1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2005 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/poll.h> 14 #include <linux/uio.h> 15 #include <linux/miscdevice.h> 16 #include <linux/pagemap.h> 17 #include <linux/file.h> 18 #include <linux/slab.h> 19 20 MODULE_ALIAS_MISCDEV(FUSE_MINOR); 21 22 static kmem_cache_t *fuse_req_cachep; 23 24 static inline struct fuse_conn *fuse_get_conn(struct file *file) 25 { 26 struct fuse_conn *fc; 27 spin_lock(&fuse_lock); 28 fc = file->private_data; 29 if (fc && !fc->mounted) 30 fc = NULL; 31 spin_unlock(&fuse_lock); 32 return fc; 33 } 34 35 static inline void fuse_request_init(struct fuse_req *req) 36 { 37 memset(req, 0, sizeof(*req)); 38 INIT_LIST_HEAD(&req->list); 39 init_waitqueue_head(&req->waitq); 40 atomic_set(&req->count, 1); 41 } 42 43 struct fuse_req *fuse_request_alloc(void) 44 { 45 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, SLAB_KERNEL); 46 if (req) 47 fuse_request_init(req); 48 return req; 49 } 50 51 void fuse_request_free(struct fuse_req *req) 52 { 53 kmem_cache_free(fuse_req_cachep, req); 54 } 55 56 static inline void block_sigs(sigset_t *oldset) 57 { 58 sigset_t mask; 59 60 siginitsetinv(&mask, sigmask(SIGKILL)); 61 sigprocmask(SIG_BLOCK, &mask, oldset); 62 } 63 64 static inline void restore_sigs(sigset_t *oldset) 65 { 66 sigprocmask(SIG_SETMASK, oldset, NULL); 67 } 68 69 void fuse_reset_request(struct fuse_req *req) 70 { 71 int preallocated = req->preallocated; 72 BUG_ON(atomic_read(&req->count) != 1); 73 fuse_request_init(req); 74 req->preallocated = preallocated; 75 } 76 77 static void __fuse_get_request(struct fuse_req *req) 78 { 79 atomic_inc(&req->count); 80 } 81 82 /* Must be called with > 1 refcount */ 83 static void __fuse_put_request(struct fuse_req *req) 84 { 85 BUG_ON(atomic_read(&req->count) < 2); 86 atomic_dec(&req->count); 87 } 88 89 static struct fuse_req *do_get_request(struct fuse_conn *fc) 90 { 91 struct fuse_req *req; 92 93 spin_lock(&fuse_lock); 94 BUG_ON(list_empty(&fc->unused_list)); 95 req = list_entry(fc->unused_list.next, struct fuse_req, list); 96 list_del_init(&req->list); 97 spin_unlock(&fuse_lock); 98 fuse_request_init(req); 99 req->preallocated = 1; 100 req->in.h.uid = current->fsuid; 101 req->in.h.gid = current->fsgid; 102 req->in.h.pid = current->pid; 103 return req; 104 } 105 106 /* This can return NULL, but only in case it's interrupted by a SIGKILL */ 107 struct fuse_req *fuse_get_request(struct fuse_conn *fc) 108 { 109 int intr; 110 sigset_t oldset; 111 112 block_sigs(&oldset); 113 intr = down_interruptible(&fc->outstanding_sem); 114 restore_sigs(&oldset); 115 return intr ? NULL : do_get_request(fc); 116 } 117 118 static void fuse_putback_request(struct fuse_conn *fc, struct fuse_req *req) 119 { 120 spin_lock(&fuse_lock); 121 if (req->preallocated) 122 list_add(&req->list, &fc->unused_list); 123 else 124 fuse_request_free(req); 125 126 /* If we are in debt decrease that first */ 127 if (fc->outstanding_debt) 128 fc->outstanding_debt--; 129 else 130 up(&fc->outstanding_sem); 131 spin_unlock(&fuse_lock); 132 } 133 134 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req) 135 { 136 if (atomic_dec_and_test(&req->count)) 137 fuse_putback_request(fc, req); 138 } 139 140 void fuse_release_background(struct fuse_req *req) 141 { 142 iput(req->inode); 143 iput(req->inode2); 144 if (req->file) 145 fput(req->file); 146 spin_lock(&fuse_lock); 147 list_del(&req->bg_entry); 148 spin_unlock(&fuse_lock); 149 } 150 151 /* 152 * This function is called when a request is finished. Either a reply 153 * has arrived or it was interrupted (and not yet sent) or some error 154 * occurred during communication with userspace, or the device file was 155 * closed. It decreases the reference count for the request. In case 156 * of a background request the reference to the stored objects are 157 * released. The requester thread is woken up (if still waiting), and 158 * finally the request is either freed or put on the unused_list 159 * 160 * Called with fuse_lock, unlocks it 161 */ 162 static void request_end(struct fuse_conn *fc, struct fuse_req *req) 163 { 164 int putback; 165 req->finished = 1; 166 putback = atomic_dec_and_test(&req->count); 167 spin_unlock(&fuse_lock); 168 if (req->background) { 169 down_read(&fc->sbput_sem); 170 if (fc->mounted) 171 fuse_release_background(req); 172 up_read(&fc->sbput_sem); 173 } 174 wake_up(&req->waitq); 175 if (req->in.h.opcode == FUSE_INIT) { 176 int i; 177 178 if (req->misc.init_in_out.major != FUSE_KERNEL_VERSION) 179 fc->conn_error = 1; 180 181 /* After INIT reply is received other requests can go 182 out. So do (FUSE_MAX_OUTSTANDING - 1) number of 183 up()s on outstanding_sem. The last up() is done in 184 fuse_putback_request() */ 185 for (i = 1; i < FUSE_MAX_OUTSTANDING; i++) 186 up(&fc->outstanding_sem); 187 } else if (req->in.h.opcode == FUSE_RELEASE && req->inode == NULL) { 188 /* Special case for failed iget in CREATE */ 189 u64 nodeid = req->in.h.nodeid; 190 __fuse_get_request(req); 191 fuse_reset_request(req); 192 fuse_send_forget(fc, req, nodeid, 1); 193 putback = 0; 194 } 195 if (putback) 196 fuse_putback_request(fc, req); 197 } 198 199 /* 200 * Unfortunately request interruption not just solves the deadlock 201 * problem, it causes problems too. These stem from the fact, that an 202 * interrupted request is continued to be processed in userspace, 203 * while all the locks and object references (inode and file) held 204 * during the operation are released. 205 * 206 * To release the locks is exactly why there's a need to interrupt the 207 * request, so there's not a lot that can be done about this, except 208 * introduce additional locking in userspace. 209 * 210 * More important is to keep inode and file references until userspace 211 * has replied, otherwise FORGET and RELEASE could be sent while the 212 * inode/file is still used by the filesystem. 213 * 214 * For this reason the concept of "background" request is introduced. 215 * An interrupted request is backgrounded if it has been already sent 216 * to userspace. Backgrounding involves getting an extra reference to 217 * inode(s) or file used in the request, and adding the request to 218 * fc->background list. When a reply is received for a background 219 * request, the object references are released, and the request is 220 * removed from the list. If the filesystem is unmounted while there 221 * are still background requests, the list is walked and references 222 * are released as if a reply was received. 223 * 224 * There's one more use for a background request. The RELEASE message is 225 * always sent as background, since it doesn't return an error or 226 * data. 227 */ 228 static void background_request(struct fuse_conn *fc, struct fuse_req *req) 229 { 230 req->background = 1; 231 list_add(&req->bg_entry, &fc->background); 232 if (req->inode) 233 req->inode = igrab(req->inode); 234 if (req->inode2) 235 req->inode2 = igrab(req->inode2); 236 if (req->file) 237 get_file(req->file); 238 } 239 240 /* Called with fuse_lock held. Releases, and then reacquires it. */ 241 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req) 242 { 243 sigset_t oldset; 244 245 spin_unlock(&fuse_lock); 246 block_sigs(&oldset); 247 wait_event_interruptible(req->waitq, req->finished); 248 restore_sigs(&oldset); 249 spin_lock(&fuse_lock); 250 if (req->finished) 251 return; 252 253 req->out.h.error = -EINTR; 254 req->interrupted = 1; 255 if (req->locked) { 256 /* This is uninterruptible sleep, because data is 257 being copied to/from the buffers of req. During 258 locked state, there mustn't be any filesystem 259 operation (e.g. page fault), since that could lead 260 to deadlock */ 261 spin_unlock(&fuse_lock); 262 wait_event(req->waitq, !req->locked); 263 spin_lock(&fuse_lock); 264 } 265 if (!req->sent && !list_empty(&req->list)) { 266 list_del(&req->list); 267 __fuse_put_request(req); 268 } else if (!req->finished && req->sent) 269 background_request(fc, req); 270 } 271 272 static unsigned len_args(unsigned numargs, struct fuse_arg *args) 273 { 274 unsigned nbytes = 0; 275 unsigned i; 276 277 for (i = 0; i < numargs; i++) 278 nbytes += args[i].size; 279 280 return nbytes; 281 } 282 283 static void queue_request(struct fuse_conn *fc, struct fuse_req *req) 284 { 285 fc->reqctr++; 286 /* zero is special */ 287 if (fc->reqctr == 0) 288 fc->reqctr = 1; 289 req->in.h.unique = fc->reqctr; 290 req->in.h.len = sizeof(struct fuse_in_header) + 291 len_args(req->in.numargs, (struct fuse_arg *) req->in.args); 292 if (!req->preallocated) { 293 /* If request is not preallocated (either FORGET or 294 RELEASE), then still decrease outstanding_sem, so 295 user can't open infinite number of files while not 296 processing the RELEASE requests. However for 297 efficiency do it without blocking, so if down() 298 would block, just increase the debt instead */ 299 if (down_trylock(&fc->outstanding_sem)) 300 fc->outstanding_debt++; 301 } 302 list_add_tail(&req->list, &fc->pending); 303 wake_up(&fc->waitq); 304 } 305 306 /* 307 * This can only be interrupted by a SIGKILL 308 */ 309 void request_send(struct fuse_conn *fc, struct fuse_req *req) 310 { 311 req->isreply = 1; 312 spin_lock(&fuse_lock); 313 if (!fc->connected) 314 req->out.h.error = -ENOTCONN; 315 else if (fc->conn_error) 316 req->out.h.error = -ECONNREFUSED; 317 else { 318 queue_request(fc, req); 319 /* acquire extra reference, since request is still needed 320 after request_end() */ 321 __fuse_get_request(req); 322 323 request_wait_answer(fc, req); 324 } 325 spin_unlock(&fuse_lock); 326 } 327 328 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req) 329 { 330 spin_lock(&fuse_lock); 331 if (fc->connected) { 332 queue_request(fc, req); 333 spin_unlock(&fuse_lock); 334 } else { 335 req->out.h.error = -ENOTCONN; 336 request_end(fc, req); 337 } 338 } 339 340 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req) 341 { 342 req->isreply = 0; 343 request_send_nowait(fc, req); 344 } 345 346 void request_send_background(struct fuse_conn *fc, struct fuse_req *req) 347 { 348 req->isreply = 1; 349 spin_lock(&fuse_lock); 350 background_request(fc, req); 351 spin_unlock(&fuse_lock); 352 request_send_nowait(fc, req); 353 } 354 355 void fuse_send_init(struct fuse_conn *fc) 356 { 357 /* This is called from fuse_read_super() so there's guaranteed 358 to be a request available */ 359 struct fuse_req *req = do_get_request(fc); 360 struct fuse_init_in_out *arg = &req->misc.init_in_out; 361 arg->major = FUSE_KERNEL_VERSION; 362 arg->minor = FUSE_KERNEL_MINOR_VERSION; 363 req->in.h.opcode = FUSE_INIT; 364 req->in.numargs = 1; 365 req->in.args[0].size = sizeof(*arg); 366 req->in.args[0].value = arg; 367 req->out.numargs = 1; 368 req->out.args[0].size = sizeof(*arg); 369 req->out.args[0].value = arg; 370 request_send_background(fc, req); 371 } 372 373 /* 374 * Lock the request. Up to the next unlock_request() there mustn't be 375 * anything that could cause a page-fault. If the request was already 376 * interrupted bail out. 377 */ 378 static inline int lock_request(struct fuse_req *req) 379 { 380 int err = 0; 381 if (req) { 382 spin_lock(&fuse_lock); 383 if (req->interrupted) 384 err = -ENOENT; 385 else 386 req->locked = 1; 387 spin_unlock(&fuse_lock); 388 } 389 return err; 390 } 391 392 /* 393 * Unlock request. If it was interrupted during being locked, the 394 * requester thread is currently waiting for it to be unlocked, so 395 * wake it up. 396 */ 397 static inline void unlock_request(struct fuse_req *req) 398 { 399 if (req) { 400 spin_lock(&fuse_lock); 401 req->locked = 0; 402 if (req->interrupted) 403 wake_up(&req->waitq); 404 spin_unlock(&fuse_lock); 405 } 406 } 407 408 struct fuse_copy_state { 409 int write; 410 struct fuse_req *req; 411 const struct iovec *iov; 412 unsigned long nr_segs; 413 unsigned long seglen; 414 unsigned long addr; 415 struct page *pg; 416 void *mapaddr; 417 void *buf; 418 unsigned len; 419 }; 420 421 static void fuse_copy_init(struct fuse_copy_state *cs, int write, 422 struct fuse_req *req, const struct iovec *iov, 423 unsigned long nr_segs) 424 { 425 memset(cs, 0, sizeof(*cs)); 426 cs->write = write; 427 cs->req = req; 428 cs->iov = iov; 429 cs->nr_segs = nr_segs; 430 } 431 432 /* Unmap and put previous page of userspace buffer */ 433 static inline void fuse_copy_finish(struct fuse_copy_state *cs) 434 { 435 if (cs->mapaddr) { 436 kunmap_atomic(cs->mapaddr, KM_USER0); 437 if (cs->write) { 438 flush_dcache_page(cs->pg); 439 set_page_dirty_lock(cs->pg); 440 } 441 put_page(cs->pg); 442 cs->mapaddr = NULL; 443 } 444 } 445 446 /* 447 * Get another pagefull of userspace buffer, and map it to kernel 448 * address space, and lock request 449 */ 450 static int fuse_copy_fill(struct fuse_copy_state *cs) 451 { 452 unsigned long offset; 453 int err; 454 455 unlock_request(cs->req); 456 fuse_copy_finish(cs); 457 if (!cs->seglen) { 458 BUG_ON(!cs->nr_segs); 459 cs->seglen = cs->iov[0].iov_len; 460 cs->addr = (unsigned long) cs->iov[0].iov_base; 461 cs->iov ++; 462 cs->nr_segs --; 463 } 464 down_read(¤t->mm->mmap_sem); 465 err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0, 466 &cs->pg, NULL); 467 up_read(¤t->mm->mmap_sem); 468 if (err < 0) 469 return err; 470 BUG_ON(err != 1); 471 offset = cs->addr % PAGE_SIZE; 472 cs->mapaddr = kmap_atomic(cs->pg, KM_USER0); 473 cs->buf = cs->mapaddr + offset; 474 cs->len = min(PAGE_SIZE - offset, cs->seglen); 475 cs->seglen -= cs->len; 476 cs->addr += cs->len; 477 478 return lock_request(cs->req); 479 } 480 481 /* Do as much copy to/from userspace buffer as we can */ 482 static inline int fuse_copy_do(struct fuse_copy_state *cs, void **val, 483 unsigned *size) 484 { 485 unsigned ncpy = min(*size, cs->len); 486 if (val) { 487 if (cs->write) 488 memcpy(cs->buf, *val, ncpy); 489 else 490 memcpy(*val, cs->buf, ncpy); 491 *val += ncpy; 492 } 493 *size -= ncpy; 494 cs->len -= ncpy; 495 cs->buf += ncpy; 496 return ncpy; 497 } 498 499 /* 500 * Copy a page in the request to/from the userspace buffer. Must be 501 * done atomically 502 */ 503 static inline int fuse_copy_page(struct fuse_copy_state *cs, struct page *page, 504 unsigned offset, unsigned count, int zeroing) 505 { 506 if (page && zeroing && count < PAGE_SIZE) { 507 void *mapaddr = kmap_atomic(page, KM_USER1); 508 memset(mapaddr, 0, PAGE_SIZE); 509 kunmap_atomic(mapaddr, KM_USER1); 510 } 511 while (count) { 512 int err; 513 if (!cs->len && (err = fuse_copy_fill(cs))) 514 return err; 515 if (page) { 516 void *mapaddr = kmap_atomic(page, KM_USER1); 517 void *buf = mapaddr + offset; 518 offset += fuse_copy_do(cs, &buf, &count); 519 kunmap_atomic(mapaddr, KM_USER1); 520 } else 521 offset += fuse_copy_do(cs, NULL, &count); 522 } 523 if (page && !cs->write) 524 flush_dcache_page(page); 525 return 0; 526 } 527 528 /* Copy pages in the request to/from userspace buffer */ 529 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes, 530 int zeroing) 531 { 532 unsigned i; 533 struct fuse_req *req = cs->req; 534 unsigned offset = req->page_offset; 535 unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset); 536 537 for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) { 538 struct page *page = req->pages[i]; 539 int err = fuse_copy_page(cs, page, offset, count, zeroing); 540 if (err) 541 return err; 542 543 nbytes -= count; 544 count = min(nbytes, (unsigned) PAGE_SIZE); 545 offset = 0; 546 } 547 return 0; 548 } 549 550 /* Copy a single argument in the request to/from userspace buffer */ 551 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size) 552 { 553 while (size) { 554 int err; 555 if (!cs->len && (err = fuse_copy_fill(cs))) 556 return err; 557 fuse_copy_do(cs, &val, &size); 558 } 559 return 0; 560 } 561 562 /* Copy request arguments to/from userspace buffer */ 563 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs, 564 unsigned argpages, struct fuse_arg *args, 565 int zeroing) 566 { 567 int err = 0; 568 unsigned i; 569 570 for (i = 0; !err && i < numargs; i++) { 571 struct fuse_arg *arg = &args[i]; 572 if (i == numargs - 1 && argpages) 573 err = fuse_copy_pages(cs, arg->size, zeroing); 574 else 575 err = fuse_copy_one(cs, arg->value, arg->size); 576 } 577 return err; 578 } 579 580 /* Wait until a request is available on the pending list */ 581 static void request_wait(struct fuse_conn *fc) 582 { 583 DECLARE_WAITQUEUE(wait, current); 584 585 add_wait_queue_exclusive(&fc->waitq, &wait); 586 while (fc->mounted && list_empty(&fc->pending)) { 587 set_current_state(TASK_INTERRUPTIBLE); 588 if (signal_pending(current)) 589 break; 590 591 spin_unlock(&fuse_lock); 592 schedule(); 593 spin_lock(&fuse_lock); 594 } 595 set_current_state(TASK_RUNNING); 596 remove_wait_queue(&fc->waitq, &wait); 597 } 598 599 /* 600 * Read a single request into the userspace filesystem's buffer. This 601 * function waits until a request is available, then removes it from 602 * the pending list and copies request data to userspace buffer. If 603 * no reply is needed (FORGET) or request has been interrupted or 604 * there was an error during the copying then it's finished by calling 605 * request_end(). Otherwise add it to the processing list, and set 606 * the 'sent' flag. 607 */ 608 static ssize_t fuse_dev_readv(struct file *file, const struct iovec *iov, 609 unsigned long nr_segs, loff_t *off) 610 { 611 int err; 612 struct fuse_conn *fc; 613 struct fuse_req *req; 614 struct fuse_in *in; 615 struct fuse_copy_state cs; 616 unsigned reqsize; 617 618 spin_lock(&fuse_lock); 619 fc = file->private_data; 620 err = -EPERM; 621 if (!fc) 622 goto err_unlock; 623 request_wait(fc); 624 err = -ENODEV; 625 if (!fc->mounted) 626 goto err_unlock; 627 err = -ERESTARTSYS; 628 if (list_empty(&fc->pending)) 629 goto err_unlock; 630 631 req = list_entry(fc->pending.next, struct fuse_req, list); 632 list_del_init(&req->list); 633 spin_unlock(&fuse_lock); 634 635 in = &req->in; 636 reqsize = req->in.h.len; 637 fuse_copy_init(&cs, 1, req, iov, nr_segs); 638 err = -EINVAL; 639 if (iov_length(iov, nr_segs) >= reqsize) { 640 err = fuse_copy_one(&cs, &in->h, sizeof(in->h)); 641 if (!err) 642 err = fuse_copy_args(&cs, in->numargs, in->argpages, 643 (struct fuse_arg *) in->args, 0); 644 } 645 fuse_copy_finish(&cs); 646 647 spin_lock(&fuse_lock); 648 req->locked = 0; 649 if (!err && req->interrupted) 650 err = -ENOENT; 651 if (err) { 652 if (!req->interrupted) 653 req->out.h.error = -EIO; 654 request_end(fc, req); 655 return err; 656 } 657 if (!req->isreply) 658 request_end(fc, req); 659 else { 660 req->sent = 1; 661 list_add_tail(&req->list, &fc->processing); 662 spin_unlock(&fuse_lock); 663 } 664 return reqsize; 665 666 err_unlock: 667 spin_unlock(&fuse_lock); 668 return err; 669 } 670 671 static ssize_t fuse_dev_read(struct file *file, char __user *buf, 672 size_t nbytes, loff_t *off) 673 { 674 struct iovec iov; 675 iov.iov_len = nbytes; 676 iov.iov_base = buf; 677 return fuse_dev_readv(file, &iov, 1, off); 678 } 679 680 /* Look up request on processing list by unique ID */ 681 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique) 682 { 683 struct list_head *entry; 684 685 list_for_each(entry, &fc->processing) { 686 struct fuse_req *req; 687 req = list_entry(entry, struct fuse_req, list); 688 if (req->in.h.unique == unique) 689 return req; 690 } 691 return NULL; 692 } 693 694 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out, 695 unsigned nbytes) 696 { 697 unsigned reqsize = sizeof(struct fuse_out_header); 698 699 if (out->h.error) 700 return nbytes != reqsize ? -EINVAL : 0; 701 702 reqsize += len_args(out->numargs, out->args); 703 704 if (reqsize < nbytes || (reqsize > nbytes && !out->argvar)) 705 return -EINVAL; 706 else if (reqsize > nbytes) { 707 struct fuse_arg *lastarg = &out->args[out->numargs-1]; 708 unsigned diffsize = reqsize - nbytes; 709 if (diffsize > lastarg->size) 710 return -EINVAL; 711 lastarg->size -= diffsize; 712 } 713 return fuse_copy_args(cs, out->numargs, out->argpages, out->args, 714 out->page_zeroing); 715 } 716 717 /* 718 * Write a single reply to a request. First the header is copied from 719 * the write buffer. The request is then searched on the processing 720 * list by the unique ID found in the header. If found, then remove 721 * it from the list and copy the rest of the buffer to the request. 722 * The request is finished by calling request_end() 723 */ 724 static ssize_t fuse_dev_writev(struct file *file, const struct iovec *iov, 725 unsigned long nr_segs, loff_t *off) 726 { 727 int err; 728 unsigned nbytes = iov_length(iov, nr_segs); 729 struct fuse_req *req; 730 struct fuse_out_header oh; 731 struct fuse_copy_state cs; 732 struct fuse_conn *fc = fuse_get_conn(file); 733 if (!fc) 734 return -ENODEV; 735 736 fuse_copy_init(&cs, 0, NULL, iov, nr_segs); 737 if (nbytes < sizeof(struct fuse_out_header)) 738 return -EINVAL; 739 740 err = fuse_copy_one(&cs, &oh, sizeof(oh)); 741 if (err) 742 goto err_finish; 743 err = -EINVAL; 744 if (!oh.unique || oh.error <= -1000 || oh.error > 0 || 745 oh.len != nbytes) 746 goto err_finish; 747 748 spin_lock(&fuse_lock); 749 req = request_find(fc, oh.unique); 750 err = -EINVAL; 751 if (!req) 752 goto err_unlock; 753 754 list_del_init(&req->list); 755 if (req->interrupted) { 756 request_end(fc, req); 757 fuse_copy_finish(&cs); 758 return -ENOENT; 759 } 760 req->out.h = oh; 761 req->locked = 1; 762 cs.req = req; 763 spin_unlock(&fuse_lock); 764 765 err = copy_out_args(&cs, &req->out, nbytes); 766 fuse_copy_finish(&cs); 767 768 spin_lock(&fuse_lock); 769 req->locked = 0; 770 if (!err) { 771 if (req->interrupted) 772 err = -ENOENT; 773 } else if (!req->interrupted) 774 req->out.h.error = -EIO; 775 request_end(fc, req); 776 777 return err ? err : nbytes; 778 779 err_unlock: 780 spin_unlock(&fuse_lock); 781 err_finish: 782 fuse_copy_finish(&cs); 783 return err; 784 } 785 786 static ssize_t fuse_dev_write(struct file *file, const char __user *buf, 787 size_t nbytes, loff_t *off) 788 { 789 struct iovec iov; 790 iov.iov_len = nbytes; 791 iov.iov_base = (char __user *) buf; 792 return fuse_dev_writev(file, &iov, 1, off); 793 } 794 795 static unsigned fuse_dev_poll(struct file *file, poll_table *wait) 796 { 797 struct fuse_conn *fc = fuse_get_conn(file); 798 unsigned mask = POLLOUT | POLLWRNORM; 799 800 if (!fc) 801 return -ENODEV; 802 803 poll_wait(file, &fc->waitq, wait); 804 805 spin_lock(&fuse_lock); 806 if (!list_empty(&fc->pending)) 807 mask |= POLLIN | POLLRDNORM; 808 spin_unlock(&fuse_lock); 809 810 return mask; 811 } 812 813 /* Abort all requests on the given list (pending or processing) */ 814 static void end_requests(struct fuse_conn *fc, struct list_head *head) 815 { 816 while (!list_empty(head)) { 817 struct fuse_req *req; 818 req = list_entry(head->next, struct fuse_req, list); 819 list_del_init(&req->list); 820 req->out.h.error = -ECONNABORTED; 821 request_end(fc, req); 822 spin_lock(&fuse_lock); 823 } 824 } 825 826 static int fuse_dev_release(struct inode *inode, struct file *file) 827 { 828 struct fuse_conn *fc; 829 830 spin_lock(&fuse_lock); 831 fc = file->private_data; 832 if (fc) { 833 fc->connected = 0; 834 end_requests(fc, &fc->pending); 835 end_requests(fc, &fc->processing); 836 fuse_release_conn(fc); 837 } 838 spin_unlock(&fuse_lock); 839 return 0; 840 } 841 842 struct file_operations fuse_dev_operations = { 843 .owner = THIS_MODULE, 844 .llseek = no_llseek, 845 .read = fuse_dev_read, 846 .readv = fuse_dev_readv, 847 .write = fuse_dev_write, 848 .writev = fuse_dev_writev, 849 .poll = fuse_dev_poll, 850 .release = fuse_dev_release, 851 }; 852 853 static struct miscdevice fuse_miscdevice = { 854 .minor = FUSE_MINOR, 855 .name = "fuse", 856 .fops = &fuse_dev_operations, 857 }; 858 859 int __init fuse_dev_init(void) 860 { 861 int err = -ENOMEM; 862 fuse_req_cachep = kmem_cache_create("fuse_request", 863 sizeof(struct fuse_req), 864 0, 0, NULL, NULL); 865 if (!fuse_req_cachep) 866 goto out; 867 868 err = misc_register(&fuse_miscdevice); 869 if (err) 870 goto out_cache_clean; 871 872 return 0; 873 874 out_cache_clean: 875 kmem_cache_destroy(fuse_req_cachep); 876 out: 877 return err; 878 } 879 880 void fuse_dev_cleanup(void) 881 { 882 misc_deregister(&fuse_miscdevice); 883 kmem_cache_destroy(fuse_req_cachep); 884 } 885