1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/poll.h> 14 #include <linux/sched/signal.h> 15 #include <linux/uio.h> 16 #include <linux/miscdevice.h> 17 #include <linux/pagemap.h> 18 #include <linux/file.h> 19 #include <linux/slab.h> 20 #include <linux/pipe_fs_i.h> 21 #include <linux/swap.h> 22 #include <linux/splice.h> 23 #include <linux/sched.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "fuse_trace.h" 27 28 MODULE_ALIAS_MISCDEV(FUSE_MINOR); 29 MODULE_ALIAS("devname:fuse"); 30 31 /* Ordinary requests have even IDs, while interrupts IDs are odd */ 32 #define FUSE_INT_REQ_BIT (1ULL << 0) 33 #define FUSE_REQ_ID_STEP (1ULL << 1) 34 35 static struct kmem_cache *fuse_req_cachep; 36 37 static void end_requests(struct list_head *head); 38 39 static struct fuse_dev *fuse_get_dev(struct file *file) 40 { 41 /* 42 * Lockless access is OK, because file->private data is set 43 * once during mount and is valid until the file is released. 44 */ 45 return READ_ONCE(file->private_data); 46 } 47 48 static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req) 49 { 50 INIT_LIST_HEAD(&req->list); 51 INIT_LIST_HEAD(&req->intr_entry); 52 init_waitqueue_head(&req->waitq); 53 refcount_set(&req->count, 1); 54 __set_bit(FR_PENDING, &req->flags); 55 req->fm = fm; 56 } 57 58 static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags) 59 { 60 struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags); 61 if (req) 62 fuse_request_init(fm, req); 63 64 return req; 65 } 66 67 static void fuse_request_free(struct fuse_req *req) 68 { 69 kmem_cache_free(fuse_req_cachep, req); 70 } 71 72 static void __fuse_get_request(struct fuse_req *req) 73 { 74 refcount_inc(&req->count); 75 } 76 77 /* Must be called with > 1 refcount */ 78 static void __fuse_put_request(struct fuse_req *req) 79 { 80 refcount_dec(&req->count); 81 } 82 83 void fuse_set_initialized(struct fuse_conn *fc) 84 { 85 /* Make sure stores before this are seen on another CPU */ 86 smp_wmb(); 87 fc->initialized = 1; 88 } 89 90 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background) 91 { 92 return !fc->initialized || (for_background && fc->blocked); 93 } 94 95 static void fuse_drop_waiting(struct fuse_conn *fc) 96 { 97 /* 98 * lockess check of fc->connected is okay, because atomic_dec_and_test() 99 * provides a memory barrier matched with the one in fuse_wait_aborted() 100 * to ensure no wake-up is missed. 101 */ 102 if (atomic_dec_and_test(&fc->num_waiting) && 103 !READ_ONCE(fc->connected)) { 104 /* wake up aborters */ 105 wake_up_all(&fc->blocked_waitq); 106 } 107 } 108 109 static void fuse_put_request(struct fuse_req *req); 110 111 static struct fuse_req *fuse_get_req(struct mnt_idmap *idmap, 112 struct fuse_mount *fm, 113 bool for_background) 114 { 115 struct fuse_conn *fc = fm->fc; 116 struct fuse_req *req; 117 bool no_idmap = !fm->sb || (fm->sb->s_iflags & SB_I_NOIDMAP); 118 kuid_t fsuid; 119 kgid_t fsgid; 120 int err; 121 122 atomic_inc(&fc->num_waiting); 123 124 if (fuse_block_alloc(fc, for_background)) { 125 err = -EINTR; 126 if (wait_event_killable_exclusive(fc->blocked_waitq, 127 !fuse_block_alloc(fc, for_background))) 128 goto out; 129 } 130 /* Matches smp_wmb() in fuse_set_initialized() */ 131 smp_rmb(); 132 133 err = -ENOTCONN; 134 if (!fc->connected) 135 goto out; 136 137 err = -ECONNREFUSED; 138 if (fc->conn_error) 139 goto out; 140 141 req = fuse_request_alloc(fm, GFP_KERNEL); 142 err = -ENOMEM; 143 if (!req) { 144 if (for_background) 145 wake_up(&fc->blocked_waitq); 146 goto out; 147 } 148 149 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 150 151 __set_bit(FR_WAITING, &req->flags); 152 if (for_background) 153 __set_bit(FR_BACKGROUND, &req->flags); 154 155 /* 156 * Keep the old behavior when idmappings support was not 157 * declared by a FUSE server. 158 * 159 * For those FUSE servers who support idmapped mounts, 160 * we send UID/GID only along with "inode creation" 161 * fuse requests, otherwise idmap == &invalid_mnt_idmap and 162 * req->in.h.{u,g}id will be equal to FUSE_INVALID_UIDGID. 163 */ 164 fsuid = no_idmap ? current_fsuid() : mapped_fsuid(idmap, fc->user_ns); 165 fsgid = no_idmap ? current_fsgid() : mapped_fsgid(idmap, fc->user_ns); 166 req->in.h.uid = from_kuid(fc->user_ns, fsuid); 167 req->in.h.gid = from_kgid(fc->user_ns, fsgid); 168 169 if (no_idmap && unlikely(req->in.h.uid == ((uid_t)-1) || 170 req->in.h.gid == ((gid_t)-1))) { 171 fuse_put_request(req); 172 return ERR_PTR(-EOVERFLOW); 173 } 174 175 return req; 176 177 out: 178 fuse_drop_waiting(fc); 179 return ERR_PTR(err); 180 } 181 182 static void fuse_put_request(struct fuse_req *req) 183 { 184 struct fuse_conn *fc = req->fm->fc; 185 186 if (refcount_dec_and_test(&req->count)) { 187 if (test_bit(FR_BACKGROUND, &req->flags)) { 188 /* 189 * We get here in the unlikely case that a background 190 * request was allocated but not sent 191 */ 192 spin_lock(&fc->bg_lock); 193 if (!fc->blocked) 194 wake_up(&fc->blocked_waitq); 195 spin_unlock(&fc->bg_lock); 196 } 197 198 if (test_bit(FR_WAITING, &req->flags)) { 199 __clear_bit(FR_WAITING, &req->flags); 200 fuse_drop_waiting(fc); 201 } 202 203 fuse_request_free(req); 204 } 205 } 206 207 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args) 208 { 209 unsigned nbytes = 0; 210 unsigned i; 211 212 for (i = 0; i < numargs; i++) 213 nbytes += args[i].size; 214 215 return nbytes; 216 } 217 EXPORT_SYMBOL_GPL(fuse_len_args); 218 219 static u64 fuse_get_unique_locked(struct fuse_iqueue *fiq) 220 { 221 fiq->reqctr += FUSE_REQ_ID_STEP; 222 return fiq->reqctr; 223 } 224 225 u64 fuse_get_unique(struct fuse_iqueue *fiq) 226 { 227 u64 ret; 228 229 spin_lock(&fiq->lock); 230 ret = fuse_get_unique_locked(fiq); 231 spin_unlock(&fiq->lock); 232 233 return ret; 234 } 235 EXPORT_SYMBOL_GPL(fuse_get_unique); 236 237 static unsigned int fuse_req_hash(u64 unique) 238 { 239 return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS); 240 } 241 242 /* 243 * A new request is available, wake fiq->waitq 244 */ 245 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq) 246 __releases(fiq->lock) 247 { 248 wake_up(&fiq->waitq); 249 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 250 spin_unlock(&fiq->lock); 251 } 252 253 static void fuse_dev_queue_forget(struct fuse_iqueue *fiq, struct fuse_forget_link *forget) 254 { 255 spin_lock(&fiq->lock); 256 if (fiq->connected) { 257 fiq->forget_list_tail->next = forget; 258 fiq->forget_list_tail = forget; 259 fuse_dev_wake_and_unlock(fiq); 260 } else { 261 kfree(forget); 262 spin_unlock(&fiq->lock); 263 } 264 } 265 266 static void fuse_dev_queue_interrupt(struct fuse_iqueue *fiq, struct fuse_req *req) 267 { 268 spin_lock(&fiq->lock); 269 if (list_empty(&req->intr_entry)) { 270 list_add_tail(&req->intr_entry, &fiq->interrupts); 271 /* 272 * Pairs with smp_mb() implied by test_and_set_bit() 273 * from fuse_request_end(). 274 */ 275 smp_mb(); 276 if (test_bit(FR_FINISHED, &req->flags)) { 277 list_del_init(&req->intr_entry); 278 spin_unlock(&fiq->lock); 279 } else { 280 fuse_dev_wake_and_unlock(fiq); 281 } 282 } else { 283 spin_unlock(&fiq->lock); 284 } 285 } 286 287 static void fuse_dev_queue_req(struct fuse_iqueue *fiq, struct fuse_req *req) 288 { 289 spin_lock(&fiq->lock); 290 if (fiq->connected) { 291 if (req->in.h.opcode != FUSE_NOTIFY_REPLY) 292 req->in.h.unique = fuse_get_unique_locked(fiq); 293 list_add_tail(&req->list, &fiq->pending); 294 fuse_dev_wake_and_unlock(fiq); 295 } else { 296 spin_unlock(&fiq->lock); 297 req->out.h.error = -ENOTCONN; 298 clear_bit(FR_PENDING, &req->flags); 299 fuse_request_end(req); 300 } 301 } 302 303 const struct fuse_iqueue_ops fuse_dev_fiq_ops = { 304 .send_forget = fuse_dev_queue_forget, 305 .send_interrupt = fuse_dev_queue_interrupt, 306 .send_req = fuse_dev_queue_req, 307 }; 308 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops); 309 310 static void fuse_send_one(struct fuse_iqueue *fiq, struct fuse_req *req) 311 { 312 req->in.h.len = sizeof(struct fuse_in_header) + 313 fuse_len_args(req->args->in_numargs, 314 (struct fuse_arg *) req->args->in_args); 315 trace_fuse_request_send(req); 316 fiq->ops->send_req(fiq, req); 317 } 318 319 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget, 320 u64 nodeid, u64 nlookup) 321 { 322 struct fuse_iqueue *fiq = &fc->iq; 323 324 forget->forget_one.nodeid = nodeid; 325 forget->forget_one.nlookup = nlookup; 326 327 fiq->ops->send_forget(fiq, forget); 328 } 329 330 static void flush_bg_queue(struct fuse_conn *fc) 331 { 332 struct fuse_iqueue *fiq = &fc->iq; 333 334 while (fc->active_background < fc->max_background && 335 !list_empty(&fc->bg_queue)) { 336 struct fuse_req *req; 337 338 req = list_first_entry(&fc->bg_queue, struct fuse_req, list); 339 list_del(&req->list); 340 fc->active_background++; 341 fuse_send_one(fiq, req); 342 } 343 } 344 345 /* 346 * This function is called when a request is finished. Either a reply 347 * has arrived or it was aborted (and not yet sent) or some error 348 * occurred during communication with userspace, or the device file 349 * was closed. The requester thread is woken up (if still waiting), 350 * the 'end' callback is called if given, else the reference to the 351 * request is released 352 */ 353 void fuse_request_end(struct fuse_req *req) 354 { 355 struct fuse_mount *fm = req->fm; 356 struct fuse_conn *fc = fm->fc; 357 struct fuse_iqueue *fiq = &fc->iq; 358 359 if (test_and_set_bit(FR_FINISHED, &req->flags)) 360 goto put_request; 361 362 trace_fuse_request_end(req); 363 /* 364 * test_and_set_bit() implies smp_mb() between bit 365 * changing and below FR_INTERRUPTED check. Pairs with 366 * smp_mb() from queue_interrupt(). 367 */ 368 if (test_bit(FR_INTERRUPTED, &req->flags)) { 369 spin_lock(&fiq->lock); 370 list_del_init(&req->intr_entry); 371 spin_unlock(&fiq->lock); 372 } 373 WARN_ON(test_bit(FR_PENDING, &req->flags)); 374 WARN_ON(test_bit(FR_SENT, &req->flags)); 375 if (test_bit(FR_BACKGROUND, &req->flags)) { 376 spin_lock(&fc->bg_lock); 377 clear_bit(FR_BACKGROUND, &req->flags); 378 if (fc->num_background == fc->max_background) { 379 fc->blocked = 0; 380 wake_up(&fc->blocked_waitq); 381 } else if (!fc->blocked) { 382 /* 383 * Wake up next waiter, if any. It's okay to use 384 * waitqueue_active(), as we've already synced up 385 * fc->blocked with waiters with the wake_up() call 386 * above. 387 */ 388 if (waitqueue_active(&fc->blocked_waitq)) 389 wake_up(&fc->blocked_waitq); 390 } 391 392 fc->num_background--; 393 fc->active_background--; 394 flush_bg_queue(fc); 395 spin_unlock(&fc->bg_lock); 396 } else { 397 /* Wake up waiter sleeping in request_wait_answer() */ 398 wake_up(&req->waitq); 399 } 400 401 if (test_bit(FR_ASYNC, &req->flags)) 402 req->args->end(fm, req->args, req->out.h.error); 403 put_request: 404 fuse_put_request(req); 405 } 406 EXPORT_SYMBOL_GPL(fuse_request_end); 407 408 static int queue_interrupt(struct fuse_req *req) 409 { 410 struct fuse_iqueue *fiq = &req->fm->fc->iq; 411 412 /* Check for we've sent request to interrupt this req */ 413 if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) 414 return -EINVAL; 415 416 fiq->ops->send_interrupt(fiq, req); 417 418 return 0; 419 } 420 421 static void request_wait_answer(struct fuse_req *req) 422 { 423 struct fuse_conn *fc = req->fm->fc; 424 struct fuse_iqueue *fiq = &fc->iq; 425 int err; 426 427 if (!fc->no_interrupt) { 428 /* Any signal may interrupt this */ 429 err = wait_event_interruptible(req->waitq, 430 test_bit(FR_FINISHED, &req->flags)); 431 if (!err) 432 return; 433 434 set_bit(FR_INTERRUPTED, &req->flags); 435 /* matches barrier in fuse_dev_do_read() */ 436 smp_mb__after_atomic(); 437 if (test_bit(FR_SENT, &req->flags)) 438 queue_interrupt(req); 439 } 440 441 if (!test_bit(FR_FORCE, &req->flags)) { 442 /* Only fatal signals may interrupt this */ 443 err = wait_event_killable(req->waitq, 444 test_bit(FR_FINISHED, &req->flags)); 445 if (!err) 446 return; 447 448 spin_lock(&fiq->lock); 449 /* Request is not yet in userspace, bail out */ 450 if (test_bit(FR_PENDING, &req->flags)) { 451 list_del(&req->list); 452 spin_unlock(&fiq->lock); 453 __fuse_put_request(req); 454 req->out.h.error = -EINTR; 455 return; 456 } 457 spin_unlock(&fiq->lock); 458 } 459 460 /* 461 * Either request is already in userspace, or it was forced. 462 * Wait it out. 463 */ 464 wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags)); 465 } 466 467 static void __fuse_request_send(struct fuse_req *req) 468 { 469 struct fuse_iqueue *fiq = &req->fm->fc->iq; 470 471 BUG_ON(test_bit(FR_BACKGROUND, &req->flags)); 472 473 /* acquire extra reference, since request is still needed after 474 fuse_request_end() */ 475 __fuse_get_request(req); 476 fuse_send_one(fiq, req); 477 478 request_wait_answer(req); 479 /* Pairs with smp_wmb() in fuse_request_end() */ 480 smp_rmb(); 481 } 482 483 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args) 484 { 485 if (fc->minor < 4 && args->opcode == FUSE_STATFS) 486 args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE; 487 488 if (fc->minor < 9) { 489 switch (args->opcode) { 490 case FUSE_LOOKUP: 491 case FUSE_CREATE: 492 case FUSE_MKNOD: 493 case FUSE_MKDIR: 494 case FUSE_SYMLINK: 495 case FUSE_LINK: 496 args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE; 497 break; 498 case FUSE_GETATTR: 499 case FUSE_SETATTR: 500 args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE; 501 break; 502 } 503 } 504 if (fc->minor < 12) { 505 switch (args->opcode) { 506 case FUSE_CREATE: 507 args->in_args[0].size = sizeof(struct fuse_open_in); 508 break; 509 case FUSE_MKNOD: 510 args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE; 511 break; 512 } 513 } 514 } 515 516 static void fuse_force_creds(struct fuse_req *req) 517 { 518 struct fuse_conn *fc = req->fm->fc; 519 520 if (!req->fm->sb || req->fm->sb->s_iflags & SB_I_NOIDMAP) { 521 req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid()); 522 req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid()); 523 } else { 524 req->in.h.uid = FUSE_INVALID_UIDGID; 525 req->in.h.gid = FUSE_INVALID_UIDGID; 526 } 527 528 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 529 } 530 531 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args) 532 { 533 req->in.h.opcode = args->opcode; 534 req->in.h.nodeid = args->nodeid; 535 req->args = args; 536 if (args->is_ext) 537 req->in.h.total_extlen = args->in_args[args->ext_idx].size / 8; 538 if (args->end) 539 __set_bit(FR_ASYNC, &req->flags); 540 } 541 542 ssize_t __fuse_simple_request(struct mnt_idmap *idmap, 543 struct fuse_mount *fm, 544 struct fuse_args *args) 545 { 546 struct fuse_conn *fc = fm->fc; 547 struct fuse_req *req; 548 ssize_t ret; 549 550 if (args->force) { 551 atomic_inc(&fc->num_waiting); 552 req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL); 553 554 if (!args->nocreds) 555 fuse_force_creds(req); 556 557 __set_bit(FR_WAITING, &req->flags); 558 __set_bit(FR_FORCE, &req->flags); 559 } else { 560 WARN_ON(args->nocreds); 561 req = fuse_get_req(idmap, fm, false); 562 if (IS_ERR(req)) 563 return PTR_ERR(req); 564 } 565 566 /* Needs to be done after fuse_get_req() so that fc->minor is valid */ 567 fuse_adjust_compat(fc, args); 568 fuse_args_to_req(req, args); 569 570 if (!args->noreply) 571 __set_bit(FR_ISREPLY, &req->flags); 572 __fuse_request_send(req); 573 ret = req->out.h.error; 574 if (!ret && args->out_argvar) { 575 BUG_ON(args->out_numargs == 0); 576 ret = args->out_args[args->out_numargs - 1].size; 577 } 578 fuse_put_request(req); 579 580 return ret; 581 } 582 583 static bool fuse_request_queue_background(struct fuse_req *req) 584 { 585 struct fuse_mount *fm = req->fm; 586 struct fuse_conn *fc = fm->fc; 587 bool queued = false; 588 589 WARN_ON(!test_bit(FR_BACKGROUND, &req->flags)); 590 if (!test_bit(FR_WAITING, &req->flags)) { 591 __set_bit(FR_WAITING, &req->flags); 592 atomic_inc(&fc->num_waiting); 593 } 594 __set_bit(FR_ISREPLY, &req->flags); 595 spin_lock(&fc->bg_lock); 596 if (likely(fc->connected)) { 597 fc->num_background++; 598 if (fc->num_background == fc->max_background) 599 fc->blocked = 1; 600 list_add_tail(&req->list, &fc->bg_queue); 601 flush_bg_queue(fc); 602 queued = true; 603 } 604 spin_unlock(&fc->bg_lock); 605 606 return queued; 607 } 608 609 int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args, 610 gfp_t gfp_flags) 611 { 612 struct fuse_req *req; 613 614 if (args->force) { 615 WARN_ON(!args->nocreds); 616 req = fuse_request_alloc(fm, gfp_flags); 617 if (!req) 618 return -ENOMEM; 619 __set_bit(FR_BACKGROUND, &req->flags); 620 } else { 621 WARN_ON(args->nocreds); 622 req = fuse_get_req(&invalid_mnt_idmap, fm, true); 623 if (IS_ERR(req)) 624 return PTR_ERR(req); 625 } 626 627 fuse_args_to_req(req, args); 628 629 if (!fuse_request_queue_background(req)) { 630 fuse_put_request(req); 631 return -ENOTCONN; 632 } 633 634 return 0; 635 } 636 EXPORT_SYMBOL_GPL(fuse_simple_background); 637 638 static int fuse_simple_notify_reply(struct fuse_mount *fm, 639 struct fuse_args *args, u64 unique) 640 { 641 struct fuse_req *req; 642 struct fuse_iqueue *fiq = &fm->fc->iq; 643 644 req = fuse_get_req(&invalid_mnt_idmap, fm, false); 645 if (IS_ERR(req)) 646 return PTR_ERR(req); 647 648 __clear_bit(FR_ISREPLY, &req->flags); 649 req->in.h.unique = unique; 650 651 fuse_args_to_req(req, args); 652 653 fuse_send_one(fiq, req); 654 655 return 0; 656 } 657 658 /* 659 * Lock the request. Up to the next unlock_request() there mustn't be 660 * anything that could cause a page-fault. If the request was already 661 * aborted bail out. 662 */ 663 static int lock_request(struct fuse_req *req) 664 { 665 int err = 0; 666 if (req) { 667 spin_lock(&req->waitq.lock); 668 if (test_bit(FR_ABORTED, &req->flags)) 669 err = -ENOENT; 670 else 671 set_bit(FR_LOCKED, &req->flags); 672 spin_unlock(&req->waitq.lock); 673 } 674 return err; 675 } 676 677 /* 678 * Unlock request. If it was aborted while locked, caller is responsible 679 * for unlocking and ending the request. 680 */ 681 static int unlock_request(struct fuse_req *req) 682 { 683 int err = 0; 684 if (req) { 685 spin_lock(&req->waitq.lock); 686 if (test_bit(FR_ABORTED, &req->flags)) 687 err = -ENOENT; 688 else 689 clear_bit(FR_LOCKED, &req->flags); 690 spin_unlock(&req->waitq.lock); 691 } 692 return err; 693 } 694 695 struct fuse_copy_state { 696 int write; 697 struct fuse_req *req; 698 struct iov_iter *iter; 699 struct pipe_buffer *pipebufs; 700 struct pipe_buffer *currbuf; 701 struct pipe_inode_info *pipe; 702 unsigned long nr_segs; 703 struct page *pg; 704 unsigned len; 705 unsigned offset; 706 unsigned move_pages:1; 707 }; 708 709 static void fuse_copy_init(struct fuse_copy_state *cs, int write, 710 struct iov_iter *iter) 711 { 712 memset(cs, 0, sizeof(*cs)); 713 cs->write = write; 714 cs->iter = iter; 715 } 716 717 /* Unmap and put previous page of userspace buffer */ 718 static void fuse_copy_finish(struct fuse_copy_state *cs) 719 { 720 if (cs->currbuf) { 721 struct pipe_buffer *buf = cs->currbuf; 722 723 if (cs->write) 724 buf->len = PAGE_SIZE - cs->len; 725 cs->currbuf = NULL; 726 } else if (cs->pg) { 727 if (cs->write) { 728 flush_dcache_page(cs->pg); 729 set_page_dirty_lock(cs->pg); 730 } 731 put_page(cs->pg); 732 } 733 cs->pg = NULL; 734 } 735 736 /* 737 * Get another pagefull of userspace buffer, and map it to kernel 738 * address space, and lock request 739 */ 740 static int fuse_copy_fill(struct fuse_copy_state *cs) 741 { 742 struct page *page; 743 int err; 744 745 err = unlock_request(cs->req); 746 if (err) 747 return err; 748 749 fuse_copy_finish(cs); 750 if (cs->pipebufs) { 751 struct pipe_buffer *buf = cs->pipebufs; 752 753 if (!cs->write) { 754 err = pipe_buf_confirm(cs->pipe, buf); 755 if (err) 756 return err; 757 758 BUG_ON(!cs->nr_segs); 759 cs->currbuf = buf; 760 cs->pg = buf->page; 761 cs->offset = buf->offset; 762 cs->len = buf->len; 763 cs->pipebufs++; 764 cs->nr_segs--; 765 } else { 766 if (cs->nr_segs >= cs->pipe->max_usage) 767 return -EIO; 768 769 page = alloc_page(GFP_HIGHUSER); 770 if (!page) 771 return -ENOMEM; 772 773 buf->page = page; 774 buf->offset = 0; 775 buf->len = 0; 776 777 cs->currbuf = buf; 778 cs->pg = page; 779 cs->offset = 0; 780 cs->len = PAGE_SIZE; 781 cs->pipebufs++; 782 cs->nr_segs++; 783 } 784 } else { 785 size_t off; 786 err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off); 787 if (err < 0) 788 return err; 789 BUG_ON(!err); 790 cs->len = err; 791 cs->offset = off; 792 cs->pg = page; 793 } 794 795 return lock_request(cs->req); 796 } 797 798 /* Do as much copy to/from userspace buffer as we can */ 799 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size) 800 { 801 unsigned ncpy = min(*size, cs->len); 802 if (val) { 803 void *pgaddr = kmap_local_page(cs->pg); 804 void *buf = pgaddr + cs->offset; 805 806 if (cs->write) 807 memcpy(buf, *val, ncpy); 808 else 809 memcpy(*val, buf, ncpy); 810 811 kunmap_local(pgaddr); 812 *val += ncpy; 813 } 814 *size -= ncpy; 815 cs->len -= ncpy; 816 cs->offset += ncpy; 817 return ncpy; 818 } 819 820 static int fuse_check_folio(struct folio *folio) 821 { 822 if (folio_mapped(folio) || 823 folio->mapping != NULL || 824 (folio->flags & PAGE_FLAGS_CHECK_AT_PREP & 825 ~(1 << PG_locked | 826 1 << PG_referenced | 827 1 << PG_lru | 828 1 << PG_active | 829 1 << PG_workingset | 830 1 << PG_reclaim | 831 1 << PG_waiters | 832 LRU_GEN_MASK | LRU_REFS_MASK))) { 833 dump_page(&folio->page, "fuse: trying to steal weird page"); 834 return 1; 835 } 836 return 0; 837 } 838 839 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep) 840 { 841 int err; 842 struct folio *oldfolio = page_folio(*pagep); 843 struct folio *newfolio; 844 struct pipe_buffer *buf = cs->pipebufs; 845 846 folio_get(oldfolio); 847 err = unlock_request(cs->req); 848 if (err) 849 goto out_put_old; 850 851 fuse_copy_finish(cs); 852 853 err = pipe_buf_confirm(cs->pipe, buf); 854 if (err) 855 goto out_put_old; 856 857 BUG_ON(!cs->nr_segs); 858 cs->currbuf = buf; 859 cs->len = buf->len; 860 cs->pipebufs++; 861 cs->nr_segs--; 862 863 if (cs->len != PAGE_SIZE) 864 goto out_fallback; 865 866 if (!pipe_buf_try_steal(cs->pipe, buf)) 867 goto out_fallback; 868 869 newfolio = page_folio(buf->page); 870 871 folio_clear_uptodate(newfolio); 872 folio_clear_mappedtodisk(newfolio); 873 874 if (fuse_check_folio(newfolio) != 0) 875 goto out_fallback_unlock; 876 877 /* 878 * This is a new and locked page, it shouldn't be mapped or 879 * have any special flags on it 880 */ 881 if (WARN_ON(folio_mapped(oldfolio))) 882 goto out_fallback_unlock; 883 if (WARN_ON(folio_has_private(oldfolio))) 884 goto out_fallback_unlock; 885 if (WARN_ON(folio_test_dirty(oldfolio) || 886 folio_test_writeback(oldfolio))) 887 goto out_fallback_unlock; 888 if (WARN_ON(folio_test_mlocked(oldfolio))) 889 goto out_fallback_unlock; 890 891 replace_page_cache_folio(oldfolio, newfolio); 892 893 folio_get(newfolio); 894 895 if (!(buf->flags & PIPE_BUF_FLAG_LRU)) 896 folio_add_lru(newfolio); 897 898 /* 899 * Release while we have extra ref on stolen page. Otherwise 900 * anon_pipe_buf_release() might think the page can be reused. 901 */ 902 pipe_buf_release(cs->pipe, buf); 903 904 err = 0; 905 spin_lock(&cs->req->waitq.lock); 906 if (test_bit(FR_ABORTED, &cs->req->flags)) 907 err = -ENOENT; 908 else 909 *pagep = &newfolio->page; 910 spin_unlock(&cs->req->waitq.lock); 911 912 if (err) { 913 folio_unlock(newfolio); 914 folio_put(newfolio); 915 goto out_put_old; 916 } 917 918 folio_unlock(oldfolio); 919 /* Drop ref for ap->pages[] array */ 920 folio_put(oldfolio); 921 cs->len = 0; 922 923 err = 0; 924 out_put_old: 925 /* Drop ref obtained in this function */ 926 folio_put(oldfolio); 927 return err; 928 929 out_fallback_unlock: 930 folio_unlock(newfolio); 931 out_fallback: 932 cs->pg = buf->page; 933 cs->offset = buf->offset; 934 935 err = lock_request(cs->req); 936 if (!err) 937 err = 1; 938 939 goto out_put_old; 940 } 941 942 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page, 943 unsigned offset, unsigned count) 944 { 945 struct pipe_buffer *buf; 946 int err; 947 948 if (cs->nr_segs >= cs->pipe->max_usage) 949 return -EIO; 950 951 get_page(page); 952 err = unlock_request(cs->req); 953 if (err) { 954 put_page(page); 955 return err; 956 } 957 958 fuse_copy_finish(cs); 959 960 buf = cs->pipebufs; 961 buf->page = page; 962 buf->offset = offset; 963 buf->len = count; 964 965 cs->pipebufs++; 966 cs->nr_segs++; 967 cs->len = 0; 968 969 return 0; 970 } 971 972 /* 973 * Copy a page in the request to/from the userspace buffer. Must be 974 * done atomically 975 */ 976 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep, 977 unsigned offset, unsigned count, int zeroing) 978 { 979 int err; 980 struct page *page = *pagep; 981 982 if (page && zeroing && count < PAGE_SIZE) 983 clear_highpage(page); 984 985 while (count) { 986 if (cs->write && cs->pipebufs && page) { 987 /* 988 * Can't control lifetime of pipe buffers, so always 989 * copy user pages. 990 */ 991 if (cs->req->args->user_pages) { 992 err = fuse_copy_fill(cs); 993 if (err) 994 return err; 995 } else { 996 return fuse_ref_page(cs, page, offset, count); 997 } 998 } else if (!cs->len) { 999 if (cs->move_pages && page && 1000 offset == 0 && count == PAGE_SIZE) { 1001 err = fuse_try_move_page(cs, pagep); 1002 if (err <= 0) 1003 return err; 1004 } else { 1005 err = fuse_copy_fill(cs); 1006 if (err) 1007 return err; 1008 } 1009 } 1010 if (page) { 1011 void *mapaddr = kmap_local_page(page); 1012 void *buf = mapaddr + offset; 1013 offset += fuse_copy_do(cs, &buf, &count); 1014 kunmap_local(mapaddr); 1015 } else 1016 offset += fuse_copy_do(cs, NULL, &count); 1017 } 1018 if (page && !cs->write) 1019 flush_dcache_page(page); 1020 return 0; 1021 } 1022 1023 /* Copy pages in the request to/from userspace buffer */ 1024 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes, 1025 int zeroing) 1026 { 1027 unsigned i; 1028 struct fuse_req *req = cs->req; 1029 struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args); 1030 1031 1032 for (i = 0; i < ap->num_pages && (nbytes || zeroing); i++) { 1033 int err; 1034 unsigned int offset = ap->descs[i].offset; 1035 unsigned int count = min(nbytes, ap->descs[i].length); 1036 1037 err = fuse_copy_page(cs, &ap->pages[i], offset, count, zeroing); 1038 if (err) 1039 return err; 1040 1041 nbytes -= count; 1042 } 1043 return 0; 1044 } 1045 1046 /* Copy a single argument in the request to/from userspace buffer */ 1047 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size) 1048 { 1049 while (size) { 1050 if (!cs->len) { 1051 int err = fuse_copy_fill(cs); 1052 if (err) 1053 return err; 1054 } 1055 fuse_copy_do(cs, &val, &size); 1056 } 1057 return 0; 1058 } 1059 1060 /* Copy request arguments to/from userspace buffer */ 1061 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs, 1062 unsigned argpages, struct fuse_arg *args, 1063 int zeroing) 1064 { 1065 int err = 0; 1066 unsigned i; 1067 1068 for (i = 0; !err && i < numargs; i++) { 1069 struct fuse_arg *arg = &args[i]; 1070 if (i == numargs - 1 && argpages) 1071 err = fuse_copy_pages(cs, arg->size, zeroing); 1072 else 1073 err = fuse_copy_one(cs, arg->value, arg->size); 1074 } 1075 return err; 1076 } 1077 1078 static int forget_pending(struct fuse_iqueue *fiq) 1079 { 1080 return fiq->forget_list_head.next != NULL; 1081 } 1082 1083 static int request_pending(struct fuse_iqueue *fiq) 1084 { 1085 return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) || 1086 forget_pending(fiq); 1087 } 1088 1089 /* 1090 * Transfer an interrupt request to userspace 1091 * 1092 * Unlike other requests this is assembled on demand, without a need 1093 * to allocate a separate fuse_req structure. 1094 * 1095 * Called with fiq->lock held, releases it 1096 */ 1097 static int fuse_read_interrupt(struct fuse_iqueue *fiq, 1098 struct fuse_copy_state *cs, 1099 size_t nbytes, struct fuse_req *req) 1100 __releases(fiq->lock) 1101 { 1102 struct fuse_in_header ih; 1103 struct fuse_interrupt_in arg; 1104 unsigned reqsize = sizeof(ih) + sizeof(arg); 1105 int err; 1106 1107 list_del_init(&req->intr_entry); 1108 memset(&ih, 0, sizeof(ih)); 1109 memset(&arg, 0, sizeof(arg)); 1110 ih.len = reqsize; 1111 ih.opcode = FUSE_INTERRUPT; 1112 ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT); 1113 arg.unique = req->in.h.unique; 1114 1115 spin_unlock(&fiq->lock); 1116 if (nbytes < reqsize) 1117 return -EINVAL; 1118 1119 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1120 if (!err) 1121 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1122 fuse_copy_finish(cs); 1123 1124 return err ? err : reqsize; 1125 } 1126 1127 static struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq, 1128 unsigned int max, 1129 unsigned int *countp) 1130 { 1131 struct fuse_forget_link *head = fiq->forget_list_head.next; 1132 struct fuse_forget_link **newhead = &head; 1133 unsigned count; 1134 1135 for (count = 0; *newhead != NULL && count < max; count++) 1136 newhead = &(*newhead)->next; 1137 1138 fiq->forget_list_head.next = *newhead; 1139 *newhead = NULL; 1140 if (fiq->forget_list_head.next == NULL) 1141 fiq->forget_list_tail = &fiq->forget_list_head; 1142 1143 if (countp != NULL) 1144 *countp = count; 1145 1146 return head; 1147 } 1148 1149 static int fuse_read_single_forget(struct fuse_iqueue *fiq, 1150 struct fuse_copy_state *cs, 1151 size_t nbytes) 1152 __releases(fiq->lock) 1153 { 1154 int err; 1155 struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL); 1156 struct fuse_forget_in arg = { 1157 .nlookup = forget->forget_one.nlookup, 1158 }; 1159 struct fuse_in_header ih = { 1160 .opcode = FUSE_FORGET, 1161 .nodeid = forget->forget_one.nodeid, 1162 .unique = fuse_get_unique_locked(fiq), 1163 .len = sizeof(ih) + sizeof(arg), 1164 }; 1165 1166 spin_unlock(&fiq->lock); 1167 kfree(forget); 1168 if (nbytes < ih.len) 1169 return -EINVAL; 1170 1171 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1172 if (!err) 1173 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1174 fuse_copy_finish(cs); 1175 1176 if (err) 1177 return err; 1178 1179 return ih.len; 1180 } 1181 1182 static int fuse_read_batch_forget(struct fuse_iqueue *fiq, 1183 struct fuse_copy_state *cs, size_t nbytes) 1184 __releases(fiq->lock) 1185 { 1186 int err; 1187 unsigned max_forgets; 1188 unsigned count; 1189 struct fuse_forget_link *head; 1190 struct fuse_batch_forget_in arg = { .count = 0 }; 1191 struct fuse_in_header ih = { 1192 .opcode = FUSE_BATCH_FORGET, 1193 .unique = fuse_get_unique_locked(fiq), 1194 .len = sizeof(ih) + sizeof(arg), 1195 }; 1196 1197 if (nbytes < ih.len) { 1198 spin_unlock(&fiq->lock); 1199 return -EINVAL; 1200 } 1201 1202 max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one); 1203 head = fuse_dequeue_forget(fiq, max_forgets, &count); 1204 spin_unlock(&fiq->lock); 1205 1206 arg.count = count; 1207 ih.len += count * sizeof(struct fuse_forget_one); 1208 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1209 if (!err) 1210 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1211 1212 while (head) { 1213 struct fuse_forget_link *forget = head; 1214 1215 if (!err) { 1216 err = fuse_copy_one(cs, &forget->forget_one, 1217 sizeof(forget->forget_one)); 1218 } 1219 head = forget->next; 1220 kfree(forget); 1221 } 1222 1223 fuse_copy_finish(cs); 1224 1225 if (err) 1226 return err; 1227 1228 return ih.len; 1229 } 1230 1231 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq, 1232 struct fuse_copy_state *cs, 1233 size_t nbytes) 1234 __releases(fiq->lock) 1235 { 1236 if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL) 1237 return fuse_read_single_forget(fiq, cs, nbytes); 1238 else 1239 return fuse_read_batch_forget(fiq, cs, nbytes); 1240 } 1241 1242 /* 1243 * Read a single request into the userspace filesystem's buffer. This 1244 * function waits until a request is available, then removes it from 1245 * the pending list and copies request data to userspace buffer. If 1246 * no reply is needed (FORGET) or request has been aborted or there 1247 * was an error during the copying then it's finished by calling 1248 * fuse_request_end(). Otherwise add it to the processing list, and set 1249 * the 'sent' flag. 1250 */ 1251 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file, 1252 struct fuse_copy_state *cs, size_t nbytes) 1253 { 1254 ssize_t err; 1255 struct fuse_conn *fc = fud->fc; 1256 struct fuse_iqueue *fiq = &fc->iq; 1257 struct fuse_pqueue *fpq = &fud->pq; 1258 struct fuse_req *req; 1259 struct fuse_args *args; 1260 unsigned reqsize; 1261 unsigned int hash; 1262 1263 /* 1264 * Require sane minimum read buffer - that has capacity for fixed part 1265 * of any request header + negotiated max_write room for data. 1266 * 1267 * Historically libfuse reserves 4K for fixed header room, but e.g. 1268 * GlusterFS reserves only 80 bytes 1269 * 1270 * = `sizeof(fuse_in_header) + sizeof(fuse_write_in)` 1271 * 1272 * which is the absolute minimum any sane filesystem should be using 1273 * for header room. 1274 */ 1275 if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER, 1276 sizeof(struct fuse_in_header) + 1277 sizeof(struct fuse_write_in) + 1278 fc->max_write)) 1279 return -EINVAL; 1280 1281 restart: 1282 for (;;) { 1283 spin_lock(&fiq->lock); 1284 if (!fiq->connected || request_pending(fiq)) 1285 break; 1286 spin_unlock(&fiq->lock); 1287 1288 if (file->f_flags & O_NONBLOCK) 1289 return -EAGAIN; 1290 err = wait_event_interruptible_exclusive(fiq->waitq, 1291 !fiq->connected || request_pending(fiq)); 1292 if (err) 1293 return err; 1294 } 1295 1296 if (!fiq->connected) { 1297 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1298 goto err_unlock; 1299 } 1300 1301 if (!list_empty(&fiq->interrupts)) { 1302 req = list_entry(fiq->interrupts.next, struct fuse_req, 1303 intr_entry); 1304 return fuse_read_interrupt(fiq, cs, nbytes, req); 1305 } 1306 1307 if (forget_pending(fiq)) { 1308 if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0) 1309 return fuse_read_forget(fc, fiq, cs, nbytes); 1310 1311 if (fiq->forget_batch <= -8) 1312 fiq->forget_batch = 16; 1313 } 1314 1315 req = list_entry(fiq->pending.next, struct fuse_req, list); 1316 clear_bit(FR_PENDING, &req->flags); 1317 list_del_init(&req->list); 1318 spin_unlock(&fiq->lock); 1319 1320 args = req->args; 1321 reqsize = req->in.h.len; 1322 1323 /* If request is too large, reply with an error and restart the read */ 1324 if (nbytes < reqsize) { 1325 req->out.h.error = -EIO; 1326 /* SETXATTR is special, since it may contain too large data */ 1327 if (args->opcode == FUSE_SETXATTR) 1328 req->out.h.error = -E2BIG; 1329 fuse_request_end(req); 1330 goto restart; 1331 } 1332 spin_lock(&fpq->lock); 1333 /* 1334 * Must not put request on fpq->io queue after having been shut down by 1335 * fuse_abort_conn() 1336 */ 1337 if (!fpq->connected) { 1338 req->out.h.error = err = -ECONNABORTED; 1339 goto out_end; 1340 1341 } 1342 list_add(&req->list, &fpq->io); 1343 spin_unlock(&fpq->lock); 1344 cs->req = req; 1345 err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h)); 1346 if (!err) 1347 err = fuse_copy_args(cs, args->in_numargs, args->in_pages, 1348 (struct fuse_arg *) args->in_args, 0); 1349 fuse_copy_finish(cs); 1350 spin_lock(&fpq->lock); 1351 clear_bit(FR_LOCKED, &req->flags); 1352 if (!fpq->connected) { 1353 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1354 goto out_end; 1355 } 1356 if (err) { 1357 req->out.h.error = -EIO; 1358 goto out_end; 1359 } 1360 if (!test_bit(FR_ISREPLY, &req->flags)) { 1361 err = reqsize; 1362 goto out_end; 1363 } 1364 hash = fuse_req_hash(req->in.h.unique); 1365 list_move_tail(&req->list, &fpq->processing[hash]); 1366 __fuse_get_request(req); 1367 set_bit(FR_SENT, &req->flags); 1368 spin_unlock(&fpq->lock); 1369 /* matches barrier in request_wait_answer() */ 1370 smp_mb__after_atomic(); 1371 if (test_bit(FR_INTERRUPTED, &req->flags)) 1372 queue_interrupt(req); 1373 fuse_put_request(req); 1374 1375 return reqsize; 1376 1377 out_end: 1378 if (!test_bit(FR_PRIVATE, &req->flags)) 1379 list_del_init(&req->list); 1380 spin_unlock(&fpq->lock); 1381 fuse_request_end(req); 1382 return err; 1383 1384 err_unlock: 1385 spin_unlock(&fiq->lock); 1386 return err; 1387 } 1388 1389 static int fuse_dev_open(struct inode *inode, struct file *file) 1390 { 1391 /* 1392 * The fuse device's file's private_data is used to hold 1393 * the fuse_conn(ection) when it is mounted, and is used to 1394 * keep track of whether the file has been mounted already. 1395 */ 1396 file->private_data = NULL; 1397 return 0; 1398 } 1399 1400 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to) 1401 { 1402 struct fuse_copy_state cs; 1403 struct file *file = iocb->ki_filp; 1404 struct fuse_dev *fud = fuse_get_dev(file); 1405 1406 if (!fud) 1407 return -EPERM; 1408 1409 if (!user_backed_iter(to)) 1410 return -EINVAL; 1411 1412 fuse_copy_init(&cs, 1, to); 1413 1414 return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to)); 1415 } 1416 1417 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos, 1418 struct pipe_inode_info *pipe, 1419 size_t len, unsigned int flags) 1420 { 1421 int total, ret; 1422 int page_nr = 0; 1423 struct pipe_buffer *bufs; 1424 struct fuse_copy_state cs; 1425 struct fuse_dev *fud = fuse_get_dev(in); 1426 1427 if (!fud) 1428 return -EPERM; 1429 1430 bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer), 1431 GFP_KERNEL); 1432 if (!bufs) 1433 return -ENOMEM; 1434 1435 fuse_copy_init(&cs, 1, NULL); 1436 cs.pipebufs = bufs; 1437 cs.pipe = pipe; 1438 ret = fuse_dev_do_read(fud, in, &cs, len); 1439 if (ret < 0) 1440 goto out; 1441 1442 if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) { 1443 ret = -EIO; 1444 goto out; 1445 } 1446 1447 for (ret = total = 0; page_nr < cs.nr_segs; total += ret) { 1448 /* 1449 * Need to be careful about this. Having buf->ops in module 1450 * code can Oops if the buffer persists after module unload. 1451 */ 1452 bufs[page_nr].ops = &nosteal_pipe_buf_ops; 1453 bufs[page_nr].flags = 0; 1454 ret = add_to_pipe(pipe, &bufs[page_nr++]); 1455 if (unlikely(ret < 0)) 1456 break; 1457 } 1458 if (total) 1459 ret = total; 1460 out: 1461 for (; page_nr < cs.nr_segs; page_nr++) 1462 put_page(bufs[page_nr].page); 1463 1464 kvfree(bufs); 1465 return ret; 1466 } 1467 1468 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size, 1469 struct fuse_copy_state *cs) 1470 { 1471 struct fuse_notify_poll_wakeup_out outarg; 1472 int err = -EINVAL; 1473 1474 if (size != sizeof(outarg)) 1475 goto err; 1476 1477 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1478 if (err) 1479 goto err; 1480 1481 fuse_copy_finish(cs); 1482 return fuse_notify_poll_wakeup(fc, &outarg); 1483 1484 err: 1485 fuse_copy_finish(cs); 1486 return err; 1487 } 1488 1489 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size, 1490 struct fuse_copy_state *cs) 1491 { 1492 struct fuse_notify_inval_inode_out outarg; 1493 int err = -EINVAL; 1494 1495 if (size != sizeof(outarg)) 1496 goto err; 1497 1498 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1499 if (err) 1500 goto err; 1501 fuse_copy_finish(cs); 1502 1503 down_read(&fc->killsb); 1504 err = fuse_reverse_inval_inode(fc, outarg.ino, 1505 outarg.off, outarg.len); 1506 up_read(&fc->killsb); 1507 return err; 1508 1509 err: 1510 fuse_copy_finish(cs); 1511 return err; 1512 } 1513 1514 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size, 1515 struct fuse_copy_state *cs) 1516 { 1517 struct fuse_notify_inval_entry_out outarg; 1518 int err = -ENOMEM; 1519 char *buf; 1520 struct qstr name; 1521 1522 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1523 if (!buf) 1524 goto err; 1525 1526 err = -EINVAL; 1527 if (size < sizeof(outarg)) 1528 goto err; 1529 1530 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1531 if (err) 1532 goto err; 1533 1534 err = -ENAMETOOLONG; 1535 if (outarg.namelen > FUSE_NAME_MAX) 1536 goto err; 1537 1538 err = -EINVAL; 1539 if (size != sizeof(outarg) + outarg.namelen + 1) 1540 goto err; 1541 1542 name.name = buf; 1543 name.len = outarg.namelen; 1544 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1545 if (err) 1546 goto err; 1547 fuse_copy_finish(cs); 1548 buf[outarg.namelen] = 0; 1549 1550 down_read(&fc->killsb); 1551 err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags); 1552 up_read(&fc->killsb); 1553 kfree(buf); 1554 return err; 1555 1556 err: 1557 kfree(buf); 1558 fuse_copy_finish(cs); 1559 return err; 1560 } 1561 1562 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size, 1563 struct fuse_copy_state *cs) 1564 { 1565 struct fuse_notify_delete_out outarg; 1566 int err = -ENOMEM; 1567 char *buf; 1568 struct qstr name; 1569 1570 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1571 if (!buf) 1572 goto err; 1573 1574 err = -EINVAL; 1575 if (size < sizeof(outarg)) 1576 goto err; 1577 1578 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1579 if (err) 1580 goto err; 1581 1582 err = -ENAMETOOLONG; 1583 if (outarg.namelen > FUSE_NAME_MAX) 1584 goto err; 1585 1586 err = -EINVAL; 1587 if (size != sizeof(outarg) + outarg.namelen + 1) 1588 goto err; 1589 1590 name.name = buf; 1591 name.len = outarg.namelen; 1592 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1593 if (err) 1594 goto err; 1595 fuse_copy_finish(cs); 1596 buf[outarg.namelen] = 0; 1597 1598 down_read(&fc->killsb); 1599 err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0); 1600 up_read(&fc->killsb); 1601 kfree(buf); 1602 return err; 1603 1604 err: 1605 kfree(buf); 1606 fuse_copy_finish(cs); 1607 return err; 1608 } 1609 1610 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size, 1611 struct fuse_copy_state *cs) 1612 { 1613 struct fuse_notify_store_out outarg; 1614 struct inode *inode; 1615 struct address_space *mapping; 1616 u64 nodeid; 1617 int err; 1618 pgoff_t index; 1619 unsigned int offset; 1620 unsigned int num; 1621 loff_t file_size; 1622 loff_t end; 1623 1624 err = -EINVAL; 1625 if (size < sizeof(outarg)) 1626 goto out_finish; 1627 1628 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1629 if (err) 1630 goto out_finish; 1631 1632 err = -EINVAL; 1633 if (size - sizeof(outarg) != outarg.size) 1634 goto out_finish; 1635 1636 nodeid = outarg.nodeid; 1637 1638 down_read(&fc->killsb); 1639 1640 err = -ENOENT; 1641 inode = fuse_ilookup(fc, nodeid, NULL); 1642 if (!inode) 1643 goto out_up_killsb; 1644 1645 mapping = inode->i_mapping; 1646 index = outarg.offset >> PAGE_SHIFT; 1647 offset = outarg.offset & ~PAGE_MASK; 1648 file_size = i_size_read(inode); 1649 end = outarg.offset + outarg.size; 1650 if (end > file_size) { 1651 file_size = end; 1652 fuse_write_update_attr(inode, file_size, outarg.size); 1653 } 1654 1655 num = outarg.size; 1656 while (num) { 1657 struct page *page; 1658 unsigned int this_num; 1659 1660 err = -ENOMEM; 1661 page = find_or_create_page(mapping, index, 1662 mapping_gfp_mask(mapping)); 1663 if (!page) 1664 goto out_iput; 1665 1666 this_num = min_t(unsigned, num, PAGE_SIZE - offset); 1667 err = fuse_copy_page(cs, &page, offset, this_num, 0); 1668 if (!PageUptodate(page) && !err && offset == 0 && 1669 (this_num == PAGE_SIZE || file_size == end)) { 1670 zero_user_segment(page, this_num, PAGE_SIZE); 1671 SetPageUptodate(page); 1672 } 1673 unlock_page(page); 1674 put_page(page); 1675 1676 if (err) 1677 goto out_iput; 1678 1679 num -= this_num; 1680 offset = 0; 1681 index++; 1682 } 1683 1684 err = 0; 1685 1686 out_iput: 1687 iput(inode); 1688 out_up_killsb: 1689 up_read(&fc->killsb); 1690 out_finish: 1691 fuse_copy_finish(cs); 1692 return err; 1693 } 1694 1695 struct fuse_retrieve_args { 1696 struct fuse_args_pages ap; 1697 struct fuse_notify_retrieve_in inarg; 1698 }; 1699 1700 static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args, 1701 int error) 1702 { 1703 struct fuse_retrieve_args *ra = 1704 container_of(args, typeof(*ra), ap.args); 1705 1706 release_pages(ra->ap.pages, ra->ap.num_pages); 1707 kfree(ra); 1708 } 1709 1710 static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode, 1711 struct fuse_notify_retrieve_out *outarg) 1712 { 1713 int err; 1714 struct address_space *mapping = inode->i_mapping; 1715 pgoff_t index; 1716 loff_t file_size; 1717 unsigned int num; 1718 unsigned int offset; 1719 size_t total_len = 0; 1720 unsigned int num_pages; 1721 struct fuse_conn *fc = fm->fc; 1722 struct fuse_retrieve_args *ra; 1723 size_t args_size = sizeof(*ra); 1724 struct fuse_args_pages *ap; 1725 struct fuse_args *args; 1726 1727 offset = outarg->offset & ~PAGE_MASK; 1728 file_size = i_size_read(inode); 1729 1730 num = min(outarg->size, fc->max_write); 1731 if (outarg->offset > file_size) 1732 num = 0; 1733 else if (outarg->offset + num > file_size) 1734 num = file_size - outarg->offset; 1735 1736 num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1737 num_pages = min(num_pages, fc->max_pages); 1738 1739 args_size += num_pages * (sizeof(ap->pages[0]) + sizeof(ap->descs[0])); 1740 1741 ra = kzalloc(args_size, GFP_KERNEL); 1742 if (!ra) 1743 return -ENOMEM; 1744 1745 ap = &ra->ap; 1746 ap->pages = (void *) (ra + 1); 1747 ap->descs = (void *) (ap->pages + num_pages); 1748 1749 args = &ap->args; 1750 args->nodeid = outarg->nodeid; 1751 args->opcode = FUSE_NOTIFY_REPLY; 1752 args->in_numargs = 2; 1753 args->in_pages = true; 1754 args->end = fuse_retrieve_end; 1755 1756 index = outarg->offset >> PAGE_SHIFT; 1757 1758 while (num && ap->num_pages < num_pages) { 1759 struct page *page; 1760 unsigned int this_num; 1761 1762 page = find_get_page(mapping, index); 1763 if (!page) 1764 break; 1765 1766 this_num = min_t(unsigned, num, PAGE_SIZE - offset); 1767 ap->pages[ap->num_pages] = page; 1768 ap->descs[ap->num_pages].offset = offset; 1769 ap->descs[ap->num_pages].length = this_num; 1770 ap->num_pages++; 1771 1772 offset = 0; 1773 num -= this_num; 1774 total_len += this_num; 1775 index++; 1776 } 1777 ra->inarg.offset = outarg->offset; 1778 ra->inarg.size = total_len; 1779 args->in_args[0].size = sizeof(ra->inarg); 1780 args->in_args[0].value = &ra->inarg; 1781 args->in_args[1].size = total_len; 1782 1783 err = fuse_simple_notify_reply(fm, args, outarg->notify_unique); 1784 if (err) 1785 fuse_retrieve_end(fm, args, err); 1786 1787 return err; 1788 } 1789 1790 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size, 1791 struct fuse_copy_state *cs) 1792 { 1793 struct fuse_notify_retrieve_out outarg; 1794 struct fuse_mount *fm; 1795 struct inode *inode; 1796 u64 nodeid; 1797 int err; 1798 1799 err = -EINVAL; 1800 if (size != sizeof(outarg)) 1801 goto copy_finish; 1802 1803 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1804 if (err) 1805 goto copy_finish; 1806 1807 fuse_copy_finish(cs); 1808 1809 down_read(&fc->killsb); 1810 err = -ENOENT; 1811 nodeid = outarg.nodeid; 1812 1813 inode = fuse_ilookup(fc, nodeid, &fm); 1814 if (inode) { 1815 err = fuse_retrieve(fm, inode, &outarg); 1816 iput(inode); 1817 } 1818 up_read(&fc->killsb); 1819 1820 return err; 1821 1822 copy_finish: 1823 fuse_copy_finish(cs); 1824 return err; 1825 } 1826 1827 /* 1828 * Resending all processing queue requests. 1829 * 1830 * During a FUSE daemon panics and failover, it is possible for some inflight 1831 * requests to be lost and never returned. As a result, applications awaiting 1832 * replies would become stuck forever. To address this, we can use notification 1833 * to trigger resending of these pending requests to the FUSE daemon, ensuring 1834 * they are properly processed again. 1835 * 1836 * Please note that this strategy is applicable only to idempotent requests or 1837 * if the FUSE daemon takes careful measures to avoid processing duplicated 1838 * non-idempotent requests. 1839 */ 1840 static void fuse_resend(struct fuse_conn *fc) 1841 { 1842 struct fuse_dev *fud; 1843 struct fuse_req *req, *next; 1844 struct fuse_iqueue *fiq = &fc->iq; 1845 LIST_HEAD(to_queue); 1846 unsigned int i; 1847 1848 spin_lock(&fc->lock); 1849 if (!fc->connected) { 1850 spin_unlock(&fc->lock); 1851 return; 1852 } 1853 1854 list_for_each_entry(fud, &fc->devices, entry) { 1855 struct fuse_pqueue *fpq = &fud->pq; 1856 1857 spin_lock(&fpq->lock); 1858 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 1859 list_splice_tail_init(&fpq->processing[i], &to_queue); 1860 spin_unlock(&fpq->lock); 1861 } 1862 spin_unlock(&fc->lock); 1863 1864 list_for_each_entry_safe(req, next, &to_queue, list) { 1865 set_bit(FR_PENDING, &req->flags); 1866 clear_bit(FR_SENT, &req->flags); 1867 /* mark the request as resend request */ 1868 req->in.h.unique |= FUSE_UNIQUE_RESEND; 1869 } 1870 1871 spin_lock(&fiq->lock); 1872 if (!fiq->connected) { 1873 spin_unlock(&fiq->lock); 1874 list_for_each_entry(req, &to_queue, list) 1875 clear_bit(FR_PENDING, &req->flags); 1876 end_requests(&to_queue); 1877 return; 1878 } 1879 /* iq and pq requests are both oldest to newest */ 1880 list_splice(&to_queue, &fiq->pending); 1881 fuse_dev_wake_and_unlock(fiq); 1882 } 1883 1884 static int fuse_notify_resend(struct fuse_conn *fc) 1885 { 1886 fuse_resend(fc); 1887 return 0; 1888 } 1889 1890 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code, 1891 unsigned int size, struct fuse_copy_state *cs) 1892 { 1893 /* Don't try to move pages (yet) */ 1894 cs->move_pages = 0; 1895 1896 switch (code) { 1897 case FUSE_NOTIFY_POLL: 1898 return fuse_notify_poll(fc, size, cs); 1899 1900 case FUSE_NOTIFY_INVAL_INODE: 1901 return fuse_notify_inval_inode(fc, size, cs); 1902 1903 case FUSE_NOTIFY_INVAL_ENTRY: 1904 return fuse_notify_inval_entry(fc, size, cs); 1905 1906 case FUSE_NOTIFY_STORE: 1907 return fuse_notify_store(fc, size, cs); 1908 1909 case FUSE_NOTIFY_RETRIEVE: 1910 return fuse_notify_retrieve(fc, size, cs); 1911 1912 case FUSE_NOTIFY_DELETE: 1913 return fuse_notify_delete(fc, size, cs); 1914 1915 case FUSE_NOTIFY_RESEND: 1916 return fuse_notify_resend(fc); 1917 1918 default: 1919 fuse_copy_finish(cs); 1920 return -EINVAL; 1921 } 1922 } 1923 1924 /* Look up request on processing list by unique ID */ 1925 static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique) 1926 { 1927 unsigned int hash = fuse_req_hash(unique); 1928 struct fuse_req *req; 1929 1930 list_for_each_entry(req, &fpq->processing[hash], list) { 1931 if (req->in.h.unique == unique) 1932 return req; 1933 } 1934 return NULL; 1935 } 1936 1937 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args, 1938 unsigned nbytes) 1939 { 1940 unsigned reqsize = sizeof(struct fuse_out_header); 1941 1942 reqsize += fuse_len_args(args->out_numargs, args->out_args); 1943 1944 if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar)) 1945 return -EINVAL; 1946 else if (reqsize > nbytes) { 1947 struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1]; 1948 unsigned diffsize = reqsize - nbytes; 1949 1950 if (diffsize > lastarg->size) 1951 return -EINVAL; 1952 lastarg->size -= diffsize; 1953 } 1954 return fuse_copy_args(cs, args->out_numargs, args->out_pages, 1955 args->out_args, args->page_zeroing); 1956 } 1957 1958 /* 1959 * Write a single reply to a request. First the header is copied from 1960 * the write buffer. The request is then searched on the processing 1961 * list by the unique ID found in the header. If found, then remove 1962 * it from the list and copy the rest of the buffer to the request. 1963 * The request is finished by calling fuse_request_end(). 1964 */ 1965 static ssize_t fuse_dev_do_write(struct fuse_dev *fud, 1966 struct fuse_copy_state *cs, size_t nbytes) 1967 { 1968 int err; 1969 struct fuse_conn *fc = fud->fc; 1970 struct fuse_pqueue *fpq = &fud->pq; 1971 struct fuse_req *req; 1972 struct fuse_out_header oh; 1973 1974 err = -EINVAL; 1975 if (nbytes < sizeof(struct fuse_out_header)) 1976 goto out; 1977 1978 err = fuse_copy_one(cs, &oh, sizeof(oh)); 1979 if (err) 1980 goto copy_finish; 1981 1982 err = -EINVAL; 1983 if (oh.len != nbytes) 1984 goto copy_finish; 1985 1986 /* 1987 * Zero oh.unique indicates unsolicited notification message 1988 * and error contains notification code. 1989 */ 1990 if (!oh.unique) { 1991 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs); 1992 goto out; 1993 } 1994 1995 err = -EINVAL; 1996 if (oh.error <= -512 || oh.error > 0) 1997 goto copy_finish; 1998 1999 spin_lock(&fpq->lock); 2000 req = NULL; 2001 if (fpq->connected) 2002 req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT); 2003 2004 err = -ENOENT; 2005 if (!req) { 2006 spin_unlock(&fpq->lock); 2007 goto copy_finish; 2008 } 2009 2010 /* Is it an interrupt reply ID? */ 2011 if (oh.unique & FUSE_INT_REQ_BIT) { 2012 __fuse_get_request(req); 2013 spin_unlock(&fpq->lock); 2014 2015 err = 0; 2016 if (nbytes != sizeof(struct fuse_out_header)) 2017 err = -EINVAL; 2018 else if (oh.error == -ENOSYS) 2019 fc->no_interrupt = 1; 2020 else if (oh.error == -EAGAIN) 2021 err = queue_interrupt(req); 2022 2023 fuse_put_request(req); 2024 2025 goto copy_finish; 2026 } 2027 2028 clear_bit(FR_SENT, &req->flags); 2029 list_move(&req->list, &fpq->io); 2030 req->out.h = oh; 2031 set_bit(FR_LOCKED, &req->flags); 2032 spin_unlock(&fpq->lock); 2033 cs->req = req; 2034 if (!req->args->page_replace) 2035 cs->move_pages = 0; 2036 2037 if (oh.error) 2038 err = nbytes != sizeof(oh) ? -EINVAL : 0; 2039 else 2040 err = copy_out_args(cs, req->args, nbytes); 2041 fuse_copy_finish(cs); 2042 2043 spin_lock(&fpq->lock); 2044 clear_bit(FR_LOCKED, &req->flags); 2045 if (!fpq->connected) 2046 err = -ENOENT; 2047 else if (err) 2048 req->out.h.error = -EIO; 2049 if (!test_bit(FR_PRIVATE, &req->flags)) 2050 list_del_init(&req->list); 2051 spin_unlock(&fpq->lock); 2052 2053 fuse_request_end(req); 2054 out: 2055 return err ? err : nbytes; 2056 2057 copy_finish: 2058 fuse_copy_finish(cs); 2059 goto out; 2060 } 2061 2062 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from) 2063 { 2064 struct fuse_copy_state cs; 2065 struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp); 2066 2067 if (!fud) 2068 return -EPERM; 2069 2070 if (!user_backed_iter(from)) 2071 return -EINVAL; 2072 2073 fuse_copy_init(&cs, 0, from); 2074 2075 return fuse_dev_do_write(fud, &cs, iov_iter_count(from)); 2076 } 2077 2078 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe, 2079 struct file *out, loff_t *ppos, 2080 size_t len, unsigned int flags) 2081 { 2082 unsigned int head, tail, mask, count; 2083 unsigned nbuf; 2084 unsigned idx; 2085 struct pipe_buffer *bufs; 2086 struct fuse_copy_state cs; 2087 struct fuse_dev *fud; 2088 size_t rem; 2089 ssize_t ret; 2090 2091 fud = fuse_get_dev(out); 2092 if (!fud) 2093 return -EPERM; 2094 2095 pipe_lock(pipe); 2096 2097 head = pipe->head; 2098 tail = pipe->tail; 2099 mask = pipe->ring_size - 1; 2100 count = head - tail; 2101 2102 bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL); 2103 if (!bufs) { 2104 pipe_unlock(pipe); 2105 return -ENOMEM; 2106 } 2107 2108 nbuf = 0; 2109 rem = 0; 2110 for (idx = tail; idx != head && rem < len; idx++) 2111 rem += pipe->bufs[idx & mask].len; 2112 2113 ret = -EINVAL; 2114 if (rem < len) 2115 goto out_free; 2116 2117 rem = len; 2118 while (rem) { 2119 struct pipe_buffer *ibuf; 2120 struct pipe_buffer *obuf; 2121 2122 if (WARN_ON(nbuf >= count || tail == head)) 2123 goto out_free; 2124 2125 ibuf = &pipe->bufs[tail & mask]; 2126 obuf = &bufs[nbuf]; 2127 2128 if (rem >= ibuf->len) { 2129 *obuf = *ibuf; 2130 ibuf->ops = NULL; 2131 tail++; 2132 pipe->tail = tail; 2133 } else { 2134 if (!pipe_buf_get(pipe, ibuf)) 2135 goto out_free; 2136 2137 *obuf = *ibuf; 2138 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 2139 obuf->len = rem; 2140 ibuf->offset += obuf->len; 2141 ibuf->len -= obuf->len; 2142 } 2143 nbuf++; 2144 rem -= obuf->len; 2145 } 2146 pipe_unlock(pipe); 2147 2148 fuse_copy_init(&cs, 0, NULL); 2149 cs.pipebufs = bufs; 2150 cs.nr_segs = nbuf; 2151 cs.pipe = pipe; 2152 2153 if (flags & SPLICE_F_MOVE) 2154 cs.move_pages = 1; 2155 2156 ret = fuse_dev_do_write(fud, &cs, len); 2157 2158 pipe_lock(pipe); 2159 out_free: 2160 for (idx = 0; idx < nbuf; idx++) { 2161 struct pipe_buffer *buf = &bufs[idx]; 2162 2163 if (buf->ops) 2164 pipe_buf_release(pipe, buf); 2165 } 2166 pipe_unlock(pipe); 2167 2168 kvfree(bufs); 2169 return ret; 2170 } 2171 2172 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait) 2173 { 2174 __poll_t mask = EPOLLOUT | EPOLLWRNORM; 2175 struct fuse_iqueue *fiq; 2176 struct fuse_dev *fud = fuse_get_dev(file); 2177 2178 if (!fud) 2179 return EPOLLERR; 2180 2181 fiq = &fud->fc->iq; 2182 poll_wait(file, &fiq->waitq, wait); 2183 2184 spin_lock(&fiq->lock); 2185 if (!fiq->connected) 2186 mask = EPOLLERR; 2187 else if (request_pending(fiq)) 2188 mask |= EPOLLIN | EPOLLRDNORM; 2189 spin_unlock(&fiq->lock); 2190 2191 return mask; 2192 } 2193 2194 /* Abort all requests on the given list (pending or processing) */ 2195 static void end_requests(struct list_head *head) 2196 { 2197 while (!list_empty(head)) { 2198 struct fuse_req *req; 2199 req = list_entry(head->next, struct fuse_req, list); 2200 req->out.h.error = -ECONNABORTED; 2201 clear_bit(FR_SENT, &req->flags); 2202 list_del_init(&req->list); 2203 fuse_request_end(req); 2204 } 2205 } 2206 2207 static void end_polls(struct fuse_conn *fc) 2208 { 2209 struct rb_node *p; 2210 2211 p = rb_first(&fc->polled_files); 2212 2213 while (p) { 2214 struct fuse_file *ff; 2215 ff = rb_entry(p, struct fuse_file, polled_node); 2216 wake_up_interruptible_all(&ff->poll_wait); 2217 2218 p = rb_next(p); 2219 } 2220 } 2221 2222 /* 2223 * Abort all requests. 2224 * 2225 * Emergency exit in case of a malicious or accidental deadlock, or just a hung 2226 * filesystem. 2227 * 2228 * The same effect is usually achievable through killing the filesystem daemon 2229 * and all users of the filesystem. The exception is the combination of an 2230 * asynchronous request and the tricky deadlock (see 2231 * Documentation/filesystems/fuse.rst). 2232 * 2233 * Aborting requests under I/O goes as follows: 1: Separate out unlocked 2234 * requests, they should be finished off immediately. Locked requests will be 2235 * finished after unlock; see unlock_request(). 2: Finish off the unlocked 2236 * requests. It is possible that some request will finish before we can. This 2237 * is OK, the request will in that case be removed from the list before we touch 2238 * it. 2239 */ 2240 void fuse_abort_conn(struct fuse_conn *fc) 2241 { 2242 struct fuse_iqueue *fiq = &fc->iq; 2243 2244 spin_lock(&fc->lock); 2245 if (fc->connected) { 2246 struct fuse_dev *fud; 2247 struct fuse_req *req, *next; 2248 LIST_HEAD(to_end); 2249 unsigned int i; 2250 2251 /* Background queuing checks fc->connected under bg_lock */ 2252 spin_lock(&fc->bg_lock); 2253 fc->connected = 0; 2254 spin_unlock(&fc->bg_lock); 2255 2256 fuse_set_initialized(fc); 2257 list_for_each_entry(fud, &fc->devices, entry) { 2258 struct fuse_pqueue *fpq = &fud->pq; 2259 2260 spin_lock(&fpq->lock); 2261 fpq->connected = 0; 2262 list_for_each_entry_safe(req, next, &fpq->io, list) { 2263 req->out.h.error = -ECONNABORTED; 2264 spin_lock(&req->waitq.lock); 2265 set_bit(FR_ABORTED, &req->flags); 2266 if (!test_bit(FR_LOCKED, &req->flags)) { 2267 set_bit(FR_PRIVATE, &req->flags); 2268 __fuse_get_request(req); 2269 list_move(&req->list, &to_end); 2270 } 2271 spin_unlock(&req->waitq.lock); 2272 } 2273 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2274 list_splice_tail_init(&fpq->processing[i], 2275 &to_end); 2276 spin_unlock(&fpq->lock); 2277 } 2278 spin_lock(&fc->bg_lock); 2279 fc->blocked = 0; 2280 fc->max_background = UINT_MAX; 2281 flush_bg_queue(fc); 2282 spin_unlock(&fc->bg_lock); 2283 2284 spin_lock(&fiq->lock); 2285 fiq->connected = 0; 2286 list_for_each_entry(req, &fiq->pending, list) 2287 clear_bit(FR_PENDING, &req->flags); 2288 list_splice_tail_init(&fiq->pending, &to_end); 2289 while (forget_pending(fiq)) 2290 kfree(fuse_dequeue_forget(fiq, 1, NULL)); 2291 wake_up_all(&fiq->waitq); 2292 spin_unlock(&fiq->lock); 2293 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 2294 end_polls(fc); 2295 wake_up_all(&fc->blocked_waitq); 2296 spin_unlock(&fc->lock); 2297 2298 end_requests(&to_end); 2299 } else { 2300 spin_unlock(&fc->lock); 2301 } 2302 } 2303 EXPORT_SYMBOL_GPL(fuse_abort_conn); 2304 2305 void fuse_wait_aborted(struct fuse_conn *fc) 2306 { 2307 /* matches implicit memory barrier in fuse_drop_waiting() */ 2308 smp_mb(); 2309 wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0); 2310 } 2311 2312 int fuse_dev_release(struct inode *inode, struct file *file) 2313 { 2314 struct fuse_dev *fud = fuse_get_dev(file); 2315 2316 if (fud) { 2317 struct fuse_conn *fc = fud->fc; 2318 struct fuse_pqueue *fpq = &fud->pq; 2319 LIST_HEAD(to_end); 2320 unsigned int i; 2321 2322 spin_lock(&fpq->lock); 2323 WARN_ON(!list_empty(&fpq->io)); 2324 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2325 list_splice_init(&fpq->processing[i], &to_end); 2326 spin_unlock(&fpq->lock); 2327 2328 end_requests(&to_end); 2329 2330 /* Are we the last open device? */ 2331 if (atomic_dec_and_test(&fc->dev_count)) { 2332 WARN_ON(fc->iq.fasync != NULL); 2333 fuse_abort_conn(fc); 2334 } 2335 fuse_dev_free(fud); 2336 } 2337 return 0; 2338 } 2339 EXPORT_SYMBOL_GPL(fuse_dev_release); 2340 2341 static int fuse_dev_fasync(int fd, struct file *file, int on) 2342 { 2343 struct fuse_dev *fud = fuse_get_dev(file); 2344 2345 if (!fud) 2346 return -EPERM; 2347 2348 /* No locking - fasync_helper does its own locking */ 2349 return fasync_helper(fd, file, on, &fud->fc->iq.fasync); 2350 } 2351 2352 static int fuse_device_clone(struct fuse_conn *fc, struct file *new) 2353 { 2354 struct fuse_dev *fud; 2355 2356 if (new->private_data) 2357 return -EINVAL; 2358 2359 fud = fuse_dev_alloc_install(fc); 2360 if (!fud) 2361 return -ENOMEM; 2362 2363 new->private_data = fud; 2364 atomic_inc(&fc->dev_count); 2365 2366 return 0; 2367 } 2368 2369 static long fuse_dev_ioctl_clone(struct file *file, __u32 __user *argp) 2370 { 2371 int res; 2372 int oldfd; 2373 struct fuse_dev *fud = NULL; 2374 struct fd f; 2375 2376 if (get_user(oldfd, argp)) 2377 return -EFAULT; 2378 2379 f = fdget(oldfd); 2380 if (!fd_file(f)) 2381 return -EINVAL; 2382 2383 /* 2384 * Check against file->f_op because CUSE 2385 * uses the same ioctl handler. 2386 */ 2387 if (fd_file(f)->f_op == file->f_op) 2388 fud = fuse_get_dev(fd_file(f)); 2389 2390 res = -EINVAL; 2391 if (fud) { 2392 mutex_lock(&fuse_mutex); 2393 res = fuse_device_clone(fud->fc, file); 2394 mutex_unlock(&fuse_mutex); 2395 } 2396 2397 fdput(f); 2398 return res; 2399 } 2400 2401 static long fuse_dev_ioctl_backing_open(struct file *file, 2402 struct fuse_backing_map __user *argp) 2403 { 2404 struct fuse_dev *fud = fuse_get_dev(file); 2405 struct fuse_backing_map map; 2406 2407 if (!fud) 2408 return -EPERM; 2409 2410 if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH)) 2411 return -EOPNOTSUPP; 2412 2413 if (copy_from_user(&map, argp, sizeof(map))) 2414 return -EFAULT; 2415 2416 return fuse_backing_open(fud->fc, &map); 2417 } 2418 2419 static long fuse_dev_ioctl_backing_close(struct file *file, __u32 __user *argp) 2420 { 2421 struct fuse_dev *fud = fuse_get_dev(file); 2422 int backing_id; 2423 2424 if (!fud) 2425 return -EPERM; 2426 2427 if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH)) 2428 return -EOPNOTSUPP; 2429 2430 if (get_user(backing_id, argp)) 2431 return -EFAULT; 2432 2433 return fuse_backing_close(fud->fc, backing_id); 2434 } 2435 2436 static long fuse_dev_ioctl(struct file *file, unsigned int cmd, 2437 unsigned long arg) 2438 { 2439 void __user *argp = (void __user *)arg; 2440 2441 switch (cmd) { 2442 case FUSE_DEV_IOC_CLONE: 2443 return fuse_dev_ioctl_clone(file, argp); 2444 2445 case FUSE_DEV_IOC_BACKING_OPEN: 2446 return fuse_dev_ioctl_backing_open(file, argp); 2447 2448 case FUSE_DEV_IOC_BACKING_CLOSE: 2449 return fuse_dev_ioctl_backing_close(file, argp); 2450 2451 default: 2452 return -ENOTTY; 2453 } 2454 } 2455 2456 const struct file_operations fuse_dev_operations = { 2457 .owner = THIS_MODULE, 2458 .open = fuse_dev_open, 2459 .read_iter = fuse_dev_read, 2460 .splice_read = fuse_dev_splice_read, 2461 .write_iter = fuse_dev_write, 2462 .splice_write = fuse_dev_splice_write, 2463 .poll = fuse_dev_poll, 2464 .release = fuse_dev_release, 2465 .fasync = fuse_dev_fasync, 2466 .unlocked_ioctl = fuse_dev_ioctl, 2467 .compat_ioctl = compat_ptr_ioctl, 2468 }; 2469 EXPORT_SYMBOL_GPL(fuse_dev_operations); 2470 2471 static struct miscdevice fuse_miscdevice = { 2472 .minor = FUSE_MINOR, 2473 .name = "fuse", 2474 .fops = &fuse_dev_operations, 2475 }; 2476 2477 int __init fuse_dev_init(void) 2478 { 2479 int err = -ENOMEM; 2480 fuse_req_cachep = kmem_cache_create("fuse_request", 2481 sizeof(struct fuse_req), 2482 0, 0, NULL); 2483 if (!fuse_req_cachep) 2484 goto out; 2485 2486 err = misc_register(&fuse_miscdevice); 2487 if (err) 2488 goto out_cache_clean; 2489 2490 return 0; 2491 2492 out_cache_clean: 2493 kmem_cache_destroy(fuse_req_cachep); 2494 out: 2495 return err; 2496 } 2497 2498 void fuse_dev_cleanup(void) 2499 { 2500 misc_deregister(&fuse_miscdevice); 2501 kmem_cache_destroy(fuse_req_cachep); 2502 } 2503