1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/poll.h> 14 #include <linux/sched/signal.h> 15 #include <linux/uio.h> 16 #include <linux/miscdevice.h> 17 #include <linux/pagemap.h> 18 #include <linux/file.h> 19 #include <linux/slab.h> 20 #include <linux/pipe_fs_i.h> 21 #include <linux/swap.h> 22 #include <linux/splice.h> 23 #include <linux/sched.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "fuse_trace.h" 27 28 MODULE_ALIAS_MISCDEV(FUSE_MINOR); 29 MODULE_ALIAS("devname:fuse"); 30 31 /* Ordinary requests have even IDs, while interrupts IDs are odd */ 32 #define FUSE_INT_REQ_BIT (1ULL << 0) 33 #define FUSE_REQ_ID_STEP (1ULL << 1) 34 35 static struct kmem_cache *fuse_req_cachep; 36 37 static void end_requests(struct list_head *head); 38 39 static struct fuse_dev *fuse_get_dev(struct file *file) 40 { 41 /* 42 * Lockless access is OK, because file->private data is set 43 * once during mount and is valid until the file is released. 44 */ 45 return READ_ONCE(file->private_data); 46 } 47 48 static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req) 49 { 50 INIT_LIST_HEAD(&req->list); 51 INIT_LIST_HEAD(&req->intr_entry); 52 init_waitqueue_head(&req->waitq); 53 refcount_set(&req->count, 1); 54 __set_bit(FR_PENDING, &req->flags); 55 req->fm = fm; 56 } 57 58 static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags) 59 { 60 struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags); 61 if (req) 62 fuse_request_init(fm, req); 63 64 return req; 65 } 66 67 static void fuse_request_free(struct fuse_req *req) 68 { 69 kmem_cache_free(fuse_req_cachep, req); 70 } 71 72 static void __fuse_get_request(struct fuse_req *req) 73 { 74 refcount_inc(&req->count); 75 } 76 77 /* Must be called with > 1 refcount */ 78 static void __fuse_put_request(struct fuse_req *req) 79 { 80 refcount_dec(&req->count); 81 } 82 83 void fuse_set_initialized(struct fuse_conn *fc) 84 { 85 /* Make sure stores before this are seen on another CPU */ 86 smp_wmb(); 87 fc->initialized = 1; 88 } 89 90 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background) 91 { 92 return !fc->initialized || (for_background && fc->blocked); 93 } 94 95 static void fuse_drop_waiting(struct fuse_conn *fc) 96 { 97 /* 98 * lockess check of fc->connected is okay, because atomic_dec_and_test() 99 * provides a memory barrier matched with the one in fuse_wait_aborted() 100 * to ensure no wake-up is missed. 101 */ 102 if (atomic_dec_and_test(&fc->num_waiting) && 103 !READ_ONCE(fc->connected)) { 104 /* wake up aborters */ 105 wake_up_all(&fc->blocked_waitq); 106 } 107 } 108 109 static void fuse_put_request(struct fuse_req *req); 110 111 static struct fuse_req *fuse_get_req(struct mnt_idmap *idmap, 112 struct fuse_mount *fm, 113 bool for_background) 114 { 115 struct fuse_conn *fc = fm->fc; 116 struct fuse_req *req; 117 bool no_idmap = !fm->sb || (fm->sb->s_iflags & SB_I_NOIDMAP); 118 kuid_t fsuid; 119 kgid_t fsgid; 120 int err; 121 122 atomic_inc(&fc->num_waiting); 123 124 if (fuse_block_alloc(fc, for_background)) { 125 err = -EINTR; 126 if (wait_event_killable_exclusive(fc->blocked_waitq, 127 !fuse_block_alloc(fc, for_background))) 128 goto out; 129 } 130 /* Matches smp_wmb() in fuse_set_initialized() */ 131 smp_rmb(); 132 133 err = -ENOTCONN; 134 if (!fc->connected) 135 goto out; 136 137 err = -ECONNREFUSED; 138 if (fc->conn_error) 139 goto out; 140 141 req = fuse_request_alloc(fm, GFP_KERNEL); 142 err = -ENOMEM; 143 if (!req) { 144 if (for_background) 145 wake_up(&fc->blocked_waitq); 146 goto out; 147 } 148 149 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 150 151 __set_bit(FR_WAITING, &req->flags); 152 if (for_background) 153 __set_bit(FR_BACKGROUND, &req->flags); 154 155 /* 156 * Keep the old behavior when idmappings support was not 157 * declared by a FUSE server. 158 * 159 * For those FUSE servers who support idmapped mounts, 160 * we send UID/GID only along with "inode creation" 161 * fuse requests, otherwise idmap == &invalid_mnt_idmap and 162 * req->in.h.{u,g}id will be equal to FUSE_INVALID_UIDGID. 163 */ 164 fsuid = no_idmap ? current_fsuid() : mapped_fsuid(idmap, fc->user_ns); 165 fsgid = no_idmap ? current_fsgid() : mapped_fsgid(idmap, fc->user_ns); 166 req->in.h.uid = from_kuid(fc->user_ns, fsuid); 167 req->in.h.gid = from_kgid(fc->user_ns, fsgid); 168 169 if (no_idmap && unlikely(req->in.h.uid == ((uid_t)-1) || 170 req->in.h.gid == ((gid_t)-1))) { 171 fuse_put_request(req); 172 return ERR_PTR(-EOVERFLOW); 173 } 174 175 return req; 176 177 out: 178 fuse_drop_waiting(fc); 179 return ERR_PTR(err); 180 } 181 182 static void fuse_put_request(struct fuse_req *req) 183 { 184 struct fuse_conn *fc = req->fm->fc; 185 186 if (refcount_dec_and_test(&req->count)) { 187 if (test_bit(FR_BACKGROUND, &req->flags)) { 188 /* 189 * We get here in the unlikely case that a background 190 * request was allocated but not sent 191 */ 192 spin_lock(&fc->bg_lock); 193 if (!fc->blocked) 194 wake_up(&fc->blocked_waitq); 195 spin_unlock(&fc->bg_lock); 196 } 197 198 if (test_bit(FR_WAITING, &req->flags)) { 199 __clear_bit(FR_WAITING, &req->flags); 200 fuse_drop_waiting(fc); 201 } 202 203 fuse_request_free(req); 204 } 205 } 206 207 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args) 208 { 209 unsigned nbytes = 0; 210 unsigned i; 211 212 for (i = 0; i < numargs; i++) 213 nbytes += args[i].size; 214 215 return nbytes; 216 } 217 EXPORT_SYMBOL_GPL(fuse_len_args); 218 219 static u64 fuse_get_unique_locked(struct fuse_iqueue *fiq) 220 { 221 fiq->reqctr += FUSE_REQ_ID_STEP; 222 return fiq->reqctr; 223 } 224 225 u64 fuse_get_unique(struct fuse_iqueue *fiq) 226 { 227 u64 ret; 228 229 spin_lock(&fiq->lock); 230 ret = fuse_get_unique_locked(fiq); 231 spin_unlock(&fiq->lock); 232 233 return ret; 234 } 235 EXPORT_SYMBOL_GPL(fuse_get_unique); 236 237 static unsigned int fuse_req_hash(u64 unique) 238 { 239 return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS); 240 } 241 242 /* 243 * A new request is available, wake fiq->waitq 244 */ 245 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq) 246 __releases(fiq->lock) 247 { 248 wake_up(&fiq->waitq); 249 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 250 spin_unlock(&fiq->lock); 251 } 252 253 static void fuse_dev_queue_forget(struct fuse_iqueue *fiq, struct fuse_forget_link *forget) 254 { 255 spin_lock(&fiq->lock); 256 if (fiq->connected) { 257 fiq->forget_list_tail->next = forget; 258 fiq->forget_list_tail = forget; 259 fuse_dev_wake_and_unlock(fiq); 260 } else { 261 kfree(forget); 262 spin_unlock(&fiq->lock); 263 } 264 } 265 266 static void fuse_dev_queue_interrupt(struct fuse_iqueue *fiq, struct fuse_req *req) 267 { 268 spin_lock(&fiq->lock); 269 if (list_empty(&req->intr_entry)) { 270 list_add_tail(&req->intr_entry, &fiq->interrupts); 271 /* 272 * Pairs with smp_mb() implied by test_and_set_bit() 273 * from fuse_request_end(). 274 */ 275 smp_mb(); 276 if (test_bit(FR_FINISHED, &req->flags)) { 277 list_del_init(&req->intr_entry); 278 spin_unlock(&fiq->lock); 279 } else { 280 fuse_dev_wake_and_unlock(fiq); 281 } 282 } else { 283 spin_unlock(&fiq->lock); 284 } 285 } 286 287 static void fuse_dev_queue_req(struct fuse_iqueue *fiq, struct fuse_req *req) 288 { 289 spin_lock(&fiq->lock); 290 if (fiq->connected) { 291 if (req->in.h.opcode != FUSE_NOTIFY_REPLY) 292 req->in.h.unique = fuse_get_unique_locked(fiq); 293 list_add_tail(&req->list, &fiq->pending); 294 fuse_dev_wake_and_unlock(fiq); 295 } else { 296 spin_unlock(&fiq->lock); 297 req->out.h.error = -ENOTCONN; 298 clear_bit(FR_PENDING, &req->flags); 299 fuse_request_end(req); 300 } 301 } 302 303 const struct fuse_iqueue_ops fuse_dev_fiq_ops = { 304 .send_forget = fuse_dev_queue_forget, 305 .send_interrupt = fuse_dev_queue_interrupt, 306 .send_req = fuse_dev_queue_req, 307 }; 308 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops); 309 310 static void fuse_send_one(struct fuse_iqueue *fiq, struct fuse_req *req) 311 { 312 req->in.h.len = sizeof(struct fuse_in_header) + 313 fuse_len_args(req->args->in_numargs, 314 (struct fuse_arg *) req->args->in_args); 315 trace_fuse_request_send(req); 316 fiq->ops->send_req(fiq, req); 317 } 318 319 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget, 320 u64 nodeid, u64 nlookup) 321 { 322 struct fuse_iqueue *fiq = &fc->iq; 323 324 forget->forget_one.nodeid = nodeid; 325 forget->forget_one.nlookup = nlookup; 326 327 fiq->ops->send_forget(fiq, forget); 328 } 329 330 static void flush_bg_queue(struct fuse_conn *fc) 331 { 332 struct fuse_iqueue *fiq = &fc->iq; 333 334 while (fc->active_background < fc->max_background && 335 !list_empty(&fc->bg_queue)) { 336 struct fuse_req *req; 337 338 req = list_first_entry(&fc->bg_queue, struct fuse_req, list); 339 list_del(&req->list); 340 fc->active_background++; 341 fuse_send_one(fiq, req); 342 } 343 } 344 345 /* 346 * This function is called when a request is finished. Either a reply 347 * has arrived or it was aborted (and not yet sent) or some error 348 * occurred during communication with userspace, or the device file 349 * was closed. The requester thread is woken up (if still waiting), 350 * the 'end' callback is called if given, else the reference to the 351 * request is released 352 */ 353 void fuse_request_end(struct fuse_req *req) 354 { 355 struct fuse_mount *fm = req->fm; 356 struct fuse_conn *fc = fm->fc; 357 struct fuse_iqueue *fiq = &fc->iq; 358 359 if (test_and_set_bit(FR_FINISHED, &req->flags)) 360 goto put_request; 361 362 trace_fuse_request_end(req); 363 /* 364 * test_and_set_bit() implies smp_mb() between bit 365 * changing and below FR_INTERRUPTED check. Pairs with 366 * smp_mb() from queue_interrupt(). 367 */ 368 if (test_bit(FR_INTERRUPTED, &req->flags)) { 369 spin_lock(&fiq->lock); 370 list_del_init(&req->intr_entry); 371 spin_unlock(&fiq->lock); 372 } 373 WARN_ON(test_bit(FR_PENDING, &req->flags)); 374 WARN_ON(test_bit(FR_SENT, &req->flags)); 375 if (test_bit(FR_BACKGROUND, &req->flags)) { 376 spin_lock(&fc->bg_lock); 377 clear_bit(FR_BACKGROUND, &req->flags); 378 if (fc->num_background == fc->max_background) { 379 fc->blocked = 0; 380 wake_up(&fc->blocked_waitq); 381 } else if (!fc->blocked) { 382 /* 383 * Wake up next waiter, if any. It's okay to use 384 * waitqueue_active(), as we've already synced up 385 * fc->blocked with waiters with the wake_up() call 386 * above. 387 */ 388 if (waitqueue_active(&fc->blocked_waitq)) 389 wake_up(&fc->blocked_waitq); 390 } 391 392 fc->num_background--; 393 fc->active_background--; 394 flush_bg_queue(fc); 395 spin_unlock(&fc->bg_lock); 396 } else { 397 /* Wake up waiter sleeping in request_wait_answer() */ 398 wake_up(&req->waitq); 399 } 400 401 if (test_bit(FR_ASYNC, &req->flags)) 402 req->args->end(fm, req->args, req->out.h.error); 403 put_request: 404 fuse_put_request(req); 405 } 406 EXPORT_SYMBOL_GPL(fuse_request_end); 407 408 static int queue_interrupt(struct fuse_req *req) 409 { 410 struct fuse_iqueue *fiq = &req->fm->fc->iq; 411 412 /* Check for we've sent request to interrupt this req */ 413 if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) 414 return -EINVAL; 415 416 fiq->ops->send_interrupt(fiq, req); 417 418 return 0; 419 } 420 421 static void request_wait_answer(struct fuse_req *req) 422 { 423 struct fuse_conn *fc = req->fm->fc; 424 struct fuse_iqueue *fiq = &fc->iq; 425 int err; 426 427 if (!fc->no_interrupt) { 428 /* Any signal may interrupt this */ 429 err = wait_event_interruptible(req->waitq, 430 test_bit(FR_FINISHED, &req->flags)); 431 if (!err) 432 return; 433 434 set_bit(FR_INTERRUPTED, &req->flags); 435 /* matches barrier in fuse_dev_do_read() */ 436 smp_mb__after_atomic(); 437 if (test_bit(FR_SENT, &req->flags)) 438 queue_interrupt(req); 439 } 440 441 if (!test_bit(FR_FORCE, &req->flags)) { 442 /* Only fatal signals may interrupt this */ 443 err = wait_event_killable(req->waitq, 444 test_bit(FR_FINISHED, &req->flags)); 445 if (!err) 446 return; 447 448 spin_lock(&fiq->lock); 449 /* Request is not yet in userspace, bail out */ 450 if (test_bit(FR_PENDING, &req->flags)) { 451 list_del(&req->list); 452 spin_unlock(&fiq->lock); 453 __fuse_put_request(req); 454 req->out.h.error = -EINTR; 455 return; 456 } 457 spin_unlock(&fiq->lock); 458 } 459 460 /* 461 * Either request is already in userspace, or it was forced. 462 * Wait it out. 463 */ 464 wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags)); 465 } 466 467 static void __fuse_request_send(struct fuse_req *req) 468 { 469 struct fuse_iqueue *fiq = &req->fm->fc->iq; 470 471 BUG_ON(test_bit(FR_BACKGROUND, &req->flags)); 472 473 /* acquire extra reference, since request is still needed after 474 fuse_request_end() */ 475 __fuse_get_request(req); 476 fuse_send_one(fiq, req); 477 478 request_wait_answer(req); 479 /* Pairs with smp_wmb() in fuse_request_end() */ 480 smp_rmb(); 481 } 482 483 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args) 484 { 485 if (fc->minor < 4 && args->opcode == FUSE_STATFS) 486 args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE; 487 488 if (fc->minor < 9) { 489 switch (args->opcode) { 490 case FUSE_LOOKUP: 491 case FUSE_CREATE: 492 case FUSE_MKNOD: 493 case FUSE_MKDIR: 494 case FUSE_SYMLINK: 495 case FUSE_LINK: 496 args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE; 497 break; 498 case FUSE_GETATTR: 499 case FUSE_SETATTR: 500 args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE; 501 break; 502 } 503 } 504 if (fc->minor < 12) { 505 switch (args->opcode) { 506 case FUSE_CREATE: 507 args->in_args[0].size = sizeof(struct fuse_open_in); 508 break; 509 case FUSE_MKNOD: 510 args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE; 511 break; 512 } 513 } 514 } 515 516 static void fuse_force_creds(struct fuse_req *req) 517 { 518 struct fuse_conn *fc = req->fm->fc; 519 520 if (!req->fm->sb || req->fm->sb->s_iflags & SB_I_NOIDMAP) { 521 req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid()); 522 req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid()); 523 } else { 524 req->in.h.uid = FUSE_INVALID_UIDGID; 525 req->in.h.gid = FUSE_INVALID_UIDGID; 526 } 527 528 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 529 } 530 531 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args) 532 { 533 req->in.h.opcode = args->opcode; 534 req->in.h.nodeid = args->nodeid; 535 req->args = args; 536 if (args->is_ext) 537 req->in.h.total_extlen = args->in_args[args->ext_idx].size / 8; 538 if (args->end) 539 __set_bit(FR_ASYNC, &req->flags); 540 } 541 542 ssize_t __fuse_simple_request(struct mnt_idmap *idmap, 543 struct fuse_mount *fm, 544 struct fuse_args *args) 545 { 546 struct fuse_conn *fc = fm->fc; 547 struct fuse_req *req; 548 ssize_t ret; 549 550 if (args->force) { 551 atomic_inc(&fc->num_waiting); 552 req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL); 553 554 if (!args->nocreds) 555 fuse_force_creds(req); 556 557 __set_bit(FR_WAITING, &req->flags); 558 __set_bit(FR_FORCE, &req->flags); 559 } else { 560 WARN_ON(args->nocreds); 561 req = fuse_get_req(idmap, fm, false); 562 if (IS_ERR(req)) 563 return PTR_ERR(req); 564 } 565 566 /* Needs to be done after fuse_get_req() so that fc->minor is valid */ 567 fuse_adjust_compat(fc, args); 568 fuse_args_to_req(req, args); 569 570 if (!args->noreply) 571 __set_bit(FR_ISREPLY, &req->flags); 572 __fuse_request_send(req); 573 ret = req->out.h.error; 574 if (!ret && args->out_argvar) { 575 BUG_ON(args->out_numargs == 0); 576 ret = args->out_args[args->out_numargs - 1].size; 577 } 578 fuse_put_request(req); 579 580 return ret; 581 } 582 583 static bool fuse_request_queue_background(struct fuse_req *req) 584 { 585 struct fuse_mount *fm = req->fm; 586 struct fuse_conn *fc = fm->fc; 587 bool queued = false; 588 589 WARN_ON(!test_bit(FR_BACKGROUND, &req->flags)); 590 if (!test_bit(FR_WAITING, &req->flags)) { 591 __set_bit(FR_WAITING, &req->flags); 592 atomic_inc(&fc->num_waiting); 593 } 594 __set_bit(FR_ISREPLY, &req->flags); 595 spin_lock(&fc->bg_lock); 596 if (likely(fc->connected)) { 597 fc->num_background++; 598 if (fc->num_background == fc->max_background) 599 fc->blocked = 1; 600 list_add_tail(&req->list, &fc->bg_queue); 601 flush_bg_queue(fc); 602 queued = true; 603 } 604 spin_unlock(&fc->bg_lock); 605 606 return queued; 607 } 608 609 int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args, 610 gfp_t gfp_flags) 611 { 612 struct fuse_req *req; 613 614 if (args->force) { 615 WARN_ON(!args->nocreds); 616 req = fuse_request_alloc(fm, gfp_flags); 617 if (!req) 618 return -ENOMEM; 619 __set_bit(FR_BACKGROUND, &req->flags); 620 } else { 621 WARN_ON(args->nocreds); 622 req = fuse_get_req(&invalid_mnt_idmap, fm, true); 623 if (IS_ERR(req)) 624 return PTR_ERR(req); 625 } 626 627 fuse_args_to_req(req, args); 628 629 if (!fuse_request_queue_background(req)) { 630 fuse_put_request(req); 631 return -ENOTCONN; 632 } 633 634 return 0; 635 } 636 EXPORT_SYMBOL_GPL(fuse_simple_background); 637 638 static int fuse_simple_notify_reply(struct fuse_mount *fm, 639 struct fuse_args *args, u64 unique) 640 { 641 struct fuse_req *req; 642 struct fuse_iqueue *fiq = &fm->fc->iq; 643 644 req = fuse_get_req(&invalid_mnt_idmap, fm, false); 645 if (IS_ERR(req)) 646 return PTR_ERR(req); 647 648 __clear_bit(FR_ISREPLY, &req->flags); 649 req->in.h.unique = unique; 650 651 fuse_args_to_req(req, args); 652 653 fuse_send_one(fiq, req); 654 655 return 0; 656 } 657 658 /* 659 * Lock the request. Up to the next unlock_request() there mustn't be 660 * anything that could cause a page-fault. If the request was already 661 * aborted bail out. 662 */ 663 static int lock_request(struct fuse_req *req) 664 { 665 int err = 0; 666 if (req) { 667 spin_lock(&req->waitq.lock); 668 if (test_bit(FR_ABORTED, &req->flags)) 669 err = -ENOENT; 670 else 671 set_bit(FR_LOCKED, &req->flags); 672 spin_unlock(&req->waitq.lock); 673 } 674 return err; 675 } 676 677 /* 678 * Unlock request. If it was aborted while locked, caller is responsible 679 * for unlocking and ending the request. 680 */ 681 static int unlock_request(struct fuse_req *req) 682 { 683 int err = 0; 684 if (req) { 685 spin_lock(&req->waitq.lock); 686 if (test_bit(FR_ABORTED, &req->flags)) 687 err = -ENOENT; 688 else 689 clear_bit(FR_LOCKED, &req->flags); 690 spin_unlock(&req->waitq.lock); 691 } 692 return err; 693 } 694 695 struct fuse_copy_state { 696 int write; 697 struct fuse_req *req; 698 struct iov_iter *iter; 699 struct pipe_buffer *pipebufs; 700 struct pipe_buffer *currbuf; 701 struct pipe_inode_info *pipe; 702 unsigned long nr_segs; 703 struct page *pg; 704 unsigned len; 705 unsigned offset; 706 unsigned move_pages:1; 707 }; 708 709 static void fuse_copy_init(struct fuse_copy_state *cs, int write, 710 struct iov_iter *iter) 711 { 712 memset(cs, 0, sizeof(*cs)); 713 cs->write = write; 714 cs->iter = iter; 715 } 716 717 /* Unmap and put previous page of userspace buffer */ 718 static void fuse_copy_finish(struct fuse_copy_state *cs) 719 { 720 if (cs->currbuf) { 721 struct pipe_buffer *buf = cs->currbuf; 722 723 if (cs->write) 724 buf->len = PAGE_SIZE - cs->len; 725 cs->currbuf = NULL; 726 } else if (cs->pg) { 727 if (cs->write) { 728 flush_dcache_page(cs->pg); 729 set_page_dirty_lock(cs->pg); 730 } 731 put_page(cs->pg); 732 } 733 cs->pg = NULL; 734 } 735 736 /* 737 * Get another pagefull of userspace buffer, and map it to kernel 738 * address space, and lock request 739 */ 740 static int fuse_copy_fill(struct fuse_copy_state *cs) 741 { 742 struct page *page; 743 int err; 744 745 err = unlock_request(cs->req); 746 if (err) 747 return err; 748 749 fuse_copy_finish(cs); 750 if (cs->pipebufs) { 751 struct pipe_buffer *buf = cs->pipebufs; 752 753 if (!cs->write) { 754 err = pipe_buf_confirm(cs->pipe, buf); 755 if (err) 756 return err; 757 758 BUG_ON(!cs->nr_segs); 759 cs->currbuf = buf; 760 cs->pg = buf->page; 761 cs->offset = buf->offset; 762 cs->len = buf->len; 763 cs->pipebufs++; 764 cs->nr_segs--; 765 } else { 766 if (cs->nr_segs >= cs->pipe->max_usage) 767 return -EIO; 768 769 page = alloc_page(GFP_HIGHUSER); 770 if (!page) 771 return -ENOMEM; 772 773 buf->page = page; 774 buf->offset = 0; 775 buf->len = 0; 776 777 cs->currbuf = buf; 778 cs->pg = page; 779 cs->offset = 0; 780 cs->len = PAGE_SIZE; 781 cs->pipebufs++; 782 cs->nr_segs++; 783 } 784 } else { 785 size_t off; 786 err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off); 787 if (err < 0) 788 return err; 789 BUG_ON(!err); 790 cs->len = err; 791 cs->offset = off; 792 cs->pg = page; 793 } 794 795 return lock_request(cs->req); 796 } 797 798 /* Do as much copy to/from userspace buffer as we can */ 799 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size) 800 { 801 unsigned ncpy = min(*size, cs->len); 802 if (val) { 803 void *pgaddr = kmap_local_page(cs->pg); 804 void *buf = pgaddr + cs->offset; 805 806 if (cs->write) 807 memcpy(buf, *val, ncpy); 808 else 809 memcpy(*val, buf, ncpy); 810 811 kunmap_local(pgaddr); 812 *val += ncpy; 813 } 814 *size -= ncpy; 815 cs->len -= ncpy; 816 cs->offset += ncpy; 817 return ncpy; 818 } 819 820 static int fuse_check_folio(struct folio *folio) 821 { 822 if (folio_mapped(folio) || 823 folio->mapping != NULL || 824 (folio->flags & PAGE_FLAGS_CHECK_AT_PREP & 825 ~(1 << PG_locked | 826 1 << PG_referenced | 827 1 << PG_lru | 828 1 << PG_active | 829 1 << PG_workingset | 830 1 << PG_reclaim | 831 1 << PG_waiters | 832 LRU_GEN_MASK | LRU_REFS_MASK))) { 833 dump_page(&folio->page, "fuse: trying to steal weird page"); 834 return 1; 835 } 836 return 0; 837 } 838 839 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep) 840 { 841 int err; 842 struct folio *oldfolio = page_folio(*pagep); 843 struct folio *newfolio; 844 struct pipe_buffer *buf = cs->pipebufs; 845 846 folio_get(oldfolio); 847 err = unlock_request(cs->req); 848 if (err) 849 goto out_put_old; 850 851 fuse_copy_finish(cs); 852 853 err = pipe_buf_confirm(cs->pipe, buf); 854 if (err) 855 goto out_put_old; 856 857 BUG_ON(!cs->nr_segs); 858 cs->currbuf = buf; 859 cs->len = buf->len; 860 cs->pipebufs++; 861 cs->nr_segs--; 862 863 if (cs->len != PAGE_SIZE) 864 goto out_fallback; 865 866 if (!pipe_buf_try_steal(cs->pipe, buf)) 867 goto out_fallback; 868 869 newfolio = page_folio(buf->page); 870 871 folio_clear_uptodate(newfolio); 872 folio_clear_mappedtodisk(newfolio); 873 874 if (fuse_check_folio(newfolio) != 0) 875 goto out_fallback_unlock; 876 877 /* 878 * This is a new and locked page, it shouldn't be mapped or 879 * have any special flags on it 880 */ 881 if (WARN_ON(folio_mapped(oldfolio))) 882 goto out_fallback_unlock; 883 if (WARN_ON(folio_has_private(oldfolio))) 884 goto out_fallback_unlock; 885 if (WARN_ON(folio_test_dirty(oldfolio) || 886 folio_test_writeback(oldfolio))) 887 goto out_fallback_unlock; 888 if (WARN_ON(folio_test_mlocked(oldfolio))) 889 goto out_fallback_unlock; 890 891 replace_page_cache_folio(oldfolio, newfolio); 892 893 folio_get(newfolio); 894 895 if (!(buf->flags & PIPE_BUF_FLAG_LRU)) 896 folio_add_lru(newfolio); 897 898 /* 899 * Release while we have extra ref on stolen page. Otherwise 900 * anon_pipe_buf_release() might think the page can be reused. 901 */ 902 pipe_buf_release(cs->pipe, buf); 903 904 err = 0; 905 spin_lock(&cs->req->waitq.lock); 906 if (test_bit(FR_ABORTED, &cs->req->flags)) 907 err = -ENOENT; 908 else 909 *pagep = &newfolio->page; 910 spin_unlock(&cs->req->waitq.lock); 911 912 if (err) { 913 folio_unlock(newfolio); 914 folio_put(newfolio); 915 goto out_put_old; 916 } 917 918 folio_unlock(oldfolio); 919 /* Drop ref for ap->pages[] array */ 920 folio_put(oldfolio); 921 cs->len = 0; 922 923 err = 0; 924 out_put_old: 925 /* Drop ref obtained in this function */ 926 folio_put(oldfolio); 927 return err; 928 929 out_fallback_unlock: 930 folio_unlock(newfolio); 931 out_fallback: 932 cs->pg = buf->page; 933 cs->offset = buf->offset; 934 935 err = lock_request(cs->req); 936 if (!err) 937 err = 1; 938 939 goto out_put_old; 940 } 941 942 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page, 943 unsigned offset, unsigned count) 944 { 945 struct pipe_buffer *buf; 946 int err; 947 948 if (cs->nr_segs >= cs->pipe->max_usage) 949 return -EIO; 950 951 get_page(page); 952 err = unlock_request(cs->req); 953 if (err) { 954 put_page(page); 955 return err; 956 } 957 958 fuse_copy_finish(cs); 959 960 buf = cs->pipebufs; 961 buf->page = page; 962 buf->offset = offset; 963 buf->len = count; 964 965 cs->pipebufs++; 966 cs->nr_segs++; 967 cs->len = 0; 968 969 return 0; 970 } 971 972 /* 973 * Copy a page in the request to/from the userspace buffer. Must be 974 * done atomically 975 */ 976 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep, 977 unsigned offset, unsigned count, int zeroing) 978 { 979 int err; 980 struct page *page = *pagep; 981 982 if (page && zeroing && count < PAGE_SIZE) 983 clear_highpage(page); 984 985 while (count) { 986 if (cs->write && cs->pipebufs && page) { 987 /* 988 * Can't control lifetime of pipe buffers, so always 989 * copy user pages. 990 */ 991 if (cs->req->args->user_pages) { 992 err = fuse_copy_fill(cs); 993 if (err) 994 return err; 995 } else { 996 return fuse_ref_page(cs, page, offset, count); 997 } 998 } else if (!cs->len) { 999 if (cs->move_pages && page && 1000 offset == 0 && count == PAGE_SIZE) { 1001 err = fuse_try_move_page(cs, pagep); 1002 if (err <= 0) 1003 return err; 1004 } else { 1005 err = fuse_copy_fill(cs); 1006 if (err) 1007 return err; 1008 } 1009 } 1010 if (page) { 1011 void *mapaddr = kmap_local_page(page); 1012 void *buf = mapaddr + offset; 1013 offset += fuse_copy_do(cs, &buf, &count); 1014 kunmap_local(mapaddr); 1015 } else 1016 offset += fuse_copy_do(cs, NULL, &count); 1017 } 1018 if (page && !cs->write) 1019 flush_dcache_page(page); 1020 return 0; 1021 } 1022 1023 /* Copy pages in the request to/from userspace buffer */ 1024 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes, 1025 int zeroing) 1026 { 1027 unsigned i; 1028 struct fuse_req *req = cs->req; 1029 struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args); 1030 1031 for (i = 0; i < ap->num_folios && (nbytes || zeroing); i++) { 1032 int err; 1033 unsigned int offset = ap->descs[i].offset; 1034 unsigned int count = min(nbytes, ap->descs[i].length); 1035 struct page *orig, *pagep; 1036 1037 orig = pagep = &ap->folios[i]->page; 1038 1039 err = fuse_copy_page(cs, &pagep, offset, count, zeroing); 1040 if (err) 1041 return err; 1042 1043 nbytes -= count; 1044 1045 /* 1046 * fuse_copy_page may have moved a page from a pipe instead of 1047 * copying into our given page, so update the folios if it was 1048 * replaced. 1049 */ 1050 if (pagep != orig) 1051 ap->folios[i] = page_folio(pagep); 1052 } 1053 return 0; 1054 } 1055 1056 /* Copy a single argument in the request to/from userspace buffer */ 1057 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size) 1058 { 1059 while (size) { 1060 if (!cs->len) { 1061 int err = fuse_copy_fill(cs); 1062 if (err) 1063 return err; 1064 } 1065 fuse_copy_do(cs, &val, &size); 1066 } 1067 return 0; 1068 } 1069 1070 /* Copy request arguments to/from userspace buffer */ 1071 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs, 1072 unsigned argpages, struct fuse_arg *args, 1073 int zeroing) 1074 { 1075 int err = 0; 1076 unsigned i; 1077 1078 for (i = 0; !err && i < numargs; i++) { 1079 struct fuse_arg *arg = &args[i]; 1080 if (i == numargs - 1 && argpages) 1081 err = fuse_copy_pages(cs, arg->size, zeroing); 1082 else 1083 err = fuse_copy_one(cs, arg->value, arg->size); 1084 } 1085 return err; 1086 } 1087 1088 static int forget_pending(struct fuse_iqueue *fiq) 1089 { 1090 return fiq->forget_list_head.next != NULL; 1091 } 1092 1093 static int request_pending(struct fuse_iqueue *fiq) 1094 { 1095 return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) || 1096 forget_pending(fiq); 1097 } 1098 1099 /* 1100 * Transfer an interrupt request to userspace 1101 * 1102 * Unlike other requests this is assembled on demand, without a need 1103 * to allocate a separate fuse_req structure. 1104 * 1105 * Called with fiq->lock held, releases it 1106 */ 1107 static int fuse_read_interrupt(struct fuse_iqueue *fiq, 1108 struct fuse_copy_state *cs, 1109 size_t nbytes, struct fuse_req *req) 1110 __releases(fiq->lock) 1111 { 1112 struct fuse_in_header ih; 1113 struct fuse_interrupt_in arg; 1114 unsigned reqsize = sizeof(ih) + sizeof(arg); 1115 int err; 1116 1117 list_del_init(&req->intr_entry); 1118 memset(&ih, 0, sizeof(ih)); 1119 memset(&arg, 0, sizeof(arg)); 1120 ih.len = reqsize; 1121 ih.opcode = FUSE_INTERRUPT; 1122 ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT); 1123 arg.unique = req->in.h.unique; 1124 1125 spin_unlock(&fiq->lock); 1126 if (nbytes < reqsize) 1127 return -EINVAL; 1128 1129 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1130 if (!err) 1131 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1132 fuse_copy_finish(cs); 1133 1134 return err ? err : reqsize; 1135 } 1136 1137 static struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq, 1138 unsigned int max, 1139 unsigned int *countp) 1140 { 1141 struct fuse_forget_link *head = fiq->forget_list_head.next; 1142 struct fuse_forget_link **newhead = &head; 1143 unsigned count; 1144 1145 for (count = 0; *newhead != NULL && count < max; count++) 1146 newhead = &(*newhead)->next; 1147 1148 fiq->forget_list_head.next = *newhead; 1149 *newhead = NULL; 1150 if (fiq->forget_list_head.next == NULL) 1151 fiq->forget_list_tail = &fiq->forget_list_head; 1152 1153 if (countp != NULL) 1154 *countp = count; 1155 1156 return head; 1157 } 1158 1159 static int fuse_read_single_forget(struct fuse_iqueue *fiq, 1160 struct fuse_copy_state *cs, 1161 size_t nbytes) 1162 __releases(fiq->lock) 1163 { 1164 int err; 1165 struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL); 1166 struct fuse_forget_in arg = { 1167 .nlookup = forget->forget_one.nlookup, 1168 }; 1169 struct fuse_in_header ih = { 1170 .opcode = FUSE_FORGET, 1171 .nodeid = forget->forget_one.nodeid, 1172 .unique = fuse_get_unique_locked(fiq), 1173 .len = sizeof(ih) + sizeof(arg), 1174 }; 1175 1176 spin_unlock(&fiq->lock); 1177 kfree(forget); 1178 if (nbytes < ih.len) 1179 return -EINVAL; 1180 1181 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1182 if (!err) 1183 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1184 fuse_copy_finish(cs); 1185 1186 if (err) 1187 return err; 1188 1189 return ih.len; 1190 } 1191 1192 static int fuse_read_batch_forget(struct fuse_iqueue *fiq, 1193 struct fuse_copy_state *cs, size_t nbytes) 1194 __releases(fiq->lock) 1195 { 1196 int err; 1197 unsigned max_forgets; 1198 unsigned count; 1199 struct fuse_forget_link *head; 1200 struct fuse_batch_forget_in arg = { .count = 0 }; 1201 struct fuse_in_header ih = { 1202 .opcode = FUSE_BATCH_FORGET, 1203 .unique = fuse_get_unique_locked(fiq), 1204 .len = sizeof(ih) + sizeof(arg), 1205 }; 1206 1207 if (nbytes < ih.len) { 1208 spin_unlock(&fiq->lock); 1209 return -EINVAL; 1210 } 1211 1212 max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one); 1213 head = fuse_dequeue_forget(fiq, max_forgets, &count); 1214 spin_unlock(&fiq->lock); 1215 1216 arg.count = count; 1217 ih.len += count * sizeof(struct fuse_forget_one); 1218 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1219 if (!err) 1220 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1221 1222 while (head) { 1223 struct fuse_forget_link *forget = head; 1224 1225 if (!err) { 1226 err = fuse_copy_one(cs, &forget->forget_one, 1227 sizeof(forget->forget_one)); 1228 } 1229 head = forget->next; 1230 kfree(forget); 1231 } 1232 1233 fuse_copy_finish(cs); 1234 1235 if (err) 1236 return err; 1237 1238 return ih.len; 1239 } 1240 1241 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq, 1242 struct fuse_copy_state *cs, 1243 size_t nbytes) 1244 __releases(fiq->lock) 1245 { 1246 if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL) 1247 return fuse_read_single_forget(fiq, cs, nbytes); 1248 else 1249 return fuse_read_batch_forget(fiq, cs, nbytes); 1250 } 1251 1252 /* 1253 * Read a single request into the userspace filesystem's buffer. This 1254 * function waits until a request is available, then removes it from 1255 * the pending list and copies request data to userspace buffer. If 1256 * no reply is needed (FORGET) or request has been aborted or there 1257 * was an error during the copying then it's finished by calling 1258 * fuse_request_end(). Otherwise add it to the processing list, and set 1259 * the 'sent' flag. 1260 */ 1261 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file, 1262 struct fuse_copy_state *cs, size_t nbytes) 1263 { 1264 ssize_t err; 1265 struct fuse_conn *fc = fud->fc; 1266 struct fuse_iqueue *fiq = &fc->iq; 1267 struct fuse_pqueue *fpq = &fud->pq; 1268 struct fuse_req *req; 1269 struct fuse_args *args; 1270 unsigned reqsize; 1271 unsigned int hash; 1272 1273 /* 1274 * Require sane minimum read buffer - that has capacity for fixed part 1275 * of any request header + negotiated max_write room for data. 1276 * 1277 * Historically libfuse reserves 4K for fixed header room, but e.g. 1278 * GlusterFS reserves only 80 bytes 1279 * 1280 * = `sizeof(fuse_in_header) + sizeof(fuse_write_in)` 1281 * 1282 * which is the absolute minimum any sane filesystem should be using 1283 * for header room. 1284 */ 1285 if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER, 1286 sizeof(struct fuse_in_header) + 1287 sizeof(struct fuse_write_in) + 1288 fc->max_write)) 1289 return -EINVAL; 1290 1291 restart: 1292 for (;;) { 1293 spin_lock(&fiq->lock); 1294 if (!fiq->connected || request_pending(fiq)) 1295 break; 1296 spin_unlock(&fiq->lock); 1297 1298 if (file->f_flags & O_NONBLOCK) 1299 return -EAGAIN; 1300 err = wait_event_interruptible_exclusive(fiq->waitq, 1301 !fiq->connected || request_pending(fiq)); 1302 if (err) 1303 return err; 1304 } 1305 1306 if (!fiq->connected) { 1307 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1308 goto err_unlock; 1309 } 1310 1311 if (!list_empty(&fiq->interrupts)) { 1312 req = list_entry(fiq->interrupts.next, struct fuse_req, 1313 intr_entry); 1314 return fuse_read_interrupt(fiq, cs, nbytes, req); 1315 } 1316 1317 if (forget_pending(fiq)) { 1318 if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0) 1319 return fuse_read_forget(fc, fiq, cs, nbytes); 1320 1321 if (fiq->forget_batch <= -8) 1322 fiq->forget_batch = 16; 1323 } 1324 1325 req = list_entry(fiq->pending.next, struct fuse_req, list); 1326 clear_bit(FR_PENDING, &req->flags); 1327 list_del_init(&req->list); 1328 spin_unlock(&fiq->lock); 1329 1330 args = req->args; 1331 reqsize = req->in.h.len; 1332 1333 /* If request is too large, reply with an error and restart the read */ 1334 if (nbytes < reqsize) { 1335 req->out.h.error = -EIO; 1336 /* SETXATTR is special, since it may contain too large data */ 1337 if (args->opcode == FUSE_SETXATTR) 1338 req->out.h.error = -E2BIG; 1339 fuse_request_end(req); 1340 goto restart; 1341 } 1342 spin_lock(&fpq->lock); 1343 /* 1344 * Must not put request on fpq->io queue after having been shut down by 1345 * fuse_abort_conn() 1346 */ 1347 if (!fpq->connected) { 1348 req->out.h.error = err = -ECONNABORTED; 1349 goto out_end; 1350 1351 } 1352 list_add(&req->list, &fpq->io); 1353 spin_unlock(&fpq->lock); 1354 cs->req = req; 1355 err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h)); 1356 if (!err) 1357 err = fuse_copy_args(cs, args->in_numargs, args->in_pages, 1358 (struct fuse_arg *) args->in_args, 0); 1359 fuse_copy_finish(cs); 1360 spin_lock(&fpq->lock); 1361 clear_bit(FR_LOCKED, &req->flags); 1362 if (!fpq->connected) { 1363 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1364 goto out_end; 1365 } 1366 if (err) { 1367 req->out.h.error = -EIO; 1368 goto out_end; 1369 } 1370 if (!test_bit(FR_ISREPLY, &req->flags)) { 1371 err = reqsize; 1372 goto out_end; 1373 } 1374 hash = fuse_req_hash(req->in.h.unique); 1375 list_move_tail(&req->list, &fpq->processing[hash]); 1376 __fuse_get_request(req); 1377 set_bit(FR_SENT, &req->flags); 1378 spin_unlock(&fpq->lock); 1379 /* matches barrier in request_wait_answer() */ 1380 smp_mb__after_atomic(); 1381 if (test_bit(FR_INTERRUPTED, &req->flags)) 1382 queue_interrupt(req); 1383 fuse_put_request(req); 1384 1385 return reqsize; 1386 1387 out_end: 1388 if (!test_bit(FR_PRIVATE, &req->flags)) 1389 list_del_init(&req->list); 1390 spin_unlock(&fpq->lock); 1391 fuse_request_end(req); 1392 return err; 1393 1394 err_unlock: 1395 spin_unlock(&fiq->lock); 1396 return err; 1397 } 1398 1399 static int fuse_dev_open(struct inode *inode, struct file *file) 1400 { 1401 /* 1402 * The fuse device's file's private_data is used to hold 1403 * the fuse_conn(ection) when it is mounted, and is used to 1404 * keep track of whether the file has been mounted already. 1405 */ 1406 file->private_data = NULL; 1407 return 0; 1408 } 1409 1410 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to) 1411 { 1412 struct fuse_copy_state cs; 1413 struct file *file = iocb->ki_filp; 1414 struct fuse_dev *fud = fuse_get_dev(file); 1415 1416 if (!fud) 1417 return -EPERM; 1418 1419 if (!user_backed_iter(to)) 1420 return -EINVAL; 1421 1422 fuse_copy_init(&cs, 1, to); 1423 1424 return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to)); 1425 } 1426 1427 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos, 1428 struct pipe_inode_info *pipe, 1429 size_t len, unsigned int flags) 1430 { 1431 int total, ret; 1432 int page_nr = 0; 1433 struct pipe_buffer *bufs; 1434 struct fuse_copy_state cs; 1435 struct fuse_dev *fud = fuse_get_dev(in); 1436 1437 if (!fud) 1438 return -EPERM; 1439 1440 bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer), 1441 GFP_KERNEL); 1442 if (!bufs) 1443 return -ENOMEM; 1444 1445 fuse_copy_init(&cs, 1, NULL); 1446 cs.pipebufs = bufs; 1447 cs.pipe = pipe; 1448 ret = fuse_dev_do_read(fud, in, &cs, len); 1449 if (ret < 0) 1450 goto out; 1451 1452 if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) { 1453 ret = -EIO; 1454 goto out; 1455 } 1456 1457 for (ret = total = 0; page_nr < cs.nr_segs; total += ret) { 1458 /* 1459 * Need to be careful about this. Having buf->ops in module 1460 * code can Oops if the buffer persists after module unload. 1461 */ 1462 bufs[page_nr].ops = &nosteal_pipe_buf_ops; 1463 bufs[page_nr].flags = 0; 1464 ret = add_to_pipe(pipe, &bufs[page_nr++]); 1465 if (unlikely(ret < 0)) 1466 break; 1467 } 1468 if (total) 1469 ret = total; 1470 out: 1471 for (; page_nr < cs.nr_segs; page_nr++) 1472 put_page(bufs[page_nr].page); 1473 1474 kvfree(bufs); 1475 return ret; 1476 } 1477 1478 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size, 1479 struct fuse_copy_state *cs) 1480 { 1481 struct fuse_notify_poll_wakeup_out outarg; 1482 int err = -EINVAL; 1483 1484 if (size != sizeof(outarg)) 1485 goto err; 1486 1487 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1488 if (err) 1489 goto err; 1490 1491 fuse_copy_finish(cs); 1492 return fuse_notify_poll_wakeup(fc, &outarg); 1493 1494 err: 1495 fuse_copy_finish(cs); 1496 return err; 1497 } 1498 1499 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size, 1500 struct fuse_copy_state *cs) 1501 { 1502 struct fuse_notify_inval_inode_out outarg; 1503 int err = -EINVAL; 1504 1505 if (size != sizeof(outarg)) 1506 goto err; 1507 1508 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1509 if (err) 1510 goto err; 1511 fuse_copy_finish(cs); 1512 1513 down_read(&fc->killsb); 1514 err = fuse_reverse_inval_inode(fc, outarg.ino, 1515 outarg.off, outarg.len); 1516 up_read(&fc->killsb); 1517 return err; 1518 1519 err: 1520 fuse_copy_finish(cs); 1521 return err; 1522 } 1523 1524 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size, 1525 struct fuse_copy_state *cs) 1526 { 1527 struct fuse_notify_inval_entry_out outarg; 1528 int err = -ENOMEM; 1529 char *buf; 1530 struct qstr name; 1531 1532 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1533 if (!buf) 1534 goto err; 1535 1536 err = -EINVAL; 1537 if (size < sizeof(outarg)) 1538 goto err; 1539 1540 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1541 if (err) 1542 goto err; 1543 1544 err = -ENAMETOOLONG; 1545 if (outarg.namelen > FUSE_NAME_MAX) 1546 goto err; 1547 1548 err = -EINVAL; 1549 if (size != sizeof(outarg) + outarg.namelen + 1) 1550 goto err; 1551 1552 name.name = buf; 1553 name.len = outarg.namelen; 1554 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1555 if (err) 1556 goto err; 1557 fuse_copy_finish(cs); 1558 buf[outarg.namelen] = 0; 1559 1560 down_read(&fc->killsb); 1561 err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags); 1562 up_read(&fc->killsb); 1563 kfree(buf); 1564 return err; 1565 1566 err: 1567 kfree(buf); 1568 fuse_copy_finish(cs); 1569 return err; 1570 } 1571 1572 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size, 1573 struct fuse_copy_state *cs) 1574 { 1575 struct fuse_notify_delete_out outarg; 1576 int err = -ENOMEM; 1577 char *buf; 1578 struct qstr name; 1579 1580 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1581 if (!buf) 1582 goto err; 1583 1584 err = -EINVAL; 1585 if (size < sizeof(outarg)) 1586 goto err; 1587 1588 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1589 if (err) 1590 goto err; 1591 1592 err = -ENAMETOOLONG; 1593 if (outarg.namelen > FUSE_NAME_MAX) 1594 goto err; 1595 1596 err = -EINVAL; 1597 if (size != sizeof(outarg) + outarg.namelen + 1) 1598 goto err; 1599 1600 name.name = buf; 1601 name.len = outarg.namelen; 1602 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1603 if (err) 1604 goto err; 1605 fuse_copy_finish(cs); 1606 buf[outarg.namelen] = 0; 1607 1608 down_read(&fc->killsb); 1609 err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0); 1610 up_read(&fc->killsb); 1611 kfree(buf); 1612 return err; 1613 1614 err: 1615 kfree(buf); 1616 fuse_copy_finish(cs); 1617 return err; 1618 } 1619 1620 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size, 1621 struct fuse_copy_state *cs) 1622 { 1623 struct fuse_notify_store_out outarg; 1624 struct inode *inode; 1625 struct address_space *mapping; 1626 u64 nodeid; 1627 int err; 1628 pgoff_t index; 1629 unsigned int offset; 1630 unsigned int num; 1631 loff_t file_size; 1632 loff_t end; 1633 1634 err = -EINVAL; 1635 if (size < sizeof(outarg)) 1636 goto out_finish; 1637 1638 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1639 if (err) 1640 goto out_finish; 1641 1642 err = -EINVAL; 1643 if (size - sizeof(outarg) != outarg.size) 1644 goto out_finish; 1645 1646 nodeid = outarg.nodeid; 1647 1648 down_read(&fc->killsb); 1649 1650 err = -ENOENT; 1651 inode = fuse_ilookup(fc, nodeid, NULL); 1652 if (!inode) 1653 goto out_up_killsb; 1654 1655 mapping = inode->i_mapping; 1656 index = outarg.offset >> PAGE_SHIFT; 1657 offset = outarg.offset & ~PAGE_MASK; 1658 file_size = i_size_read(inode); 1659 end = outarg.offset + outarg.size; 1660 if (end > file_size) { 1661 file_size = end; 1662 fuse_write_update_attr(inode, file_size, outarg.size); 1663 } 1664 1665 num = outarg.size; 1666 while (num) { 1667 struct folio *folio; 1668 struct page *page; 1669 unsigned int this_num; 1670 1671 folio = filemap_grab_folio(mapping, index); 1672 err = PTR_ERR(folio); 1673 if (IS_ERR(folio)) 1674 goto out_iput; 1675 1676 page = &folio->page; 1677 this_num = min_t(unsigned, num, folio_size(folio) - offset); 1678 err = fuse_copy_page(cs, &page, offset, this_num, 0); 1679 if (!folio_test_uptodate(folio) && !err && offset == 0 && 1680 (this_num == folio_size(folio) || file_size == end)) { 1681 folio_zero_segment(folio, this_num, folio_size(folio)); 1682 folio_mark_uptodate(folio); 1683 } 1684 folio_unlock(folio); 1685 folio_put(folio); 1686 1687 if (err) 1688 goto out_iput; 1689 1690 num -= this_num; 1691 offset = 0; 1692 index++; 1693 } 1694 1695 err = 0; 1696 1697 out_iput: 1698 iput(inode); 1699 out_up_killsb: 1700 up_read(&fc->killsb); 1701 out_finish: 1702 fuse_copy_finish(cs); 1703 return err; 1704 } 1705 1706 struct fuse_retrieve_args { 1707 struct fuse_args_pages ap; 1708 struct fuse_notify_retrieve_in inarg; 1709 }; 1710 1711 static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args, 1712 int error) 1713 { 1714 struct fuse_retrieve_args *ra = 1715 container_of(args, typeof(*ra), ap.args); 1716 1717 release_pages(ra->ap.folios, ra->ap.num_folios); 1718 kfree(ra); 1719 } 1720 1721 static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode, 1722 struct fuse_notify_retrieve_out *outarg) 1723 { 1724 int err; 1725 struct address_space *mapping = inode->i_mapping; 1726 pgoff_t index; 1727 loff_t file_size; 1728 unsigned int num; 1729 unsigned int offset; 1730 size_t total_len = 0; 1731 unsigned int num_pages, cur_pages = 0; 1732 struct fuse_conn *fc = fm->fc; 1733 struct fuse_retrieve_args *ra; 1734 size_t args_size = sizeof(*ra); 1735 struct fuse_args_pages *ap; 1736 struct fuse_args *args; 1737 1738 offset = outarg->offset & ~PAGE_MASK; 1739 file_size = i_size_read(inode); 1740 1741 num = min(outarg->size, fc->max_write); 1742 if (outarg->offset > file_size) 1743 num = 0; 1744 else if (outarg->offset + num > file_size) 1745 num = file_size - outarg->offset; 1746 1747 num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1748 num_pages = min(num_pages, fc->max_pages); 1749 1750 args_size += num_pages * (sizeof(ap->folios[0]) + sizeof(ap->descs[0])); 1751 1752 ra = kzalloc(args_size, GFP_KERNEL); 1753 if (!ra) 1754 return -ENOMEM; 1755 1756 ap = &ra->ap; 1757 ap->folios = (void *) (ra + 1); 1758 ap->descs = (void *) (ap->folios + num_pages); 1759 1760 args = &ap->args; 1761 args->nodeid = outarg->nodeid; 1762 args->opcode = FUSE_NOTIFY_REPLY; 1763 args->in_numargs = 2; 1764 args->in_pages = true; 1765 args->end = fuse_retrieve_end; 1766 1767 index = outarg->offset >> PAGE_SHIFT; 1768 1769 while (num && cur_pages < num_pages) { 1770 struct folio *folio; 1771 unsigned int this_num; 1772 1773 folio = filemap_get_folio(mapping, index); 1774 if (IS_ERR(folio)) 1775 break; 1776 1777 this_num = min_t(unsigned, num, PAGE_SIZE - offset); 1778 ap->folios[ap->num_folios] = folio; 1779 ap->descs[ap->num_folios].offset = offset; 1780 ap->descs[ap->num_folios].length = this_num; 1781 ap->num_folios++; 1782 cur_pages++; 1783 1784 offset = 0; 1785 num -= this_num; 1786 total_len += this_num; 1787 index++; 1788 } 1789 ra->inarg.offset = outarg->offset; 1790 ra->inarg.size = total_len; 1791 args->in_args[0].size = sizeof(ra->inarg); 1792 args->in_args[0].value = &ra->inarg; 1793 args->in_args[1].size = total_len; 1794 1795 err = fuse_simple_notify_reply(fm, args, outarg->notify_unique); 1796 if (err) 1797 fuse_retrieve_end(fm, args, err); 1798 1799 return err; 1800 } 1801 1802 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size, 1803 struct fuse_copy_state *cs) 1804 { 1805 struct fuse_notify_retrieve_out outarg; 1806 struct fuse_mount *fm; 1807 struct inode *inode; 1808 u64 nodeid; 1809 int err; 1810 1811 err = -EINVAL; 1812 if (size != sizeof(outarg)) 1813 goto copy_finish; 1814 1815 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1816 if (err) 1817 goto copy_finish; 1818 1819 fuse_copy_finish(cs); 1820 1821 down_read(&fc->killsb); 1822 err = -ENOENT; 1823 nodeid = outarg.nodeid; 1824 1825 inode = fuse_ilookup(fc, nodeid, &fm); 1826 if (inode) { 1827 err = fuse_retrieve(fm, inode, &outarg); 1828 iput(inode); 1829 } 1830 up_read(&fc->killsb); 1831 1832 return err; 1833 1834 copy_finish: 1835 fuse_copy_finish(cs); 1836 return err; 1837 } 1838 1839 /* 1840 * Resending all processing queue requests. 1841 * 1842 * During a FUSE daemon panics and failover, it is possible for some inflight 1843 * requests to be lost and never returned. As a result, applications awaiting 1844 * replies would become stuck forever. To address this, we can use notification 1845 * to trigger resending of these pending requests to the FUSE daemon, ensuring 1846 * they are properly processed again. 1847 * 1848 * Please note that this strategy is applicable only to idempotent requests or 1849 * if the FUSE daemon takes careful measures to avoid processing duplicated 1850 * non-idempotent requests. 1851 */ 1852 static void fuse_resend(struct fuse_conn *fc) 1853 { 1854 struct fuse_dev *fud; 1855 struct fuse_req *req, *next; 1856 struct fuse_iqueue *fiq = &fc->iq; 1857 LIST_HEAD(to_queue); 1858 unsigned int i; 1859 1860 spin_lock(&fc->lock); 1861 if (!fc->connected) { 1862 spin_unlock(&fc->lock); 1863 return; 1864 } 1865 1866 list_for_each_entry(fud, &fc->devices, entry) { 1867 struct fuse_pqueue *fpq = &fud->pq; 1868 1869 spin_lock(&fpq->lock); 1870 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 1871 list_splice_tail_init(&fpq->processing[i], &to_queue); 1872 spin_unlock(&fpq->lock); 1873 } 1874 spin_unlock(&fc->lock); 1875 1876 list_for_each_entry_safe(req, next, &to_queue, list) { 1877 set_bit(FR_PENDING, &req->flags); 1878 clear_bit(FR_SENT, &req->flags); 1879 /* mark the request as resend request */ 1880 req->in.h.unique |= FUSE_UNIQUE_RESEND; 1881 } 1882 1883 spin_lock(&fiq->lock); 1884 if (!fiq->connected) { 1885 spin_unlock(&fiq->lock); 1886 list_for_each_entry(req, &to_queue, list) 1887 clear_bit(FR_PENDING, &req->flags); 1888 end_requests(&to_queue); 1889 return; 1890 } 1891 /* iq and pq requests are both oldest to newest */ 1892 list_splice(&to_queue, &fiq->pending); 1893 fuse_dev_wake_and_unlock(fiq); 1894 } 1895 1896 static int fuse_notify_resend(struct fuse_conn *fc) 1897 { 1898 fuse_resend(fc); 1899 return 0; 1900 } 1901 1902 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code, 1903 unsigned int size, struct fuse_copy_state *cs) 1904 { 1905 /* Don't try to move pages (yet) */ 1906 cs->move_pages = 0; 1907 1908 switch (code) { 1909 case FUSE_NOTIFY_POLL: 1910 return fuse_notify_poll(fc, size, cs); 1911 1912 case FUSE_NOTIFY_INVAL_INODE: 1913 return fuse_notify_inval_inode(fc, size, cs); 1914 1915 case FUSE_NOTIFY_INVAL_ENTRY: 1916 return fuse_notify_inval_entry(fc, size, cs); 1917 1918 case FUSE_NOTIFY_STORE: 1919 return fuse_notify_store(fc, size, cs); 1920 1921 case FUSE_NOTIFY_RETRIEVE: 1922 return fuse_notify_retrieve(fc, size, cs); 1923 1924 case FUSE_NOTIFY_DELETE: 1925 return fuse_notify_delete(fc, size, cs); 1926 1927 case FUSE_NOTIFY_RESEND: 1928 return fuse_notify_resend(fc); 1929 1930 default: 1931 fuse_copy_finish(cs); 1932 return -EINVAL; 1933 } 1934 } 1935 1936 /* Look up request on processing list by unique ID */ 1937 static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique) 1938 { 1939 unsigned int hash = fuse_req_hash(unique); 1940 struct fuse_req *req; 1941 1942 list_for_each_entry(req, &fpq->processing[hash], list) { 1943 if (req->in.h.unique == unique) 1944 return req; 1945 } 1946 return NULL; 1947 } 1948 1949 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args, 1950 unsigned nbytes) 1951 { 1952 unsigned reqsize = sizeof(struct fuse_out_header); 1953 1954 reqsize += fuse_len_args(args->out_numargs, args->out_args); 1955 1956 if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar)) 1957 return -EINVAL; 1958 else if (reqsize > nbytes) { 1959 struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1]; 1960 unsigned diffsize = reqsize - nbytes; 1961 1962 if (diffsize > lastarg->size) 1963 return -EINVAL; 1964 lastarg->size -= diffsize; 1965 } 1966 return fuse_copy_args(cs, args->out_numargs, args->out_pages, 1967 args->out_args, args->page_zeroing); 1968 } 1969 1970 /* 1971 * Write a single reply to a request. First the header is copied from 1972 * the write buffer. The request is then searched on the processing 1973 * list by the unique ID found in the header. If found, then remove 1974 * it from the list and copy the rest of the buffer to the request. 1975 * The request is finished by calling fuse_request_end(). 1976 */ 1977 static ssize_t fuse_dev_do_write(struct fuse_dev *fud, 1978 struct fuse_copy_state *cs, size_t nbytes) 1979 { 1980 int err; 1981 struct fuse_conn *fc = fud->fc; 1982 struct fuse_pqueue *fpq = &fud->pq; 1983 struct fuse_req *req; 1984 struct fuse_out_header oh; 1985 1986 err = -EINVAL; 1987 if (nbytes < sizeof(struct fuse_out_header)) 1988 goto out; 1989 1990 err = fuse_copy_one(cs, &oh, sizeof(oh)); 1991 if (err) 1992 goto copy_finish; 1993 1994 err = -EINVAL; 1995 if (oh.len != nbytes) 1996 goto copy_finish; 1997 1998 /* 1999 * Zero oh.unique indicates unsolicited notification message 2000 * and error contains notification code. 2001 */ 2002 if (!oh.unique) { 2003 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs); 2004 goto out; 2005 } 2006 2007 err = -EINVAL; 2008 if (oh.error <= -512 || oh.error > 0) 2009 goto copy_finish; 2010 2011 spin_lock(&fpq->lock); 2012 req = NULL; 2013 if (fpq->connected) 2014 req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT); 2015 2016 err = -ENOENT; 2017 if (!req) { 2018 spin_unlock(&fpq->lock); 2019 goto copy_finish; 2020 } 2021 2022 /* Is it an interrupt reply ID? */ 2023 if (oh.unique & FUSE_INT_REQ_BIT) { 2024 __fuse_get_request(req); 2025 spin_unlock(&fpq->lock); 2026 2027 err = 0; 2028 if (nbytes != sizeof(struct fuse_out_header)) 2029 err = -EINVAL; 2030 else if (oh.error == -ENOSYS) 2031 fc->no_interrupt = 1; 2032 else if (oh.error == -EAGAIN) 2033 err = queue_interrupt(req); 2034 2035 fuse_put_request(req); 2036 2037 goto copy_finish; 2038 } 2039 2040 clear_bit(FR_SENT, &req->flags); 2041 list_move(&req->list, &fpq->io); 2042 req->out.h = oh; 2043 set_bit(FR_LOCKED, &req->flags); 2044 spin_unlock(&fpq->lock); 2045 cs->req = req; 2046 if (!req->args->page_replace) 2047 cs->move_pages = 0; 2048 2049 if (oh.error) 2050 err = nbytes != sizeof(oh) ? -EINVAL : 0; 2051 else 2052 err = copy_out_args(cs, req->args, nbytes); 2053 fuse_copy_finish(cs); 2054 2055 spin_lock(&fpq->lock); 2056 clear_bit(FR_LOCKED, &req->flags); 2057 if (!fpq->connected) 2058 err = -ENOENT; 2059 else if (err) 2060 req->out.h.error = -EIO; 2061 if (!test_bit(FR_PRIVATE, &req->flags)) 2062 list_del_init(&req->list); 2063 spin_unlock(&fpq->lock); 2064 2065 fuse_request_end(req); 2066 out: 2067 return err ? err : nbytes; 2068 2069 copy_finish: 2070 fuse_copy_finish(cs); 2071 goto out; 2072 } 2073 2074 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from) 2075 { 2076 struct fuse_copy_state cs; 2077 struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp); 2078 2079 if (!fud) 2080 return -EPERM; 2081 2082 if (!user_backed_iter(from)) 2083 return -EINVAL; 2084 2085 fuse_copy_init(&cs, 0, from); 2086 2087 return fuse_dev_do_write(fud, &cs, iov_iter_count(from)); 2088 } 2089 2090 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe, 2091 struct file *out, loff_t *ppos, 2092 size_t len, unsigned int flags) 2093 { 2094 unsigned int head, tail, mask, count; 2095 unsigned nbuf; 2096 unsigned idx; 2097 struct pipe_buffer *bufs; 2098 struct fuse_copy_state cs; 2099 struct fuse_dev *fud; 2100 size_t rem; 2101 ssize_t ret; 2102 2103 fud = fuse_get_dev(out); 2104 if (!fud) 2105 return -EPERM; 2106 2107 pipe_lock(pipe); 2108 2109 head = pipe->head; 2110 tail = pipe->tail; 2111 mask = pipe->ring_size - 1; 2112 count = head - tail; 2113 2114 bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL); 2115 if (!bufs) { 2116 pipe_unlock(pipe); 2117 return -ENOMEM; 2118 } 2119 2120 nbuf = 0; 2121 rem = 0; 2122 for (idx = tail; idx != head && rem < len; idx++) 2123 rem += pipe->bufs[idx & mask].len; 2124 2125 ret = -EINVAL; 2126 if (rem < len) 2127 goto out_free; 2128 2129 rem = len; 2130 while (rem) { 2131 struct pipe_buffer *ibuf; 2132 struct pipe_buffer *obuf; 2133 2134 if (WARN_ON(nbuf >= count || tail == head)) 2135 goto out_free; 2136 2137 ibuf = &pipe->bufs[tail & mask]; 2138 obuf = &bufs[nbuf]; 2139 2140 if (rem >= ibuf->len) { 2141 *obuf = *ibuf; 2142 ibuf->ops = NULL; 2143 tail++; 2144 pipe->tail = tail; 2145 } else { 2146 if (!pipe_buf_get(pipe, ibuf)) 2147 goto out_free; 2148 2149 *obuf = *ibuf; 2150 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 2151 obuf->len = rem; 2152 ibuf->offset += obuf->len; 2153 ibuf->len -= obuf->len; 2154 } 2155 nbuf++; 2156 rem -= obuf->len; 2157 } 2158 pipe_unlock(pipe); 2159 2160 fuse_copy_init(&cs, 0, NULL); 2161 cs.pipebufs = bufs; 2162 cs.nr_segs = nbuf; 2163 cs.pipe = pipe; 2164 2165 if (flags & SPLICE_F_MOVE) 2166 cs.move_pages = 1; 2167 2168 ret = fuse_dev_do_write(fud, &cs, len); 2169 2170 pipe_lock(pipe); 2171 out_free: 2172 for (idx = 0; idx < nbuf; idx++) { 2173 struct pipe_buffer *buf = &bufs[idx]; 2174 2175 if (buf->ops) 2176 pipe_buf_release(pipe, buf); 2177 } 2178 pipe_unlock(pipe); 2179 2180 kvfree(bufs); 2181 return ret; 2182 } 2183 2184 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait) 2185 { 2186 __poll_t mask = EPOLLOUT | EPOLLWRNORM; 2187 struct fuse_iqueue *fiq; 2188 struct fuse_dev *fud = fuse_get_dev(file); 2189 2190 if (!fud) 2191 return EPOLLERR; 2192 2193 fiq = &fud->fc->iq; 2194 poll_wait(file, &fiq->waitq, wait); 2195 2196 spin_lock(&fiq->lock); 2197 if (!fiq->connected) 2198 mask = EPOLLERR; 2199 else if (request_pending(fiq)) 2200 mask |= EPOLLIN | EPOLLRDNORM; 2201 spin_unlock(&fiq->lock); 2202 2203 return mask; 2204 } 2205 2206 /* Abort all requests on the given list (pending or processing) */ 2207 static void end_requests(struct list_head *head) 2208 { 2209 while (!list_empty(head)) { 2210 struct fuse_req *req; 2211 req = list_entry(head->next, struct fuse_req, list); 2212 req->out.h.error = -ECONNABORTED; 2213 clear_bit(FR_SENT, &req->flags); 2214 list_del_init(&req->list); 2215 fuse_request_end(req); 2216 } 2217 } 2218 2219 static void end_polls(struct fuse_conn *fc) 2220 { 2221 struct rb_node *p; 2222 2223 p = rb_first(&fc->polled_files); 2224 2225 while (p) { 2226 struct fuse_file *ff; 2227 ff = rb_entry(p, struct fuse_file, polled_node); 2228 wake_up_interruptible_all(&ff->poll_wait); 2229 2230 p = rb_next(p); 2231 } 2232 } 2233 2234 /* 2235 * Abort all requests. 2236 * 2237 * Emergency exit in case of a malicious or accidental deadlock, or just a hung 2238 * filesystem. 2239 * 2240 * The same effect is usually achievable through killing the filesystem daemon 2241 * and all users of the filesystem. The exception is the combination of an 2242 * asynchronous request and the tricky deadlock (see 2243 * Documentation/filesystems/fuse.rst). 2244 * 2245 * Aborting requests under I/O goes as follows: 1: Separate out unlocked 2246 * requests, they should be finished off immediately. Locked requests will be 2247 * finished after unlock; see unlock_request(). 2: Finish off the unlocked 2248 * requests. It is possible that some request will finish before we can. This 2249 * is OK, the request will in that case be removed from the list before we touch 2250 * it. 2251 */ 2252 void fuse_abort_conn(struct fuse_conn *fc) 2253 { 2254 struct fuse_iqueue *fiq = &fc->iq; 2255 2256 spin_lock(&fc->lock); 2257 if (fc->connected) { 2258 struct fuse_dev *fud; 2259 struct fuse_req *req, *next; 2260 LIST_HEAD(to_end); 2261 unsigned int i; 2262 2263 /* Background queuing checks fc->connected under bg_lock */ 2264 spin_lock(&fc->bg_lock); 2265 fc->connected = 0; 2266 spin_unlock(&fc->bg_lock); 2267 2268 fuse_set_initialized(fc); 2269 list_for_each_entry(fud, &fc->devices, entry) { 2270 struct fuse_pqueue *fpq = &fud->pq; 2271 2272 spin_lock(&fpq->lock); 2273 fpq->connected = 0; 2274 list_for_each_entry_safe(req, next, &fpq->io, list) { 2275 req->out.h.error = -ECONNABORTED; 2276 spin_lock(&req->waitq.lock); 2277 set_bit(FR_ABORTED, &req->flags); 2278 if (!test_bit(FR_LOCKED, &req->flags)) { 2279 set_bit(FR_PRIVATE, &req->flags); 2280 __fuse_get_request(req); 2281 list_move(&req->list, &to_end); 2282 } 2283 spin_unlock(&req->waitq.lock); 2284 } 2285 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2286 list_splice_tail_init(&fpq->processing[i], 2287 &to_end); 2288 spin_unlock(&fpq->lock); 2289 } 2290 spin_lock(&fc->bg_lock); 2291 fc->blocked = 0; 2292 fc->max_background = UINT_MAX; 2293 flush_bg_queue(fc); 2294 spin_unlock(&fc->bg_lock); 2295 2296 spin_lock(&fiq->lock); 2297 fiq->connected = 0; 2298 list_for_each_entry(req, &fiq->pending, list) 2299 clear_bit(FR_PENDING, &req->flags); 2300 list_splice_tail_init(&fiq->pending, &to_end); 2301 while (forget_pending(fiq)) 2302 kfree(fuse_dequeue_forget(fiq, 1, NULL)); 2303 wake_up_all(&fiq->waitq); 2304 spin_unlock(&fiq->lock); 2305 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 2306 end_polls(fc); 2307 wake_up_all(&fc->blocked_waitq); 2308 spin_unlock(&fc->lock); 2309 2310 end_requests(&to_end); 2311 } else { 2312 spin_unlock(&fc->lock); 2313 } 2314 } 2315 EXPORT_SYMBOL_GPL(fuse_abort_conn); 2316 2317 void fuse_wait_aborted(struct fuse_conn *fc) 2318 { 2319 /* matches implicit memory barrier in fuse_drop_waiting() */ 2320 smp_mb(); 2321 wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0); 2322 } 2323 2324 int fuse_dev_release(struct inode *inode, struct file *file) 2325 { 2326 struct fuse_dev *fud = fuse_get_dev(file); 2327 2328 if (fud) { 2329 struct fuse_conn *fc = fud->fc; 2330 struct fuse_pqueue *fpq = &fud->pq; 2331 LIST_HEAD(to_end); 2332 unsigned int i; 2333 2334 spin_lock(&fpq->lock); 2335 WARN_ON(!list_empty(&fpq->io)); 2336 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2337 list_splice_init(&fpq->processing[i], &to_end); 2338 spin_unlock(&fpq->lock); 2339 2340 end_requests(&to_end); 2341 2342 /* Are we the last open device? */ 2343 if (atomic_dec_and_test(&fc->dev_count)) { 2344 WARN_ON(fc->iq.fasync != NULL); 2345 fuse_abort_conn(fc); 2346 } 2347 fuse_dev_free(fud); 2348 } 2349 return 0; 2350 } 2351 EXPORT_SYMBOL_GPL(fuse_dev_release); 2352 2353 static int fuse_dev_fasync(int fd, struct file *file, int on) 2354 { 2355 struct fuse_dev *fud = fuse_get_dev(file); 2356 2357 if (!fud) 2358 return -EPERM; 2359 2360 /* No locking - fasync_helper does its own locking */ 2361 return fasync_helper(fd, file, on, &fud->fc->iq.fasync); 2362 } 2363 2364 static int fuse_device_clone(struct fuse_conn *fc, struct file *new) 2365 { 2366 struct fuse_dev *fud; 2367 2368 if (new->private_data) 2369 return -EINVAL; 2370 2371 fud = fuse_dev_alloc_install(fc); 2372 if (!fud) 2373 return -ENOMEM; 2374 2375 new->private_data = fud; 2376 atomic_inc(&fc->dev_count); 2377 2378 return 0; 2379 } 2380 2381 static long fuse_dev_ioctl_clone(struct file *file, __u32 __user *argp) 2382 { 2383 int res; 2384 int oldfd; 2385 struct fuse_dev *fud = NULL; 2386 2387 if (get_user(oldfd, argp)) 2388 return -EFAULT; 2389 2390 CLASS(fd, f)(oldfd); 2391 if (fd_empty(f)) 2392 return -EINVAL; 2393 2394 /* 2395 * Check against file->f_op because CUSE 2396 * uses the same ioctl handler. 2397 */ 2398 if (fd_file(f)->f_op == file->f_op) 2399 fud = fuse_get_dev(fd_file(f)); 2400 2401 res = -EINVAL; 2402 if (fud) { 2403 mutex_lock(&fuse_mutex); 2404 res = fuse_device_clone(fud->fc, file); 2405 mutex_unlock(&fuse_mutex); 2406 } 2407 2408 return res; 2409 } 2410 2411 static long fuse_dev_ioctl_backing_open(struct file *file, 2412 struct fuse_backing_map __user *argp) 2413 { 2414 struct fuse_dev *fud = fuse_get_dev(file); 2415 struct fuse_backing_map map; 2416 2417 if (!fud) 2418 return -EPERM; 2419 2420 if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH)) 2421 return -EOPNOTSUPP; 2422 2423 if (copy_from_user(&map, argp, sizeof(map))) 2424 return -EFAULT; 2425 2426 return fuse_backing_open(fud->fc, &map); 2427 } 2428 2429 static long fuse_dev_ioctl_backing_close(struct file *file, __u32 __user *argp) 2430 { 2431 struct fuse_dev *fud = fuse_get_dev(file); 2432 int backing_id; 2433 2434 if (!fud) 2435 return -EPERM; 2436 2437 if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH)) 2438 return -EOPNOTSUPP; 2439 2440 if (get_user(backing_id, argp)) 2441 return -EFAULT; 2442 2443 return fuse_backing_close(fud->fc, backing_id); 2444 } 2445 2446 static long fuse_dev_ioctl(struct file *file, unsigned int cmd, 2447 unsigned long arg) 2448 { 2449 void __user *argp = (void __user *)arg; 2450 2451 switch (cmd) { 2452 case FUSE_DEV_IOC_CLONE: 2453 return fuse_dev_ioctl_clone(file, argp); 2454 2455 case FUSE_DEV_IOC_BACKING_OPEN: 2456 return fuse_dev_ioctl_backing_open(file, argp); 2457 2458 case FUSE_DEV_IOC_BACKING_CLOSE: 2459 return fuse_dev_ioctl_backing_close(file, argp); 2460 2461 default: 2462 return -ENOTTY; 2463 } 2464 } 2465 2466 const struct file_operations fuse_dev_operations = { 2467 .owner = THIS_MODULE, 2468 .open = fuse_dev_open, 2469 .read_iter = fuse_dev_read, 2470 .splice_read = fuse_dev_splice_read, 2471 .write_iter = fuse_dev_write, 2472 .splice_write = fuse_dev_splice_write, 2473 .poll = fuse_dev_poll, 2474 .release = fuse_dev_release, 2475 .fasync = fuse_dev_fasync, 2476 .unlocked_ioctl = fuse_dev_ioctl, 2477 .compat_ioctl = compat_ptr_ioctl, 2478 }; 2479 EXPORT_SYMBOL_GPL(fuse_dev_operations); 2480 2481 static struct miscdevice fuse_miscdevice = { 2482 .minor = FUSE_MINOR, 2483 .name = "fuse", 2484 .fops = &fuse_dev_operations, 2485 }; 2486 2487 int __init fuse_dev_init(void) 2488 { 2489 int err = -ENOMEM; 2490 fuse_req_cachep = kmem_cache_create("fuse_request", 2491 sizeof(struct fuse_req), 2492 0, 0, NULL); 2493 if (!fuse_req_cachep) 2494 goto out; 2495 2496 err = misc_register(&fuse_miscdevice); 2497 if (err) 2498 goto out_cache_clean; 2499 2500 return 0; 2501 2502 out_cache_clean: 2503 kmem_cache_destroy(fuse_req_cachep); 2504 out: 2505 return err; 2506 } 2507 2508 void fuse_dev_cleanup(void) 2509 { 2510 misc_deregister(&fuse_miscdevice); 2511 kmem_cache_destroy(fuse_req_cachep); 2512 } 2513