1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/poll.h> 14 #include <linux/sched/signal.h> 15 #include <linux/uio.h> 16 #include <linux/miscdevice.h> 17 #include <linux/pagemap.h> 18 #include <linux/file.h> 19 #include <linux/slab.h> 20 #include <linux/pipe_fs_i.h> 21 #include <linux/swap.h> 22 #include <linux/splice.h> 23 #include <linux/sched.h> 24 25 MODULE_ALIAS_MISCDEV(FUSE_MINOR); 26 MODULE_ALIAS("devname:fuse"); 27 28 /* Ordinary requests have even IDs, while interrupts IDs are odd */ 29 #define FUSE_INT_REQ_BIT (1ULL << 0) 30 #define FUSE_REQ_ID_STEP (1ULL << 1) 31 32 static struct kmem_cache *fuse_req_cachep; 33 34 static struct fuse_dev *fuse_get_dev(struct file *file) 35 { 36 /* 37 * Lockless access is OK, because file->private data is set 38 * once during mount and is valid until the file is released. 39 */ 40 return READ_ONCE(file->private_data); 41 } 42 43 static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req) 44 { 45 INIT_LIST_HEAD(&req->list); 46 INIT_LIST_HEAD(&req->intr_entry); 47 init_waitqueue_head(&req->waitq); 48 refcount_set(&req->count, 1); 49 __set_bit(FR_PENDING, &req->flags); 50 req->fm = fm; 51 } 52 53 static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags) 54 { 55 struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags); 56 if (req) 57 fuse_request_init(fm, req); 58 59 return req; 60 } 61 62 static void fuse_request_free(struct fuse_req *req) 63 { 64 kmem_cache_free(fuse_req_cachep, req); 65 } 66 67 static void __fuse_get_request(struct fuse_req *req) 68 { 69 refcount_inc(&req->count); 70 } 71 72 /* Must be called with > 1 refcount */ 73 static void __fuse_put_request(struct fuse_req *req) 74 { 75 refcount_dec(&req->count); 76 } 77 78 void fuse_set_initialized(struct fuse_conn *fc) 79 { 80 /* Make sure stores before this are seen on another CPU */ 81 smp_wmb(); 82 fc->initialized = 1; 83 } 84 85 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background) 86 { 87 return !fc->initialized || (for_background && fc->blocked); 88 } 89 90 static void fuse_drop_waiting(struct fuse_conn *fc) 91 { 92 /* 93 * lockess check of fc->connected is okay, because atomic_dec_and_test() 94 * provides a memory barrier matched with the one in fuse_wait_aborted() 95 * to ensure no wake-up is missed. 96 */ 97 if (atomic_dec_and_test(&fc->num_waiting) && 98 !READ_ONCE(fc->connected)) { 99 /* wake up aborters */ 100 wake_up_all(&fc->blocked_waitq); 101 } 102 } 103 104 static void fuse_put_request(struct fuse_req *req); 105 106 static struct fuse_req *fuse_get_req(struct fuse_mount *fm, bool for_background) 107 { 108 struct fuse_conn *fc = fm->fc; 109 struct fuse_req *req; 110 int err; 111 atomic_inc(&fc->num_waiting); 112 113 if (fuse_block_alloc(fc, for_background)) { 114 err = -EINTR; 115 if (wait_event_killable_exclusive(fc->blocked_waitq, 116 !fuse_block_alloc(fc, for_background))) 117 goto out; 118 } 119 /* Matches smp_wmb() in fuse_set_initialized() */ 120 smp_rmb(); 121 122 err = -ENOTCONN; 123 if (!fc->connected) 124 goto out; 125 126 err = -ECONNREFUSED; 127 if (fc->conn_error) 128 goto out; 129 130 req = fuse_request_alloc(fm, GFP_KERNEL); 131 err = -ENOMEM; 132 if (!req) { 133 if (for_background) 134 wake_up(&fc->blocked_waitq); 135 goto out; 136 } 137 138 req->in.h.uid = from_kuid(fc->user_ns, current_fsuid()); 139 req->in.h.gid = from_kgid(fc->user_ns, current_fsgid()); 140 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 141 142 __set_bit(FR_WAITING, &req->flags); 143 if (for_background) 144 __set_bit(FR_BACKGROUND, &req->flags); 145 146 if (unlikely(req->in.h.uid == ((uid_t)-1) || 147 req->in.h.gid == ((gid_t)-1))) { 148 fuse_put_request(req); 149 return ERR_PTR(-EOVERFLOW); 150 } 151 return req; 152 153 out: 154 fuse_drop_waiting(fc); 155 return ERR_PTR(err); 156 } 157 158 static void fuse_put_request(struct fuse_req *req) 159 { 160 struct fuse_conn *fc = req->fm->fc; 161 162 if (refcount_dec_and_test(&req->count)) { 163 if (test_bit(FR_BACKGROUND, &req->flags)) { 164 /* 165 * We get here in the unlikely case that a background 166 * request was allocated but not sent 167 */ 168 spin_lock(&fc->bg_lock); 169 if (!fc->blocked) 170 wake_up(&fc->blocked_waitq); 171 spin_unlock(&fc->bg_lock); 172 } 173 174 if (test_bit(FR_WAITING, &req->flags)) { 175 __clear_bit(FR_WAITING, &req->flags); 176 fuse_drop_waiting(fc); 177 } 178 179 fuse_request_free(req); 180 } 181 } 182 183 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args) 184 { 185 unsigned nbytes = 0; 186 unsigned i; 187 188 for (i = 0; i < numargs; i++) 189 nbytes += args[i].size; 190 191 return nbytes; 192 } 193 EXPORT_SYMBOL_GPL(fuse_len_args); 194 195 u64 fuse_get_unique(struct fuse_iqueue *fiq) 196 { 197 fiq->reqctr += FUSE_REQ_ID_STEP; 198 return fiq->reqctr; 199 } 200 EXPORT_SYMBOL_GPL(fuse_get_unique); 201 202 static unsigned int fuse_req_hash(u64 unique) 203 { 204 return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS); 205 } 206 207 /** 208 * A new request is available, wake fiq->waitq 209 */ 210 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq) 211 __releases(fiq->lock) 212 { 213 wake_up(&fiq->waitq); 214 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 215 spin_unlock(&fiq->lock); 216 } 217 218 const struct fuse_iqueue_ops fuse_dev_fiq_ops = { 219 .wake_forget_and_unlock = fuse_dev_wake_and_unlock, 220 .wake_interrupt_and_unlock = fuse_dev_wake_and_unlock, 221 .wake_pending_and_unlock = fuse_dev_wake_and_unlock, 222 }; 223 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops); 224 225 static void queue_request_and_unlock(struct fuse_iqueue *fiq, 226 struct fuse_req *req) 227 __releases(fiq->lock) 228 { 229 req->in.h.len = sizeof(struct fuse_in_header) + 230 fuse_len_args(req->args->in_numargs, 231 (struct fuse_arg *) req->args->in_args); 232 list_add_tail(&req->list, &fiq->pending); 233 fiq->ops->wake_pending_and_unlock(fiq); 234 } 235 236 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget, 237 u64 nodeid, u64 nlookup) 238 { 239 struct fuse_iqueue *fiq = &fc->iq; 240 241 forget->forget_one.nodeid = nodeid; 242 forget->forget_one.nlookup = nlookup; 243 244 spin_lock(&fiq->lock); 245 if (fiq->connected) { 246 fiq->forget_list_tail->next = forget; 247 fiq->forget_list_tail = forget; 248 fiq->ops->wake_forget_and_unlock(fiq); 249 } else { 250 kfree(forget); 251 spin_unlock(&fiq->lock); 252 } 253 } 254 255 static void flush_bg_queue(struct fuse_conn *fc) 256 { 257 struct fuse_iqueue *fiq = &fc->iq; 258 259 while (fc->active_background < fc->max_background && 260 !list_empty(&fc->bg_queue)) { 261 struct fuse_req *req; 262 263 req = list_first_entry(&fc->bg_queue, struct fuse_req, list); 264 list_del(&req->list); 265 fc->active_background++; 266 spin_lock(&fiq->lock); 267 req->in.h.unique = fuse_get_unique(fiq); 268 queue_request_and_unlock(fiq, req); 269 } 270 } 271 272 /* 273 * This function is called when a request is finished. Either a reply 274 * has arrived or it was aborted (and not yet sent) or some error 275 * occurred during communication with userspace, or the device file 276 * was closed. The requester thread is woken up (if still waiting), 277 * the 'end' callback is called if given, else the reference to the 278 * request is released 279 */ 280 void fuse_request_end(struct fuse_req *req) 281 { 282 struct fuse_mount *fm = req->fm; 283 struct fuse_conn *fc = fm->fc; 284 struct fuse_iqueue *fiq = &fc->iq; 285 286 if (test_and_set_bit(FR_FINISHED, &req->flags)) 287 goto put_request; 288 289 /* 290 * test_and_set_bit() implies smp_mb() between bit 291 * changing and below FR_INTERRUPTED check. Pairs with 292 * smp_mb() from queue_interrupt(). 293 */ 294 if (test_bit(FR_INTERRUPTED, &req->flags)) { 295 spin_lock(&fiq->lock); 296 list_del_init(&req->intr_entry); 297 spin_unlock(&fiq->lock); 298 } 299 WARN_ON(test_bit(FR_PENDING, &req->flags)); 300 WARN_ON(test_bit(FR_SENT, &req->flags)); 301 if (test_bit(FR_BACKGROUND, &req->flags)) { 302 spin_lock(&fc->bg_lock); 303 clear_bit(FR_BACKGROUND, &req->flags); 304 if (fc->num_background == fc->max_background) { 305 fc->blocked = 0; 306 wake_up(&fc->blocked_waitq); 307 } else if (!fc->blocked) { 308 /* 309 * Wake up next waiter, if any. It's okay to use 310 * waitqueue_active(), as we've already synced up 311 * fc->blocked with waiters with the wake_up() call 312 * above. 313 */ 314 if (waitqueue_active(&fc->blocked_waitq)) 315 wake_up(&fc->blocked_waitq); 316 } 317 318 fc->num_background--; 319 fc->active_background--; 320 flush_bg_queue(fc); 321 spin_unlock(&fc->bg_lock); 322 } else { 323 /* Wake up waiter sleeping in request_wait_answer() */ 324 wake_up(&req->waitq); 325 } 326 327 if (test_bit(FR_ASYNC, &req->flags)) 328 req->args->end(fm, req->args, req->out.h.error); 329 put_request: 330 fuse_put_request(req); 331 } 332 EXPORT_SYMBOL_GPL(fuse_request_end); 333 334 static int queue_interrupt(struct fuse_req *req) 335 { 336 struct fuse_iqueue *fiq = &req->fm->fc->iq; 337 338 spin_lock(&fiq->lock); 339 /* Check for we've sent request to interrupt this req */ 340 if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) { 341 spin_unlock(&fiq->lock); 342 return -EINVAL; 343 } 344 345 if (list_empty(&req->intr_entry)) { 346 list_add_tail(&req->intr_entry, &fiq->interrupts); 347 /* 348 * Pairs with smp_mb() implied by test_and_set_bit() 349 * from fuse_request_end(). 350 */ 351 smp_mb(); 352 if (test_bit(FR_FINISHED, &req->flags)) { 353 list_del_init(&req->intr_entry); 354 spin_unlock(&fiq->lock); 355 return 0; 356 } 357 fiq->ops->wake_interrupt_and_unlock(fiq); 358 } else { 359 spin_unlock(&fiq->lock); 360 } 361 return 0; 362 } 363 364 static void request_wait_answer(struct fuse_req *req) 365 { 366 struct fuse_conn *fc = req->fm->fc; 367 struct fuse_iqueue *fiq = &fc->iq; 368 int err; 369 370 if (!fc->no_interrupt) { 371 /* Any signal may interrupt this */ 372 err = wait_event_interruptible(req->waitq, 373 test_bit(FR_FINISHED, &req->flags)); 374 if (!err) 375 return; 376 377 set_bit(FR_INTERRUPTED, &req->flags); 378 /* matches barrier in fuse_dev_do_read() */ 379 smp_mb__after_atomic(); 380 if (test_bit(FR_SENT, &req->flags)) 381 queue_interrupt(req); 382 } 383 384 if (!test_bit(FR_FORCE, &req->flags)) { 385 /* Only fatal signals may interrupt this */ 386 err = wait_event_killable(req->waitq, 387 test_bit(FR_FINISHED, &req->flags)); 388 if (!err) 389 return; 390 391 spin_lock(&fiq->lock); 392 /* Request is not yet in userspace, bail out */ 393 if (test_bit(FR_PENDING, &req->flags)) { 394 list_del(&req->list); 395 spin_unlock(&fiq->lock); 396 __fuse_put_request(req); 397 req->out.h.error = -EINTR; 398 return; 399 } 400 spin_unlock(&fiq->lock); 401 } 402 403 /* 404 * Either request is already in userspace, or it was forced. 405 * Wait it out. 406 */ 407 wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags)); 408 } 409 410 static void __fuse_request_send(struct fuse_req *req) 411 { 412 struct fuse_iqueue *fiq = &req->fm->fc->iq; 413 414 BUG_ON(test_bit(FR_BACKGROUND, &req->flags)); 415 spin_lock(&fiq->lock); 416 if (!fiq->connected) { 417 spin_unlock(&fiq->lock); 418 req->out.h.error = -ENOTCONN; 419 } else { 420 req->in.h.unique = fuse_get_unique(fiq); 421 /* acquire extra reference, since request is still needed 422 after fuse_request_end() */ 423 __fuse_get_request(req); 424 queue_request_and_unlock(fiq, req); 425 426 request_wait_answer(req); 427 /* Pairs with smp_wmb() in fuse_request_end() */ 428 smp_rmb(); 429 } 430 } 431 432 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args) 433 { 434 if (fc->minor < 4 && args->opcode == FUSE_STATFS) 435 args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE; 436 437 if (fc->minor < 9) { 438 switch (args->opcode) { 439 case FUSE_LOOKUP: 440 case FUSE_CREATE: 441 case FUSE_MKNOD: 442 case FUSE_MKDIR: 443 case FUSE_SYMLINK: 444 case FUSE_LINK: 445 args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE; 446 break; 447 case FUSE_GETATTR: 448 case FUSE_SETATTR: 449 args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE; 450 break; 451 } 452 } 453 if (fc->minor < 12) { 454 switch (args->opcode) { 455 case FUSE_CREATE: 456 args->in_args[0].size = sizeof(struct fuse_open_in); 457 break; 458 case FUSE_MKNOD: 459 args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE; 460 break; 461 } 462 } 463 } 464 465 static void fuse_force_creds(struct fuse_req *req) 466 { 467 struct fuse_conn *fc = req->fm->fc; 468 469 req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid()); 470 req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid()); 471 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns); 472 } 473 474 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args) 475 { 476 req->in.h.opcode = args->opcode; 477 req->in.h.nodeid = args->nodeid; 478 req->args = args; 479 if (args->end) 480 __set_bit(FR_ASYNC, &req->flags); 481 } 482 483 ssize_t fuse_simple_request(struct fuse_mount *fm, struct fuse_args *args) 484 { 485 struct fuse_conn *fc = fm->fc; 486 struct fuse_req *req; 487 ssize_t ret; 488 489 if (args->force) { 490 atomic_inc(&fc->num_waiting); 491 req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL); 492 493 if (!args->nocreds) 494 fuse_force_creds(req); 495 496 __set_bit(FR_WAITING, &req->flags); 497 __set_bit(FR_FORCE, &req->flags); 498 } else { 499 WARN_ON(args->nocreds); 500 req = fuse_get_req(fm, false); 501 if (IS_ERR(req)) 502 return PTR_ERR(req); 503 } 504 505 /* Needs to be done after fuse_get_req() so that fc->minor is valid */ 506 fuse_adjust_compat(fc, args); 507 fuse_args_to_req(req, args); 508 509 if (!args->noreply) 510 __set_bit(FR_ISREPLY, &req->flags); 511 __fuse_request_send(req); 512 ret = req->out.h.error; 513 if (!ret && args->out_argvar) { 514 BUG_ON(args->out_numargs == 0); 515 ret = args->out_args[args->out_numargs - 1].size; 516 } 517 fuse_put_request(req); 518 519 return ret; 520 } 521 522 static bool fuse_request_queue_background(struct fuse_req *req) 523 { 524 struct fuse_mount *fm = req->fm; 525 struct fuse_conn *fc = fm->fc; 526 bool queued = false; 527 528 WARN_ON(!test_bit(FR_BACKGROUND, &req->flags)); 529 if (!test_bit(FR_WAITING, &req->flags)) { 530 __set_bit(FR_WAITING, &req->flags); 531 atomic_inc(&fc->num_waiting); 532 } 533 __set_bit(FR_ISREPLY, &req->flags); 534 spin_lock(&fc->bg_lock); 535 if (likely(fc->connected)) { 536 fc->num_background++; 537 if (fc->num_background == fc->max_background) 538 fc->blocked = 1; 539 list_add_tail(&req->list, &fc->bg_queue); 540 flush_bg_queue(fc); 541 queued = true; 542 } 543 spin_unlock(&fc->bg_lock); 544 545 return queued; 546 } 547 548 int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args, 549 gfp_t gfp_flags) 550 { 551 struct fuse_req *req; 552 553 if (args->force) { 554 WARN_ON(!args->nocreds); 555 req = fuse_request_alloc(fm, gfp_flags); 556 if (!req) 557 return -ENOMEM; 558 __set_bit(FR_BACKGROUND, &req->flags); 559 } else { 560 WARN_ON(args->nocreds); 561 req = fuse_get_req(fm, true); 562 if (IS_ERR(req)) 563 return PTR_ERR(req); 564 } 565 566 fuse_args_to_req(req, args); 567 568 if (!fuse_request_queue_background(req)) { 569 fuse_put_request(req); 570 return -ENOTCONN; 571 } 572 573 return 0; 574 } 575 EXPORT_SYMBOL_GPL(fuse_simple_background); 576 577 static int fuse_simple_notify_reply(struct fuse_mount *fm, 578 struct fuse_args *args, u64 unique) 579 { 580 struct fuse_req *req; 581 struct fuse_iqueue *fiq = &fm->fc->iq; 582 int err = 0; 583 584 req = fuse_get_req(fm, false); 585 if (IS_ERR(req)) 586 return PTR_ERR(req); 587 588 __clear_bit(FR_ISREPLY, &req->flags); 589 req->in.h.unique = unique; 590 591 fuse_args_to_req(req, args); 592 593 spin_lock(&fiq->lock); 594 if (fiq->connected) { 595 queue_request_and_unlock(fiq, req); 596 } else { 597 err = -ENODEV; 598 spin_unlock(&fiq->lock); 599 fuse_put_request(req); 600 } 601 602 return err; 603 } 604 605 /* 606 * Lock the request. Up to the next unlock_request() there mustn't be 607 * anything that could cause a page-fault. If the request was already 608 * aborted bail out. 609 */ 610 static int lock_request(struct fuse_req *req) 611 { 612 int err = 0; 613 if (req) { 614 spin_lock(&req->waitq.lock); 615 if (test_bit(FR_ABORTED, &req->flags)) 616 err = -ENOENT; 617 else 618 set_bit(FR_LOCKED, &req->flags); 619 spin_unlock(&req->waitq.lock); 620 } 621 return err; 622 } 623 624 /* 625 * Unlock request. If it was aborted while locked, caller is responsible 626 * for unlocking and ending the request. 627 */ 628 static int unlock_request(struct fuse_req *req) 629 { 630 int err = 0; 631 if (req) { 632 spin_lock(&req->waitq.lock); 633 if (test_bit(FR_ABORTED, &req->flags)) 634 err = -ENOENT; 635 else 636 clear_bit(FR_LOCKED, &req->flags); 637 spin_unlock(&req->waitq.lock); 638 } 639 return err; 640 } 641 642 struct fuse_copy_state { 643 int write; 644 struct fuse_req *req; 645 struct iov_iter *iter; 646 struct pipe_buffer *pipebufs; 647 struct pipe_buffer *currbuf; 648 struct pipe_inode_info *pipe; 649 unsigned long nr_segs; 650 struct page *pg; 651 unsigned len; 652 unsigned offset; 653 unsigned move_pages:1; 654 }; 655 656 static void fuse_copy_init(struct fuse_copy_state *cs, int write, 657 struct iov_iter *iter) 658 { 659 memset(cs, 0, sizeof(*cs)); 660 cs->write = write; 661 cs->iter = iter; 662 } 663 664 /* Unmap and put previous page of userspace buffer */ 665 static void fuse_copy_finish(struct fuse_copy_state *cs) 666 { 667 if (cs->currbuf) { 668 struct pipe_buffer *buf = cs->currbuf; 669 670 if (cs->write) 671 buf->len = PAGE_SIZE - cs->len; 672 cs->currbuf = NULL; 673 } else if (cs->pg) { 674 if (cs->write) { 675 flush_dcache_page(cs->pg); 676 set_page_dirty_lock(cs->pg); 677 } 678 put_page(cs->pg); 679 } 680 cs->pg = NULL; 681 } 682 683 /* 684 * Get another pagefull of userspace buffer, and map it to kernel 685 * address space, and lock request 686 */ 687 static int fuse_copy_fill(struct fuse_copy_state *cs) 688 { 689 struct page *page; 690 int err; 691 692 err = unlock_request(cs->req); 693 if (err) 694 return err; 695 696 fuse_copy_finish(cs); 697 if (cs->pipebufs) { 698 struct pipe_buffer *buf = cs->pipebufs; 699 700 if (!cs->write) { 701 err = pipe_buf_confirm(cs->pipe, buf); 702 if (err) 703 return err; 704 705 BUG_ON(!cs->nr_segs); 706 cs->currbuf = buf; 707 cs->pg = buf->page; 708 cs->offset = buf->offset; 709 cs->len = buf->len; 710 cs->pipebufs++; 711 cs->nr_segs--; 712 } else { 713 if (cs->nr_segs >= cs->pipe->max_usage) 714 return -EIO; 715 716 page = alloc_page(GFP_HIGHUSER); 717 if (!page) 718 return -ENOMEM; 719 720 buf->page = page; 721 buf->offset = 0; 722 buf->len = 0; 723 724 cs->currbuf = buf; 725 cs->pg = page; 726 cs->offset = 0; 727 cs->len = PAGE_SIZE; 728 cs->pipebufs++; 729 cs->nr_segs++; 730 } 731 } else { 732 size_t off; 733 err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off); 734 if (err < 0) 735 return err; 736 BUG_ON(!err); 737 cs->len = err; 738 cs->offset = off; 739 cs->pg = page; 740 } 741 742 return lock_request(cs->req); 743 } 744 745 /* Do as much copy to/from userspace buffer as we can */ 746 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size) 747 { 748 unsigned ncpy = min(*size, cs->len); 749 if (val) { 750 void *pgaddr = kmap_local_page(cs->pg); 751 void *buf = pgaddr + cs->offset; 752 753 if (cs->write) 754 memcpy(buf, *val, ncpy); 755 else 756 memcpy(*val, buf, ncpy); 757 758 kunmap_local(pgaddr); 759 *val += ncpy; 760 } 761 *size -= ncpy; 762 cs->len -= ncpy; 763 cs->offset += ncpy; 764 return ncpy; 765 } 766 767 static int fuse_check_folio(struct folio *folio) 768 { 769 if (folio_mapped(folio) || 770 folio->mapping != NULL || 771 (folio->flags & PAGE_FLAGS_CHECK_AT_PREP & 772 ~(1 << PG_locked | 773 1 << PG_referenced | 774 1 << PG_uptodate | 775 1 << PG_lru | 776 1 << PG_active | 777 1 << PG_workingset | 778 1 << PG_reclaim | 779 1 << PG_waiters | 780 LRU_GEN_MASK | LRU_REFS_MASK))) { 781 dump_page(&folio->page, "fuse: trying to steal weird page"); 782 return 1; 783 } 784 return 0; 785 } 786 787 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep) 788 { 789 int err; 790 struct folio *oldfolio = page_folio(*pagep); 791 struct folio *newfolio; 792 struct pipe_buffer *buf = cs->pipebufs; 793 794 folio_get(oldfolio); 795 err = unlock_request(cs->req); 796 if (err) 797 goto out_put_old; 798 799 fuse_copy_finish(cs); 800 801 err = pipe_buf_confirm(cs->pipe, buf); 802 if (err) 803 goto out_put_old; 804 805 BUG_ON(!cs->nr_segs); 806 cs->currbuf = buf; 807 cs->len = buf->len; 808 cs->pipebufs++; 809 cs->nr_segs--; 810 811 if (cs->len != PAGE_SIZE) 812 goto out_fallback; 813 814 if (!pipe_buf_try_steal(cs->pipe, buf)) 815 goto out_fallback; 816 817 newfolio = page_folio(buf->page); 818 819 if (!folio_test_uptodate(newfolio)) 820 folio_mark_uptodate(newfolio); 821 822 folio_clear_mappedtodisk(newfolio); 823 824 if (fuse_check_folio(newfolio) != 0) 825 goto out_fallback_unlock; 826 827 /* 828 * This is a new and locked page, it shouldn't be mapped or 829 * have any special flags on it 830 */ 831 if (WARN_ON(folio_mapped(oldfolio))) 832 goto out_fallback_unlock; 833 if (WARN_ON(folio_has_private(oldfolio))) 834 goto out_fallback_unlock; 835 if (WARN_ON(folio_test_dirty(oldfolio) || 836 folio_test_writeback(oldfolio))) 837 goto out_fallback_unlock; 838 if (WARN_ON(folio_test_mlocked(oldfolio))) 839 goto out_fallback_unlock; 840 841 replace_page_cache_folio(oldfolio, newfolio); 842 843 folio_get(newfolio); 844 845 if (!(buf->flags & PIPE_BUF_FLAG_LRU)) 846 folio_add_lru(newfolio); 847 848 /* 849 * Release while we have extra ref on stolen page. Otherwise 850 * anon_pipe_buf_release() might think the page can be reused. 851 */ 852 pipe_buf_release(cs->pipe, buf); 853 854 err = 0; 855 spin_lock(&cs->req->waitq.lock); 856 if (test_bit(FR_ABORTED, &cs->req->flags)) 857 err = -ENOENT; 858 else 859 *pagep = &newfolio->page; 860 spin_unlock(&cs->req->waitq.lock); 861 862 if (err) { 863 folio_unlock(newfolio); 864 folio_put(newfolio); 865 goto out_put_old; 866 } 867 868 folio_unlock(oldfolio); 869 /* Drop ref for ap->pages[] array */ 870 folio_put(oldfolio); 871 cs->len = 0; 872 873 err = 0; 874 out_put_old: 875 /* Drop ref obtained in this function */ 876 folio_put(oldfolio); 877 return err; 878 879 out_fallback_unlock: 880 folio_unlock(newfolio); 881 out_fallback: 882 cs->pg = buf->page; 883 cs->offset = buf->offset; 884 885 err = lock_request(cs->req); 886 if (!err) 887 err = 1; 888 889 goto out_put_old; 890 } 891 892 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page, 893 unsigned offset, unsigned count) 894 { 895 struct pipe_buffer *buf; 896 int err; 897 898 if (cs->nr_segs >= cs->pipe->max_usage) 899 return -EIO; 900 901 get_page(page); 902 err = unlock_request(cs->req); 903 if (err) { 904 put_page(page); 905 return err; 906 } 907 908 fuse_copy_finish(cs); 909 910 buf = cs->pipebufs; 911 buf->page = page; 912 buf->offset = offset; 913 buf->len = count; 914 915 cs->pipebufs++; 916 cs->nr_segs++; 917 cs->len = 0; 918 919 return 0; 920 } 921 922 /* 923 * Copy a page in the request to/from the userspace buffer. Must be 924 * done atomically 925 */ 926 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep, 927 unsigned offset, unsigned count, int zeroing) 928 { 929 int err; 930 struct page *page = *pagep; 931 932 if (page && zeroing && count < PAGE_SIZE) 933 clear_highpage(page); 934 935 while (count) { 936 if (cs->write && cs->pipebufs && page) { 937 /* 938 * Can't control lifetime of pipe buffers, so always 939 * copy user pages. 940 */ 941 if (cs->req->args->user_pages) { 942 err = fuse_copy_fill(cs); 943 if (err) 944 return err; 945 } else { 946 return fuse_ref_page(cs, page, offset, count); 947 } 948 } else if (!cs->len) { 949 if (cs->move_pages && page && 950 offset == 0 && count == PAGE_SIZE) { 951 err = fuse_try_move_page(cs, pagep); 952 if (err <= 0) 953 return err; 954 } else { 955 err = fuse_copy_fill(cs); 956 if (err) 957 return err; 958 } 959 } 960 if (page) { 961 void *mapaddr = kmap_local_page(page); 962 void *buf = mapaddr + offset; 963 offset += fuse_copy_do(cs, &buf, &count); 964 kunmap_local(mapaddr); 965 } else 966 offset += fuse_copy_do(cs, NULL, &count); 967 } 968 if (page && !cs->write) 969 flush_dcache_page(page); 970 return 0; 971 } 972 973 /* Copy pages in the request to/from userspace buffer */ 974 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes, 975 int zeroing) 976 { 977 unsigned i; 978 struct fuse_req *req = cs->req; 979 struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args); 980 981 982 for (i = 0; i < ap->num_pages && (nbytes || zeroing); i++) { 983 int err; 984 unsigned int offset = ap->descs[i].offset; 985 unsigned int count = min(nbytes, ap->descs[i].length); 986 987 err = fuse_copy_page(cs, &ap->pages[i], offset, count, zeroing); 988 if (err) 989 return err; 990 991 nbytes -= count; 992 } 993 return 0; 994 } 995 996 /* Copy a single argument in the request to/from userspace buffer */ 997 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size) 998 { 999 while (size) { 1000 if (!cs->len) { 1001 int err = fuse_copy_fill(cs); 1002 if (err) 1003 return err; 1004 } 1005 fuse_copy_do(cs, &val, &size); 1006 } 1007 return 0; 1008 } 1009 1010 /* Copy request arguments to/from userspace buffer */ 1011 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs, 1012 unsigned argpages, struct fuse_arg *args, 1013 int zeroing) 1014 { 1015 int err = 0; 1016 unsigned i; 1017 1018 for (i = 0; !err && i < numargs; i++) { 1019 struct fuse_arg *arg = &args[i]; 1020 if (i == numargs - 1 && argpages) 1021 err = fuse_copy_pages(cs, arg->size, zeroing); 1022 else 1023 err = fuse_copy_one(cs, arg->value, arg->size); 1024 } 1025 return err; 1026 } 1027 1028 static int forget_pending(struct fuse_iqueue *fiq) 1029 { 1030 return fiq->forget_list_head.next != NULL; 1031 } 1032 1033 static int request_pending(struct fuse_iqueue *fiq) 1034 { 1035 return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) || 1036 forget_pending(fiq); 1037 } 1038 1039 /* 1040 * Transfer an interrupt request to userspace 1041 * 1042 * Unlike other requests this is assembled on demand, without a need 1043 * to allocate a separate fuse_req structure. 1044 * 1045 * Called with fiq->lock held, releases it 1046 */ 1047 static int fuse_read_interrupt(struct fuse_iqueue *fiq, 1048 struct fuse_copy_state *cs, 1049 size_t nbytes, struct fuse_req *req) 1050 __releases(fiq->lock) 1051 { 1052 struct fuse_in_header ih; 1053 struct fuse_interrupt_in arg; 1054 unsigned reqsize = sizeof(ih) + sizeof(arg); 1055 int err; 1056 1057 list_del_init(&req->intr_entry); 1058 memset(&ih, 0, sizeof(ih)); 1059 memset(&arg, 0, sizeof(arg)); 1060 ih.len = reqsize; 1061 ih.opcode = FUSE_INTERRUPT; 1062 ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT); 1063 arg.unique = req->in.h.unique; 1064 1065 spin_unlock(&fiq->lock); 1066 if (nbytes < reqsize) 1067 return -EINVAL; 1068 1069 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1070 if (!err) 1071 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1072 fuse_copy_finish(cs); 1073 1074 return err ? err : reqsize; 1075 } 1076 1077 struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq, 1078 unsigned int max, 1079 unsigned int *countp) 1080 { 1081 struct fuse_forget_link *head = fiq->forget_list_head.next; 1082 struct fuse_forget_link **newhead = &head; 1083 unsigned count; 1084 1085 for (count = 0; *newhead != NULL && count < max; count++) 1086 newhead = &(*newhead)->next; 1087 1088 fiq->forget_list_head.next = *newhead; 1089 *newhead = NULL; 1090 if (fiq->forget_list_head.next == NULL) 1091 fiq->forget_list_tail = &fiq->forget_list_head; 1092 1093 if (countp != NULL) 1094 *countp = count; 1095 1096 return head; 1097 } 1098 EXPORT_SYMBOL(fuse_dequeue_forget); 1099 1100 static int fuse_read_single_forget(struct fuse_iqueue *fiq, 1101 struct fuse_copy_state *cs, 1102 size_t nbytes) 1103 __releases(fiq->lock) 1104 { 1105 int err; 1106 struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL); 1107 struct fuse_forget_in arg = { 1108 .nlookup = forget->forget_one.nlookup, 1109 }; 1110 struct fuse_in_header ih = { 1111 .opcode = FUSE_FORGET, 1112 .nodeid = forget->forget_one.nodeid, 1113 .unique = fuse_get_unique(fiq), 1114 .len = sizeof(ih) + sizeof(arg), 1115 }; 1116 1117 spin_unlock(&fiq->lock); 1118 kfree(forget); 1119 if (nbytes < ih.len) 1120 return -EINVAL; 1121 1122 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1123 if (!err) 1124 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1125 fuse_copy_finish(cs); 1126 1127 if (err) 1128 return err; 1129 1130 return ih.len; 1131 } 1132 1133 static int fuse_read_batch_forget(struct fuse_iqueue *fiq, 1134 struct fuse_copy_state *cs, size_t nbytes) 1135 __releases(fiq->lock) 1136 { 1137 int err; 1138 unsigned max_forgets; 1139 unsigned count; 1140 struct fuse_forget_link *head; 1141 struct fuse_batch_forget_in arg = { .count = 0 }; 1142 struct fuse_in_header ih = { 1143 .opcode = FUSE_BATCH_FORGET, 1144 .unique = fuse_get_unique(fiq), 1145 .len = sizeof(ih) + sizeof(arg), 1146 }; 1147 1148 if (nbytes < ih.len) { 1149 spin_unlock(&fiq->lock); 1150 return -EINVAL; 1151 } 1152 1153 max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one); 1154 head = fuse_dequeue_forget(fiq, max_forgets, &count); 1155 spin_unlock(&fiq->lock); 1156 1157 arg.count = count; 1158 ih.len += count * sizeof(struct fuse_forget_one); 1159 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1160 if (!err) 1161 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1162 1163 while (head) { 1164 struct fuse_forget_link *forget = head; 1165 1166 if (!err) { 1167 err = fuse_copy_one(cs, &forget->forget_one, 1168 sizeof(forget->forget_one)); 1169 } 1170 head = forget->next; 1171 kfree(forget); 1172 } 1173 1174 fuse_copy_finish(cs); 1175 1176 if (err) 1177 return err; 1178 1179 return ih.len; 1180 } 1181 1182 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq, 1183 struct fuse_copy_state *cs, 1184 size_t nbytes) 1185 __releases(fiq->lock) 1186 { 1187 if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL) 1188 return fuse_read_single_forget(fiq, cs, nbytes); 1189 else 1190 return fuse_read_batch_forget(fiq, cs, nbytes); 1191 } 1192 1193 /* 1194 * Read a single request into the userspace filesystem's buffer. This 1195 * function waits until a request is available, then removes it from 1196 * the pending list and copies request data to userspace buffer. If 1197 * no reply is needed (FORGET) or request has been aborted or there 1198 * was an error during the copying then it's finished by calling 1199 * fuse_request_end(). Otherwise add it to the processing list, and set 1200 * the 'sent' flag. 1201 */ 1202 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file, 1203 struct fuse_copy_state *cs, size_t nbytes) 1204 { 1205 ssize_t err; 1206 struct fuse_conn *fc = fud->fc; 1207 struct fuse_iqueue *fiq = &fc->iq; 1208 struct fuse_pqueue *fpq = &fud->pq; 1209 struct fuse_req *req; 1210 struct fuse_args *args; 1211 unsigned reqsize; 1212 unsigned int hash; 1213 1214 /* 1215 * Require sane minimum read buffer - that has capacity for fixed part 1216 * of any request header + negotiated max_write room for data. 1217 * 1218 * Historically libfuse reserves 4K for fixed header room, but e.g. 1219 * GlusterFS reserves only 80 bytes 1220 * 1221 * = `sizeof(fuse_in_header) + sizeof(fuse_write_in)` 1222 * 1223 * which is the absolute minimum any sane filesystem should be using 1224 * for header room. 1225 */ 1226 if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER, 1227 sizeof(struct fuse_in_header) + 1228 sizeof(struct fuse_write_in) + 1229 fc->max_write)) 1230 return -EINVAL; 1231 1232 restart: 1233 for (;;) { 1234 spin_lock(&fiq->lock); 1235 if (!fiq->connected || request_pending(fiq)) 1236 break; 1237 spin_unlock(&fiq->lock); 1238 1239 if (file->f_flags & O_NONBLOCK) 1240 return -EAGAIN; 1241 err = wait_event_interruptible_exclusive(fiq->waitq, 1242 !fiq->connected || request_pending(fiq)); 1243 if (err) 1244 return err; 1245 } 1246 1247 if (!fiq->connected) { 1248 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1249 goto err_unlock; 1250 } 1251 1252 if (!list_empty(&fiq->interrupts)) { 1253 req = list_entry(fiq->interrupts.next, struct fuse_req, 1254 intr_entry); 1255 return fuse_read_interrupt(fiq, cs, nbytes, req); 1256 } 1257 1258 if (forget_pending(fiq)) { 1259 if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0) 1260 return fuse_read_forget(fc, fiq, cs, nbytes); 1261 1262 if (fiq->forget_batch <= -8) 1263 fiq->forget_batch = 16; 1264 } 1265 1266 req = list_entry(fiq->pending.next, struct fuse_req, list); 1267 clear_bit(FR_PENDING, &req->flags); 1268 list_del_init(&req->list); 1269 spin_unlock(&fiq->lock); 1270 1271 args = req->args; 1272 reqsize = req->in.h.len; 1273 1274 /* If request is too large, reply with an error and restart the read */ 1275 if (nbytes < reqsize) { 1276 req->out.h.error = -EIO; 1277 /* SETXATTR is special, since it may contain too large data */ 1278 if (args->opcode == FUSE_SETXATTR) 1279 req->out.h.error = -E2BIG; 1280 fuse_request_end(req); 1281 goto restart; 1282 } 1283 spin_lock(&fpq->lock); 1284 /* 1285 * Must not put request on fpq->io queue after having been shut down by 1286 * fuse_abort_conn() 1287 */ 1288 if (!fpq->connected) { 1289 req->out.h.error = err = -ECONNABORTED; 1290 goto out_end; 1291 1292 } 1293 list_add(&req->list, &fpq->io); 1294 spin_unlock(&fpq->lock); 1295 cs->req = req; 1296 err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h)); 1297 if (!err) 1298 err = fuse_copy_args(cs, args->in_numargs, args->in_pages, 1299 (struct fuse_arg *) args->in_args, 0); 1300 fuse_copy_finish(cs); 1301 spin_lock(&fpq->lock); 1302 clear_bit(FR_LOCKED, &req->flags); 1303 if (!fpq->connected) { 1304 err = fc->aborted ? -ECONNABORTED : -ENODEV; 1305 goto out_end; 1306 } 1307 if (err) { 1308 req->out.h.error = -EIO; 1309 goto out_end; 1310 } 1311 if (!test_bit(FR_ISREPLY, &req->flags)) { 1312 err = reqsize; 1313 goto out_end; 1314 } 1315 hash = fuse_req_hash(req->in.h.unique); 1316 list_move_tail(&req->list, &fpq->processing[hash]); 1317 __fuse_get_request(req); 1318 set_bit(FR_SENT, &req->flags); 1319 spin_unlock(&fpq->lock); 1320 /* matches barrier in request_wait_answer() */ 1321 smp_mb__after_atomic(); 1322 if (test_bit(FR_INTERRUPTED, &req->flags)) 1323 queue_interrupt(req); 1324 fuse_put_request(req); 1325 1326 return reqsize; 1327 1328 out_end: 1329 if (!test_bit(FR_PRIVATE, &req->flags)) 1330 list_del_init(&req->list); 1331 spin_unlock(&fpq->lock); 1332 fuse_request_end(req); 1333 return err; 1334 1335 err_unlock: 1336 spin_unlock(&fiq->lock); 1337 return err; 1338 } 1339 1340 static int fuse_dev_open(struct inode *inode, struct file *file) 1341 { 1342 /* 1343 * The fuse device's file's private_data is used to hold 1344 * the fuse_conn(ection) when it is mounted, and is used to 1345 * keep track of whether the file has been mounted already. 1346 */ 1347 file->private_data = NULL; 1348 return 0; 1349 } 1350 1351 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to) 1352 { 1353 struct fuse_copy_state cs; 1354 struct file *file = iocb->ki_filp; 1355 struct fuse_dev *fud = fuse_get_dev(file); 1356 1357 if (!fud) 1358 return -EPERM; 1359 1360 if (!user_backed_iter(to)) 1361 return -EINVAL; 1362 1363 fuse_copy_init(&cs, 1, to); 1364 1365 return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to)); 1366 } 1367 1368 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos, 1369 struct pipe_inode_info *pipe, 1370 size_t len, unsigned int flags) 1371 { 1372 int total, ret; 1373 int page_nr = 0; 1374 struct pipe_buffer *bufs; 1375 struct fuse_copy_state cs; 1376 struct fuse_dev *fud = fuse_get_dev(in); 1377 1378 if (!fud) 1379 return -EPERM; 1380 1381 bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer), 1382 GFP_KERNEL); 1383 if (!bufs) 1384 return -ENOMEM; 1385 1386 fuse_copy_init(&cs, 1, NULL); 1387 cs.pipebufs = bufs; 1388 cs.pipe = pipe; 1389 ret = fuse_dev_do_read(fud, in, &cs, len); 1390 if (ret < 0) 1391 goto out; 1392 1393 if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) { 1394 ret = -EIO; 1395 goto out; 1396 } 1397 1398 for (ret = total = 0; page_nr < cs.nr_segs; total += ret) { 1399 /* 1400 * Need to be careful about this. Having buf->ops in module 1401 * code can Oops if the buffer persists after module unload. 1402 */ 1403 bufs[page_nr].ops = &nosteal_pipe_buf_ops; 1404 bufs[page_nr].flags = 0; 1405 ret = add_to_pipe(pipe, &bufs[page_nr++]); 1406 if (unlikely(ret < 0)) 1407 break; 1408 } 1409 if (total) 1410 ret = total; 1411 out: 1412 for (; page_nr < cs.nr_segs; page_nr++) 1413 put_page(bufs[page_nr].page); 1414 1415 kvfree(bufs); 1416 return ret; 1417 } 1418 1419 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size, 1420 struct fuse_copy_state *cs) 1421 { 1422 struct fuse_notify_poll_wakeup_out outarg; 1423 int err = -EINVAL; 1424 1425 if (size != sizeof(outarg)) 1426 goto err; 1427 1428 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1429 if (err) 1430 goto err; 1431 1432 fuse_copy_finish(cs); 1433 return fuse_notify_poll_wakeup(fc, &outarg); 1434 1435 err: 1436 fuse_copy_finish(cs); 1437 return err; 1438 } 1439 1440 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size, 1441 struct fuse_copy_state *cs) 1442 { 1443 struct fuse_notify_inval_inode_out outarg; 1444 int err = -EINVAL; 1445 1446 if (size != sizeof(outarg)) 1447 goto err; 1448 1449 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1450 if (err) 1451 goto err; 1452 fuse_copy_finish(cs); 1453 1454 down_read(&fc->killsb); 1455 err = fuse_reverse_inval_inode(fc, outarg.ino, 1456 outarg.off, outarg.len); 1457 up_read(&fc->killsb); 1458 return err; 1459 1460 err: 1461 fuse_copy_finish(cs); 1462 return err; 1463 } 1464 1465 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size, 1466 struct fuse_copy_state *cs) 1467 { 1468 struct fuse_notify_inval_entry_out outarg; 1469 int err = -ENOMEM; 1470 char *buf; 1471 struct qstr name; 1472 1473 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1474 if (!buf) 1475 goto err; 1476 1477 err = -EINVAL; 1478 if (size < sizeof(outarg)) 1479 goto err; 1480 1481 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1482 if (err) 1483 goto err; 1484 1485 err = -ENAMETOOLONG; 1486 if (outarg.namelen > FUSE_NAME_MAX) 1487 goto err; 1488 1489 err = -EINVAL; 1490 if (size != sizeof(outarg) + outarg.namelen + 1) 1491 goto err; 1492 1493 name.name = buf; 1494 name.len = outarg.namelen; 1495 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1496 if (err) 1497 goto err; 1498 fuse_copy_finish(cs); 1499 buf[outarg.namelen] = 0; 1500 1501 down_read(&fc->killsb); 1502 err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags); 1503 up_read(&fc->killsb); 1504 kfree(buf); 1505 return err; 1506 1507 err: 1508 kfree(buf); 1509 fuse_copy_finish(cs); 1510 return err; 1511 } 1512 1513 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size, 1514 struct fuse_copy_state *cs) 1515 { 1516 struct fuse_notify_delete_out outarg; 1517 int err = -ENOMEM; 1518 char *buf; 1519 struct qstr name; 1520 1521 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1522 if (!buf) 1523 goto err; 1524 1525 err = -EINVAL; 1526 if (size < sizeof(outarg)) 1527 goto err; 1528 1529 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1530 if (err) 1531 goto err; 1532 1533 err = -ENAMETOOLONG; 1534 if (outarg.namelen > FUSE_NAME_MAX) 1535 goto err; 1536 1537 err = -EINVAL; 1538 if (size != sizeof(outarg) + outarg.namelen + 1) 1539 goto err; 1540 1541 name.name = buf; 1542 name.len = outarg.namelen; 1543 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1544 if (err) 1545 goto err; 1546 fuse_copy_finish(cs); 1547 buf[outarg.namelen] = 0; 1548 1549 down_read(&fc->killsb); 1550 err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0); 1551 up_read(&fc->killsb); 1552 kfree(buf); 1553 return err; 1554 1555 err: 1556 kfree(buf); 1557 fuse_copy_finish(cs); 1558 return err; 1559 } 1560 1561 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size, 1562 struct fuse_copy_state *cs) 1563 { 1564 struct fuse_notify_store_out outarg; 1565 struct inode *inode; 1566 struct address_space *mapping; 1567 u64 nodeid; 1568 int err; 1569 pgoff_t index; 1570 unsigned int offset; 1571 unsigned int num; 1572 loff_t file_size; 1573 loff_t end; 1574 1575 err = -EINVAL; 1576 if (size < sizeof(outarg)) 1577 goto out_finish; 1578 1579 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1580 if (err) 1581 goto out_finish; 1582 1583 err = -EINVAL; 1584 if (size - sizeof(outarg) != outarg.size) 1585 goto out_finish; 1586 1587 nodeid = outarg.nodeid; 1588 1589 down_read(&fc->killsb); 1590 1591 err = -ENOENT; 1592 inode = fuse_ilookup(fc, nodeid, NULL); 1593 if (!inode) 1594 goto out_up_killsb; 1595 1596 mapping = inode->i_mapping; 1597 index = outarg.offset >> PAGE_SHIFT; 1598 offset = outarg.offset & ~PAGE_MASK; 1599 file_size = i_size_read(inode); 1600 end = outarg.offset + outarg.size; 1601 if (end > file_size) { 1602 file_size = end; 1603 fuse_write_update_attr(inode, file_size, outarg.size); 1604 } 1605 1606 num = outarg.size; 1607 while (num) { 1608 struct page *page; 1609 unsigned int this_num; 1610 1611 err = -ENOMEM; 1612 page = find_or_create_page(mapping, index, 1613 mapping_gfp_mask(mapping)); 1614 if (!page) 1615 goto out_iput; 1616 1617 this_num = min_t(unsigned, num, PAGE_SIZE - offset); 1618 err = fuse_copy_page(cs, &page, offset, this_num, 0); 1619 if (!err && offset == 0 && 1620 (this_num == PAGE_SIZE || file_size == end)) 1621 SetPageUptodate(page); 1622 unlock_page(page); 1623 put_page(page); 1624 1625 if (err) 1626 goto out_iput; 1627 1628 num -= this_num; 1629 offset = 0; 1630 index++; 1631 } 1632 1633 err = 0; 1634 1635 out_iput: 1636 iput(inode); 1637 out_up_killsb: 1638 up_read(&fc->killsb); 1639 out_finish: 1640 fuse_copy_finish(cs); 1641 return err; 1642 } 1643 1644 struct fuse_retrieve_args { 1645 struct fuse_args_pages ap; 1646 struct fuse_notify_retrieve_in inarg; 1647 }; 1648 1649 static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args, 1650 int error) 1651 { 1652 struct fuse_retrieve_args *ra = 1653 container_of(args, typeof(*ra), ap.args); 1654 1655 release_pages(ra->ap.pages, ra->ap.num_pages); 1656 kfree(ra); 1657 } 1658 1659 static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode, 1660 struct fuse_notify_retrieve_out *outarg) 1661 { 1662 int err; 1663 struct address_space *mapping = inode->i_mapping; 1664 pgoff_t index; 1665 loff_t file_size; 1666 unsigned int num; 1667 unsigned int offset; 1668 size_t total_len = 0; 1669 unsigned int num_pages; 1670 struct fuse_conn *fc = fm->fc; 1671 struct fuse_retrieve_args *ra; 1672 size_t args_size = sizeof(*ra); 1673 struct fuse_args_pages *ap; 1674 struct fuse_args *args; 1675 1676 offset = outarg->offset & ~PAGE_MASK; 1677 file_size = i_size_read(inode); 1678 1679 num = min(outarg->size, fc->max_write); 1680 if (outarg->offset > file_size) 1681 num = 0; 1682 else if (outarg->offset + num > file_size) 1683 num = file_size - outarg->offset; 1684 1685 num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1686 num_pages = min(num_pages, fc->max_pages); 1687 1688 args_size += num_pages * (sizeof(ap->pages[0]) + sizeof(ap->descs[0])); 1689 1690 ra = kzalloc(args_size, GFP_KERNEL); 1691 if (!ra) 1692 return -ENOMEM; 1693 1694 ap = &ra->ap; 1695 ap->pages = (void *) (ra + 1); 1696 ap->descs = (void *) (ap->pages + num_pages); 1697 1698 args = &ap->args; 1699 args->nodeid = outarg->nodeid; 1700 args->opcode = FUSE_NOTIFY_REPLY; 1701 args->in_numargs = 2; 1702 args->in_pages = true; 1703 args->end = fuse_retrieve_end; 1704 1705 index = outarg->offset >> PAGE_SHIFT; 1706 1707 while (num && ap->num_pages < num_pages) { 1708 struct page *page; 1709 unsigned int this_num; 1710 1711 page = find_get_page(mapping, index); 1712 if (!page) 1713 break; 1714 1715 this_num = min_t(unsigned, num, PAGE_SIZE - offset); 1716 ap->pages[ap->num_pages] = page; 1717 ap->descs[ap->num_pages].offset = offset; 1718 ap->descs[ap->num_pages].length = this_num; 1719 ap->num_pages++; 1720 1721 offset = 0; 1722 num -= this_num; 1723 total_len += this_num; 1724 index++; 1725 } 1726 ra->inarg.offset = outarg->offset; 1727 ra->inarg.size = total_len; 1728 args->in_args[0].size = sizeof(ra->inarg); 1729 args->in_args[0].value = &ra->inarg; 1730 args->in_args[1].size = total_len; 1731 1732 err = fuse_simple_notify_reply(fm, args, outarg->notify_unique); 1733 if (err) 1734 fuse_retrieve_end(fm, args, err); 1735 1736 return err; 1737 } 1738 1739 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size, 1740 struct fuse_copy_state *cs) 1741 { 1742 struct fuse_notify_retrieve_out outarg; 1743 struct fuse_mount *fm; 1744 struct inode *inode; 1745 u64 nodeid; 1746 int err; 1747 1748 err = -EINVAL; 1749 if (size != sizeof(outarg)) 1750 goto copy_finish; 1751 1752 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1753 if (err) 1754 goto copy_finish; 1755 1756 fuse_copy_finish(cs); 1757 1758 down_read(&fc->killsb); 1759 err = -ENOENT; 1760 nodeid = outarg.nodeid; 1761 1762 inode = fuse_ilookup(fc, nodeid, &fm); 1763 if (inode) { 1764 err = fuse_retrieve(fm, inode, &outarg); 1765 iput(inode); 1766 } 1767 up_read(&fc->killsb); 1768 1769 return err; 1770 1771 copy_finish: 1772 fuse_copy_finish(cs); 1773 return err; 1774 } 1775 1776 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code, 1777 unsigned int size, struct fuse_copy_state *cs) 1778 { 1779 /* Don't try to move pages (yet) */ 1780 cs->move_pages = 0; 1781 1782 switch (code) { 1783 case FUSE_NOTIFY_POLL: 1784 return fuse_notify_poll(fc, size, cs); 1785 1786 case FUSE_NOTIFY_INVAL_INODE: 1787 return fuse_notify_inval_inode(fc, size, cs); 1788 1789 case FUSE_NOTIFY_INVAL_ENTRY: 1790 return fuse_notify_inval_entry(fc, size, cs); 1791 1792 case FUSE_NOTIFY_STORE: 1793 return fuse_notify_store(fc, size, cs); 1794 1795 case FUSE_NOTIFY_RETRIEVE: 1796 return fuse_notify_retrieve(fc, size, cs); 1797 1798 case FUSE_NOTIFY_DELETE: 1799 return fuse_notify_delete(fc, size, cs); 1800 1801 default: 1802 fuse_copy_finish(cs); 1803 return -EINVAL; 1804 } 1805 } 1806 1807 /* Look up request on processing list by unique ID */ 1808 static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique) 1809 { 1810 unsigned int hash = fuse_req_hash(unique); 1811 struct fuse_req *req; 1812 1813 list_for_each_entry(req, &fpq->processing[hash], list) { 1814 if (req->in.h.unique == unique) 1815 return req; 1816 } 1817 return NULL; 1818 } 1819 1820 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args, 1821 unsigned nbytes) 1822 { 1823 unsigned reqsize = sizeof(struct fuse_out_header); 1824 1825 reqsize += fuse_len_args(args->out_numargs, args->out_args); 1826 1827 if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar)) 1828 return -EINVAL; 1829 else if (reqsize > nbytes) { 1830 struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1]; 1831 unsigned diffsize = reqsize - nbytes; 1832 1833 if (diffsize > lastarg->size) 1834 return -EINVAL; 1835 lastarg->size -= diffsize; 1836 } 1837 return fuse_copy_args(cs, args->out_numargs, args->out_pages, 1838 args->out_args, args->page_zeroing); 1839 } 1840 1841 /* 1842 * Write a single reply to a request. First the header is copied from 1843 * the write buffer. The request is then searched on the processing 1844 * list by the unique ID found in the header. If found, then remove 1845 * it from the list and copy the rest of the buffer to the request. 1846 * The request is finished by calling fuse_request_end(). 1847 */ 1848 static ssize_t fuse_dev_do_write(struct fuse_dev *fud, 1849 struct fuse_copy_state *cs, size_t nbytes) 1850 { 1851 int err; 1852 struct fuse_conn *fc = fud->fc; 1853 struct fuse_pqueue *fpq = &fud->pq; 1854 struct fuse_req *req; 1855 struct fuse_out_header oh; 1856 1857 err = -EINVAL; 1858 if (nbytes < sizeof(struct fuse_out_header)) 1859 goto out; 1860 1861 err = fuse_copy_one(cs, &oh, sizeof(oh)); 1862 if (err) 1863 goto copy_finish; 1864 1865 err = -EINVAL; 1866 if (oh.len != nbytes) 1867 goto copy_finish; 1868 1869 /* 1870 * Zero oh.unique indicates unsolicited notification message 1871 * and error contains notification code. 1872 */ 1873 if (!oh.unique) { 1874 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs); 1875 goto out; 1876 } 1877 1878 err = -EINVAL; 1879 if (oh.error <= -512 || oh.error > 0) 1880 goto copy_finish; 1881 1882 spin_lock(&fpq->lock); 1883 req = NULL; 1884 if (fpq->connected) 1885 req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT); 1886 1887 err = -ENOENT; 1888 if (!req) { 1889 spin_unlock(&fpq->lock); 1890 goto copy_finish; 1891 } 1892 1893 /* Is it an interrupt reply ID? */ 1894 if (oh.unique & FUSE_INT_REQ_BIT) { 1895 __fuse_get_request(req); 1896 spin_unlock(&fpq->lock); 1897 1898 err = 0; 1899 if (nbytes != sizeof(struct fuse_out_header)) 1900 err = -EINVAL; 1901 else if (oh.error == -ENOSYS) 1902 fc->no_interrupt = 1; 1903 else if (oh.error == -EAGAIN) 1904 err = queue_interrupt(req); 1905 1906 fuse_put_request(req); 1907 1908 goto copy_finish; 1909 } 1910 1911 clear_bit(FR_SENT, &req->flags); 1912 list_move(&req->list, &fpq->io); 1913 req->out.h = oh; 1914 set_bit(FR_LOCKED, &req->flags); 1915 spin_unlock(&fpq->lock); 1916 cs->req = req; 1917 if (!req->args->page_replace) 1918 cs->move_pages = 0; 1919 1920 if (oh.error) 1921 err = nbytes != sizeof(oh) ? -EINVAL : 0; 1922 else 1923 err = copy_out_args(cs, req->args, nbytes); 1924 fuse_copy_finish(cs); 1925 1926 spin_lock(&fpq->lock); 1927 clear_bit(FR_LOCKED, &req->flags); 1928 if (!fpq->connected) 1929 err = -ENOENT; 1930 else if (err) 1931 req->out.h.error = -EIO; 1932 if (!test_bit(FR_PRIVATE, &req->flags)) 1933 list_del_init(&req->list); 1934 spin_unlock(&fpq->lock); 1935 1936 fuse_request_end(req); 1937 out: 1938 return err ? err : nbytes; 1939 1940 copy_finish: 1941 fuse_copy_finish(cs); 1942 goto out; 1943 } 1944 1945 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from) 1946 { 1947 struct fuse_copy_state cs; 1948 struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp); 1949 1950 if (!fud) 1951 return -EPERM; 1952 1953 if (!user_backed_iter(from)) 1954 return -EINVAL; 1955 1956 fuse_copy_init(&cs, 0, from); 1957 1958 return fuse_dev_do_write(fud, &cs, iov_iter_count(from)); 1959 } 1960 1961 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe, 1962 struct file *out, loff_t *ppos, 1963 size_t len, unsigned int flags) 1964 { 1965 unsigned int head, tail, mask, count; 1966 unsigned nbuf; 1967 unsigned idx; 1968 struct pipe_buffer *bufs; 1969 struct fuse_copy_state cs; 1970 struct fuse_dev *fud; 1971 size_t rem; 1972 ssize_t ret; 1973 1974 fud = fuse_get_dev(out); 1975 if (!fud) 1976 return -EPERM; 1977 1978 pipe_lock(pipe); 1979 1980 head = pipe->head; 1981 tail = pipe->tail; 1982 mask = pipe->ring_size - 1; 1983 count = head - tail; 1984 1985 bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL); 1986 if (!bufs) { 1987 pipe_unlock(pipe); 1988 return -ENOMEM; 1989 } 1990 1991 nbuf = 0; 1992 rem = 0; 1993 for (idx = tail; idx != head && rem < len; idx++) 1994 rem += pipe->bufs[idx & mask].len; 1995 1996 ret = -EINVAL; 1997 if (rem < len) 1998 goto out_free; 1999 2000 rem = len; 2001 while (rem) { 2002 struct pipe_buffer *ibuf; 2003 struct pipe_buffer *obuf; 2004 2005 if (WARN_ON(nbuf >= count || tail == head)) 2006 goto out_free; 2007 2008 ibuf = &pipe->bufs[tail & mask]; 2009 obuf = &bufs[nbuf]; 2010 2011 if (rem >= ibuf->len) { 2012 *obuf = *ibuf; 2013 ibuf->ops = NULL; 2014 tail++; 2015 pipe->tail = tail; 2016 } else { 2017 if (!pipe_buf_get(pipe, ibuf)) 2018 goto out_free; 2019 2020 *obuf = *ibuf; 2021 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 2022 obuf->len = rem; 2023 ibuf->offset += obuf->len; 2024 ibuf->len -= obuf->len; 2025 } 2026 nbuf++; 2027 rem -= obuf->len; 2028 } 2029 pipe_unlock(pipe); 2030 2031 fuse_copy_init(&cs, 0, NULL); 2032 cs.pipebufs = bufs; 2033 cs.nr_segs = nbuf; 2034 cs.pipe = pipe; 2035 2036 if (flags & SPLICE_F_MOVE) 2037 cs.move_pages = 1; 2038 2039 ret = fuse_dev_do_write(fud, &cs, len); 2040 2041 pipe_lock(pipe); 2042 out_free: 2043 for (idx = 0; idx < nbuf; idx++) { 2044 struct pipe_buffer *buf = &bufs[idx]; 2045 2046 if (buf->ops) 2047 pipe_buf_release(pipe, buf); 2048 } 2049 pipe_unlock(pipe); 2050 2051 kvfree(bufs); 2052 return ret; 2053 } 2054 2055 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait) 2056 { 2057 __poll_t mask = EPOLLOUT | EPOLLWRNORM; 2058 struct fuse_iqueue *fiq; 2059 struct fuse_dev *fud = fuse_get_dev(file); 2060 2061 if (!fud) 2062 return EPOLLERR; 2063 2064 fiq = &fud->fc->iq; 2065 poll_wait(file, &fiq->waitq, wait); 2066 2067 spin_lock(&fiq->lock); 2068 if (!fiq->connected) 2069 mask = EPOLLERR; 2070 else if (request_pending(fiq)) 2071 mask |= EPOLLIN | EPOLLRDNORM; 2072 spin_unlock(&fiq->lock); 2073 2074 return mask; 2075 } 2076 2077 /* Abort all requests on the given list (pending or processing) */ 2078 static void end_requests(struct list_head *head) 2079 { 2080 while (!list_empty(head)) { 2081 struct fuse_req *req; 2082 req = list_entry(head->next, struct fuse_req, list); 2083 req->out.h.error = -ECONNABORTED; 2084 clear_bit(FR_SENT, &req->flags); 2085 list_del_init(&req->list); 2086 fuse_request_end(req); 2087 } 2088 } 2089 2090 static void end_polls(struct fuse_conn *fc) 2091 { 2092 struct rb_node *p; 2093 2094 p = rb_first(&fc->polled_files); 2095 2096 while (p) { 2097 struct fuse_file *ff; 2098 ff = rb_entry(p, struct fuse_file, polled_node); 2099 wake_up_interruptible_all(&ff->poll_wait); 2100 2101 p = rb_next(p); 2102 } 2103 } 2104 2105 /* 2106 * Abort all requests. 2107 * 2108 * Emergency exit in case of a malicious or accidental deadlock, or just a hung 2109 * filesystem. 2110 * 2111 * The same effect is usually achievable through killing the filesystem daemon 2112 * and all users of the filesystem. The exception is the combination of an 2113 * asynchronous request and the tricky deadlock (see 2114 * Documentation/filesystems/fuse.rst). 2115 * 2116 * Aborting requests under I/O goes as follows: 1: Separate out unlocked 2117 * requests, they should be finished off immediately. Locked requests will be 2118 * finished after unlock; see unlock_request(). 2: Finish off the unlocked 2119 * requests. It is possible that some request will finish before we can. This 2120 * is OK, the request will in that case be removed from the list before we touch 2121 * it. 2122 */ 2123 void fuse_abort_conn(struct fuse_conn *fc) 2124 { 2125 struct fuse_iqueue *fiq = &fc->iq; 2126 2127 spin_lock(&fc->lock); 2128 if (fc->connected) { 2129 struct fuse_dev *fud; 2130 struct fuse_req *req, *next; 2131 LIST_HEAD(to_end); 2132 unsigned int i; 2133 2134 /* Background queuing checks fc->connected under bg_lock */ 2135 spin_lock(&fc->bg_lock); 2136 fc->connected = 0; 2137 spin_unlock(&fc->bg_lock); 2138 2139 fuse_set_initialized(fc); 2140 list_for_each_entry(fud, &fc->devices, entry) { 2141 struct fuse_pqueue *fpq = &fud->pq; 2142 2143 spin_lock(&fpq->lock); 2144 fpq->connected = 0; 2145 list_for_each_entry_safe(req, next, &fpq->io, list) { 2146 req->out.h.error = -ECONNABORTED; 2147 spin_lock(&req->waitq.lock); 2148 set_bit(FR_ABORTED, &req->flags); 2149 if (!test_bit(FR_LOCKED, &req->flags)) { 2150 set_bit(FR_PRIVATE, &req->flags); 2151 __fuse_get_request(req); 2152 list_move(&req->list, &to_end); 2153 } 2154 spin_unlock(&req->waitq.lock); 2155 } 2156 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2157 list_splice_tail_init(&fpq->processing[i], 2158 &to_end); 2159 spin_unlock(&fpq->lock); 2160 } 2161 spin_lock(&fc->bg_lock); 2162 fc->blocked = 0; 2163 fc->max_background = UINT_MAX; 2164 flush_bg_queue(fc); 2165 spin_unlock(&fc->bg_lock); 2166 2167 spin_lock(&fiq->lock); 2168 fiq->connected = 0; 2169 list_for_each_entry(req, &fiq->pending, list) 2170 clear_bit(FR_PENDING, &req->flags); 2171 list_splice_tail_init(&fiq->pending, &to_end); 2172 while (forget_pending(fiq)) 2173 kfree(fuse_dequeue_forget(fiq, 1, NULL)); 2174 wake_up_all(&fiq->waitq); 2175 spin_unlock(&fiq->lock); 2176 kill_fasync(&fiq->fasync, SIGIO, POLL_IN); 2177 end_polls(fc); 2178 wake_up_all(&fc->blocked_waitq); 2179 spin_unlock(&fc->lock); 2180 2181 end_requests(&to_end); 2182 } else { 2183 spin_unlock(&fc->lock); 2184 } 2185 } 2186 EXPORT_SYMBOL_GPL(fuse_abort_conn); 2187 2188 void fuse_wait_aborted(struct fuse_conn *fc) 2189 { 2190 /* matches implicit memory barrier in fuse_drop_waiting() */ 2191 smp_mb(); 2192 wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0); 2193 } 2194 2195 int fuse_dev_release(struct inode *inode, struct file *file) 2196 { 2197 struct fuse_dev *fud = fuse_get_dev(file); 2198 2199 if (fud) { 2200 struct fuse_conn *fc = fud->fc; 2201 struct fuse_pqueue *fpq = &fud->pq; 2202 LIST_HEAD(to_end); 2203 unsigned int i; 2204 2205 spin_lock(&fpq->lock); 2206 WARN_ON(!list_empty(&fpq->io)); 2207 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++) 2208 list_splice_init(&fpq->processing[i], &to_end); 2209 spin_unlock(&fpq->lock); 2210 2211 end_requests(&to_end); 2212 2213 /* Are we the last open device? */ 2214 if (atomic_dec_and_test(&fc->dev_count)) { 2215 WARN_ON(fc->iq.fasync != NULL); 2216 fuse_abort_conn(fc); 2217 } 2218 fuse_dev_free(fud); 2219 } 2220 return 0; 2221 } 2222 EXPORT_SYMBOL_GPL(fuse_dev_release); 2223 2224 static int fuse_dev_fasync(int fd, struct file *file, int on) 2225 { 2226 struct fuse_dev *fud = fuse_get_dev(file); 2227 2228 if (!fud) 2229 return -EPERM; 2230 2231 /* No locking - fasync_helper does its own locking */ 2232 return fasync_helper(fd, file, on, &fud->fc->iq.fasync); 2233 } 2234 2235 static int fuse_device_clone(struct fuse_conn *fc, struct file *new) 2236 { 2237 struct fuse_dev *fud; 2238 2239 if (new->private_data) 2240 return -EINVAL; 2241 2242 fud = fuse_dev_alloc_install(fc); 2243 if (!fud) 2244 return -ENOMEM; 2245 2246 new->private_data = fud; 2247 atomic_inc(&fc->dev_count); 2248 2249 return 0; 2250 } 2251 2252 static long fuse_dev_ioctl(struct file *file, unsigned int cmd, 2253 unsigned long arg) 2254 { 2255 int res; 2256 int oldfd; 2257 struct fuse_dev *fud = NULL; 2258 2259 switch (cmd) { 2260 case FUSE_DEV_IOC_CLONE: 2261 res = -EFAULT; 2262 if (!get_user(oldfd, (__u32 __user *)arg)) { 2263 struct file *old = fget(oldfd); 2264 2265 res = -EINVAL; 2266 if (old) { 2267 /* 2268 * Check against file->f_op because CUSE 2269 * uses the same ioctl handler. 2270 */ 2271 if (old->f_op == file->f_op) 2272 fud = fuse_get_dev(old); 2273 2274 if (fud) { 2275 mutex_lock(&fuse_mutex); 2276 res = fuse_device_clone(fud->fc, file); 2277 mutex_unlock(&fuse_mutex); 2278 } 2279 fput(old); 2280 } 2281 } 2282 break; 2283 default: 2284 res = -ENOTTY; 2285 break; 2286 } 2287 return res; 2288 } 2289 2290 const struct file_operations fuse_dev_operations = { 2291 .owner = THIS_MODULE, 2292 .open = fuse_dev_open, 2293 .llseek = no_llseek, 2294 .read_iter = fuse_dev_read, 2295 .splice_read = fuse_dev_splice_read, 2296 .write_iter = fuse_dev_write, 2297 .splice_write = fuse_dev_splice_write, 2298 .poll = fuse_dev_poll, 2299 .release = fuse_dev_release, 2300 .fasync = fuse_dev_fasync, 2301 .unlocked_ioctl = fuse_dev_ioctl, 2302 .compat_ioctl = compat_ptr_ioctl, 2303 }; 2304 EXPORT_SYMBOL_GPL(fuse_dev_operations); 2305 2306 static struct miscdevice fuse_miscdevice = { 2307 .minor = FUSE_MINOR, 2308 .name = "fuse", 2309 .fops = &fuse_dev_operations, 2310 }; 2311 2312 int __init fuse_dev_init(void) 2313 { 2314 int err = -ENOMEM; 2315 fuse_req_cachep = kmem_cache_create("fuse_request", 2316 sizeof(struct fuse_req), 2317 0, 0, NULL); 2318 if (!fuse_req_cachep) 2319 goto out; 2320 2321 err = misc_register(&fuse_miscdevice); 2322 if (err) 2323 goto out_cache_clean; 2324 2325 return 0; 2326 2327 out_cache_clean: 2328 kmem_cache_destroy(fuse_req_cachep); 2329 out: 2330 return err; 2331 } 2332 2333 void fuse_dev_cleanup(void) 2334 { 2335 misc_deregister(&fuse_miscdevice); 2336 kmem_cache_destroy(fuse_req_cachep); 2337 } 2338