1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "dev_uring_i.h" 10 #include "fuse_i.h" 11 #include "fuse_dev_i.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/poll.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uio.h> 18 #include <linux/miscdevice.h> 19 #include <linux/pagemap.h> 20 #include <linux/file.h> 21 #include <linux/slab.h> 22 #include <linux/pipe_fs_i.h> 23 #include <linux/swap.h> 24 #include <linux/splice.h> 25 #include <linux/sched.h> 26 27 #define CREATE_TRACE_POINTS 28 #include "fuse_trace.h" 29 30 MODULE_ALIAS_MISCDEV(FUSE_MINOR); 31 MODULE_ALIAS("devname:fuse"); 32 33 static struct kmem_cache *fuse_req_cachep; 34 35 const unsigned long fuse_timeout_timer_freq = 36 secs_to_jiffies(FUSE_TIMEOUT_TIMER_FREQ); 37 38 bool fuse_request_expired(struct fuse_conn *fc, struct list_head *list) 39 { 40 struct fuse_req *req; 41 42 req = list_first_entry_or_null(list, struct fuse_req, list); 43 if (!req) 44 return false; 45 return time_is_before_jiffies(req->create_time + fc->timeout.req_timeout); 46 } 47 48 bool fuse_fpq_processing_expired(struct fuse_conn *fc, struct list_head *processing) 49 { 50 int i; 51 52 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 53 if (fuse_request_expired(fc, &processing[i])) 54 return true; 55 56 return false; 57 } 58 59 /* 60 * Check if any requests aren't being completed by the time the request timeout 61 * elapses. To do so, we: 62 * - check the fiq pending list 63 * - check the bg queue 64 * - check the fpq io and processing lists 65 * 66 * To make this fast, we only check against the head request on each list since 67 * these are generally queued in order of creation time (eg newer requests get 68 * queued to the tail). We might miss a few edge cases (eg requests transitioning 69 * between lists, re-sent requests at the head of the pending list having a 70 * later creation time than other requests on that list, etc.) but that is fine 71 * since if the request never gets fulfilled, it will eventually be caught. 72 */ 73 void fuse_check_timeout(struct work_struct *work) 74 { 75 struct delayed_work *dwork = to_delayed_work(work); 76 struct fuse_conn *fc = container_of(dwork, struct fuse_conn, 77 timeout.work); 78 struct fuse_iqueue *fiq = &fc->iq; 79 struct fuse_dev *fud; 80 struct fuse_pqueue *fpq; 81 bool expired = false; 82 83 if (!atomic_read(&fc->num_waiting)) 84 goto out; 85 86 spin_lock(&fiq->lock); 87 expired = fuse_request_expired(fc, &fiq->pending); 88 spin_unlock(&fiq->lock); 89 if (expired) 90 goto abort_conn; 91 92 spin_lock(&fc->bg_lock); 93 expired = fuse_request_expired(fc, &fc->bg_queue); 94 spin_unlock(&fc->bg_lock); 95 if (expired) 96 goto abort_conn; 97 98 spin_lock(&fc->lock); 99 if (!fc->connected) { 100 spin_unlock(&fc->lock); 101 return; 102 } 103 list_for_each_entry(fud, &fc->devices, entry) { 104 fpq = &fud->pq; 105 spin_lock(&fpq->lock); 106 if (fuse_request_expired(fc, &fpq->io) || 107 fuse_fpq_processing_expired(fc, fpq->processing)) { 108 spin_unlock(&fpq->lock); 109 spin_unlock(&fc->lock); 110 goto abort_conn; 111 } 112 113 spin_unlock(&fpq->lock); 114 } 115 spin_unlock(&fc->lock); 116 117 if (fuse_uring_request_expired(fc)) 118 goto abort_conn; 119 120 out: 121 queue_delayed_work(system_wq, &fc->timeout.work, 122 fuse_timeout_timer_freq); 123 return; 124 125 abort_conn: 126 fuse_abort_conn(fc); 127 } 128 129 static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req) 130 { 131 INIT_LIST_HEAD(&req->list); 132 INIT_LIST_HEAD(&req->intr_entry); 133 init_waitqueue_head(&req->waitq); 134 refcount_set(&req->count, 1); 135 __set_bit(FR_PENDING, &req->flags); 136 req->fm = fm; 137 req->create_time = jiffies; 138 } 139 140 static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags) 141 { 142 struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags); 143 if (req) 144 fuse_request_init(fm, req); 145 146 return req; 147 } 148 149 static void fuse_request_free(struct fuse_req *req) 150 { 151 kmem_cache_free(fuse_req_cachep, req); 152 } 153 154 static void __fuse_get_request(struct fuse_req *req) 155 { 156 refcount_inc(&req->count); 157 } 158 159 /* Must be called with > 1 refcount */ 160 static void __fuse_put_request(struct fuse_req *req) 161 { 162 refcount_dec(&req->count); 163 } 164 165 void fuse_set_initialized(struct fuse_conn *fc) 166 { 167 /* Make sure stores before this are seen on another CPU */ 168 smp_wmb(); 169 fc->initialized = 1; 170 } 171 172 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background) 173 { 174 return !fc->initialized || (for_background && fc->blocked) || 175 (fc->io_uring && fc->connected && !fuse_uring_ready(fc)); 176 } 177 178 static void fuse_drop_waiting(struct fuse_conn *fc) 179 { 180 /* 181 * lockess check of fc->connected is okay, because atomic_dec_and_test() 182 * provides a memory barrier matched with the one in fuse_wait_aborted() 183 * to ensure no wake-up is missed. 184 */ 185 if (atomic_dec_and_test(&fc->num_waiting) && 186 !READ_ONCE(fc->connected)) { 187 /* wake up aborters */ 188 wake_up_all(&fc->blocked_waitq); 189 } 190 } 191 192 static void fuse_put_request(struct fuse_req *req); 193 194 static struct fuse_req *fuse_get_req(struct mnt_idmap *idmap, 195 struct fuse_mount *fm, 196 bool for_background) 197 { 198 struct fuse_conn *fc = fm->fc; 199 struct fuse_req *req; 200 bool no_idmap = !fm->sb || (fm->sb->s_iflags & SB_I_NOIDMAP); 201 kuid_t fsuid; 202 kgid_t fsgid; 203 int err; 204 205 atomic_inc(&fc->num_waiting); 206 207 if (fuse_block_alloc(fc, for_background)) { 208 err = -EINTR; 209 if (wait_event_killable_exclusive(fc->blocked_waitq, 210 !fuse_block_alloc(fc, for_background))) 211 goto out; 212 } 213 /* Matches smp_wmb() in fuse_set_initialized() */ 214 smp_rmb(); 215 216 err = -ENOTCONN; 217 if (!fc->connected) 218 goto out; 219 220 err = -ECONNREFUSED; 221 if (fc->conn_error) 222 goto out; 223 224 req = fuse_request_alloc(fm, GFP_KERNEL); 225 err = -ENOMEM; 226 if (!req) { 227 if (for_background) 228 wake_up(&fc->blocked_waitq); 229 goto out; 230 } 231 232 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 233 234 __set_bit(FR_WAITING, &req->flags); 235 if (for_background) 236 __set_bit(FR_BACKGROUND, &req->flags); 237 238 /* 239 * Keep the old behavior when idmappings support was not 240 * declared by a FUSE server. 241 * 242 * For those FUSE servers who support idmapped mounts, 243 * we send UID/GID only along with "inode creation" 244 * fuse requests, otherwise idmap == &invalid_mnt_idmap and 245 * req->in.h.{u,g}id will be equal to FUSE_INVALID_UIDGID. 246 */ 247 fsuid = no_idmap ? current_fsuid() : mapped_fsuid(idmap, fc->user_ns); 248 fsgid = no_idmap ? current_fsgid() : mapped_fsgid(idmap, fc->user_ns); 249 req->in.h.uid = from_kuid(fc->user_ns, fsuid); 250 req->in.h.gid = from_kgid(fc->user_ns, fsgid); 251 252 if (no_idmap && unlikely(req->in.h.uid == ((uid_t)-1) || 253 req->in.h.gid == ((gid_t)-1))) { 254 fuse_put_request(req); 255 return ERR_PTR(-EOVERFLOW); 256 } 257 258 return req; 259 260 out: 261 fuse_drop_waiting(fc); 262 return ERR_PTR(err); 263 } 264 265 static void fuse_put_request(struct fuse_req *req) 266 { 267 struct fuse_conn *fc = req->fm->fc; 268 269 if (refcount_dec_and_test(&req->count)) { 270 if (test_bit(FR_BACKGROUND, &req->flags)) { 271 /* 272 * We get here in the unlikely case that a background 273 * request was allocated but not sent 274 */ 275 spin_lock(&fc->bg_lock); 276 if (!fc->blocked) 277 wake_up(&fc->blocked_waitq); 278 spin_unlock(&fc->bg_lock); 279 } 280 281 if (test_bit(FR_WAITING, &req->flags)) { 282 __clear_bit(FR_WAITING, &req->flags); 283 fuse_drop_waiting(fc); 284 } 285 286 fuse_request_free(req); 287 } 288 } 289 290 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args) 291 { 292 unsigned nbytes = 0; 293 unsigned i; 294 295 for (i = 0; i < numargs; i++) 296 nbytes += args[i].size; 297 298 return nbytes; 299 } 300 EXPORT_SYMBOL_GPL(fuse_len_args); 301 302 static u64 fuse_get_unique_locked(struct fuse_iqueue *fiq) 303 { 304 fiq->reqctr += FUSE_REQ_ID_STEP; 305 return fiq->reqctr; 306 } 307 308 u64 fuse_get_unique(struct fuse_iqueue *fiq) 309 { 310 u64 ret; 311 312 spin_lock(&fiq->lock); 313 ret = fuse_get_unique_locked(fiq); 314 spin_unlock(&fiq->lock); 315 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(fuse_get_unique); 319 320 unsigned int fuse_req_hash(u64 unique) 321 { 322 return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS); 323 } 324 325 /* 326 * A new request is available, wake fiq->waitq 327 */ 328 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq) 329 __releases(fiq->lock) 330 { 331 wake_up(&fiq->waitq); 332 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 333 spin_unlock(&fiq->lock); 334 } 335 336 void fuse_dev_queue_forget(struct fuse_iqueue *fiq, 337 struct fuse_forget_link *forget) 338 { 339 spin_lock(&fiq->lock); 340 if (fiq->connected) { 341 fiq->forget_list_tail->next = forget; 342 fiq->forget_list_tail = forget; 343 fuse_dev_wake_and_unlock(fiq); 344 } else { 345 kfree(forget); 346 spin_unlock(&fiq->lock); 347 } 348 } 349 350 void fuse_dev_queue_interrupt(struct fuse_iqueue *fiq, struct fuse_req *req) 351 { 352 spin_lock(&fiq->lock); 353 if (list_empty(&req->intr_entry)) { 354 list_add_tail(&req->intr_entry, &fiq->interrupts); 355 /* 356 * Pairs with smp_mb() implied by test_and_set_bit() 357 * from fuse_request_end(). 358 */ 359 smp_mb(); 360 if (test_bit(FR_FINISHED, &req->flags)) { 361 list_del_init(&req->intr_entry); 362 spin_unlock(&fiq->lock); 363 } else { 364 fuse_dev_wake_and_unlock(fiq); 365 } 366 } else { 367 spin_unlock(&fiq->lock); 368 } 369 } 370 371 static void fuse_dev_queue_req(struct fuse_iqueue *fiq, struct fuse_req *req) 372 { 373 spin_lock(&fiq->lock); 374 if (fiq->connected) { 375 if (req->in.h.opcode != FUSE_NOTIFY_REPLY) 376 req->in.h.unique = fuse_get_unique_locked(fiq); 377 list_add_tail(&req->list, &fiq->pending); 378 fuse_dev_wake_and_unlock(fiq); 379 } else { 380 spin_unlock(&fiq->lock); 381 req->out.h.error = -ENOTCONN; 382 clear_bit(FR_PENDING, &req->flags); 383 fuse_request_end(req); 384 } 385 } 386 387 const struct fuse_iqueue_ops fuse_dev_fiq_ops = { 388 .send_forget = fuse_dev_queue_forget, 389 .send_interrupt = fuse_dev_queue_interrupt, 390 .send_req = fuse_dev_queue_req, 391 }; 392 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops); 393 394 static void fuse_send_one(struct fuse_iqueue *fiq, struct fuse_req *req) 395 { 396 req->in.h.len = sizeof(struct fuse_in_header) + 397 fuse_len_args(req->args->in_numargs, 398 (struct fuse_arg *) req->args->in_args); 399 trace_fuse_request_send(req); 400 fiq->ops->send_req(fiq, req); 401 } 402 403 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget, 404 u64 nodeid, u64 nlookup) 405 { 406 struct fuse_iqueue *fiq = &fc->iq; 407 408 forget->forget_one.nodeid = nodeid; 409 forget->forget_one.nlookup = nlookup; 410 411 fiq->ops->send_forget(fiq, forget); 412 } 413 414 static void flush_bg_queue(struct fuse_conn *fc) 415 { 416 struct fuse_iqueue *fiq = &fc->iq; 417 418 while (fc->active_background < fc->max_background && 419 !list_empty(&fc->bg_queue)) { 420 struct fuse_req *req; 421 422 req = list_first_entry(&fc->bg_queue, struct fuse_req, list); 423 list_del(&req->list); 424 fc->active_background++; 425 fuse_send_one(fiq, req); 426 } 427 } 428 429 /* 430 * This function is called when a request is finished. Either a reply 431 * has arrived or it was aborted (and not yet sent) or some error 432 * occurred during communication with userspace, or the device file 433 * was closed. The requester thread is woken up (if still waiting), 434 * the 'end' callback is called if given, else the reference to the 435 * request is released 436 */ 437 void fuse_request_end(struct fuse_req *req) 438 { 439 struct fuse_mount *fm = req->fm; 440 struct fuse_conn *fc = fm->fc; 441 struct fuse_iqueue *fiq = &fc->iq; 442 443 if (test_and_set_bit(FR_FINISHED, &req->flags)) 444 goto put_request; 445 446 trace_fuse_request_end(req); 447 /* 448 * test_and_set_bit() implies smp_mb() between bit 449 * changing and below FR_INTERRUPTED check. Pairs with 450 * smp_mb() from queue_interrupt(). 451 */ 452 if (test_bit(FR_INTERRUPTED, &req->flags)) { 453 spin_lock(&fiq->lock); 454 list_del_init(&req->intr_entry); 455 spin_unlock(&fiq->lock); 456 } 457 WARN_ON(test_bit(FR_PENDING, &req->flags)); 458 WARN_ON(test_bit(FR_SENT, &req->flags)); 459 if (test_bit(FR_BACKGROUND, &req->flags)) { 460 spin_lock(&fc->bg_lock); 461 clear_bit(FR_BACKGROUND, &req->flags); 462 if (fc->num_background == fc->max_background) { 463 fc->blocked = 0; 464 wake_up(&fc->blocked_waitq); 465 } else if (!fc->blocked) { 466 /* 467 * Wake up next waiter, if any. It's okay to use 468 * waitqueue_active(), as we've already synced up 469 * fc->blocked with waiters with the wake_up() call 470 * above. 471 */ 472 if (waitqueue_active(&fc->blocked_waitq)) 473 wake_up(&fc->blocked_waitq); 474 } 475 476 fc->num_background--; 477 fc->active_background--; 478 flush_bg_queue(fc); 479 spin_unlock(&fc->bg_lock); 480 } else { 481 /* Wake up waiter sleeping in request_wait_answer() */ 482 wake_up(&req->waitq); 483 } 484 485 if (test_bit(FR_ASYNC, &req->flags)) 486 req->args->end(fm, req->args, req->out.h.error); 487 put_request: 488 fuse_put_request(req); 489 } 490 EXPORT_SYMBOL_GPL(fuse_request_end); 491 492 static int queue_interrupt(struct fuse_req *req) 493 { 494 struct fuse_iqueue *fiq = &req->fm->fc->iq; 495 496 /* Check for we've sent request to interrupt this req */ 497 if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) 498 return -EINVAL; 499 500 fiq->ops->send_interrupt(fiq, req); 501 502 return 0; 503 } 504 505 bool fuse_remove_pending_req(struct fuse_req *req, spinlock_t *lock) 506 { 507 spin_lock(lock); 508 if (test_bit(FR_PENDING, &req->flags)) { 509 /* 510 * FR_PENDING does not get cleared as the request will end 511 * up in destruction anyway. 512 */ 513 list_del(&req->list); 514 spin_unlock(lock); 515 __fuse_put_request(req); 516 req->out.h.error = -EINTR; 517 return true; 518 } 519 spin_unlock(lock); 520 return false; 521 } 522 523 static void request_wait_answer(struct fuse_req *req) 524 { 525 struct fuse_conn *fc = req->fm->fc; 526 struct fuse_iqueue *fiq = &fc->iq; 527 int err; 528 529 if (!fc->no_interrupt) { 530 /* Any signal may interrupt this */ 531 err = wait_event_interruptible(req->waitq, 532 test_bit(FR_FINISHED, &req->flags)); 533 if (!err) 534 return; 535 536 set_bit(FR_INTERRUPTED, &req->flags); 537 /* matches barrier in fuse_dev_do_read() */ 538 smp_mb__after_atomic(); 539 if (test_bit(FR_SENT, &req->flags)) 540 queue_interrupt(req); 541 } 542 543 if (!test_bit(FR_FORCE, &req->flags)) { 544 bool removed; 545 546 /* Only fatal signals may interrupt this */ 547 err = wait_event_killable(req->waitq, 548 test_bit(FR_FINISHED, &req->flags)); 549 if (!err) 550 return; 551 552 if (test_bit(FR_URING, &req->flags)) 553 removed = fuse_uring_remove_pending_req(req); 554 else 555 removed = fuse_remove_pending_req(req, &fiq->lock); 556 if (removed) 557 return; 558 } 559 560 /* 561 * Either request is already in userspace, or it was forced. 562 * Wait it out. 563 */ 564 wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags)); 565 } 566 567 static void __fuse_request_send(struct fuse_req *req) 568 { 569 struct fuse_iqueue *fiq = &req->fm->fc->iq; 570 571 BUG_ON(test_bit(FR_BACKGROUND, &req->flags)); 572 573 /* acquire extra reference, since request is still needed after 574 fuse_request_end() */ 575 __fuse_get_request(req); 576 fuse_send_one(fiq, req); 577 578 request_wait_answer(req); 579 /* Pairs with smp_wmb() in fuse_request_end() */ 580 smp_rmb(); 581 } 582 583 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args) 584 { 585 if (fc->minor < 4 && args->opcode == FUSE_STATFS) 586 args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE; 587 588 if (fc->minor < 9) { 589 switch (args->opcode) { 590 case FUSE_LOOKUP: 591 case FUSE_CREATE: 592 case FUSE_MKNOD: 593 case FUSE_MKDIR: 594 case FUSE_SYMLINK: 595 case FUSE_LINK: 596 args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE; 597 break; 598 case FUSE_GETATTR: 599 case FUSE_SETATTR: 600 args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE; 601 break; 602 } 603 } 604 if (fc->minor < 12) { 605 switch (args->opcode) { 606 case FUSE_CREATE: 607 args->in_args[0].size = sizeof(struct fuse_open_in); 608 break; 609 case FUSE_MKNOD: 610 args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE; 611 break; 612 } 613 } 614 } 615 616 static void fuse_force_creds(struct fuse_req *req) 617 { 618 struct fuse_conn *fc = req->fm->fc; 619 620 if (!req->fm->sb || req->fm->sb->s_iflags & SB_I_NOIDMAP) { 621 req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid()); 622 req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid()); 623 } else { 624 req->in.h.uid = FUSE_INVALID_UIDGID; 625 req->in.h.gid = FUSE_INVALID_UIDGID; 626 } 627 628 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 629 } 630 631 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args) 632 { 633 req->in.h.opcode = args->opcode; 634 req->in.h.nodeid = args->nodeid; 635 req->args = args; 636 if (args->is_ext) 637 req->in.h.total_extlen = args->in_args[args->ext_idx].size / 8; 638 if (args->end) 639 __set_bit(FR_ASYNC, &req->flags); 640 } 641 642 ssize_t __fuse_simple_request(struct mnt_idmap *idmap, 643 struct fuse_mount *fm, 644 struct fuse_args *args) 645 { 646 struct fuse_conn *fc = fm->fc; 647 struct fuse_req *req; 648 ssize_t ret; 649 650 if (args->force) { 651 atomic_inc(&fc->num_waiting); 652 req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL); 653 654 if (!args->nocreds) 655 fuse_force_creds(req); 656 657 __set_bit(FR_WAITING, &req->flags); 658 __set_bit(FR_FORCE, &req->flags); 659 } else { 660 WARN_ON(args->nocreds); 661 req = fuse_get_req(idmap, fm, false); 662 if (IS_ERR(req)) 663 return PTR_ERR(req); 664 } 665 666 /* Needs to be done after fuse_get_req() so that fc->minor is valid */ 667 fuse_adjust_compat(fc, args); 668 fuse_args_to_req(req, args); 669 670 if (!args->noreply) 671 __set_bit(FR_ISREPLY, &req->flags); 672 __fuse_request_send(req); 673 ret = req->out.h.error; 674 if (!ret && args->out_argvar) { 675 BUG_ON(args->out_numargs == 0); 676 ret = args->out_args[args->out_numargs - 1].size; 677 } 678 fuse_put_request(req); 679 680 return ret; 681 } 682 683 #ifdef CONFIG_FUSE_IO_URING 684 static bool fuse_request_queue_background_uring(struct fuse_conn *fc, 685 struct fuse_req *req) 686 { 687 struct fuse_iqueue *fiq = &fc->iq; 688 689 req->in.h.unique = fuse_get_unique(fiq); 690 req->in.h.len = sizeof(struct fuse_in_header) + 691 fuse_len_args(req->args->in_numargs, 692 (struct fuse_arg *) req->args->in_args); 693 694 return fuse_uring_queue_bq_req(req); 695 } 696 #endif 697 698 /* 699 * @return true if queued 700 */ 701 static int fuse_request_queue_background(struct fuse_req *req) 702 { 703 struct fuse_mount *fm = req->fm; 704 struct fuse_conn *fc = fm->fc; 705 bool queued = false; 706 707 WARN_ON(!test_bit(FR_BACKGROUND, &req->flags)); 708 if (!test_bit(FR_WAITING, &req->flags)) { 709 __set_bit(FR_WAITING, &req->flags); 710 atomic_inc(&fc->num_waiting); 711 } 712 __set_bit(FR_ISREPLY, &req->flags); 713 714 #ifdef CONFIG_FUSE_IO_URING 715 if (fuse_uring_ready(fc)) 716 return fuse_request_queue_background_uring(fc, req); 717 #endif 718 719 spin_lock(&fc->bg_lock); 720 if (likely(fc->connected)) { 721 fc->num_background++; 722 if (fc->num_background == fc->max_background) 723 fc->blocked = 1; 724 list_add_tail(&req->list, &fc->bg_queue); 725 flush_bg_queue(fc); 726 queued = true; 727 } 728 spin_unlock(&fc->bg_lock); 729 730 return queued; 731 } 732 733 int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args, 734 gfp_t gfp_flags) 735 { 736 struct fuse_req *req; 737 738 if (args->force) { 739 WARN_ON(!args->nocreds); 740 req = fuse_request_alloc(fm, gfp_flags); 741 if (!req) 742 return -ENOMEM; 743 __set_bit(FR_BACKGROUND, &req->flags); 744 } else { 745 WARN_ON(args->nocreds); 746 req = fuse_get_req(&invalid_mnt_idmap, fm, true); 747 if (IS_ERR(req)) 748 return PTR_ERR(req); 749 } 750 751 fuse_args_to_req(req, args); 752 753 if (!fuse_request_queue_background(req)) { 754 fuse_put_request(req); 755 return -ENOTCONN; 756 } 757 758 return 0; 759 } 760 EXPORT_SYMBOL_GPL(fuse_simple_background); 761 762 static int fuse_simple_notify_reply(struct fuse_mount *fm, 763 struct fuse_args *args, u64 unique) 764 { 765 struct fuse_req *req; 766 struct fuse_iqueue *fiq = &fm->fc->iq; 767 768 req = fuse_get_req(&invalid_mnt_idmap, fm, false); 769 if (IS_ERR(req)) 770 return PTR_ERR(req); 771 772 __clear_bit(FR_ISREPLY, &req->flags); 773 req->in.h.unique = unique; 774 775 fuse_args_to_req(req, args); 776 777 fuse_send_one(fiq, req); 778 779 return 0; 780 } 781 782 /* 783 * Lock the request. Up to the next unlock_request() there mustn't be 784 * anything that could cause a page-fault. If the request was already 785 * aborted bail out. 786 */ 787 static int lock_request(struct fuse_req *req) 788 { 789 int err = 0; 790 if (req) { 791 spin_lock(&req->waitq.lock); 792 if (test_bit(FR_ABORTED, &req->flags)) 793 err = -ENOENT; 794 else 795 set_bit(FR_LOCKED, &req->flags); 796 spin_unlock(&req->waitq.lock); 797 } 798 return err; 799 } 800 801 /* 802 * Unlock request. If it was aborted while locked, caller is responsible 803 * for unlocking and ending the request. 804 */ 805 static int unlock_request(struct fuse_req *req) 806 { 807 int err = 0; 808 if (req) { 809 spin_lock(&req->waitq.lock); 810 if (test_bit(FR_ABORTED, &req->flags)) 811 err = -ENOENT; 812 else 813 clear_bit(FR_LOCKED, &req->flags); 814 spin_unlock(&req->waitq.lock); 815 } 816 return err; 817 } 818 819 void fuse_copy_init(struct fuse_copy_state *cs, int write, 820 struct iov_iter *iter) 821 { 822 memset(cs, 0, sizeof(*cs)); 823 cs->write = write; 824 cs->iter = iter; 825 } 826 827 /* Unmap and put previous page of userspace buffer */ 828 static void fuse_copy_finish(struct fuse_copy_state *cs) 829 { 830 if (cs->currbuf) { 831 struct pipe_buffer *buf = cs->currbuf; 832 833 if (cs->write) 834 buf->len = PAGE_SIZE - cs->len; 835 cs->currbuf = NULL; 836 } else if (cs->pg) { 837 if (cs->write) { 838 flush_dcache_page(cs->pg); 839 set_page_dirty_lock(cs->pg); 840 } 841 put_page(cs->pg); 842 } 843 cs->pg = NULL; 844 } 845 846 /* 847 * Get another pagefull of userspace buffer, and map it to kernel 848 * address space, and lock request 849 */ 850 static int fuse_copy_fill(struct fuse_copy_state *cs) 851 { 852 struct page *page; 853 int err; 854 855 err = unlock_request(cs->req); 856 if (err) 857 return err; 858 859 fuse_copy_finish(cs); 860 if (cs->pipebufs) { 861 struct pipe_buffer *buf = cs->pipebufs; 862 863 if (!cs->write) { 864 err = pipe_buf_confirm(cs->pipe, buf); 865 if (err) 866 return err; 867 868 BUG_ON(!cs->nr_segs); 869 cs->currbuf = buf; 870 cs->pg = buf->page; 871 cs->offset = buf->offset; 872 cs->len = buf->len; 873 cs->pipebufs++; 874 cs->nr_segs--; 875 } else { 876 if (cs->nr_segs >= cs->pipe->max_usage) 877 return -EIO; 878 879 page = alloc_page(GFP_HIGHUSER); 880 if (!page) 881 return -ENOMEM; 882 883 buf->page = page; 884 buf->offset = 0; 885 buf->len = 0; 886 887 cs->currbuf = buf; 888 cs->pg = page; 889 cs->offset = 0; 890 cs->len = PAGE_SIZE; 891 cs->pipebufs++; 892 cs->nr_segs++; 893 } 894 } else { 895 size_t off; 896 err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off); 897 if (err < 0) 898 return err; 899 BUG_ON(!err); 900 cs->len = err; 901 cs->offset = off; 902 cs->pg = page; 903 } 904 905 return lock_request(cs->req); 906 } 907 908 /* Do as much copy to/from userspace buffer as we can */ 909 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size) 910 { 911 unsigned ncpy = min(*size, cs->len); 912 if (val) { 913 void *pgaddr = kmap_local_page(cs->pg); 914 void *buf = pgaddr + cs->offset; 915 916 if (cs->write) 917 memcpy(buf, *val, ncpy); 918 else 919 memcpy(*val, buf, ncpy); 920 921 kunmap_local(pgaddr); 922 *val += ncpy; 923 } 924 *size -= ncpy; 925 cs->len -= ncpy; 926 cs->offset += ncpy; 927 if (cs->is_uring) 928 cs->ring.copied_sz += ncpy; 929 930 return ncpy; 931 } 932 933 static int fuse_check_folio(struct folio *folio) 934 { 935 if (folio_mapped(folio) || 936 folio->mapping != NULL || 937 (folio->flags & PAGE_FLAGS_CHECK_AT_PREP & 938 ~(1 << PG_locked | 939 1 << PG_referenced | 940 1 << PG_lru | 941 1 << PG_active | 942 1 << PG_workingset | 943 1 << PG_reclaim | 944 1 << PG_waiters | 945 LRU_GEN_MASK | LRU_REFS_MASK))) { 946 dump_page(&folio->page, "fuse: trying to steal weird page"); 947 return 1; 948 } 949 return 0; 950 } 951 952 /* 953 * Attempt to steal a page from the splice() pipe and move it into the 954 * pagecache. If successful, the pointer in @pagep will be updated. The 955 * folio that was originally in @pagep will lose a reference and the new 956 * folio returned in @pagep will carry a reference. 957 */ 958 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep) 959 { 960 int err; 961 struct folio *oldfolio = page_folio(*pagep); 962 struct folio *newfolio; 963 struct pipe_buffer *buf = cs->pipebufs; 964 965 folio_get(oldfolio); 966 err = unlock_request(cs->req); 967 if (err) 968 goto out_put_old; 969 970 fuse_copy_finish(cs); 971 972 err = pipe_buf_confirm(cs->pipe, buf); 973 if (err) 974 goto out_put_old; 975 976 BUG_ON(!cs->nr_segs); 977 cs->currbuf = buf; 978 cs->len = buf->len; 979 cs->pipebufs++; 980 cs->nr_segs--; 981 982 if (cs->len != PAGE_SIZE) 983 goto out_fallback; 984 985 if (!pipe_buf_try_steal(cs->pipe, buf)) 986 goto out_fallback; 987 988 newfolio = page_folio(buf->page); 989 990 folio_clear_uptodate(newfolio); 991 folio_clear_mappedtodisk(newfolio); 992 993 if (fuse_check_folio(newfolio) != 0) 994 goto out_fallback_unlock; 995 996 /* 997 * This is a new and locked page, it shouldn't be mapped or 998 * have any special flags on it 999 */ 1000 if (WARN_ON(folio_mapped(oldfolio))) 1001 goto out_fallback_unlock; 1002 if (WARN_ON(folio_has_private(oldfolio))) 1003 goto out_fallback_unlock; 1004 if (WARN_ON(folio_test_dirty(oldfolio) || 1005 folio_test_writeback(oldfolio))) 1006 goto out_fallback_unlock; 1007 if (WARN_ON(folio_test_mlocked(oldfolio))) 1008 goto out_fallback_unlock; 1009 1010 replace_page_cache_folio(oldfolio, newfolio); 1011 1012 folio_get(newfolio); 1013 1014 if (!(buf->flags & PIPE_BUF_FLAG_LRU)) 1015 folio_add_lru(newfolio); 1016 1017 /* 1018 * Release while we have extra ref on stolen page. Otherwise 1019 * anon_pipe_buf_release() might think the page can be reused. 1020 */ 1021 pipe_buf_release(cs->pipe, buf); 1022 1023 err = 0; 1024 spin_lock(&cs->req->waitq.lock); 1025 if (test_bit(FR_ABORTED, &cs->req->flags)) 1026 err = -ENOENT; 1027 else 1028 *pagep = &newfolio->page; 1029 spin_unlock(&cs->req->waitq.lock); 1030 1031 if (err) { 1032 folio_unlock(newfolio); 1033 folio_put(newfolio); 1034 goto out_put_old; 1035 } 1036 1037 folio_unlock(oldfolio); 1038 /* Drop ref for ap->pages[] array */ 1039 folio_put(oldfolio); 1040 cs->len = 0; 1041 1042 err = 0; 1043 out_put_old: 1044 /* Drop ref obtained in this function */ 1045 folio_put(oldfolio); 1046 return err; 1047 1048 out_fallback_unlock: 1049 folio_unlock(newfolio); 1050 out_fallback: 1051 cs->pg = buf->page; 1052 cs->offset = buf->offset; 1053 1054 err = lock_request(cs->req); 1055 if (!err) 1056 err = 1; 1057 1058 goto out_put_old; 1059 } 1060 1061 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page, 1062 unsigned offset, unsigned count) 1063 { 1064 struct pipe_buffer *buf; 1065 int err; 1066 1067 if (cs->nr_segs >= cs->pipe->max_usage) 1068 return -EIO; 1069 1070 get_page(page); 1071 err = unlock_request(cs->req); 1072 if (err) { 1073 put_page(page); 1074 return err; 1075 } 1076 1077 fuse_copy_finish(cs); 1078 1079 buf = cs->pipebufs; 1080 buf->page = page; 1081 buf->offset = offset; 1082 buf->len = count; 1083 1084 cs->pipebufs++; 1085 cs->nr_segs++; 1086 cs->len = 0; 1087 1088 return 0; 1089 } 1090 1091 /* 1092 * Copy a page in the request to/from the userspace buffer. Must be 1093 * done atomically 1094 */ 1095 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep, 1096 unsigned offset, unsigned count, int zeroing) 1097 { 1098 int err; 1099 struct page *page = *pagep; 1100 1101 if (page && zeroing && count < PAGE_SIZE) 1102 clear_highpage(page); 1103 1104 while (count) { 1105 if (cs->write && cs->pipebufs && page) { 1106 /* 1107 * Can't control lifetime of pipe buffers, so always 1108 * copy user pages. 1109 */ 1110 if (cs->req->args->user_pages) { 1111 err = fuse_copy_fill(cs); 1112 if (err) 1113 return err; 1114 } else { 1115 return fuse_ref_page(cs, page, offset, count); 1116 } 1117 } else if (!cs->len) { 1118 if (cs->move_pages && page && 1119 offset == 0 && count == PAGE_SIZE) { 1120 err = fuse_try_move_page(cs, pagep); 1121 if (err <= 0) 1122 return err; 1123 } else { 1124 err = fuse_copy_fill(cs); 1125 if (err) 1126 return err; 1127 } 1128 } 1129 if (page) { 1130 void *mapaddr = kmap_local_page(page); 1131 void *buf = mapaddr + offset; 1132 offset += fuse_copy_do(cs, &buf, &count); 1133 kunmap_local(mapaddr); 1134 } else 1135 offset += fuse_copy_do(cs, NULL, &count); 1136 } 1137 if (page && !cs->write) 1138 flush_dcache_page(page); 1139 return 0; 1140 } 1141 1142 /* Copy pages in the request to/from userspace buffer */ 1143 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes, 1144 int zeroing) 1145 { 1146 unsigned i; 1147 struct fuse_req *req = cs->req; 1148 struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args); 1149 1150 for (i = 0; i < ap->num_folios && (nbytes || zeroing); i++) { 1151 int err; 1152 unsigned int offset = ap->descs[i].offset; 1153 unsigned int count = min(nbytes, ap->descs[i].length); 1154 struct page *orig, *pagep; 1155 1156 orig = pagep = &ap->folios[i]->page; 1157 1158 err = fuse_copy_page(cs, &pagep, offset, count, zeroing); 1159 if (err) 1160 return err; 1161 1162 nbytes -= count; 1163 1164 /* 1165 * fuse_copy_page may have moved a page from a pipe instead of 1166 * copying into our given page, so update the folios if it was 1167 * replaced. 1168 */ 1169 if (pagep != orig) 1170 ap->folios[i] = page_folio(pagep); 1171 } 1172 return 0; 1173 } 1174 1175 /* Copy a single argument in the request to/from userspace buffer */ 1176 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size) 1177 { 1178 while (size) { 1179 if (!cs->len) { 1180 int err = fuse_copy_fill(cs); 1181 if (err) 1182 return err; 1183 } 1184 fuse_copy_do(cs, &val, &size); 1185 } 1186 return 0; 1187 } 1188 1189 /* Copy request arguments to/from userspace buffer */ 1190 int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs, 1191 unsigned argpages, struct fuse_arg *args, 1192 int zeroing) 1193 { 1194 int err = 0; 1195 unsigned i; 1196 1197 for (i = 0; !err && i < numargs; i++) { 1198 struct fuse_arg *arg = &args[i]; 1199 if (i == numargs - 1 && argpages) 1200 err = fuse_copy_pages(cs, arg->size, zeroing); 1201 else 1202 err = fuse_copy_one(cs, arg->value, arg->size); 1203 } 1204 return err; 1205 } 1206 1207 static int forget_pending(struct fuse_iqueue *fiq) 1208 { 1209 return fiq->forget_list_head.next != NULL; 1210 } 1211 1212 static int request_pending(struct fuse_iqueue *fiq) 1213 { 1214 return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) || 1215 forget_pending(fiq); 1216 } 1217 1218 /* 1219 * Transfer an interrupt request to userspace 1220 * 1221 * Unlike other requests this is assembled on demand, without a need 1222 * to allocate a separate fuse_req structure. 1223 * 1224 * Called with fiq->lock held, releases it 1225 */ 1226 static int fuse_read_interrupt(struct fuse_iqueue *fiq, 1227 struct fuse_copy_state *cs, 1228 size_t nbytes, struct fuse_req *req) 1229 __releases(fiq->lock) 1230 { 1231 struct fuse_in_header ih; 1232 struct fuse_interrupt_in arg; 1233 unsigned reqsize = sizeof(ih) + sizeof(arg); 1234 int err; 1235 1236 list_del_init(&req->intr_entry); 1237 memset(&ih, 0, sizeof(ih)); 1238 memset(&arg, 0, sizeof(arg)); 1239 ih.len = reqsize; 1240 ih.opcode = FUSE_INTERRUPT; 1241 ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT); 1242 arg.unique = req->in.h.unique; 1243 1244 spin_unlock(&fiq->lock); 1245 if (nbytes < reqsize) 1246 return -EINVAL; 1247 1248 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1249 if (!err) 1250 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1251 fuse_copy_finish(cs); 1252 1253 return err ? err : reqsize; 1254 } 1255 1256 static struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq, 1257 unsigned int max, 1258 unsigned int *countp) 1259 { 1260 struct fuse_forget_link *head = fiq->forget_list_head.next; 1261 struct fuse_forget_link **newhead = &head; 1262 unsigned count; 1263 1264 for (count = 0; *newhead != NULL && count < max; count++) 1265 newhead = &(*newhead)->next; 1266 1267 fiq->forget_list_head.next = *newhead; 1268 *newhead = NULL; 1269 if (fiq->forget_list_head.next == NULL) 1270 fiq->forget_list_tail = &fiq->forget_list_head; 1271 1272 if (countp != NULL) 1273 *countp = count; 1274 1275 return head; 1276 } 1277 1278 static int fuse_read_single_forget(struct fuse_iqueue *fiq, 1279 struct fuse_copy_state *cs, 1280 size_t nbytes) 1281 __releases(fiq->lock) 1282 { 1283 int err; 1284 struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL); 1285 struct fuse_forget_in arg = { 1286 .nlookup = forget->forget_one.nlookup, 1287 }; 1288 struct fuse_in_header ih = { 1289 .opcode = FUSE_FORGET, 1290 .nodeid = forget->forget_one.nodeid, 1291 .unique = fuse_get_unique_locked(fiq), 1292 .len = sizeof(ih) + sizeof(arg), 1293 }; 1294 1295 spin_unlock(&fiq->lock); 1296 kfree(forget); 1297 if (nbytes < ih.len) 1298 return -EINVAL; 1299 1300 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1301 if (!err) 1302 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1303 fuse_copy_finish(cs); 1304 1305 if (err) 1306 return err; 1307 1308 return ih.len; 1309 } 1310 1311 static int fuse_read_batch_forget(struct fuse_iqueue *fiq, 1312 struct fuse_copy_state *cs, size_t nbytes) 1313 __releases(fiq->lock) 1314 { 1315 int err; 1316 unsigned max_forgets; 1317 unsigned count; 1318 struct fuse_forget_link *head; 1319 struct fuse_batch_forget_in arg = { .count = 0 }; 1320 struct fuse_in_header ih = { 1321 .opcode = FUSE_BATCH_FORGET, 1322 .unique = fuse_get_unique_locked(fiq), 1323 .len = sizeof(ih) + sizeof(arg), 1324 }; 1325 1326 if (nbytes < ih.len) { 1327 spin_unlock(&fiq->lock); 1328 return -EINVAL; 1329 } 1330 1331 max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one); 1332 head = fuse_dequeue_forget(fiq, max_forgets, &count); 1333 spin_unlock(&fiq->lock); 1334 1335 arg.count = count; 1336 ih.len += count * sizeof(struct fuse_forget_one); 1337 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1338 if (!err) 1339 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1340 1341 while (head) { 1342 struct fuse_forget_link *forget = head; 1343 1344 if (!err) { 1345 err = fuse_copy_one(cs, &forget->forget_one, 1346 sizeof(forget->forget_one)); 1347 } 1348 head = forget->next; 1349 kfree(forget); 1350 } 1351 1352 fuse_copy_finish(cs); 1353 1354 if (err) 1355 return err; 1356 1357 return ih.len; 1358 } 1359 1360 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq, 1361 struct fuse_copy_state *cs, 1362 size_t nbytes) 1363 __releases(fiq->lock) 1364 { 1365 if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL) 1366 return fuse_read_single_forget(fiq, cs, nbytes); 1367 else 1368 return fuse_read_batch_forget(fiq, cs, nbytes); 1369 } 1370 1371 /* 1372 * Read a single request into the userspace filesystem's buffer. This 1373 * function waits until a request is available, then removes it from 1374 * the pending list and copies request data to userspace buffer. If 1375 * no reply is needed (FORGET) or request has been aborted or there 1376 * was an error during the copying then it's finished by calling 1377 * fuse_request_end(). Otherwise add it to the processing list, and set 1378 * the 'sent' flag. 1379 */ 1380 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file, 1381 struct fuse_copy_state *cs, size_t nbytes) 1382 { 1383 ssize_t err; 1384 struct fuse_conn *fc = fud->fc; 1385 struct fuse_iqueue *fiq = &fc->iq; 1386 struct fuse_pqueue *fpq = &fud->pq; 1387 struct fuse_req *req; 1388 struct fuse_args *args; 1389 unsigned reqsize; 1390 unsigned int hash; 1391 1392 /* 1393 * Require sane minimum read buffer - that has capacity for fixed part 1394 * of any request header + negotiated max_write room for data. 1395 * 1396 * Historically libfuse reserves 4K for fixed header room, but e.g. 1397 * GlusterFS reserves only 80 bytes 1398 * 1399 * = `sizeof(fuse_in_header) + sizeof(fuse_write_in)` 1400 * 1401 * which is the absolute minimum any sane filesystem should be using 1402 * for header room. 1403 */ 1404 if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER, 1405 sizeof(struct fuse_in_header) + 1406 sizeof(struct fuse_write_in) + 1407 fc->max_write)) 1408 return -EINVAL; 1409 1410 restart: 1411 for (;;) { 1412 spin_lock(&fiq->lock); 1413 if (!fiq->connected || request_pending(fiq)) 1414 break; 1415 spin_unlock(&fiq->lock); 1416 1417 if (file->f_flags & O_NONBLOCK) 1418 return -EAGAIN; 1419 err = wait_event_interruptible_exclusive(fiq->waitq, 1420 !fiq->connected || request_pending(fiq)); 1421 if (err) 1422 return err; 1423 } 1424 1425 if (!fiq->connected) { 1426 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1427 goto err_unlock; 1428 } 1429 1430 if (!list_empty(&fiq->interrupts)) { 1431 req = list_entry(fiq->interrupts.next, struct fuse_req, 1432 intr_entry); 1433 return fuse_read_interrupt(fiq, cs, nbytes, req); 1434 } 1435 1436 if (forget_pending(fiq)) { 1437 if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0) 1438 return fuse_read_forget(fc, fiq, cs, nbytes); 1439 1440 if (fiq->forget_batch <= -8) 1441 fiq->forget_batch = 16; 1442 } 1443 1444 req = list_entry(fiq->pending.next, struct fuse_req, list); 1445 clear_bit(FR_PENDING, &req->flags); 1446 list_del_init(&req->list); 1447 spin_unlock(&fiq->lock); 1448 1449 args = req->args; 1450 reqsize = req->in.h.len; 1451 1452 /* If request is too large, reply with an error and restart the read */ 1453 if (nbytes < reqsize) { 1454 req->out.h.error = -EIO; 1455 /* SETXATTR is special, since it may contain too large data */ 1456 if (args->opcode == FUSE_SETXATTR) 1457 req->out.h.error = -E2BIG; 1458 fuse_request_end(req); 1459 goto restart; 1460 } 1461 spin_lock(&fpq->lock); 1462 /* 1463 * Must not put request on fpq->io queue after having been shut down by 1464 * fuse_abort_conn() 1465 */ 1466 if (!fpq->connected) { 1467 req->out.h.error = err = -ECONNABORTED; 1468 goto out_end; 1469 1470 } 1471 list_add(&req->list, &fpq->io); 1472 spin_unlock(&fpq->lock); 1473 cs->req = req; 1474 err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h)); 1475 if (!err) 1476 err = fuse_copy_args(cs, args->in_numargs, args->in_pages, 1477 (struct fuse_arg *) args->in_args, 0); 1478 fuse_copy_finish(cs); 1479 spin_lock(&fpq->lock); 1480 clear_bit(FR_LOCKED, &req->flags); 1481 if (!fpq->connected) { 1482 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1483 goto out_end; 1484 } 1485 if (err) { 1486 req->out.h.error = -EIO; 1487 goto out_end; 1488 } 1489 if (!test_bit(FR_ISREPLY, &req->flags)) { 1490 err = reqsize; 1491 goto out_end; 1492 } 1493 hash = fuse_req_hash(req->in.h.unique); 1494 list_move_tail(&req->list, &fpq->processing[hash]); 1495 __fuse_get_request(req); 1496 set_bit(FR_SENT, &req->flags); 1497 spin_unlock(&fpq->lock); 1498 /* matches barrier in request_wait_answer() */ 1499 smp_mb__after_atomic(); 1500 if (test_bit(FR_INTERRUPTED, &req->flags)) 1501 queue_interrupt(req); 1502 fuse_put_request(req); 1503 1504 return reqsize; 1505 1506 out_end: 1507 if (!test_bit(FR_PRIVATE, &req->flags)) 1508 list_del_init(&req->list); 1509 spin_unlock(&fpq->lock); 1510 fuse_request_end(req); 1511 return err; 1512 1513 err_unlock: 1514 spin_unlock(&fiq->lock); 1515 return err; 1516 } 1517 1518 static int fuse_dev_open(struct inode *inode, struct file *file) 1519 { 1520 /* 1521 * The fuse device's file's private_data is used to hold 1522 * the fuse_conn(ection) when it is mounted, and is used to 1523 * keep track of whether the file has been mounted already. 1524 */ 1525 file->private_data = NULL; 1526 return 0; 1527 } 1528 1529 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to) 1530 { 1531 struct fuse_copy_state cs; 1532 struct file *file = iocb->ki_filp; 1533 struct fuse_dev *fud = fuse_get_dev(file); 1534 1535 if (!fud) 1536 return -EPERM; 1537 1538 if (!user_backed_iter(to)) 1539 return -EINVAL; 1540 1541 fuse_copy_init(&cs, 1, to); 1542 1543 return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to)); 1544 } 1545 1546 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos, 1547 struct pipe_inode_info *pipe, 1548 size_t len, unsigned int flags) 1549 { 1550 int total, ret; 1551 int page_nr = 0; 1552 struct pipe_buffer *bufs; 1553 struct fuse_copy_state cs; 1554 struct fuse_dev *fud = fuse_get_dev(in); 1555 1556 if (!fud) 1557 return -EPERM; 1558 1559 bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer), 1560 GFP_KERNEL); 1561 if (!bufs) 1562 return -ENOMEM; 1563 1564 fuse_copy_init(&cs, 1, NULL); 1565 cs.pipebufs = bufs; 1566 cs.pipe = pipe; 1567 ret = fuse_dev_do_read(fud, in, &cs, len); 1568 if (ret < 0) 1569 goto out; 1570 1571 if (pipe_buf_usage(pipe) + cs.nr_segs > pipe->max_usage) { 1572 ret = -EIO; 1573 goto out; 1574 } 1575 1576 for (ret = total = 0; page_nr < cs.nr_segs; total += ret) { 1577 /* 1578 * Need to be careful about this. Having buf->ops in module 1579 * code can Oops if the buffer persists after module unload. 1580 */ 1581 bufs[page_nr].ops = &nosteal_pipe_buf_ops; 1582 bufs[page_nr].flags = 0; 1583 ret = add_to_pipe(pipe, &bufs[page_nr++]); 1584 if (unlikely(ret < 0)) 1585 break; 1586 } 1587 if (total) 1588 ret = total; 1589 out: 1590 for (; page_nr < cs.nr_segs; page_nr++) 1591 put_page(bufs[page_nr].page); 1592 1593 kvfree(bufs); 1594 return ret; 1595 } 1596 1597 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size, 1598 struct fuse_copy_state *cs) 1599 { 1600 struct fuse_notify_poll_wakeup_out outarg; 1601 int err = -EINVAL; 1602 1603 if (size != sizeof(outarg)) 1604 goto err; 1605 1606 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1607 if (err) 1608 goto err; 1609 1610 fuse_copy_finish(cs); 1611 return fuse_notify_poll_wakeup(fc, &outarg); 1612 1613 err: 1614 fuse_copy_finish(cs); 1615 return err; 1616 } 1617 1618 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size, 1619 struct fuse_copy_state *cs) 1620 { 1621 struct fuse_notify_inval_inode_out outarg; 1622 int err = -EINVAL; 1623 1624 if (size != sizeof(outarg)) 1625 goto err; 1626 1627 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1628 if (err) 1629 goto err; 1630 fuse_copy_finish(cs); 1631 1632 down_read(&fc->killsb); 1633 err = fuse_reverse_inval_inode(fc, outarg.ino, 1634 outarg.off, outarg.len); 1635 up_read(&fc->killsb); 1636 return err; 1637 1638 err: 1639 fuse_copy_finish(cs); 1640 return err; 1641 } 1642 1643 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size, 1644 struct fuse_copy_state *cs) 1645 { 1646 struct fuse_notify_inval_entry_out outarg; 1647 int err; 1648 char *buf = NULL; 1649 struct qstr name; 1650 1651 err = -EINVAL; 1652 if (size < sizeof(outarg)) 1653 goto err; 1654 1655 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1656 if (err) 1657 goto err; 1658 1659 err = -ENAMETOOLONG; 1660 if (outarg.namelen > fc->name_max) 1661 goto err; 1662 1663 err = -EINVAL; 1664 if (size != sizeof(outarg) + outarg.namelen + 1) 1665 goto err; 1666 1667 err = -ENOMEM; 1668 buf = kzalloc(outarg.namelen + 1, GFP_KERNEL); 1669 if (!buf) 1670 goto err; 1671 1672 name.name = buf; 1673 name.len = outarg.namelen; 1674 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1675 if (err) 1676 goto err; 1677 fuse_copy_finish(cs); 1678 buf[outarg.namelen] = 0; 1679 1680 down_read(&fc->killsb); 1681 err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags); 1682 up_read(&fc->killsb); 1683 kfree(buf); 1684 return err; 1685 1686 err: 1687 kfree(buf); 1688 fuse_copy_finish(cs); 1689 return err; 1690 } 1691 1692 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size, 1693 struct fuse_copy_state *cs) 1694 { 1695 struct fuse_notify_delete_out outarg; 1696 int err; 1697 char *buf = NULL; 1698 struct qstr name; 1699 1700 err = -EINVAL; 1701 if (size < sizeof(outarg)) 1702 goto err; 1703 1704 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1705 if (err) 1706 goto err; 1707 1708 err = -ENAMETOOLONG; 1709 if (outarg.namelen > fc->name_max) 1710 goto err; 1711 1712 err = -EINVAL; 1713 if (size != sizeof(outarg) + outarg.namelen + 1) 1714 goto err; 1715 1716 err = -ENOMEM; 1717 buf = kzalloc(outarg.namelen + 1, GFP_KERNEL); 1718 if (!buf) 1719 goto err; 1720 1721 name.name = buf; 1722 name.len = outarg.namelen; 1723 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1724 if (err) 1725 goto err; 1726 fuse_copy_finish(cs); 1727 buf[outarg.namelen] = 0; 1728 1729 down_read(&fc->killsb); 1730 err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0); 1731 up_read(&fc->killsb); 1732 kfree(buf); 1733 return err; 1734 1735 err: 1736 kfree(buf); 1737 fuse_copy_finish(cs); 1738 return err; 1739 } 1740 1741 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size, 1742 struct fuse_copy_state *cs) 1743 { 1744 struct fuse_notify_store_out outarg; 1745 struct inode *inode; 1746 struct address_space *mapping; 1747 u64 nodeid; 1748 int err; 1749 pgoff_t index; 1750 unsigned int offset; 1751 unsigned int num; 1752 loff_t file_size; 1753 loff_t end; 1754 1755 err = -EINVAL; 1756 if (size < sizeof(outarg)) 1757 goto out_finish; 1758 1759 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1760 if (err) 1761 goto out_finish; 1762 1763 err = -EINVAL; 1764 if (size - sizeof(outarg) != outarg.size) 1765 goto out_finish; 1766 1767 nodeid = outarg.nodeid; 1768 1769 down_read(&fc->killsb); 1770 1771 err = -ENOENT; 1772 inode = fuse_ilookup(fc, nodeid, NULL); 1773 if (!inode) 1774 goto out_up_killsb; 1775 1776 mapping = inode->i_mapping; 1777 index = outarg.offset >> PAGE_SHIFT; 1778 offset = outarg.offset & ~PAGE_MASK; 1779 file_size = i_size_read(inode); 1780 end = outarg.offset + outarg.size; 1781 if (end > file_size) { 1782 file_size = end; 1783 fuse_write_update_attr(inode, file_size, outarg.size); 1784 } 1785 1786 num = outarg.size; 1787 while (num) { 1788 struct folio *folio; 1789 struct page *page; 1790 unsigned int this_num; 1791 1792 folio = filemap_grab_folio(mapping, index); 1793 err = PTR_ERR(folio); 1794 if (IS_ERR(folio)) 1795 goto out_iput; 1796 1797 page = &folio->page; 1798 this_num = min_t(unsigned, num, folio_size(folio) - offset); 1799 err = fuse_copy_page(cs, &page, offset, this_num, 0); 1800 if (!folio_test_uptodate(folio) && !err && offset == 0 && 1801 (this_num == folio_size(folio) || file_size == end)) { 1802 folio_zero_segment(folio, this_num, folio_size(folio)); 1803 folio_mark_uptodate(folio); 1804 } 1805 folio_unlock(folio); 1806 folio_put(folio); 1807 1808 if (err) 1809 goto out_iput; 1810 1811 num -= this_num; 1812 offset = 0; 1813 index++; 1814 } 1815 1816 err = 0; 1817 1818 out_iput: 1819 iput(inode); 1820 out_up_killsb: 1821 up_read(&fc->killsb); 1822 out_finish: 1823 fuse_copy_finish(cs); 1824 return err; 1825 } 1826 1827 struct fuse_retrieve_args { 1828 struct fuse_args_pages ap; 1829 struct fuse_notify_retrieve_in inarg; 1830 }; 1831 1832 static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args, 1833 int error) 1834 { 1835 struct fuse_retrieve_args *ra = 1836 container_of(args, typeof(*ra), ap.args); 1837 1838 release_pages(ra->ap.folios, ra->ap.num_folios); 1839 kfree(ra); 1840 } 1841 1842 static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode, 1843 struct fuse_notify_retrieve_out *outarg) 1844 { 1845 int err; 1846 struct address_space *mapping = inode->i_mapping; 1847 pgoff_t index; 1848 loff_t file_size; 1849 unsigned int num; 1850 unsigned int offset; 1851 size_t total_len = 0; 1852 unsigned int num_pages, cur_pages = 0; 1853 struct fuse_conn *fc = fm->fc; 1854 struct fuse_retrieve_args *ra; 1855 size_t args_size = sizeof(*ra); 1856 struct fuse_args_pages *ap; 1857 struct fuse_args *args; 1858 1859 offset = outarg->offset & ~PAGE_MASK; 1860 file_size = i_size_read(inode); 1861 1862 num = min(outarg->size, fc->max_write); 1863 if (outarg->offset > file_size) 1864 num = 0; 1865 else if (outarg->offset + num > file_size) 1866 num = file_size - outarg->offset; 1867 1868 num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1869 num_pages = min(num_pages, fc->max_pages); 1870 1871 args_size += num_pages * (sizeof(ap->folios[0]) + sizeof(ap->descs[0])); 1872 1873 ra = kzalloc(args_size, GFP_KERNEL); 1874 if (!ra) 1875 return -ENOMEM; 1876 1877 ap = &ra->ap; 1878 ap->folios = (void *) (ra + 1); 1879 ap->descs = (void *) (ap->folios + num_pages); 1880 1881 args = &ap->args; 1882 args->nodeid = outarg->nodeid; 1883 args->opcode = FUSE_NOTIFY_REPLY; 1884 args->in_numargs = 3; 1885 args->in_pages = true; 1886 args->end = fuse_retrieve_end; 1887 1888 index = outarg->offset >> PAGE_SHIFT; 1889 1890 while (num && cur_pages < num_pages) { 1891 struct folio *folio; 1892 unsigned int this_num; 1893 1894 folio = filemap_get_folio(mapping, index); 1895 if (IS_ERR(folio)) 1896 break; 1897 1898 this_num = min_t(unsigned, num, PAGE_SIZE - offset); 1899 ap->folios[ap->num_folios] = folio; 1900 ap->descs[ap->num_folios].offset = offset; 1901 ap->descs[ap->num_folios].length = this_num; 1902 ap->num_folios++; 1903 cur_pages++; 1904 1905 offset = 0; 1906 num -= this_num; 1907 total_len += this_num; 1908 index++; 1909 } 1910 ra->inarg.offset = outarg->offset; 1911 ra->inarg.size = total_len; 1912 fuse_set_zero_arg0(args); 1913 args->in_args[1].size = sizeof(ra->inarg); 1914 args->in_args[1].value = &ra->inarg; 1915 args->in_args[2].size = total_len; 1916 1917 err = fuse_simple_notify_reply(fm, args, outarg->notify_unique); 1918 if (err) 1919 fuse_retrieve_end(fm, args, err); 1920 1921 return err; 1922 } 1923 1924 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size, 1925 struct fuse_copy_state *cs) 1926 { 1927 struct fuse_notify_retrieve_out outarg; 1928 struct fuse_mount *fm; 1929 struct inode *inode; 1930 u64 nodeid; 1931 int err; 1932 1933 err = -EINVAL; 1934 if (size != sizeof(outarg)) 1935 goto copy_finish; 1936 1937 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1938 if (err) 1939 goto copy_finish; 1940 1941 fuse_copy_finish(cs); 1942 1943 down_read(&fc->killsb); 1944 err = -ENOENT; 1945 nodeid = outarg.nodeid; 1946 1947 inode = fuse_ilookup(fc, nodeid, &fm); 1948 if (inode) { 1949 err = fuse_retrieve(fm, inode, &outarg); 1950 iput(inode); 1951 } 1952 up_read(&fc->killsb); 1953 1954 return err; 1955 1956 copy_finish: 1957 fuse_copy_finish(cs); 1958 return err; 1959 } 1960 1961 /* 1962 * Resending all processing queue requests. 1963 * 1964 * During a FUSE daemon panics and failover, it is possible for some inflight 1965 * requests to be lost and never returned. As a result, applications awaiting 1966 * replies would become stuck forever. To address this, we can use notification 1967 * to trigger resending of these pending requests to the FUSE daemon, ensuring 1968 * they are properly processed again. 1969 * 1970 * Please note that this strategy is applicable only to idempotent requests or 1971 * if the FUSE daemon takes careful measures to avoid processing duplicated 1972 * non-idempotent requests. 1973 */ 1974 static void fuse_resend(struct fuse_conn *fc) 1975 { 1976 struct fuse_dev *fud; 1977 struct fuse_req *req, *next; 1978 struct fuse_iqueue *fiq = &fc->iq; 1979 LIST_HEAD(to_queue); 1980 unsigned int i; 1981 1982 spin_lock(&fc->lock); 1983 if (!fc->connected) { 1984 spin_unlock(&fc->lock); 1985 return; 1986 } 1987 1988 list_for_each_entry(fud, &fc->devices, entry) { 1989 struct fuse_pqueue *fpq = &fud->pq; 1990 1991 spin_lock(&fpq->lock); 1992 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 1993 list_splice_tail_init(&fpq->processing[i], &to_queue); 1994 spin_unlock(&fpq->lock); 1995 } 1996 spin_unlock(&fc->lock); 1997 1998 list_for_each_entry_safe(req, next, &to_queue, list) { 1999 set_bit(FR_PENDING, &req->flags); 2000 clear_bit(FR_SENT, &req->flags); 2001 /* mark the request as resend request */ 2002 req->in.h.unique |= FUSE_UNIQUE_RESEND; 2003 } 2004 2005 spin_lock(&fiq->lock); 2006 if (!fiq->connected) { 2007 spin_unlock(&fiq->lock); 2008 list_for_each_entry(req, &to_queue, list) 2009 clear_bit(FR_PENDING, &req->flags); 2010 fuse_dev_end_requests(&to_queue); 2011 return; 2012 } 2013 /* iq and pq requests are both oldest to newest */ 2014 list_splice(&to_queue, &fiq->pending); 2015 fuse_dev_wake_and_unlock(fiq); 2016 } 2017 2018 static int fuse_notify_resend(struct fuse_conn *fc) 2019 { 2020 fuse_resend(fc); 2021 return 0; 2022 } 2023 2024 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code, 2025 unsigned int size, struct fuse_copy_state *cs) 2026 { 2027 /* Don't try to move pages (yet) */ 2028 cs->move_pages = 0; 2029 2030 switch (code) { 2031 case FUSE_NOTIFY_POLL: 2032 return fuse_notify_poll(fc, size, cs); 2033 2034 case FUSE_NOTIFY_INVAL_INODE: 2035 return fuse_notify_inval_inode(fc, size, cs); 2036 2037 case FUSE_NOTIFY_INVAL_ENTRY: 2038 return fuse_notify_inval_entry(fc, size, cs); 2039 2040 case FUSE_NOTIFY_STORE: 2041 return fuse_notify_store(fc, size, cs); 2042 2043 case FUSE_NOTIFY_RETRIEVE: 2044 return fuse_notify_retrieve(fc, size, cs); 2045 2046 case FUSE_NOTIFY_DELETE: 2047 return fuse_notify_delete(fc, size, cs); 2048 2049 case FUSE_NOTIFY_RESEND: 2050 return fuse_notify_resend(fc); 2051 2052 default: 2053 fuse_copy_finish(cs); 2054 return -EINVAL; 2055 } 2056 } 2057 2058 /* Look up request on processing list by unique ID */ 2059 struct fuse_req *fuse_request_find(struct fuse_pqueue *fpq, u64 unique) 2060 { 2061 unsigned int hash = fuse_req_hash(unique); 2062 struct fuse_req *req; 2063 2064 list_for_each_entry(req, &fpq->processing[hash], list) { 2065 if (req->in.h.unique == unique) 2066 return req; 2067 } 2068 return NULL; 2069 } 2070 2071 int fuse_copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args, 2072 unsigned nbytes) 2073 { 2074 2075 unsigned int reqsize = 0; 2076 2077 /* 2078 * Uring has all headers separated from args - args is payload only 2079 */ 2080 if (!cs->is_uring) 2081 reqsize = sizeof(struct fuse_out_header); 2082 2083 reqsize += fuse_len_args(args->out_numargs, args->out_args); 2084 2085 if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar)) 2086 return -EINVAL; 2087 else if (reqsize > nbytes) { 2088 struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1]; 2089 unsigned diffsize = reqsize - nbytes; 2090 2091 if (diffsize > lastarg->size) 2092 return -EINVAL; 2093 lastarg->size -= diffsize; 2094 } 2095 return fuse_copy_args(cs, args->out_numargs, args->out_pages, 2096 args->out_args, args->page_zeroing); 2097 } 2098 2099 /* 2100 * Write a single reply to a request. First the header is copied from 2101 * the write buffer. The request is then searched on the processing 2102 * list by the unique ID found in the header. If found, then remove 2103 * it from the list and copy the rest of the buffer to the request. 2104 * The request is finished by calling fuse_request_end(). 2105 */ 2106 static ssize_t fuse_dev_do_write(struct fuse_dev *fud, 2107 struct fuse_copy_state *cs, size_t nbytes) 2108 { 2109 int err; 2110 struct fuse_conn *fc = fud->fc; 2111 struct fuse_pqueue *fpq = &fud->pq; 2112 struct fuse_req *req; 2113 struct fuse_out_header oh; 2114 2115 err = -EINVAL; 2116 if (nbytes < sizeof(struct fuse_out_header)) 2117 goto out; 2118 2119 err = fuse_copy_one(cs, &oh, sizeof(oh)); 2120 if (err) 2121 goto copy_finish; 2122 2123 err = -EINVAL; 2124 if (oh.len != nbytes) 2125 goto copy_finish; 2126 2127 /* 2128 * Zero oh.unique indicates unsolicited notification message 2129 * and error contains notification code. 2130 */ 2131 if (!oh.unique) { 2132 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs); 2133 goto out; 2134 } 2135 2136 err = -EINVAL; 2137 if (oh.error <= -512 || oh.error > 0) 2138 goto copy_finish; 2139 2140 spin_lock(&fpq->lock); 2141 req = NULL; 2142 if (fpq->connected) 2143 req = fuse_request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT); 2144 2145 err = -ENOENT; 2146 if (!req) { 2147 spin_unlock(&fpq->lock); 2148 goto copy_finish; 2149 } 2150 2151 /* Is it an interrupt reply ID? */ 2152 if (oh.unique & FUSE_INT_REQ_BIT) { 2153 __fuse_get_request(req); 2154 spin_unlock(&fpq->lock); 2155 2156 err = 0; 2157 if (nbytes != sizeof(struct fuse_out_header)) 2158 err = -EINVAL; 2159 else if (oh.error == -ENOSYS) 2160 fc->no_interrupt = 1; 2161 else if (oh.error == -EAGAIN) 2162 err = queue_interrupt(req); 2163 2164 fuse_put_request(req); 2165 2166 goto copy_finish; 2167 } 2168 2169 clear_bit(FR_SENT, &req->flags); 2170 list_move(&req->list, &fpq->io); 2171 req->out.h = oh; 2172 set_bit(FR_LOCKED, &req->flags); 2173 spin_unlock(&fpq->lock); 2174 cs->req = req; 2175 if (!req->args->page_replace) 2176 cs->move_pages = 0; 2177 2178 if (oh.error) 2179 err = nbytes != sizeof(oh) ? -EINVAL : 0; 2180 else 2181 err = fuse_copy_out_args(cs, req->args, nbytes); 2182 fuse_copy_finish(cs); 2183 2184 spin_lock(&fpq->lock); 2185 clear_bit(FR_LOCKED, &req->flags); 2186 if (!fpq->connected) 2187 err = -ENOENT; 2188 else if (err) 2189 req->out.h.error = -EIO; 2190 if (!test_bit(FR_PRIVATE, &req->flags)) 2191 list_del_init(&req->list); 2192 spin_unlock(&fpq->lock); 2193 2194 fuse_request_end(req); 2195 out: 2196 return err ? err : nbytes; 2197 2198 copy_finish: 2199 fuse_copy_finish(cs); 2200 goto out; 2201 } 2202 2203 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from) 2204 { 2205 struct fuse_copy_state cs; 2206 struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp); 2207 2208 if (!fud) 2209 return -EPERM; 2210 2211 if (!user_backed_iter(from)) 2212 return -EINVAL; 2213 2214 fuse_copy_init(&cs, 0, from); 2215 2216 return fuse_dev_do_write(fud, &cs, iov_iter_count(from)); 2217 } 2218 2219 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe, 2220 struct file *out, loff_t *ppos, 2221 size_t len, unsigned int flags) 2222 { 2223 unsigned int head, tail, count; 2224 unsigned nbuf; 2225 unsigned idx; 2226 struct pipe_buffer *bufs; 2227 struct fuse_copy_state cs; 2228 struct fuse_dev *fud; 2229 size_t rem; 2230 ssize_t ret; 2231 2232 fud = fuse_get_dev(out); 2233 if (!fud) 2234 return -EPERM; 2235 2236 pipe_lock(pipe); 2237 2238 head = pipe->head; 2239 tail = pipe->tail; 2240 count = pipe_occupancy(head, tail); 2241 2242 bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL); 2243 if (!bufs) { 2244 pipe_unlock(pipe); 2245 return -ENOMEM; 2246 } 2247 2248 nbuf = 0; 2249 rem = 0; 2250 for (idx = tail; !pipe_empty(head, idx) && rem < len; idx++) 2251 rem += pipe_buf(pipe, idx)->len; 2252 2253 ret = -EINVAL; 2254 if (rem < len) 2255 goto out_free; 2256 2257 rem = len; 2258 while (rem) { 2259 struct pipe_buffer *ibuf; 2260 struct pipe_buffer *obuf; 2261 2262 if (WARN_ON(nbuf >= count || pipe_empty(head, tail))) 2263 goto out_free; 2264 2265 ibuf = pipe_buf(pipe, tail); 2266 obuf = &bufs[nbuf]; 2267 2268 if (rem >= ibuf->len) { 2269 *obuf = *ibuf; 2270 ibuf->ops = NULL; 2271 tail++; 2272 pipe->tail = tail; 2273 } else { 2274 if (!pipe_buf_get(pipe, ibuf)) 2275 goto out_free; 2276 2277 *obuf = *ibuf; 2278 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 2279 obuf->len = rem; 2280 ibuf->offset += obuf->len; 2281 ibuf->len -= obuf->len; 2282 } 2283 nbuf++; 2284 rem -= obuf->len; 2285 } 2286 pipe_unlock(pipe); 2287 2288 fuse_copy_init(&cs, 0, NULL); 2289 cs.pipebufs = bufs; 2290 cs.nr_segs = nbuf; 2291 cs.pipe = pipe; 2292 2293 if (flags & SPLICE_F_MOVE) 2294 cs.move_pages = 1; 2295 2296 ret = fuse_dev_do_write(fud, &cs, len); 2297 2298 pipe_lock(pipe); 2299 out_free: 2300 for (idx = 0; idx < nbuf; idx++) { 2301 struct pipe_buffer *buf = &bufs[idx]; 2302 2303 if (buf->ops) 2304 pipe_buf_release(pipe, buf); 2305 } 2306 pipe_unlock(pipe); 2307 2308 kvfree(bufs); 2309 return ret; 2310 } 2311 2312 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait) 2313 { 2314 __poll_t mask = EPOLLOUT | EPOLLWRNORM; 2315 struct fuse_iqueue *fiq; 2316 struct fuse_dev *fud = fuse_get_dev(file); 2317 2318 if (!fud) 2319 return EPOLLERR; 2320 2321 fiq = &fud->fc->iq; 2322 poll_wait(file, &fiq->waitq, wait); 2323 2324 spin_lock(&fiq->lock); 2325 if (!fiq->connected) 2326 mask = EPOLLERR; 2327 else if (request_pending(fiq)) 2328 mask |= EPOLLIN | EPOLLRDNORM; 2329 spin_unlock(&fiq->lock); 2330 2331 return mask; 2332 } 2333 2334 /* Abort all requests on the given list (pending or processing) */ 2335 void fuse_dev_end_requests(struct list_head *head) 2336 { 2337 while (!list_empty(head)) { 2338 struct fuse_req *req; 2339 req = list_entry(head->next, struct fuse_req, list); 2340 req->out.h.error = -ECONNABORTED; 2341 clear_bit(FR_SENT, &req->flags); 2342 list_del_init(&req->list); 2343 fuse_request_end(req); 2344 } 2345 } 2346 2347 static void end_polls(struct fuse_conn *fc) 2348 { 2349 struct rb_node *p; 2350 2351 p = rb_first(&fc->polled_files); 2352 2353 while (p) { 2354 struct fuse_file *ff; 2355 ff = rb_entry(p, struct fuse_file, polled_node); 2356 wake_up_interruptible_all(&ff->poll_wait); 2357 2358 p = rb_next(p); 2359 } 2360 } 2361 2362 /* 2363 * Abort all requests. 2364 * 2365 * Emergency exit in case of a malicious or accidental deadlock, or just a hung 2366 * filesystem. 2367 * 2368 * The same effect is usually achievable through killing the filesystem daemon 2369 * and all users of the filesystem. The exception is the combination of an 2370 * asynchronous request and the tricky deadlock (see 2371 * Documentation/filesystems/fuse.rst). 2372 * 2373 * Aborting requests under I/O goes as follows: 1: Separate out unlocked 2374 * requests, they should be finished off immediately. Locked requests will be 2375 * finished after unlock; see unlock_request(). 2: Finish off the unlocked 2376 * requests. It is possible that some request will finish before we can. This 2377 * is OK, the request will in that case be removed from the list before we touch 2378 * it. 2379 */ 2380 void fuse_abort_conn(struct fuse_conn *fc) 2381 { 2382 struct fuse_iqueue *fiq = &fc->iq; 2383 2384 spin_lock(&fc->lock); 2385 if (fc->connected) { 2386 struct fuse_dev *fud; 2387 struct fuse_req *req, *next; 2388 LIST_HEAD(to_end); 2389 unsigned int i; 2390 2391 if (fc->timeout.req_timeout) 2392 cancel_delayed_work(&fc->timeout.work); 2393 2394 /* Background queuing checks fc->connected under bg_lock */ 2395 spin_lock(&fc->bg_lock); 2396 fc->connected = 0; 2397 spin_unlock(&fc->bg_lock); 2398 2399 fuse_set_initialized(fc); 2400 list_for_each_entry(fud, &fc->devices, entry) { 2401 struct fuse_pqueue *fpq = &fud->pq; 2402 2403 spin_lock(&fpq->lock); 2404 fpq->connected = 0; 2405 list_for_each_entry_safe(req, next, &fpq->io, list) { 2406 req->out.h.error = -ECONNABORTED; 2407 spin_lock(&req->waitq.lock); 2408 set_bit(FR_ABORTED, &req->flags); 2409 if (!test_bit(FR_LOCKED, &req->flags)) { 2410 set_bit(FR_PRIVATE, &req->flags); 2411 __fuse_get_request(req); 2412 list_move(&req->list, &to_end); 2413 } 2414 spin_unlock(&req->waitq.lock); 2415 } 2416 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2417 list_splice_tail_init(&fpq->processing[i], 2418 &to_end); 2419 spin_unlock(&fpq->lock); 2420 } 2421 spin_lock(&fc->bg_lock); 2422 fc->blocked = 0; 2423 fc->max_background = UINT_MAX; 2424 flush_bg_queue(fc); 2425 spin_unlock(&fc->bg_lock); 2426 2427 spin_lock(&fiq->lock); 2428 fiq->connected = 0; 2429 list_for_each_entry(req, &fiq->pending, list) 2430 clear_bit(FR_PENDING, &req->flags); 2431 list_splice_tail_init(&fiq->pending, &to_end); 2432 while (forget_pending(fiq)) 2433 kfree(fuse_dequeue_forget(fiq, 1, NULL)); 2434 wake_up_all(&fiq->waitq); 2435 spin_unlock(&fiq->lock); 2436 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 2437 end_polls(fc); 2438 wake_up_all(&fc->blocked_waitq); 2439 spin_unlock(&fc->lock); 2440 2441 fuse_dev_end_requests(&to_end); 2442 2443 /* 2444 * fc->lock must not be taken to avoid conflicts with io-uring 2445 * locks 2446 */ 2447 fuse_uring_abort(fc); 2448 } else { 2449 spin_unlock(&fc->lock); 2450 } 2451 } 2452 EXPORT_SYMBOL_GPL(fuse_abort_conn); 2453 2454 void fuse_wait_aborted(struct fuse_conn *fc) 2455 { 2456 /* matches implicit memory barrier in fuse_drop_waiting() */ 2457 smp_mb(); 2458 wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0); 2459 2460 fuse_uring_wait_stopped_queues(fc); 2461 } 2462 2463 int fuse_dev_release(struct inode *inode, struct file *file) 2464 { 2465 struct fuse_dev *fud = fuse_get_dev(file); 2466 2467 if (fud) { 2468 struct fuse_conn *fc = fud->fc; 2469 struct fuse_pqueue *fpq = &fud->pq; 2470 LIST_HEAD(to_end); 2471 unsigned int i; 2472 2473 spin_lock(&fpq->lock); 2474 WARN_ON(!list_empty(&fpq->io)); 2475 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2476 list_splice_init(&fpq->processing[i], &to_end); 2477 spin_unlock(&fpq->lock); 2478 2479 fuse_dev_end_requests(&to_end); 2480 2481 /* Are we the last open device? */ 2482 if (atomic_dec_and_test(&fc->dev_count)) { 2483 WARN_ON(fc->iq.fasync != NULL); 2484 fuse_abort_conn(fc); 2485 } 2486 fuse_dev_free(fud); 2487 } 2488 return 0; 2489 } 2490 EXPORT_SYMBOL_GPL(fuse_dev_release); 2491 2492 static int fuse_dev_fasync(int fd, struct file *file, int on) 2493 { 2494 struct fuse_dev *fud = fuse_get_dev(file); 2495 2496 if (!fud) 2497 return -EPERM; 2498 2499 /* No locking - fasync_helper does its own locking */ 2500 return fasync_helper(fd, file, on, &fud->fc->iq.fasync); 2501 } 2502 2503 static int fuse_device_clone(struct fuse_conn *fc, struct file *new) 2504 { 2505 struct fuse_dev *fud; 2506 2507 if (new->private_data) 2508 return -EINVAL; 2509 2510 fud = fuse_dev_alloc_install(fc); 2511 if (!fud) 2512 return -ENOMEM; 2513 2514 new->private_data = fud; 2515 atomic_inc(&fc->dev_count); 2516 2517 return 0; 2518 } 2519 2520 static long fuse_dev_ioctl_clone(struct file *file, __u32 __user *argp) 2521 { 2522 int res; 2523 int oldfd; 2524 struct fuse_dev *fud = NULL; 2525 2526 if (get_user(oldfd, argp)) 2527 return -EFAULT; 2528 2529 CLASS(fd, f)(oldfd); 2530 if (fd_empty(f)) 2531 return -EINVAL; 2532 2533 /* 2534 * Check against file->f_op because CUSE 2535 * uses the same ioctl handler. 2536 */ 2537 if (fd_file(f)->f_op == file->f_op) 2538 fud = fuse_get_dev(fd_file(f)); 2539 2540 res = -EINVAL; 2541 if (fud) { 2542 mutex_lock(&fuse_mutex); 2543 res = fuse_device_clone(fud->fc, file); 2544 mutex_unlock(&fuse_mutex); 2545 } 2546 2547 return res; 2548 } 2549 2550 static long fuse_dev_ioctl_backing_open(struct file *file, 2551 struct fuse_backing_map __user *argp) 2552 { 2553 struct fuse_dev *fud = fuse_get_dev(file); 2554 struct fuse_backing_map map; 2555 2556 if (!fud) 2557 return -EPERM; 2558 2559 if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH)) 2560 return -EOPNOTSUPP; 2561 2562 if (copy_from_user(&map, argp, sizeof(map))) 2563 return -EFAULT; 2564 2565 return fuse_backing_open(fud->fc, &map); 2566 } 2567 2568 static long fuse_dev_ioctl_backing_close(struct file *file, __u32 __user *argp) 2569 { 2570 struct fuse_dev *fud = fuse_get_dev(file); 2571 int backing_id; 2572 2573 if (!fud) 2574 return -EPERM; 2575 2576 if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH)) 2577 return -EOPNOTSUPP; 2578 2579 if (get_user(backing_id, argp)) 2580 return -EFAULT; 2581 2582 return fuse_backing_close(fud->fc, backing_id); 2583 } 2584 2585 static long fuse_dev_ioctl(struct file *file, unsigned int cmd, 2586 unsigned long arg) 2587 { 2588 void __user *argp = (void __user *)arg; 2589 2590 switch (cmd) { 2591 case FUSE_DEV_IOC_CLONE: 2592 return fuse_dev_ioctl_clone(file, argp); 2593 2594 case FUSE_DEV_IOC_BACKING_OPEN: 2595 return fuse_dev_ioctl_backing_open(file, argp); 2596 2597 case FUSE_DEV_IOC_BACKING_CLOSE: 2598 return fuse_dev_ioctl_backing_close(file, argp); 2599 2600 default: 2601 return -ENOTTY; 2602 } 2603 } 2604 2605 const struct file_operations fuse_dev_operations = { 2606 .owner = THIS_MODULE, 2607 .open = fuse_dev_open, 2608 .read_iter = fuse_dev_read, 2609 .splice_read = fuse_dev_splice_read, 2610 .write_iter = fuse_dev_write, 2611 .splice_write = fuse_dev_splice_write, 2612 .poll = fuse_dev_poll, 2613 .release = fuse_dev_release, 2614 .fasync = fuse_dev_fasync, 2615 .unlocked_ioctl = fuse_dev_ioctl, 2616 .compat_ioctl = compat_ptr_ioctl, 2617 #ifdef CONFIG_FUSE_IO_URING 2618 .uring_cmd = fuse_uring_cmd, 2619 #endif 2620 }; 2621 EXPORT_SYMBOL_GPL(fuse_dev_operations); 2622 2623 static struct miscdevice fuse_miscdevice = { 2624 .minor = FUSE_MINOR, 2625 .name = "fuse", 2626 .fops = &fuse_dev_operations, 2627 }; 2628 2629 int __init fuse_dev_init(void) 2630 { 2631 int err = -ENOMEM; 2632 fuse_req_cachep = kmem_cache_create("fuse_request", 2633 sizeof(struct fuse_req), 2634 0, 0, NULL); 2635 if (!fuse_req_cachep) 2636 goto out; 2637 2638 err = misc_register(&fuse_miscdevice); 2639 if (err) 2640 goto out_cache_clean; 2641 2642 return 0; 2643 2644 out_cache_clean: 2645 kmem_cache_destroy(fuse_req_cachep); 2646 out: 2647 return err; 2648 } 2649 2650 void fuse_dev_cleanup(void) 2651 { 2652 misc_deregister(&fuse_miscdevice); 2653 kmem_cache_destroy(fuse_req_cachep); 2654 } 2655