(ff); 994 ap->args.end = fuse_readpages_end; 995 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 996 if (!err) 997 return; 998 } else { 999 res = fuse_simple_request(fm, &ap->args); 1000 err = res < 0 ? res : 0; 1001 } 1002 fuse_readpages_end(fm, &ap->args, err); 1003 } 1004 1005 static void fuse_readahead(struct readahead_control *rac) 1006 { 1007 struct inode *inode = rac->mapping->host; 1008 struct fuse_inode *fi = get_fuse_inode(inode); 1009 struct fuse_conn *fc = get_fuse_conn(inode); 1010 unsigned int max_pages, nr_pages; 1011 pgoff_t first = readahead_index(rac); 1012 pgoff_t last = first + readahead_count(rac) - 1; 1013 1014 if (fuse_is_bad(inode)) 1015 return; 1016 1017 wait_event(fi->page_waitq, !fuse_range_is_writeback(inode, first, last)); 1018 1019 max_pages = min_t(unsigned int, fc->max_pages, 1020 fc->max_read / PAGE_SIZE); 1021 1022 /* 1023 * This is only accurate the first time through, since readahead_folio() 1024 * doesn't update readahead_count() from the previous folio until the 1025 * next call. Grab nr_pages here so we know how many pages we're going 1026 * to have to process. This means that we will exit here with 1027 * readahead_count() == folio_nr_pages(last_folio), but we will have 1028 * consumed all of the folios, and read_pages() will call 1029 * readahead_folio() again which will clean up the rac. 1030 */ 1031 nr_pages = readahead_count(rac); 1032 1033 while (nr_pages) { 1034 struct fuse_io_args *ia; 1035 struct fuse_args_pages *ap; 1036 struct folio *folio; 1037 unsigned cur_pages = min(max_pages, nr_pages); 1038 1039 if (fc->num_background >= fc->congestion_threshold && 1040 rac->ra->async_size >= readahead_count(rac)) 1041 /* 1042 * Congested and only async pages left, so skip the 1043 * rest. 1044 */ 1045 break; 1046 1047 ia = fuse_io_alloc(NULL, cur_pages); 1048 if (!ia) 1049 return; 1050 ap = &ia->ap; 1051 1052 while (ap->num_folios < cur_pages) { 1053 /* 1054 * This returns a folio with a ref held on it. 1055 * The ref needs to be held until the request is 1056 * completed, since the splice case (see 1057 * fuse_try_move_page()) drops the ref after it's 1058 * replaced in the page cache. 1059 */ 1060 folio = __readahead_folio(rac); 1061 ap->folios[ap->num_folios] = folio; 1062 ap->descs[ap->num_folios].length = folio_size(folio); 1063 ap->num_folios++; 1064 } 1065 fuse_send_readpages(ia, rac->file); 1066 nr_pages -= cur_pages; 1067 } 1068 } 1069 1070 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 1071 { 1072 struct inode *inode = iocb->ki_filp->f_mapping->host; 1073 struct fuse_conn *fc = get_fuse_conn(inode); 1074 1075 /* 1076 * In auto invalidate mode, always update attributes on read. 1077 * Otherwise, only update if we attempt to read past EOF (to ensure 1078 * i_size is up to date). 1079 */ 1080 if (fc->auto_inval_data || 1081 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1082 int err; 1083 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1084 if (err) 1085 return err; 1086 } 1087 1088 return generic_file_read_iter(iocb, to); 1089 } 1090 1091 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1092 loff_t pos, size_t count) 1093 { 1094 struct fuse_args *args = &ia->ap.args; 1095 1096 ia->write.in.fh = ff->fh; 1097 ia->write.in.offset = pos; 1098 ia->write.in.size = count; 1099 args->opcode = FUSE_WRITE; 1100 args->nodeid = ff->nodeid; 1101 args->in_numargs = 2; 1102 if (ff->fm->fc->minor < 9) 1103 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1104 else 1105 args->in_args[0].size = sizeof(ia->write.in); 1106 args->in_args[0].value = &ia->write.in; 1107 args->in_args[1].size = count; 1108 args->out_numargs = 1; 1109 args->out_args[0].size = sizeof(ia->write.out); 1110 args->out_args[0].value = &ia->write.out; 1111 } 1112 1113 static unsigned int fuse_write_flags(struct kiocb *iocb) 1114 { 1115 unsigned int flags = iocb->ki_filp->f_flags; 1116 1117 if (iocb_is_dsync(iocb)) 1118 flags |= O_DSYNC; 1119 if (iocb->ki_flags & IOCB_SYNC) 1120 flags |= O_SYNC; 1121 1122 return flags; 1123 } 1124 1125 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1126 size_t count, fl_owner_t owner) 1127 { 1128 struct kiocb *iocb = ia->io->iocb; 1129 struct file *file = iocb->ki_filp; 1130 struct fuse_file *ff = file->private_data; 1131 struct fuse_mount *fm = ff->fm; 1132 struct fuse_write_in *inarg = &ia->write.in; 1133 ssize_t err; 1134 1135 fuse_write_args_fill(ia, ff, pos, count); 1136 inarg->flags = fuse_write_flags(iocb); 1137 if (owner != NULL) { 1138 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1139 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1140 } 1141 1142 if (ia->io->async) 1143 return fuse_async_req_send(fm, ia, count); 1144 1145 err = fuse_simple_request(fm, &ia->ap.args); 1146 if (!err && ia->write.out.size > count) 1147 err = -EIO; 1148 1149 return err ?: ia->write.out.size; 1150 } 1151 1152 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1153 { 1154 struct fuse_conn *fc = get_fuse_conn(inode); 1155 struct fuse_inode *fi = get_fuse_inode(inode); 1156 bool ret = false; 1157 1158 spin_lock(&fi->lock); 1159 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1160 if (written > 0 && pos > inode->i_size) { 1161 i_size_write(inode, pos); 1162 ret = true; 1163 } 1164 spin_unlock(&fi->lock); 1165 1166 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1167 1168 return ret; 1169 } 1170 1171 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1172 struct kiocb *iocb, struct inode *inode, 1173 loff_t pos, size_t count) 1174 { 1175 struct fuse_args_pages *ap = &ia->ap; 1176 struct file *file = iocb->ki_filp; 1177 struct fuse_file *ff = file->private_data; 1178 struct fuse_mount *fm = ff->fm; 1179 unsigned int offset, i; 1180 bool short_write; 1181 int err; 1182 1183 for (i = 0; i < ap->num_folios; i++) 1184 fuse_wait_on_folio_writeback(inode, ap->folios[i]); 1185 1186 fuse_write_args_fill(ia, ff, pos, count); 1187 ia->write.in.flags = fuse_write_flags(iocb); 1188 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1189 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1190 1191 err = fuse_simple_request(fm, &ap->args); 1192 if (!err && ia->write.out.size > count) 1193 err = -EIO; 1194 1195 short_write = ia->write.out.size < count; 1196 offset = ap->descs[0].offset; 1197 count = ia->write.out.size; 1198 for (i = 0; i < ap->num_folios; i++) { 1199 struct folio *folio = ap->folios[i]; 1200 1201 if (err) { 1202 folio_clear_uptodate(folio); 1203 } else { 1204 if (count >= folio_size(folio) - offset) 1205 count -= folio_size(folio) - offset; 1206 else { 1207 if (short_write) 1208 folio_clear_uptodate(folio); 1209 count = 0; 1210 } 1211 offset = 0; 1212 } 1213 if (ia->write.folio_locked && (i == ap->num_folios - 1)) 1214 folio_unlock(folio); 1215 folio_put(folio); 1216 } 1217 1218 return err; 1219 } 1220 1221 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1222 struct address_space *mapping, 1223 struct iov_iter *ii, loff_t pos, 1224 unsigned int max_pages) 1225 { 1226 struct fuse_args_pages *ap = &ia->ap; 1227 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1228 unsigned offset = pos & (PAGE_SIZE - 1); 1229 unsigned int nr_pages = 0; 1230 size_t count = 0; 1231 int err; 1232 1233 ap->args.in_pages = true; 1234 ap->descs[0].offset = offset; 1235 1236 do { 1237 size_t tmp; 1238 struct folio *folio; 1239 pgoff_t index = pos >> PAGE_SHIFT; 1240 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1241 iov_iter_count(ii)); 1242 1243 bytes = min_t(size_t, bytes, fc->max_write - count); 1244 1245 again: 1246 err = -EFAULT; 1247 if (fault_in_iov_iter_readable(ii, bytes)) 1248 break; 1249 1250 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1251 mapping_gfp_mask(mapping)); 1252 if (IS_ERR(folio)) { 1253 err = PTR_ERR(folio); 1254 break; 1255 } 1256 1257 if (mapping_writably_mapped(mapping)) 1258 flush_dcache_folio(folio); 1259 1260 tmp = copy_folio_from_iter_atomic(folio, offset, bytes, ii); 1261 flush_dcache_folio(folio); 1262 1263 if (!tmp) { 1264 folio_unlock(folio); 1265 folio_put(folio); 1266 goto again; 1267 } 1268 1269 err = 0; 1270 ap->folios[ap->num_folios] = folio; 1271 ap->descs[ap->num_folios].length = tmp; 1272 ap->num_folios++; 1273 nr_pages++; 1274 1275 count += tmp; 1276 pos += tmp; 1277 offset += tmp; 1278 if (offset == PAGE_SIZE) 1279 offset = 0; 1280 1281 /* If we copied full page, mark it uptodate */ 1282 if (tmp == PAGE_SIZE) 1283 folio_mark_uptodate(folio); 1284 1285 if (folio_test_uptodate(folio)) { 1286 folio_unlock(folio); 1287 } else { 1288 ia->write.folio_locked = true; 1289 break; 1290 } 1291 if (!fc->big_writes) 1292 break; 1293 } while (iov_iter_count(ii) && count < fc->max_write && 1294 nr_pages < max_pages && offset == 0); 1295 1296 return count > 0 ? count : err; 1297 } 1298 1299 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1300 unsigned int max_pages) 1301 { 1302 return min_t(unsigned int, 1303 ((pos + len - 1) >> PAGE_SHIFT) - 1304 (pos >> PAGE_SHIFT) + 1, 1305 max_pages); 1306 } 1307 1308 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii) 1309 { 1310 struct address_space *mapping = iocb->ki_filp->f_mapping; 1311 struct inode *inode = mapping->host; 1312 struct fuse_conn *fc = get_fuse_conn(inode); 1313 struct fuse_inode *fi = get_fuse_inode(inode); 1314 loff_t pos = iocb->ki_pos; 1315 int err = 0; 1316 ssize_t res = 0; 1317 1318 if (inode->i_size < pos + iov_iter_count(ii)) 1319 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1320 1321 do { 1322 ssize_t count; 1323 struct fuse_io_args ia = {}; 1324 struct fuse_args_pages *ap = &ia.ap; 1325 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1326 fc->max_pages); 1327 1328 ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1329 if (!ap->folios) { 1330 err = -ENOMEM; 1331 break; 1332 } 1333 1334 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1335 if (count <= 0) { 1336 err = count; 1337 } else { 1338 err = fuse_send_write_pages(&ia, iocb, inode, 1339 pos, count); 1340 if (!err) { 1341 size_t num_written = ia.write.out.size; 1342 1343 res += num_written; 1344 pos += num_written; 1345 1346 /* break out of the loop on short write */ 1347 if (num_written != count) 1348 err = -EIO; 1349 } 1350 } 1351 kfree(ap->folios); 1352 } while (!err && iov_iter_count(ii)); 1353 1354 fuse_write_update_attr(inode, pos, res); 1355 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1356 1357 if (!res) 1358 return err; 1359 iocb->ki_pos += res; 1360 return res; 1361 } 1362 1363 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter) 1364 { 1365 struct inode *inode = file_inode(iocb->ki_filp); 1366 1367 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode); 1368 } 1369 1370 /* 1371 * @return true if an exclusive lock for direct IO writes is needed 1372 */ 1373 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from) 1374 { 1375 struct file *file = iocb->ki_filp; 1376 struct fuse_file *ff = file->private_data; 1377 struct inode *inode = file_inode(iocb->ki_filp); 1378 struct fuse_inode *fi = get_fuse_inode(inode); 1379 1380 /* Server side has to advise that it supports parallel dio writes. */ 1381 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES)) 1382 return true; 1383 1384 /* 1385 * Append will need to know the eventual EOF - always needs an 1386 * exclusive lock. 1387 */ 1388 if (iocb->ki_flags & IOCB_APPEND) 1389 return true; 1390 1391 /* shared locks are not allowed with parallel page cache IO */ 1392 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state)) 1393 return true; 1394 1395 /* Parallel dio beyond EOF is not supported, at least for now. */ 1396 if (fuse_io_past_eof(iocb, from)) 1397 return true; 1398 1399 return false; 1400 } 1401 1402 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from, 1403 bool *exclusive) 1404 { 1405 struct inode *inode = file_inode(iocb->ki_filp); 1406 struct fuse_inode *fi = get_fuse_inode(inode); 1407 1408 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from); 1409 if (*exclusive) { 1410 inode_lock(inode); 1411 } else { 1412 inode_lock_shared(inode); 1413 /* 1414 * New parallal dio allowed only if inode is not in caching 1415 * mode and denies new opens in caching mode. This check 1416 * should be performed only after taking shared inode lock. 1417 * Previous past eof check was without inode lock and might 1418 * have raced, so check it again. 1419 */ 1420 if (fuse_io_past_eof(iocb, from) || 1421 fuse_inode_uncached_io_start(fi, NULL) != 0) { 1422 inode_unlock_shared(inode); 1423 inode_lock(inode); 1424 *exclusive = true; 1425 } 1426 } 1427 } 1428 1429 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive) 1430 { 1431 struct inode *inode = file_inode(iocb->ki_filp); 1432 struct fuse_inode *fi = get_fuse_inode(inode); 1433 1434 if (exclusive) { 1435 inode_unlock(inode); 1436 } else { 1437 /* Allow opens in caching mode after last parallel dio end */ 1438 fuse_inode_uncached_io_end(fi); 1439 inode_unlock_shared(inode); 1440 } 1441 } 1442 1443 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1444 { 1445 struct file *file = iocb->ki_filp; 1446 struct mnt_idmap *idmap = file_mnt_idmap(file); 1447 struct address_space *mapping = file->f_mapping; 1448 ssize_t written = 0; 1449 struct inode *inode = mapping->host; 1450 ssize_t err, count; 1451 struct fuse_conn *fc = get_fuse_conn(inode); 1452 1453 if (fc->writeback_cache) { 1454 /* Update size (EOF optimization) and mode (SUID clearing) */ 1455 err = fuse_update_attributes(mapping->host, file, 1456 STATX_SIZE | STATX_MODE); 1457 if (err) 1458 return err; 1459 1460 if (fc->handle_killpriv_v2 && 1461 setattr_should_drop_suidgid(idmap, 1462 file_inode(file))) { 1463 goto writethrough; 1464 } 1465 1466 return generic_file_write_iter(iocb, from); 1467 } 1468 1469 writethrough: 1470 inode_lock(inode); 1471 1472 err = count = generic_write_checks(iocb, from); 1473 if (err <= 0) 1474 goto out; 1475 1476 task_io_account_write(count); 1477 1478 err = kiocb_modified(iocb); 1479 if (err) 1480 goto out; 1481 1482 if (iocb->ki_flags & IOCB_DIRECT) { 1483 written = generic_file_direct_write(iocb, from); 1484 if (written < 0 || !iov_iter_count(from)) 1485 goto out; 1486 written = direct_write_fallback(iocb, from, written, 1487 fuse_perform_write(iocb, from)); 1488 } else { 1489 written = fuse_perform_write(iocb, from); 1490 } 1491 out: 1492 inode_unlock(inode); 1493 if (written > 0) 1494 written = generic_write_sync(iocb, written); 1495 1496 return written ? written : err; 1497 } 1498 1499 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1500 { 1501 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset; 1502 } 1503 1504 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1505 size_t max_size) 1506 { 1507 return min(iov_iter_single_seg_count(ii), max_size); 1508 } 1509 1510 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1511 size_t *nbytesp, int write, 1512 unsigned int max_pages, 1513 bool use_pages_for_kvec_io) 1514 { 1515 bool flush_or_invalidate = false; 1516 unsigned int nr_pages = 0; 1517 size_t nbytes = 0; /* # bytes already packed in req */ 1518 ssize_t ret = 0; 1519 1520 /* Special case for kernel I/O: can copy directly into the buffer. 1521 * However if the implementation of fuse_conn requires pages instead of 1522 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead. 1523 */ 1524 if (iov_iter_is_kvec(ii)) { 1525 void *user_addr = (void *)fuse_get_user_addr(ii); 1526 1527 if (!use_pages_for_kvec_io) { 1528 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1529 1530 if (write) 1531 ap->args.in_args[1].value = user_addr; 1532 else 1533 ap->args.out_args[0].value = user_addr; 1534 1535 iov_iter_advance(ii, frag_size); 1536 *nbytesp = frag_size; 1537 return 0; 1538 } 1539 1540 if (is_vmalloc_addr(user_addr)) { 1541 ap->args.vmap_base = user_addr; 1542 flush_or_invalidate = true; 1543 } 1544 } 1545 1546 /* 1547 * Until there is support for iov_iter_extract_folios(), we have to 1548 * manually extract pages using iov_iter_extract_pages() and then 1549 * copy that to a folios array. 1550 */ 1551 struct page **pages = kzalloc(max_pages * sizeof(struct page *), 1552 GFP_KERNEL); 1553 if (!pages) { 1554 ret = -ENOMEM; 1555 goto out; 1556 } 1557 1558 while (nbytes < *nbytesp && nr_pages < max_pages) { 1559 unsigned nfolios, i; 1560 size_t start; 1561 1562 ret = iov_iter_extract_pages(ii, &pages, 1563 *nbytesp - nbytes, 1564 max_pages - nr_pages, 1565 0, &start); 1566 if (ret < 0) 1567 break; 1568 1569 nbytes += ret; 1570 1571 nfolios = DIV_ROUND_UP(ret + start, PAGE_SIZE); 1572 1573 for (i = 0; i < nfolios; i++) { 1574 struct folio *folio = page_folio(pages[i]); 1575 unsigned int offset = start + 1576 (folio_page_idx(folio, pages[i]) << PAGE_SHIFT); 1577 unsigned int len = min_t(unsigned int, ret, PAGE_SIZE - start); 1578 1579 ap->descs[ap->num_folios].offset = offset; 1580 ap->descs[ap->num_folios].length = len; 1581 ap->folios[ap->num_folios] = folio; 1582 start = 0; 1583 ret -= len; 1584 ap->num_folios++; 1585 } 1586 1587 nr_pages += nfolios; 1588 } 1589 kfree(pages); 1590 1591 if (write && flush_or_invalidate) 1592 flush_kernel_vmap_range(ap->args.vmap_base, nbytes); 1593 1594 ap->args.invalidate_vmap = !write && flush_or_invalidate; 1595 ap->args.is_pinned = iov_iter_extract_will_pin(ii); 1596 ap->args.user_pages = true; 1597 if (write) 1598 ap->args.in_pages = true; 1599 else 1600 ap->args.out_pages = true; 1601 1602 out: 1603 *nbytesp = nbytes; 1604 1605 return ret < 0 ? ret : 0; 1606 } 1607 1608 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1609 loff_t *ppos, int flags) 1610 { 1611 int write = flags & FUSE_DIO_WRITE; 1612 int cuse = flags & FUSE_DIO_CUSE; 1613 struct file *file = io->iocb->ki_filp; 1614 struct address_space *mapping = file->f_mapping; 1615 struct inode *inode = mapping->host; 1616 struct fuse_file *ff = file->private_data; 1617 struct fuse_conn *fc = ff->fm->fc; 1618 size_t nmax = write ? fc->max_write : fc->max_read; 1619 loff_t pos = *ppos; 1620 size_t count = iov_iter_count(iter); 1621 pgoff_t idx_from = pos >> PAGE_SHIFT; 1622 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1623 ssize_t res = 0; 1624 int err = 0; 1625 struct fuse_io_args *ia; 1626 unsigned int max_pages; 1627 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO; 1628 1629 max_pages = iov_iter_npages(iter, fc->max_pages); 1630 ia = fuse_io_alloc(io, max_pages); 1631 if (!ia) 1632 return -ENOMEM; 1633 1634 if (fopen_direct_io && fc->direct_io_allow_mmap) { 1635 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1); 1636 if (res) { 1637 fuse_io_free(ia); 1638 return res; 1639 } 1640 } 1641 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1642 if (!write) 1643 inode_lock(inode); 1644 fuse_sync_writes(inode); 1645 if (!write) 1646 inode_unlock(inode); 1647 } 1648 1649 if (fopen_direct_io && write) { 1650 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to); 1651 if (res) { 1652 fuse_io_free(ia); 1653 return res; 1654 } 1655 } 1656 1657 io->should_dirty = !write && user_backed_iter(iter); 1658 while (count) { 1659 ssize_t nres; 1660 fl_owner_t owner = current->files; 1661 size_t nbytes = min(count, nmax); 1662 1663 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1664 max_pages, fc->use_pages_for_kvec_io); 1665 if (err && !nbytes) 1666 break; 1667 1668 if (write) { 1669 if (!capable(CAP_FSETID)) 1670 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1671 1672 nres = fuse_send_write(ia, pos, nbytes, owner); 1673 } else { 1674 nres = fuse_send_read(ia, pos, nbytes, owner); 1675 } 1676 1677 if (!io->async || nres < 0) { 1678 fuse_release_user_pages(&ia->ap, nres, io->should_dirty); 1679 fuse_io_free(ia); 1680 } 1681 ia = NULL; 1682 if (nres < 0) { 1683 iov_iter_revert(iter, nbytes); 1684 err = nres; 1685 break; 1686 } 1687 WARN_ON(nres > nbytes); 1688 1689 count -= nres; 1690 res += nres; 1691 pos += nres; 1692 if (nres != nbytes) { 1693 iov_iter_revert(iter, nbytes - nres); 1694 break; 1695 } 1696 if (count) { 1697 max_pages = iov_iter_npages(iter, fc->max_pages); 1698 ia = fuse_io_alloc(io, max_pages); 1699 if (!ia) 1700 break; 1701 } 1702 } 1703 if (ia) 1704 fuse_io_free(ia); 1705 if (res > 0) 1706 *ppos = pos; 1707 1708 return res > 0 ? res : err; 1709 } 1710 EXPORT_SYMBOL_GPL(fuse_direct_io); 1711 1712 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1713 struct iov_iter *iter, 1714 loff_t *ppos) 1715 { 1716 ssize_t res; 1717 struct inode *inode = file_inode(io->iocb->ki_filp); 1718 1719 res = fuse_direct_io(io, iter, ppos, 0); 1720 1721 fuse_invalidate_atime(inode); 1722 1723 return res; 1724 } 1725 1726 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1727 1728 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1729 { 1730 ssize_t res; 1731 1732 if (!is_sync_kiocb(iocb)) { 1733 res = fuse_direct_IO(iocb, to); 1734 } else { 1735 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1736 1737 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1738 } 1739 1740 return res; 1741 } 1742 1743 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1744 { 1745 struct inode *inode = file_inode(iocb->ki_filp); 1746 ssize_t res; 1747 bool exclusive; 1748 1749 fuse_dio_lock(iocb, from, &exclusive); 1750 res = generic_write_checks(iocb, from); 1751 if (res > 0) { 1752 task_io_account_write(res); 1753 if (!is_sync_kiocb(iocb)) { 1754 res = fuse_direct_IO(iocb, from); 1755 } else { 1756 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1757 1758 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1759 FUSE_DIO_WRITE); 1760 fuse_write_update_attr(inode, iocb->ki_pos, res); 1761 } 1762 } 1763 fuse_dio_unlock(iocb, exclusive); 1764 1765 return res; 1766 } 1767 1768 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1769 { 1770 struct file *file = iocb->ki_filp; 1771 struct fuse_file *ff = file->private_data; 1772 struct inode *inode = file_inode(file); 1773 1774 if (fuse_is_bad(inode)) 1775 return -EIO; 1776 1777 if (FUSE_IS_DAX(inode)) 1778 return fuse_dax_read_iter(iocb, to); 1779 1780 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1781 if (ff->open_flags & FOPEN_DIRECT_IO) 1782 return fuse_direct_read_iter(iocb, to); 1783 else if (fuse_file_passthrough(ff)) 1784 return fuse_passthrough_read_iter(iocb, to); 1785 else 1786 return fuse_cache_read_iter(iocb, to); 1787 } 1788 1789 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1790 { 1791 struct file *file = iocb->ki_filp; 1792 struct fuse_file *ff = file->private_data; 1793 struct inode *inode = file_inode(file); 1794 1795 if (fuse_is_bad(inode)) 1796 return -EIO; 1797 1798 if (FUSE_IS_DAX(inode)) 1799 return fuse_dax_write_iter(iocb, from); 1800 1801 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1802 if (ff->open_flags & FOPEN_DIRECT_IO) 1803 return fuse_direct_write_iter(iocb, from); 1804 else if (fuse_file_passthrough(ff)) 1805 return fuse_passthrough_write_iter(iocb, from); 1806 else 1807 return fuse_cache_write_iter(iocb, from); 1808 } 1809 1810 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos, 1811 struct pipe_inode_info *pipe, size_t len, 1812 unsigned int flags) 1813 { 1814 struct fuse_file *ff = in->private_data; 1815 1816 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1817 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1818 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags); 1819 else 1820 return filemap_splice_read(in, ppos, pipe, len, flags); 1821 } 1822 1823 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out, 1824 loff_t *ppos, size_t len, unsigned int flags) 1825 { 1826 struct fuse_file *ff = out->private_data; 1827 1828 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */ 1829 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO)) 1830 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags); 1831 else 1832 return iter_file_splice_write(pipe, out, ppos, len, flags); 1833 } 1834 1835 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1836 { 1837 struct fuse_args_pages *ap = &wpa->ia.ap; 1838 int i; 1839 1840 if (wpa->bucket) 1841 fuse_sync_bucket_dec(wpa->bucket); 1842 1843 for (i = 0; i < ap->num_folios; i++) 1844 folio_put(ap->folios[i]); 1845 1846 fuse_file_put(wpa->ia.ff, false); 1847 1848 kfree(ap->folios); 1849 kfree(wpa); 1850 } 1851 1852 static void fuse_writepage_finish_stat(struct inode *inode, struct folio *folio) 1853 { 1854 struct backing_dev_info *bdi = inode_to_bdi(inode); 1855 1856 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1857 node_stat_sub_folio(folio, NR_WRITEBACK_TEMP); 1858 wb_writeout_inc(&bdi->wb); 1859 } 1860 1861 static void fuse_writepage_finish(struct fuse_writepage_args *wpa) 1862 { 1863 struct fuse_args_pages *ap = &wpa->ia.ap; 1864 struct inode *inode = wpa->inode; 1865 struct fuse_inode *fi = get_fuse_inode(inode); 1866 int i; 1867 1868 for (i = 0; i < ap->num_folios; i++) 1869 fuse_writepage_finish_stat(inode, ap->folios[i]); 1870 1871 wake_up(&fi->page_waitq); 1872 } 1873 1874 /* Called under fi->lock, may release and reacquire it */ 1875 static void fuse_send_writepage(struct fuse_mount *fm, 1876 struct fuse_writepage_args *wpa, loff_t size) 1877 __releases(fi->lock) 1878 __acquires(fi->lock) 1879 { 1880 struct fuse_writepage_args *aux, *next; 1881 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1882 struct fuse_write_in *inarg = &wpa->ia.write.in; 1883 struct fuse_args *args = &wpa->ia.ap.args; 1884 /* Currently, all folios in FUSE are one page */ 1885 __u64 data_size = wpa->ia.ap.num_folios * PAGE_SIZE; 1886 int err; 1887 1888 fi->writectr++; 1889 if (inarg->offset + data_size <= size) { 1890 inarg->size = data_size; 1891 } else if (inarg->offset < size) { 1892 inarg->size = size - inarg->offset; 1893 } else { 1894 /* Got truncated off completely */ 1895 goto out_free; 1896 } 1897 1898 args->in_args[1].size = inarg->size; 1899 args->force = true; 1900 args->nocreds = true; 1901 1902 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1903 if (err == -ENOMEM) { 1904 spin_unlock(&fi->lock); 1905 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1906 spin_lock(&fi->lock); 1907 } 1908 1909 /* Fails on broken connection only */ 1910 if (unlikely(err)) 1911 goto out_free; 1912 1913 return; 1914 1915 out_free: 1916 fi->writectr--; 1917 rb_erase(&wpa->writepages_entry, &fi->writepages); 1918 fuse_writepage_finish(wpa); 1919 spin_unlock(&fi->lock); 1920 1921 /* After rb_erase() aux request list is private */ 1922 for (aux = wpa->next; aux; aux = next) { 1923 next = aux->next; 1924 aux->next = NULL; 1925 fuse_writepage_finish_stat(aux->inode, 1926 aux->ia.ap.folios[0]); 1927 fuse_writepage_free(aux); 1928 } 1929 1930 fuse_writepage_free(wpa); 1931 spin_lock(&fi->lock); 1932 } 1933 1934 /* 1935 * If fi->writectr is positive (no truncate or fsync going on) send 1936 * all queued writepage requests. 1937 * 1938 * Called with fi->lock 1939 */ 1940 void fuse_flush_writepages(struct inode *inode) 1941 __releases(fi->lock) 1942 __acquires(fi->lock) 1943 { 1944 struct fuse_mount *fm = get_fuse_mount(inode); 1945 struct fuse_inode *fi = get_fuse_inode(inode); 1946 loff_t crop = i_size_read(inode); 1947 struct fuse_writepage_args *wpa; 1948 1949 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1950 wpa = list_entry(fi->queued_writes.next, 1951 struct fuse_writepage_args, queue_entry); 1952 list_del_init(&wpa->queue_entry); 1953 fuse_send_writepage(fm, wpa, crop); 1954 } 1955 } 1956 1957 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1958 struct fuse_writepage_args *wpa) 1959 { 1960 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1961 pgoff_t idx_to = idx_from + wpa->ia.ap.num_folios - 1; 1962 struct rb_node **p = &root->rb_node; 1963 struct rb_node *parent = NULL; 1964 1965 WARN_ON(!wpa->ia.ap.num_folios); 1966 while (*p) { 1967 struct fuse_writepage_args *curr; 1968 pgoff_t curr_index; 1969 1970 parent = *p; 1971 curr = rb_entry(parent, struct fuse_writepage_args, 1972 writepages_entry); 1973 WARN_ON(curr->inode != wpa->inode); 1974 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1975 1976 if (idx_from >= curr_index + curr->ia.ap.num_folios) 1977 p = &(*p)->rb_right; 1978 else if (idx_to < curr_index) 1979 p = &(*p)->rb_left; 1980 else 1981 return curr; 1982 } 1983 1984 rb_link_node(&wpa->writepages_entry, parent, p); 1985 rb_insert_color(&wpa->writepages_entry, root); 1986 return NULL; 1987 } 1988 1989 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1990 { 1991 WARN_ON(fuse_insert_writeback(root, wpa)); 1992 } 1993 1994 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1995 int error) 1996 { 1997 struct fuse_writepage_args *wpa = 1998 container_of(args, typeof(*wpa), ia.ap.args); 1999 struct inode *inode = wpa->inode; 2000 struct fuse_inode *fi = get_fuse_inode(inode); 2001 struct fuse_conn *fc = get_fuse_conn(inode); 2002 2003 mapping_set_error(inode->i_mapping, error); 2004 /* 2005 * A writeback finished and this might have updated mtime/ctime on 2006 * server making local mtime/ctime stale. Hence invalidate attrs. 2007 * Do this only if writeback_cache is not enabled. If writeback_cache 2008 * is enabled, we trust local ctime/mtime. 2009 */ 2010 if (!fc->writeback_cache) 2011 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 2012 spin_lock(&fi->lock); 2013 rb_erase(&wpa->writepages_entry, &fi->writepages); 2014 while (wpa->next) { 2015 struct fuse_mount *fm = get_fuse_mount(inode); 2016 struct fuse_write_in *inarg = &wpa->ia.write.in; 2017 struct fuse_writepage_args *next = wpa->next; 2018 2019 wpa->next = next->next; 2020 next->next = NULL; 2021 tree_insert(&fi->writepages, next); 2022 2023 /* 2024 * Skip fuse_flush_writepages() to make it easy to crop requests 2025 * based on primary request size. 2026 * 2027 * 1st case (trivial): there are no concurrent activities using 2028 * fuse_set/release_nowrite. Then we're on safe side because 2029 * fuse_flush_writepages() would call fuse_send_writepage() 2030 * anyway. 2031 * 2032 * 2nd case: someone called fuse_set_nowrite and it is waiting 2033 * now for completion of all in-flight requests. This happens 2034 * rarely and no more than once per page, so this should be 2035 * okay. 2036 * 2037 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 2038 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 2039 * that fuse_set_nowrite returned implies that all in-flight 2040 * requests were completed along with all of their secondary 2041 * requests. Further primary requests are blocked by negative 2042 * writectr. Hence there cannot be any in-flight requests and 2043 * no invocations of fuse_writepage_end() while we're in 2044 * fuse_set_nowrite..fuse_release_nowrite section. 2045 */ 2046 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 2047 } 2048 fi->writectr--; 2049 fuse_writepage_finish(wpa); 2050 spin_unlock(&fi->lock); 2051 fuse_writepage_free(wpa); 2052 } 2053 2054 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 2055 { 2056 struct fuse_file *ff; 2057 2058 spin_lock(&fi->lock); 2059 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 2060 write_entry); 2061 if (ff) 2062 fuse_file_get(ff); 2063 spin_unlock(&fi->lock); 2064 2065 return ff; 2066 } 2067 2068 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 2069 { 2070 struct fuse_file *ff = __fuse_write_file_get(fi); 2071 WARN_ON(!ff); 2072 return ff; 2073 } 2074 2075 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 2076 { 2077 struct fuse_inode *fi = get_fuse_inode(inode); 2078 struct fuse_file *ff; 2079 int err; 2080 2081 /* 2082 * Inode is always written before the last reference is dropped and 2083 * hence this should not be reached from reclaim. 2084 * 2085 * Writing back the inode from reclaim can deadlock if the request 2086 * processing itself needs an allocation. Allocations triggering 2087 * reclaim while serving a request can't be prevented, because it can 2088 * involve any number of unrelated userspace processes. 2089 */ 2090 WARN_ON(wbc->for_reclaim); 2091 2092 ff = __fuse_write_file_get(fi); 2093 err = fuse_flush_times(inode, ff); 2094 if (ff) 2095 fuse_file_put(ff, false); 2096 2097 return err; 2098 } 2099 2100 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 2101 { 2102 struct fuse_writepage_args *wpa; 2103 struct fuse_args_pages *ap; 2104 2105 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 2106 if (wpa) { 2107 ap = &wpa->ia.ap; 2108 ap->num_folios = 0; 2109 ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs); 2110 if (!ap->folios) { 2111 kfree(wpa); 2112 wpa = NULL; 2113 } 2114 } 2115 return wpa; 2116 2117 } 2118 2119 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 2120 struct fuse_writepage_args *wpa) 2121 { 2122 if (!fc->sync_fs) 2123 return; 2124 2125 rcu_read_lock(); 2126 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 2127 do { 2128 wpa->bucket = rcu_dereference(fc->curr_bucket); 2129 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 2130 rcu_read_unlock(); 2131 } 2132 2133 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio, 2134 struct folio *tmp_folio, uint32_t folio_index) 2135 { 2136 struct inode *inode = folio->mapping->host; 2137 struct fuse_args_pages *ap = &wpa->ia.ap; 2138 2139 folio_copy(tmp_folio, folio); 2140 2141 ap->folios[folio_index] = tmp_folio; 2142 ap->descs[folio_index].offset = 0; 2143 ap->descs[folio_index].length = PAGE_SIZE; 2144 2145 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2146 node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP); 2147 } 2148 2149 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio, 2150 struct fuse_file *ff) 2151 { 2152 struct inode *inode = folio->mapping->host; 2153 struct fuse_conn *fc = get_fuse_conn(inode); 2154 struct fuse_writepage_args *wpa; 2155 struct fuse_args_pages *ap; 2156 2157 wpa = fuse_writepage_args_alloc(); 2158 if (!wpa) 2159 return NULL; 2160 2161 fuse_writepage_add_to_bucket(fc, wpa); 2162 fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio), 0); 2163 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2164 wpa->inode = inode; 2165 wpa->ia.ff = ff; 2166 2167 ap = &wpa->ia.ap; 2168 ap->args.in_pages = true; 2169 ap->args.end = fuse_writepage_end; 2170 2171 return wpa; 2172 } 2173 2174 static int fuse_writepage_locked(struct folio *folio) 2175 { 2176 struct address_space *mapping = folio->mapping; 2177 struct inode *inode = mapping->host; 2178 struct fuse_inode *fi = get_fuse_inode(inode); 2179 struct fuse_writepage_args *wpa; 2180 struct fuse_args_pages *ap; 2181 struct folio *tmp_folio; 2182 struct fuse_file *ff; 2183 int error = -ENOMEM; 2184 2185 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2186 if (!tmp_folio) 2187 goto err; 2188 2189 error = -EIO; 2190 ff = fuse_write_file_get(fi); 2191 if (!ff) 2192 goto err_nofile; 2193 2194 wpa = fuse_writepage_args_setup(folio, ff); 2195 error = -ENOMEM; 2196 if (!wpa) 2197 goto err_writepage_args; 2198 2199 ap = &wpa->ia.ap; 2200 ap->num_folios = 1; 2201 2202 folio_start_writeback(folio); 2203 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, 0); 2204 2205 spin_lock(&fi->lock); 2206 tree_insert(&fi->writepages, wpa); 2207 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2208 fuse_flush_writepages(inode); 2209 spin_unlock(&fi->lock); 2210 2211 folio_end_writeback(folio); 2212 2213 return 0; 2214 2215 err_writepage_args: 2216 fuse_file_put(ff, false); 2217 err_nofile: 2218 folio_put(tmp_folio); 2219 err: 2220 mapping_set_error(folio->mapping, error); 2221 return error; 2222 } 2223 2224 struct fuse_fill_wb_data { 2225 struct fuse_writepage_args *wpa; 2226 struct fuse_file *ff; 2227 struct inode *inode; 2228 struct folio **orig_folios; 2229 unsigned int max_folios; 2230 }; 2231 2232 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 2233 { 2234 struct fuse_args_pages *ap = &data->wpa->ia.ap; 2235 struct fuse_conn *fc = get_fuse_conn(data->inode); 2236 struct folio **folios; 2237 struct fuse_folio_desc *descs; 2238 unsigned int nfolios = min_t(unsigned int, 2239 max_t(unsigned int, data->max_folios * 2, 2240 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 2241 fc->max_pages); 2242 WARN_ON(nfolios <= data->max_folios); 2243 2244 folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs); 2245 if (!folios) 2246 return false; 2247 2248 memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios); 2249 memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios); 2250 kfree(ap->folios); 2251 ap->folios = folios; 2252 ap->descs = descs; 2253 data->max_folios = nfolios; 2254 2255 return true; 2256 } 2257 2258 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2259 { 2260 struct fuse_writepage_args *wpa = data->wpa; 2261 struct inode *inode = data->inode; 2262 struct fuse_inode *fi = get_fuse_inode(inode); 2263 int num_folios = wpa->ia.ap.num_folios; 2264 int i; 2265 2266 spin_lock(&fi->lock); 2267 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2268 fuse_flush_writepages(inode); 2269 spin_unlock(&fi->lock); 2270 2271 for (i = 0; i < num_folios; i++) 2272 folio_end_writeback(data->orig_folios[i]); 2273 } 2274 2275 /* 2276 * Check under fi->lock if the page is under writeback, and insert it onto the 2277 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2278 * one already added for a page at this offset. If there's none, then insert 2279 * this new request onto the auxiliary list, otherwise reuse the existing one by 2280 * swapping the new temp page with the old one. 2281 */ 2282 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2283 struct folio *folio) 2284 { 2285 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2286 struct fuse_writepage_args *tmp; 2287 struct fuse_writepage_args *old_wpa; 2288 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2289 2290 WARN_ON(new_ap->num_folios != 0); 2291 new_ap->num_folios = 1; 2292 2293 spin_lock(&fi->lock); 2294 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2295 if (!old_wpa) { 2296 spin_unlock(&fi->lock); 2297 return true; 2298 } 2299 2300 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2301 pgoff_t curr_index; 2302 2303 WARN_ON(tmp->inode != new_wpa->inode); 2304 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2305 if (curr_index == folio->index) { 2306 WARN_ON(tmp->ia.ap.num_folios != 1); 2307 swap(tmp->ia.ap.folios[0], new_ap->folios[0]); 2308 break; 2309 } 2310 } 2311 2312 if (!tmp) { 2313 new_wpa->next = old_wpa->next; 2314 old_wpa->next = new_wpa; 2315 } 2316 2317 spin_unlock(&fi->lock); 2318 2319 if (tmp) { 2320 fuse_writepage_finish_stat(new_wpa->inode, 2321 folio); 2322 fuse_writepage_free(new_wpa); 2323 } 2324 2325 return false; 2326 } 2327 2328 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct folio *folio, 2329 struct fuse_args_pages *ap, 2330 struct fuse_fill_wb_data *data) 2331 { 2332 WARN_ON(!ap->num_folios); 2333 2334 /* 2335 * Being under writeback is unlikely but possible. For example direct 2336 * read to an mmaped fuse file will set the page dirty twice; once when 2337 * the pages are faulted with get_user_pages(), and then after the read 2338 * completed. 2339 */ 2340 if (fuse_folio_is_writeback(data->inode, folio)) 2341 return true; 2342 2343 /* Reached max pages */ 2344 if (ap->num_folios == fc->max_pages) 2345 return true; 2346 2347 /* Reached max write bytes */ 2348 if ((ap->num_folios + 1) * PAGE_SIZE > fc->max_write) 2349 return true; 2350 2351 /* Discontinuity */ 2352 if (data->orig_folios[ap->num_folios - 1]->index + 1 != folio_index(folio)) 2353 return true; 2354 2355 /* Need to grow the pages array? If so, did the expansion fail? */ 2356 if (ap->num_folios == data->max_folios && !fuse_pages_realloc(data)) 2357 return true; 2358 2359 return false; 2360 } 2361 2362 static int fuse_writepages_fill(struct folio *folio, 2363 struct writeback_control *wbc, void *_data) 2364 { 2365 struct fuse_fill_wb_data *data = _data; 2366 struct fuse_writepage_args *wpa = data->wpa; 2367 struct fuse_args_pages *ap = &wpa->ia.ap; 2368 struct inode *inode = data->inode; 2369 struct fuse_inode *fi = get_fuse_inode(inode); 2370 struct fuse_conn *fc = get_fuse_conn(inode); 2371 struct folio *tmp_folio; 2372 int err; 2373 2374 if (!data->ff) { 2375 err = -EIO; 2376 data->ff = fuse_write_file_get(fi); 2377 if (!data->ff) 2378 goto out_unlock; 2379 } 2380 2381 if (wpa && fuse_writepage_need_send(fc, folio, ap, data)) { 2382 fuse_writepages_send(data); 2383 data->wpa = NULL; 2384 } 2385 2386 err = -ENOMEM; 2387 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0); 2388 if (!tmp_folio) 2389 goto out_unlock; 2390 2391 /* 2392 * The page must not be redirtied until the writeout is completed 2393 * (i.e. userspace has sent a reply to the write request). Otherwise 2394 * there could be more than one temporary page instance for each real 2395 * page. 2396 * 2397 * This is ensured by holding the page lock in page_mkwrite() while 2398 * checking fuse_page_is_writeback(). We already hold the page lock 2399 * since clear_page_dirty_for_io() and keep it held until we add the 2400 * request to the fi->writepages list and increment ap->num_folios. 2401 * After this fuse_page_is_writeback() will indicate that the page is 2402 * under writeback, so we can release the page lock. 2403 */ 2404 if (data->wpa == NULL) { 2405 err = -ENOMEM; 2406 wpa = fuse_writepage_args_setup(folio, data->ff); 2407 if (!wpa) { 2408 folio_put(tmp_folio); 2409 goto out_unlock; 2410 } 2411 fuse_file_get(wpa->ia.ff); 2412 data->max_folios = 1; 2413 ap = &wpa->ia.ap; 2414 } 2415 folio_start_writeback(folio); 2416 2417 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, ap->num_folios); 2418 data->orig_folios[ap->num_folios] = folio; 2419 2420 err = 0; 2421 if (data->wpa) { 2422 /* 2423 * Protected by fi->lock against concurrent access by 2424 * fuse_page_is_writeback(). 2425 */ 2426 spin_lock(&fi->lock); 2427 ap->num_folios++; 2428 spin_unlock(&fi->lock); 2429 } else if (fuse_writepage_add(wpa, folio)) { 2430 data->wpa = wpa; 2431 } else { 2432 folio_end_writeback(folio); 2433 } 2434 out_unlock: 2435 folio_unlock(folio); 2436 2437 return err; 2438 } 2439 2440 static int fuse_writepages(struct address_space *mapping, 2441 struct writeback_control *wbc) 2442 { 2443 struct inode *inode = mapping->host; 2444 struct fuse_conn *fc = get_fuse_conn(inode); 2445 struct fuse_fill_wb_data data; 2446 int err; 2447 2448 err = -EIO; 2449 if (fuse_is_bad(inode)) 2450 goto out; 2451 2452 if (wbc->sync_mode == WB_SYNC_NONE && 2453 fc->num_background >= fc->congestion_threshold) 2454 return 0; 2455 2456 data.inode = inode; 2457 data.wpa = NULL; 2458 data.ff = NULL; 2459 2460 err = -ENOMEM; 2461 data.orig_folios = kcalloc(fc->max_pages, 2462 sizeof(struct folio *), 2463 GFP_NOFS); 2464 if (!data.orig_folios) 2465 goto out; 2466 2467 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2468 if (data.wpa) { 2469 WARN_ON(!data.wpa->ia.ap.num_folios); 2470 fuse_writepages_send(&data); 2471 } 2472 if (data.ff) 2473 fuse_file_put(data.ff, false); 2474 2475 kfree(data.orig_folios); 2476 out: 2477 return err; 2478 } 2479 2480 /* 2481 * It's worthy to make sure that space is reserved on disk for the write, 2482 * but how to implement it without killing performance need more thinking. 2483 */ 2484 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2485 loff_t pos, unsigned len, struct folio **foliop, void **fsdata) 2486 { 2487 pgoff_t index = pos >> PAGE_SHIFT; 2488 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2489 struct folio *folio; 2490 loff_t fsize; 2491 int err = -ENOMEM; 2492 2493 WARN_ON(!fc->writeback_cache); 2494 2495 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2496 mapping_gfp_mask(mapping)); 2497 if (IS_ERR(folio)) 2498 goto error; 2499 2500 fuse_wait_on_page_writeback(mapping->host, folio->index); 2501 2502 if (folio_test_uptodate(folio) || len >= folio_size(folio)) 2503 goto success; 2504 /* 2505 * Check if the start of this folio comes after the end of file, 2506 * in which case the readpage can be optimized away. 2507 */ 2508 fsize = i_size_read(mapping->host); 2509 if (fsize <= folio_pos(folio)) { 2510 size_t off = offset_in_folio(folio, pos); 2511 if (off) 2512 folio_zero_segment(folio, 0, off); 2513 goto success; 2514 } 2515 err = fuse_do_readfolio(file, folio); 2516 if (err) 2517 goto cleanup; 2518 success: 2519 *foliop = folio; 2520 return 0; 2521 2522 cleanup: 2523 folio_unlock(folio); 2524 folio_put(folio); 2525 error: 2526 return err; 2527 } 2528 2529 static int fuse_write_end(struct file *file, struct address_space *mapping, 2530 loff_t pos, unsigned len, unsigned copied, 2531 struct folio *folio, void *fsdata) 2532 { 2533 struct inode *inode = folio->mapping->host; 2534 2535 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2536 if (!copied) 2537 goto unlock; 2538 2539 pos += copied; 2540 if (!folio_test_uptodate(folio)) { 2541 /* Zero any unwritten bytes at the end of the page */ 2542 size_t endoff = pos & ~PAGE_MASK; 2543 if (endoff) 2544 folio_zero_segment(folio, endoff, PAGE_SIZE); 2545 folio_mark_uptodate(folio); 2546 } 2547 2548 if (pos > inode->i_size) 2549 i_size_write(inode, pos); 2550 2551 folio_mark_dirty(folio); 2552 2553 unlock: 2554 folio_unlock(folio); 2555 folio_put(folio); 2556 2557 return copied; 2558 } 2559 2560 static int fuse_launder_folio(struct folio *folio) 2561 { 2562 int err = 0; 2563 if (folio_clear_dirty_for_io(folio)) { 2564 struct inode *inode = folio->mapping->host; 2565 2566 /* Serialize with pending writeback for the same page */ 2567 fuse_wait_on_page_writeback(inode, folio->index); 2568 err = fuse_writepage_locked(folio); 2569 if (!err) 2570 fuse_wait_on_page_writeback(inode, folio->index); 2571 } 2572 return err; 2573 } 2574 2575 /* 2576 * Write back dirty data/metadata now (there may not be any suitable 2577 * open files later for data) 2578 */ 2579 static void fuse_vma_close(struct vm_area_struct *vma) 2580 { 2581 int err; 2582 2583 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2584 mapping_set_error(vma->vm_file->f_mapping, err); 2585 } 2586 2587 /* 2588 * Wait for writeback against this page to complete before allowing it 2589 * to be marked dirty again, and hence written back again, possibly 2590 * before the previous writepage completed. 2591 * 2592 * Block here, instead of in ->writepage(), so that the userspace fs 2593 * can only block processes actually operating on the filesystem. 2594 * 2595 * Otherwise unprivileged userspace fs would be able to block 2596 * unrelated: 2597 * 2598 * - page migration 2599 * - sync(2) 2600 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2601 */ 2602 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2603 { 2604 struct folio *folio = page_folio(vmf->page); 2605 struct inode *inode = file_inode(vmf->vma->vm_file); 2606 2607 file_update_time(vmf->vma->vm_file); 2608 folio_lock(folio); 2609 if (folio->mapping != inode->i_mapping) { 2610 folio_unlock(folio); 2611 return VM_FAULT_NOPAGE; 2612 } 2613 2614 fuse_wait_on_folio_writeback(inode, folio); 2615 return VM_FAULT_LOCKED; 2616 } 2617 2618 static const struct vm_operations_struct fuse_file_vm_ops = { 2619 .close = fuse_vma_close, 2620 .fault = filemap_fault, 2621 .map_pages = filemap_map_pages, 2622 .page_mkwrite = fuse_page_mkwrite, 2623 }; 2624 2625 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2626 { 2627 struct fuse_file *ff = file->private_data; 2628 struct fuse_conn *fc = ff->fm->fc; 2629 struct inode *inode = file_inode(file); 2630 int rc; 2631 2632 /* DAX mmap is superior to direct_io mmap */ 2633 if (FUSE_IS_DAX(inode)) 2634 return fuse_dax_mmap(file, vma); 2635 2636 /* 2637 * If inode is in passthrough io mode, because it has some file open 2638 * in passthrough mode, either mmap to backing file or fail mmap, 2639 * because mixing cached mmap and passthrough io mode is not allowed. 2640 */ 2641 if (fuse_file_passthrough(ff)) 2642 return fuse_passthrough_mmap(file, vma); 2643 else if (fuse_inode_backing(get_fuse_inode(inode))) 2644 return -ENODEV; 2645 2646 /* 2647 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT, 2648 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP. 2649 */ 2650 if (ff->open_flags & FOPEN_DIRECT_IO) { 2651 /* 2652 * Can't provide the coherency needed for MAP_SHARED 2653 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set. 2654 */ 2655 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap) 2656 return -ENODEV; 2657 2658 invalidate_inode_pages2(file->f_mapping); 2659 2660 if (!(vma->vm_flags & VM_MAYSHARE)) { 2661 /* MAP_PRIVATE */ 2662 return generic_file_mmap(file, vma); 2663 } 2664 2665 /* 2666 * First mmap of direct_io file enters caching inode io mode. 2667 * Also waits for parallel dio writers to go into serial mode 2668 * (exclusive instead of shared lock). 2669 * After first mmap, the inode stays in caching io mode until 2670 * the direct_io file release. 2671 */ 2672 rc = fuse_file_cached_io_open(inode, ff); 2673 if (rc) 2674 return rc; 2675 } 2676 2677 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2678 fuse_link_write_file(file); 2679 2680 file_accessed(file); 2681 vma->vm_ops = &fuse_file_vm_ops; 2682 return 0; 2683 } 2684 2685 static int convert_fuse_file_lock(struct fuse_conn *fc, 2686 const struct fuse_file_lock *ffl, 2687 struct file_lock *fl) 2688 { 2689 switch (ffl->type) { 2690 case F_UNLCK: 2691 break; 2692 2693 case F_RDLCK: 2694 case F_WRLCK: 2695 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2696 ffl->end < ffl->start) 2697 return -EIO; 2698 2699 fl->fl_start = ffl->start; 2700 fl->fl_end = ffl->end; 2701 2702 /* 2703 * Convert pid into init's pid namespace. The locks API will 2704 * translate it into the caller's pid namespace. 2705 */ 2706 rcu_read_lock(); 2707 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2708 rcu_read_unlock(); 2709 break; 2710 2711 default: 2712 return -EIO; 2713 } 2714 fl->c.flc_type = ffl->type; 2715 return 0; 2716 } 2717 2718 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2719 const struct file_lock *fl, int opcode, pid_t pid, 2720 int flock, struct fuse_lk_in *inarg) 2721 { 2722 struct inode *inode = file_inode(file); 2723 struct fuse_conn *fc = get_fuse_conn(inode); 2724 struct fuse_file *ff = file->private_data; 2725 2726 memset(inarg, 0, sizeof(*inarg)); 2727 inarg->fh = ff->fh; 2728 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner); 2729 inarg->lk.start = fl->fl_start; 2730 inarg->lk.end = fl->fl_end; 2731 inarg->lk.type = fl->c.flc_type; 2732 inarg->lk.pid = pid; 2733 if (flock) 2734 inarg->lk_flags |= FUSE_LK_FLOCK; 2735 args->opcode = opcode; 2736 args->nodeid = get_node_id(inode); 2737 args->in_numargs = 1; 2738 args->in_args[0].size = sizeof(*inarg); 2739 args->in_args[0].value = inarg; 2740 } 2741 2742 static int fuse_getlk(struct file *file, struct file_lock *fl) 2743 { 2744 struct inode *inode = file_inode(file); 2745 struct fuse_mount *fm = get_fuse_mount(inode); 2746 FUSE_ARGS(args); 2747 struct fuse_lk_in inarg; 2748 struct fuse_lk_out outarg; 2749 int err; 2750 2751 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2752 args.out_numargs = 1; 2753 args.out_args[0].size = sizeof(outarg); 2754 args.out_args[0].value = &outarg; 2755 err = fuse_simple_request(fm, &args); 2756 if (!err) 2757 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2758 2759 return err; 2760 } 2761 2762 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2763 { 2764 struct inode *inode = file_inode(file); 2765 struct fuse_mount *fm = get_fuse_mount(inode); 2766 FUSE_ARGS(args); 2767 struct fuse_lk_in inarg; 2768 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2769 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL; 2770 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2771 int err; 2772 2773 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2774 /* NLM needs asynchronous locks, which we don't support yet */ 2775 return -ENOLCK; 2776 } 2777 2778 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2779 err = fuse_simple_request(fm, &args); 2780 2781 /* locking is restartable */ 2782 if (err == -EINTR) 2783 err = -ERESTARTSYS; 2784 2785 return err; 2786 } 2787 2788 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2789 { 2790 struct inode *inode = file_inode(file); 2791 struct fuse_conn *fc = get_fuse_conn(inode); 2792 int err; 2793 2794 if (cmd == F_CANCELLK) { 2795 err = 0; 2796 } else if (cmd == F_GETLK) { 2797 if (fc->no_lock) { 2798 posix_test_lock(file, fl); 2799 err = 0; 2800 } else 2801 err = fuse_getlk(file, fl); 2802 } else { 2803 if (fc->no_lock) 2804 err = posix_lock_file(file, fl, NULL); 2805 else 2806 err = fuse_setlk(file, fl, 0); 2807 } 2808 return err; 2809 } 2810 2811 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2812 { 2813 struct inode *inode = file_inode(file); 2814 struct fuse_conn *fc = get_fuse_conn(inode); 2815 int err; 2816 2817 if (fc->no_flock) { 2818 err = locks_lock_file_wait(file, fl); 2819 } else { 2820 struct fuse_file *ff = file->private_data; 2821 2822 /* emulate flock with POSIX locks */ 2823 ff->flock = true; 2824 err = fuse_setlk(file, fl, 1); 2825 } 2826 2827 return err; 2828 } 2829 2830 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2831 { 2832 struct inode *inode = mapping->host; 2833 struct fuse_mount *fm = get_fuse_mount(inode); 2834 FUSE_ARGS(args); 2835 struct fuse_bmap_in inarg; 2836 struct fuse_bmap_out outarg; 2837 int err; 2838 2839 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2840 return 0; 2841 2842 memset(&inarg, 0, sizeof(inarg)); 2843 inarg.block = block; 2844 inarg.blocksize = inode->i_sb->s_blocksize; 2845 args.opcode = FUSE_BMAP; 2846 args.nodeid = get_node_id(inode); 2847 args.in_numargs = 1; 2848 args.in_args[0].size = sizeof(inarg); 2849 args.in_args[0].value = &inarg; 2850 args.out_numargs = 1; 2851 args.out_args[0].size = sizeof(outarg); 2852 args.out_args[0].value = &outarg; 2853 err = fuse_simple_request(fm, &args); 2854 if (err == -ENOSYS) 2855 fm->fc->no_bmap = 1; 2856 2857 return err ? 0 : outarg.block; 2858 } 2859 2860 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2861 { 2862 struct inode *inode = file->f_mapping->host; 2863 struct fuse_mount *fm = get_fuse_mount(inode); 2864 struct fuse_file *ff = file->private_data; 2865 FUSE_ARGS(args); 2866 struct fuse_lseek_in inarg = { 2867 .fh = ff->fh, 2868 .offset = offset, 2869 .whence = whence 2870 }; 2871 struct fuse_lseek_out outarg; 2872 int err; 2873 2874 if (fm->fc->no_lseek) 2875 goto fallback; 2876 2877 args.opcode = FUSE_LSEEK; 2878 args.nodeid = ff->nodeid; 2879 args.in_numargs = 1; 2880 args.in_args[0].size = sizeof(inarg); 2881 args.in_args[0].value = &inarg; 2882 args.out_numargs = 1; 2883 args.out_args[0].size = sizeof(outarg); 2884 args.out_args[0].value = &outarg; 2885 err = fuse_simple_request(fm, &args); 2886 if (err) { 2887 if (err == -ENOSYS) { 2888 fm->fc->no_lseek = 1; 2889 goto fallback; 2890 } 2891 return err; 2892 } 2893 2894 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2895 2896 fallback: 2897 err = fuse_update_attributes(inode, file, STATX_SIZE); 2898 if (!err) 2899 return generic_file_llseek(file, offset, whence); 2900 else 2901 return err; 2902 } 2903 2904 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2905 { 2906 loff_t retval; 2907 struct inode *inode = file_inode(file); 2908 2909 switch (whence) { 2910 case SEEK_SET: 2911 case SEEK_CUR: 2912 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2913 retval = generic_file_llseek(file, offset, whence); 2914 break; 2915 case SEEK_END: 2916 inode_lock(inode); 2917 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2918 if (!retval) 2919 retval = generic_file_llseek(file, offset, whence); 2920 inode_unlock(inode); 2921 break; 2922 case SEEK_HOLE: 2923 case SEEK_DATA: 2924 inode_lock(inode); 2925 retval = fuse_lseek(file, offset, whence); 2926 inode_unlock(inode); 2927 break; 2928 default: 2929 retval = -EINVAL; 2930 } 2931 2932 return retval; 2933 } 2934 2935 /* 2936 * All files which have been polled are linked to RB tree 2937 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2938 * find the matching one. 2939 */ 2940 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2941 struct rb_node **parent_out) 2942 { 2943 struct rb_node **link = &fc->polled_files.rb_node; 2944 struct rb_node *last = NULL; 2945 2946 while (*link) { 2947 struct fuse_file *ff; 2948 2949 last = *link; 2950 ff = rb_entry(last, struct fuse_file, polled_node); 2951 2952 if (kh < ff->kh) 2953 link = &last->rb_left; 2954 else if (kh > ff->kh) 2955 link = &last->rb_right; 2956 else 2957 return link; 2958 } 2959 2960 if (parent_out) 2961 *parent_out = last; 2962 return link; 2963 } 2964 2965 /* 2966 * The file is about to be polled. Make sure it's on the polled_files 2967 * RB tree. Note that files once added to the polled_files tree are 2968 * not removed before the file is released. This is because a file 2969 * polled once is likely to be polled again. 2970 */ 2971 static void fuse_register_polled_file(struct fuse_conn *fc, 2972 struct fuse_file *ff) 2973 { 2974 spin_lock(&fc->lock); 2975 if (RB_EMPTY_NODE(&ff->polled_node)) { 2976 struct rb_node **link, *parent; 2977 2978 link = fuse_find_polled_node(fc, ff->kh, &parent); 2979 BUG_ON(*link); 2980 rb_link_node(&ff->polled_node, parent, link); 2981 rb_insert_color(&ff->polled_node, &fc->polled_files); 2982 } 2983 spin_unlock(&fc->lock); 2984 } 2985 2986 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2987 { 2988 struct fuse_file *ff = file->private_data; 2989 struct fuse_mount *fm = ff->fm; 2990 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2991 struct fuse_poll_out outarg; 2992 FUSE_ARGS(args); 2993 int err; 2994 2995 if (fm->fc->no_poll) 2996 return DEFAULT_POLLMASK; 2997 2998 poll_wait(file, &ff->poll_wait, wait); 2999 inarg.events = mangle_poll(poll_requested_events(wait)); 3000 3001 /* 3002 * Ask for notification iff there's someone waiting for it. 3003 * The client may ignore the flag and always notify. 3004 */ 3005 if (waitqueue_active(&ff->poll_wait)) { 3006 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 3007 fuse_register_polled_file(fm->fc, ff); 3008 } 3009 3010 args.opcode = FUSE_POLL; 3011 args.nodeid = ff->nodeid; 3012 args.in_numargs = 1; 3013 args.in_args[0].size = sizeof(inarg); 3014 args.in_args[0].value = &inarg; 3015 args.out_numargs = 1; 3016 args.out_args[0].size = sizeof(outarg); 3017 args.out_args[0].value = &outarg; 3018 err = fuse_simple_request(fm, &args); 3019 3020 if (!err) 3021 return demangle_poll(outarg.revents); 3022 if (err == -ENOSYS) { 3023 fm->fc->no_poll = 1; 3024 return DEFAULT_POLLMASK; 3025 } 3026 return EPOLLERR; 3027 } 3028 EXPORT_SYMBOL_GPL(fuse_file_poll); 3029 3030 /* 3031 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 3032 * wakes up the poll waiters. 3033 */ 3034 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3035 struct fuse_notify_poll_wakeup_out *outarg) 3036 { 3037 u64 kh = outarg->kh; 3038 struct rb_node **link; 3039 3040 spin_lock(&fc->lock); 3041 3042 link = fuse_find_polled_node(fc, kh, NULL); 3043 if (*link) { 3044 struct fuse_file *ff; 3045 3046 ff = rb_entry(*link, struct fuse_file, polled_node); 3047 wake_up_interruptible_sync(&ff->poll_wait); 3048 } 3049 3050 spin_unlock(&fc->lock); 3051 return 0; 3052 } 3053 3054 static void fuse_do_truncate(struct file *file) 3055 { 3056 struct inode *inode = file->f_mapping->host; 3057 struct iattr attr; 3058 3059 attr.ia_valid = ATTR_SIZE; 3060 attr.ia_size = i_size_read(inode); 3061 3062 attr.ia_file = file; 3063 attr.ia_valid |= ATTR_FILE; 3064 3065 fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file); 3066 } 3067 3068 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3069 { 3070 return round_up(off, fc->max_pages << PAGE_SHIFT); 3071 } 3072 3073 static ssize_t 3074 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3075 { 3076 DECLARE_COMPLETION_ONSTACK(wait); 3077 ssize_t ret = 0; 3078 struct file *file = iocb->ki_filp; 3079 struct fuse_file *ff = file->private_data; 3080 loff_t pos = 0; 3081 struct inode *inode; 3082 loff_t i_size; 3083 size_t count = iov_iter_count(iter), shortened = 0; 3084 loff_t offset = iocb->ki_pos; 3085 struct fuse_io_priv *io; 3086 3087 pos = offset; 3088 inode = file->f_mapping->host; 3089 i_size = i_size_read(inode); 3090 3091 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 3092 return 0; 3093 3094 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3095 if (!io) 3096 return -ENOMEM; 3097 spin_lock_init(&io->lock); 3098 kref_init(&io->refcnt); 3099 io->reqs = 1; 3100 io->bytes = -1; 3101 io->size = 0; 3102 io->offset = offset; 3103 io->write = (iov_iter_rw(iter) == WRITE); 3104 io->err = 0; 3105 /* 3106 * By default, we want to optimize all I/Os with async request 3107 * submission to the client filesystem if supported. 3108 */ 3109 io->async = ff->fm->fc->async_dio; 3110 io->iocb = iocb; 3111 io->blocking = is_sync_kiocb(iocb); 3112 3113 /* optimization for short read */ 3114 if (io->async && !io->write && offset + count > i_size) { 3115 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 3116 shortened = count - iov_iter_count(iter); 3117 count -= shortened; 3118 } 3119 3120 /* 3121 * We cannot asynchronously extend the size of a file. 3122 * In such case the aio will behave exactly like sync io. 3123 */ 3124 if ((offset + count > i_size) && io->write) 3125 io->blocking = true; 3126 3127 if (io->async && io->blocking) { 3128 /* 3129 * Additional reference to keep io around after 3130 * calling fuse_aio_complete() 3131 */ 3132 kref_get(&io->refcnt); 3133 io->done = &wait; 3134 } 3135 3136 if (iov_iter_rw(iter) == WRITE) { 3137 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3138 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3139 } else { 3140 ret = __fuse_direct_read(io, iter, &pos); 3141 } 3142 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 3143 3144 if (io->async) { 3145 bool blocking = io->blocking; 3146 3147 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3148 3149 /* we have a non-extending, async request, so return */ 3150 if (!blocking) 3151 return -EIOCBQUEUED; 3152 3153 wait_for_completion(&wait); 3154 ret = fuse_get_res_by_io(io); 3155 } 3156 3157 kref_put(&io->refcnt, fuse_io_release); 3158 3159 if (iov_iter_rw(iter) == WRITE) { 3160 fuse_write_update_attr(inode, pos, ret); 3161 /* For extending writes we already hold exclusive lock */ 3162 if (ret < 0 && offset + count > i_size) 3163 fuse_do_truncate(file); 3164 } 3165 3166 return ret; 3167 } 3168 3169 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3170 { 3171 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 3172 3173 if (!err) 3174 fuse_sync_writes(inode); 3175 3176 return err; 3177 } 3178 3179 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3180 loff_t length) 3181 { 3182 struct fuse_file *ff = file->private_data; 3183 struct inode *inode = file_inode(file); 3184 struct fuse_inode *fi = get_fuse_inode(inode); 3185 struct fuse_mount *fm = ff->fm; 3186 FUSE_ARGS(args); 3187 struct fuse_fallocate_in inarg = { 3188 .fh = ff->fh, 3189 .offset = offset, 3190 .length = length, 3191 .mode = mode 3192 }; 3193 int err; 3194 bool block_faults = FUSE_IS_DAX(inode) && 3195 (!(mode & FALLOC_FL_KEEP_SIZE) || 3196 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))); 3197 3198 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3199 FALLOC_FL_ZERO_RANGE)) 3200 return -EOPNOTSUPP; 3201 3202 if (fm->fc->no_fallocate) 3203 return -EOPNOTSUPP; 3204 3205 inode_lock(inode); 3206 if (block_faults) { 3207 filemap_invalidate_lock(inode->i_mapping); 3208 err = fuse_dax_break_layouts(inode, 0, 0); 3209 if (err) 3210 goto out; 3211 } 3212 3213 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 3214 loff_t endbyte = offset + length - 1; 3215 3216 err = fuse_writeback_range(inode, offset, endbyte); 3217 if (err) 3218 goto out; 3219 } 3220 3221 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3222 offset + length > i_size_read(inode)) { 3223 err = inode_newsize_ok(inode, offset + length); 3224 if (err) 3225 goto out; 3226 } 3227 3228 err = file_modified(file); 3229 if (err) 3230 goto out; 3231 3232 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3233 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3234 3235 args.opcode = FUSE_FALLOCATE; 3236 args.nodeid = ff->nodeid; 3237 args.in_numargs = 1; 3238 args.in_args[0].size = sizeof(inarg); 3239 args.in_args[0].value = &inarg; 3240 err = fuse_simple_request(fm, &args); 3241 if (err == -ENOSYS) { 3242 fm->fc->no_fallocate = 1; 3243 err = -EOPNOTSUPP; 3244 } 3245 if (err) 3246 goto out; 3247 3248 /* we could have extended the file */ 3249 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3250 if (fuse_write_update_attr(inode, offset + length, length)) 3251 file_update_time(file); 3252 } 3253 3254 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 3255 truncate_pagecache_range(inode, offset, offset + length - 1); 3256 3257 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3258 3259 out: 3260 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3261 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3262 3263 if (block_faults) 3264 filemap_invalidate_unlock(inode->i_mapping); 3265 3266 inode_unlock(inode); 3267 3268 fuse_flush_time_update(inode); 3269 3270 return err; 3271 } 3272 3273 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3274 struct file *file_out, loff_t pos_out, 3275 size_t len, unsigned int flags) 3276 { 3277 struct fuse_file *ff_in = file_in->private_data; 3278 struct fuse_file *ff_out = file_out->private_data; 3279 struct inode *inode_in = file_inode(file_in); 3280 struct inode *inode_out = file_inode(file_out); 3281 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3282 struct fuse_mount *fm = ff_in->fm; 3283 struct fuse_conn *fc = fm->fc; 3284 FUSE_ARGS(args); 3285 struct fuse_copy_file_range_in inarg = { 3286 .fh_in = ff_in->fh, 3287 .off_in = pos_in, 3288 .nodeid_out = ff_out->nodeid, 3289 .fh_out = ff_out->fh, 3290 .off_out = pos_out, 3291 .len = len, 3292 .flags = flags 3293 }; 3294 struct fuse_write_out outarg; 3295 ssize_t err; 3296 /* mark unstable when write-back is not used, and file_out gets 3297 * extended */ 3298 bool is_unstable = (!fc->writeback_cache) && 3299 ((pos_out + len) > inode_out->i_size); 3300 3301 if (fc->no_copy_file_range) 3302 return -EOPNOTSUPP; 3303 3304 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3305 return -EXDEV; 3306 3307 inode_lock(inode_in); 3308 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3309 inode_unlock(inode_in); 3310 if (err) 3311 return err; 3312 3313 inode_lock(inode_out); 3314 3315 err = file_modified(file_out); 3316 if (err) 3317 goto out; 3318 3319 /* 3320 * Write out dirty pages in the destination file before sending the COPY 3321 * request to userspace. After the request is completed, truncate off 3322 * pages (including partial ones) from the cache that have been copied, 3323 * since these contain stale data at that point. 3324 * 3325 * This should be mostly correct, but if the COPY writes to partial 3326 * pages (at the start or end) and the parts not covered by the COPY are 3327 * written through a memory map after calling fuse_writeback_range(), 3328 * then these partial page modifications will be lost on truncation. 3329 * 3330 * It is unlikely that someone would rely on such mixed style 3331 * modifications. Yet this does give less guarantees than if the 3332 * copying was performed with write(2). 3333 * 3334 * To fix this a mapping->invalidate_lock could be used to prevent new 3335 * faults while the copy is ongoing. 3336 */ 3337 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3338 if (err) 3339 goto out; 3340 3341 if (is_unstable) 3342 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3343 3344 args.opcode = FUSE_COPY_FILE_RANGE; 3345 args.nodeid = ff_in->nodeid; 3346 args.in_numargs = 1; 3347 args.in_args[0].size = sizeof(inarg); 3348 args.in_args[0].value = &inarg; 3349 args.out_numargs = 1; 3350 args.out_args[0].size = sizeof(outarg); 3351 args.out_args[0].value = &outarg; 3352 err = fuse_simple_request(fm, &args); 3353 if (err == -ENOSYS) { 3354 fc->no_copy_file_range = 1; 3355 err = -EOPNOTSUPP; 3356 } 3357 if (err) 3358 goto out; 3359 3360 truncate_inode_pages_range(inode_out->i_mapping, 3361 ALIGN_DOWN(pos_out, PAGE_SIZE), 3362 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3363 3364 file_update_time(file_out); 3365 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3366 3367 err = outarg.size; 3368 out: 3369 if (is_unstable) 3370 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3371 3372 inode_unlock(inode_out); 3373 file_accessed(file_in); 3374 3375 fuse_flush_time_update(inode_out); 3376 3377 return err; 3378 } 3379 3380 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3381 struct file *dst_file, loff_t dst_off, 3382 size_t len, unsigned int flags) 3383 { 3384 ssize_t ret; 3385 3386 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3387 len, flags); 3388 3389 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3390 ret = splice_copy_file_range(src_file, src_off, dst_file, 3391 dst_off, len); 3392 return ret; 3393 } 3394 3395 static const struct file_operations fuse_file_operations = { 3396 .llseek = fuse_file_llseek, 3397 .read_iter = fuse_file_read_iter, 3398 .write_iter = fuse_file_write_iter, 3399 .mmap = fuse_file_mmap, 3400 .open = fuse_open, 3401 .flush = fuse_flush, 3402 .release = fuse_release, 3403 .fsync = fuse_fsync, 3404 .lock = fuse_file_lock, 3405 .get_unmapped_area = thp_get_unmapped_area, 3406 .flock = fuse_file_flock, 3407 .splice_read = fuse_splice_read, 3408 .splice_write = fuse_splice_write, 3409 .unlocked_ioctl = fuse_file_ioctl, 3410 .compat_ioctl = fuse_file_compat_ioctl, 3411 .poll = fuse_file_poll, 3412 .fallocate = fuse_file_fallocate, 3413 .copy_file_range = fuse_copy_file_range, 3414 }; 3415 3416 static const struct address_space_operations fuse_file_aops = { 3417 .read_folio = fuse_read_folio, 3418 .readahead = fuse_readahead, 3419 .writepages = fuse_writepages, 3420 .launder_folio = fuse_launder_folio, 3421 .dirty_folio = filemap_dirty_folio, 3422 .migrate_folio = filemap_migrate_folio, 3423 .bmap = fuse_bmap, 3424 .direct_IO = fuse_direct_IO, 3425 .write_begin = fuse_write_begin, 3426 .write_end = fuse_write_end, 3427 }; 3428 3429 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3430 { 3431 struct fuse_inode *fi = get_fuse_inode(inode); 3432 3433 inode->i_fop = &fuse_file_operations; 3434 inode->i_data.a_ops = &fuse_file_aops; 3435 3436 INIT_LIST_HEAD(&fi->write_files); 3437 INIT_LIST_HEAD(&fi->queued_writes); 3438 fi->writectr = 0; 3439 fi->iocachectr = 0; 3440 init_waitqueue_head(&fi->page_waitq); 3441 init_waitqueue_head(&fi->direct_io_waitq); 3442 fi->writepages = RB_ROOT; 3443 3444 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3445 fuse_dax_inode_init(inode, flags); 3446 } 3447