xref: /linux/fs/fuse/dev.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2006  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19 
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21 
22 static kmem_cache_t *fuse_req_cachep;
23 
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26 	/*
27 	 * Lockless access is OK, because file->private data is set
28 	 * once during mount and is valid until the file is released.
29 	 */
30 	return file->private_data;
31 }
32 
33 static void fuse_request_init(struct fuse_req *req)
34 {
35 	memset(req, 0, sizeof(*req));
36 	INIT_LIST_HEAD(&req->list);
37 	INIT_LIST_HEAD(&req->intr_entry);
38 	init_waitqueue_head(&req->waitq);
39 	atomic_set(&req->count, 1);
40 }
41 
42 struct fuse_req *fuse_request_alloc(void)
43 {
44 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, SLAB_KERNEL);
45 	if (req)
46 		fuse_request_init(req);
47 	return req;
48 }
49 
50 void fuse_request_free(struct fuse_req *req)
51 {
52 	kmem_cache_free(fuse_req_cachep, req);
53 }
54 
55 static void block_sigs(sigset_t *oldset)
56 {
57 	sigset_t mask;
58 
59 	siginitsetinv(&mask, sigmask(SIGKILL));
60 	sigprocmask(SIG_BLOCK, &mask, oldset);
61 }
62 
63 static void restore_sigs(sigset_t *oldset)
64 {
65 	sigprocmask(SIG_SETMASK, oldset, NULL);
66 }
67 
68 static void __fuse_get_request(struct fuse_req *req)
69 {
70 	atomic_inc(&req->count);
71 }
72 
73 /* Must be called with > 1 refcount */
74 static void __fuse_put_request(struct fuse_req *req)
75 {
76 	BUG_ON(atomic_read(&req->count) < 2);
77 	atomic_dec(&req->count);
78 }
79 
80 static void fuse_req_init_context(struct fuse_req *req)
81 {
82 	req->in.h.uid = current->fsuid;
83 	req->in.h.gid = current->fsgid;
84 	req->in.h.pid = current->pid;
85 }
86 
87 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
88 {
89 	struct fuse_req *req;
90 	sigset_t oldset;
91 	int intr;
92 	int err;
93 
94 	atomic_inc(&fc->num_waiting);
95 	block_sigs(&oldset);
96 	intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
97 	restore_sigs(&oldset);
98 	err = -EINTR;
99 	if (intr)
100 		goto out;
101 
102 	err = -ENOTCONN;
103 	if (!fc->connected)
104 		goto out;
105 
106 	req = fuse_request_alloc();
107 	err = -ENOMEM;
108 	if (!req)
109 		goto out;
110 
111 	fuse_req_init_context(req);
112 	req->waiting = 1;
113 	return req;
114 
115  out:
116 	atomic_dec(&fc->num_waiting);
117 	return ERR_PTR(err);
118 }
119 
120 /*
121  * Return request in fuse_file->reserved_req.  However that may
122  * currently be in use.  If that is the case, wait for it to become
123  * available.
124  */
125 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
126 					 struct file *file)
127 {
128 	struct fuse_req *req = NULL;
129 	struct fuse_file *ff = file->private_data;
130 
131 	do {
132 		wait_event(fc->blocked_waitq, ff->reserved_req);
133 		spin_lock(&fc->lock);
134 		if (ff->reserved_req) {
135 			req = ff->reserved_req;
136 			ff->reserved_req = NULL;
137 			get_file(file);
138 			req->stolen_file = file;
139 		}
140 		spin_unlock(&fc->lock);
141 	} while (!req);
142 
143 	return req;
144 }
145 
146 /*
147  * Put stolen request back into fuse_file->reserved_req
148  */
149 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
150 {
151 	struct file *file = req->stolen_file;
152 	struct fuse_file *ff = file->private_data;
153 
154 	spin_lock(&fc->lock);
155 	fuse_request_init(req);
156 	BUG_ON(ff->reserved_req);
157 	ff->reserved_req = req;
158 	wake_up(&fc->blocked_waitq);
159 	spin_unlock(&fc->lock);
160 	fput(file);
161 }
162 
163 /*
164  * Gets a requests for a file operation, always succeeds
165  *
166  * This is used for sending the FLUSH request, which must get to
167  * userspace, due to POSIX locks which may need to be unlocked.
168  *
169  * If allocation fails due to OOM, use the reserved request in
170  * fuse_file.
171  *
172  * This is very unlikely to deadlock accidentally, since the
173  * filesystem should not have it's own file open.  If deadlock is
174  * intentional, it can still be broken by "aborting" the filesystem.
175  */
176 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
177 {
178 	struct fuse_req *req;
179 
180 	atomic_inc(&fc->num_waiting);
181 	wait_event(fc->blocked_waitq, !fc->blocked);
182 	req = fuse_request_alloc();
183 	if (!req)
184 		req = get_reserved_req(fc, file);
185 
186 	fuse_req_init_context(req);
187 	req->waiting = 1;
188 	return req;
189 }
190 
191 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
192 {
193 	if (atomic_dec_and_test(&req->count)) {
194 		if (req->waiting)
195 			atomic_dec(&fc->num_waiting);
196 
197 		if (req->stolen_file)
198 			put_reserved_req(fc, req);
199 		else
200 			fuse_request_free(req);
201 	}
202 }
203 
204 /*
205  * This function is called when a request is finished.  Either a reply
206  * has arrived or it was aborted (and not yet sent) or some error
207  * occurred during communication with userspace, or the device file
208  * was closed.  The requester thread is woken up (if still waiting),
209  * the 'end' callback is called if given, else the reference to the
210  * request is released
211  *
212  * Called with fc->lock, unlocks it
213  */
214 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
215 {
216 	void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
217 	req->end = NULL;
218 	list_del(&req->list);
219 	list_del(&req->intr_entry);
220 	req->state = FUSE_REQ_FINISHED;
221 	if (req->background) {
222 		if (fc->num_background == FUSE_MAX_BACKGROUND) {
223 			fc->blocked = 0;
224 			wake_up_all(&fc->blocked_waitq);
225 		}
226 		fc->num_background--;
227 	}
228 	spin_unlock(&fc->lock);
229 	dput(req->dentry);
230 	mntput(req->vfsmount);
231 	if (req->file)
232 		fput(req->file);
233 	wake_up(&req->waitq);
234 	if (end)
235 		end(fc, req);
236 	else
237 		fuse_put_request(fc, req);
238 }
239 
240 static void wait_answer_interruptible(struct fuse_conn *fc,
241 				      struct fuse_req *req)
242 {
243 	if (signal_pending(current))
244 		return;
245 
246 	spin_unlock(&fc->lock);
247 	wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
248 	spin_lock(&fc->lock);
249 }
250 
251 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
252 {
253 	list_add_tail(&req->intr_entry, &fc->interrupts);
254 	wake_up(&fc->waitq);
255 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
256 }
257 
258 /* Called with fc->lock held.  Releases, and then reacquires it. */
259 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
260 {
261 	if (!fc->no_interrupt) {
262 		/* Any signal may interrupt this */
263 		wait_answer_interruptible(fc, req);
264 
265 		if (req->aborted)
266 			goto aborted;
267 		if (req->state == FUSE_REQ_FINISHED)
268 			return;
269 
270 		req->interrupted = 1;
271 		if (req->state == FUSE_REQ_SENT)
272 			queue_interrupt(fc, req);
273 	}
274 
275 	if (req->force) {
276 		spin_unlock(&fc->lock);
277 		wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
278 		spin_lock(&fc->lock);
279 	} else {
280 		sigset_t oldset;
281 
282 		/* Only fatal signals may interrupt this */
283 		block_sigs(&oldset);
284 		wait_answer_interruptible(fc, req);
285 		restore_sigs(&oldset);
286 	}
287 
288 	if (req->aborted)
289 		goto aborted;
290 	if (req->state == FUSE_REQ_FINISHED)
291  		return;
292 
293 	req->out.h.error = -EINTR;
294 	req->aborted = 1;
295 
296  aborted:
297 	if (req->locked) {
298 		/* This is uninterruptible sleep, because data is
299 		   being copied to/from the buffers of req.  During
300 		   locked state, there mustn't be any filesystem
301 		   operation (e.g. page fault), since that could lead
302 		   to deadlock */
303 		spin_unlock(&fc->lock);
304 		wait_event(req->waitq, !req->locked);
305 		spin_lock(&fc->lock);
306 	}
307 	if (req->state == FUSE_REQ_PENDING) {
308 		list_del(&req->list);
309 		__fuse_put_request(req);
310 	} else if (req->state == FUSE_REQ_SENT) {
311 		spin_unlock(&fc->lock);
312 		wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
313 		spin_lock(&fc->lock);
314 	}
315 }
316 
317 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
318 {
319 	unsigned nbytes = 0;
320 	unsigned i;
321 
322 	for (i = 0; i < numargs; i++)
323 		nbytes += args[i].size;
324 
325 	return nbytes;
326 }
327 
328 static u64 fuse_get_unique(struct fuse_conn *fc)
329  {
330  	fc->reqctr++;
331  	/* zero is special */
332  	if (fc->reqctr == 0)
333  		fc->reqctr = 1;
334 
335 	return fc->reqctr;
336 }
337 
338 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
339 {
340 	req->in.h.unique = fuse_get_unique(fc);
341 	req->in.h.len = sizeof(struct fuse_in_header) +
342 		len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
343 	list_add_tail(&req->list, &fc->pending);
344 	req->state = FUSE_REQ_PENDING;
345 	if (!req->waiting) {
346 		req->waiting = 1;
347 		atomic_inc(&fc->num_waiting);
348 	}
349 	wake_up(&fc->waitq);
350 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
351 }
352 
353 void request_send(struct fuse_conn *fc, struct fuse_req *req)
354 {
355 	req->isreply = 1;
356 	spin_lock(&fc->lock);
357 	if (!fc->connected)
358 		req->out.h.error = -ENOTCONN;
359 	else if (fc->conn_error)
360 		req->out.h.error = -ECONNREFUSED;
361 	else {
362 		queue_request(fc, req);
363 		/* acquire extra reference, since request is still needed
364 		   after request_end() */
365 		__fuse_get_request(req);
366 
367 		request_wait_answer(fc, req);
368 	}
369 	spin_unlock(&fc->lock);
370 }
371 
372 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
373 {
374 	spin_lock(&fc->lock);
375 	if (fc->connected) {
376 		req->background = 1;
377 		fc->num_background++;
378 		if (fc->num_background == FUSE_MAX_BACKGROUND)
379 			fc->blocked = 1;
380 
381 		queue_request(fc, req);
382 		spin_unlock(&fc->lock);
383 	} else {
384 		req->out.h.error = -ENOTCONN;
385 		request_end(fc, req);
386 	}
387 }
388 
389 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
390 {
391 	req->isreply = 0;
392 	request_send_nowait(fc, req);
393 }
394 
395 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
396 {
397 	req->isreply = 1;
398 	request_send_nowait(fc, req);
399 }
400 
401 /*
402  * Lock the request.  Up to the next unlock_request() there mustn't be
403  * anything that could cause a page-fault.  If the request was already
404  * aborted bail out.
405  */
406 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
407 {
408 	int err = 0;
409 	if (req) {
410 		spin_lock(&fc->lock);
411 		if (req->aborted)
412 			err = -ENOENT;
413 		else
414 			req->locked = 1;
415 		spin_unlock(&fc->lock);
416 	}
417 	return err;
418 }
419 
420 /*
421  * Unlock request.  If it was aborted during being locked, the
422  * requester thread is currently waiting for it to be unlocked, so
423  * wake it up.
424  */
425 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
426 {
427 	if (req) {
428 		spin_lock(&fc->lock);
429 		req->locked = 0;
430 		if (req->aborted)
431 			wake_up(&req->waitq);
432 		spin_unlock(&fc->lock);
433 	}
434 }
435 
436 struct fuse_copy_state {
437 	struct fuse_conn *fc;
438 	int write;
439 	struct fuse_req *req;
440 	const struct iovec *iov;
441 	unsigned long nr_segs;
442 	unsigned long seglen;
443 	unsigned long addr;
444 	struct page *pg;
445 	void *mapaddr;
446 	void *buf;
447 	unsigned len;
448 };
449 
450 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
451 			   int write, struct fuse_req *req,
452 			   const struct iovec *iov, unsigned long nr_segs)
453 {
454 	memset(cs, 0, sizeof(*cs));
455 	cs->fc = fc;
456 	cs->write = write;
457 	cs->req = req;
458 	cs->iov = iov;
459 	cs->nr_segs = nr_segs;
460 }
461 
462 /* Unmap and put previous page of userspace buffer */
463 static void fuse_copy_finish(struct fuse_copy_state *cs)
464 {
465 	if (cs->mapaddr) {
466 		kunmap_atomic(cs->mapaddr, KM_USER0);
467 		if (cs->write) {
468 			flush_dcache_page(cs->pg);
469 			set_page_dirty_lock(cs->pg);
470 		}
471 		put_page(cs->pg);
472 		cs->mapaddr = NULL;
473 	}
474 }
475 
476 /*
477  * Get another pagefull of userspace buffer, and map it to kernel
478  * address space, and lock request
479  */
480 static int fuse_copy_fill(struct fuse_copy_state *cs)
481 {
482 	unsigned long offset;
483 	int err;
484 
485 	unlock_request(cs->fc, cs->req);
486 	fuse_copy_finish(cs);
487 	if (!cs->seglen) {
488 		BUG_ON(!cs->nr_segs);
489 		cs->seglen = cs->iov[0].iov_len;
490 		cs->addr = (unsigned long) cs->iov[0].iov_base;
491 		cs->iov ++;
492 		cs->nr_segs --;
493 	}
494 	down_read(&current->mm->mmap_sem);
495 	err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
496 			     &cs->pg, NULL);
497 	up_read(&current->mm->mmap_sem);
498 	if (err < 0)
499 		return err;
500 	BUG_ON(err != 1);
501 	offset = cs->addr % PAGE_SIZE;
502 	cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
503 	cs->buf = cs->mapaddr + offset;
504 	cs->len = min(PAGE_SIZE - offset, cs->seglen);
505 	cs->seglen -= cs->len;
506 	cs->addr += cs->len;
507 
508 	return lock_request(cs->fc, cs->req);
509 }
510 
511 /* Do as much copy to/from userspace buffer as we can */
512 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
513 {
514 	unsigned ncpy = min(*size, cs->len);
515 	if (val) {
516 		if (cs->write)
517 			memcpy(cs->buf, *val, ncpy);
518 		else
519 			memcpy(*val, cs->buf, ncpy);
520 		*val += ncpy;
521 	}
522 	*size -= ncpy;
523 	cs->len -= ncpy;
524 	cs->buf += ncpy;
525 	return ncpy;
526 }
527 
528 /*
529  * Copy a page in the request to/from the userspace buffer.  Must be
530  * done atomically
531  */
532 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
533 			  unsigned offset, unsigned count, int zeroing)
534 {
535 	if (page && zeroing && count < PAGE_SIZE) {
536 		void *mapaddr = kmap_atomic(page, KM_USER1);
537 		memset(mapaddr, 0, PAGE_SIZE);
538 		kunmap_atomic(mapaddr, KM_USER1);
539 	}
540 	while (count) {
541 		int err;
542 		if (!cs->len && (err = fuse_copy_fill(cs)))
543 			return err;
544 		if (page) {
545 			void *mapaddr = kmap_atomic(page, KM_USER1);
546 			void *buf = mapaddr + offset;
547 			offset += fuse_copy_do(cs, &buf, &count);
548 			kunmap_atomic(mapaddr, KM_USER1);
549 		} else
550 			offset += fuse_copy_do(cs, NULL, &count);
551 	}
552 	if (page && !cs->write)
553 		flush_dcache_page(page);
554 	return 0;
555 }
556 
557 /* Copy pages in the request to/from userspace buffer */
558 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
559 			   int zeroing)
560 {
561 	unsigned i;
562 	struct fuse_req *req = cs->req;
563 	unsigned offset = req->page_offset;
564 	unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
565 
566 	for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
567 		struct page *page = req->pages[i];
568 		int err = fuse_copy_page(cs, page, offset, count, zeroing);
569 		if (err)
570 			return err;
571 
572 		nbytes -= count;
573 		count = min(nbytes, (unsigned) PAGE_SIZE);
574 		offset = 0;
575 	}
576 	return 0;
577 }
578 
579 /* Copy a single argument in the request to/from userspace buffer */
580 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
581 {
582 	while (size) {
583 		int err;
584 		if (!cs->len && (err = fuse_copy_fill(cs)))
585 			return err;
586 		fuse_copy_do(cs, &val, &size);
587 	}
588 	return 0;
589 }
590 
591 /* Copy request arguments to/from userspace buffer */
592 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
593 			  unsigned argpages, struct fuse_arg *args,
594 			  int zeroing)
595 {
596 	int err = 0;
597 	unsigned i;
598 
599 	for (i = 0; !err && i < numargs; i++)  {
600 		struct fuse_arg *arg = &args[i];
601 		if (i == numargs - 1 && argpages)
602 			err = fuse_copy_pages(cs, arg->size, zeroing);
603 		else
604 			err = fuse_copy_one(cs, arg->value, arg->size);
605 	}
606 	return err;
607 }
608 
609 static int request_pending(struct fuse_conn *fc)
610 {
611 	return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
612 }
613 
614 /* Wait until a request is available on the pending list */
615 static void request_wait(struct fuse_conn *fc)
616 {
617 	DECLARE_WAITQUEUE(wait, current);
618 
619 	add_wait_queue_exclusive(&fc->waitq, &wait);
620 	while (fc->connected && !request_pending(fc)) {
621 		set_current_state(TASK_INTERRUPTIBLE);
622 		if (signal_pending(current))
623 			break;
624 
625 		spin_unlock(&fc->lock);
626 		schedule();
627 		spin_lock(&fc->lock);
628 	}
629 	set_current_state(TASK_RUNNING);
630 	remove_wait_queue(&fc->waitq, &wait);
631 }
632 
633 /*
634  * Transfer an interrupt request to userspace
635  *
636  * Unlike other requests this is assembled on demand, without a need
637  * to allocate a separate fuse_req structure.
638  *
639  * Called with fc->lock held, releases it
640  */
641 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
642 			       const struct iovec *iov, unsigned long nr_segs)
643 {
644 	struct fuse_copy_state cs;
645 	struct fuse_in_header ih;
646 	struct fuse_interrupt_in arg;
647 	unsigned reqsize = sizeof(ih) + sizeof(arg);
648 	int err;
649 
650 	list_del_init(&req->intr_entry);
651 	req->intr_unique = fuse_get_unique(fc);
652 	memset(&ih, 0, sizeof(ih));
653 	memset(&arg, 0, sizeof(arg));
654 	ih.len = reqsize;
655 	ih.opcode = FUSE_INTERRUPT;
656 	ih.unique = req->intr_unique;
657 	arg.unique = req->in.h.unique;
658 
659 	spin_unlock(&fc->lock);
660 	if (iov_length(iov, nr_segs) < reqsize)
661 		return -EINVAL;
662 
663 	fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
664 	err = fuse_copy_one(&cs, &ih, sizeof(ih));
665 	if (!err)
666 		err = fuse_copy_one(&cs, &arg, sizeof(arg));
667 	fuse_copy_finish(&cs);
668 
669 	return err ? err : reqsize;
670 }
671 
672 /*
673  * Read a single request into the userspace filesystem's buffer.  This
674  * function waits until a request is available, then removes it from
675  * the pending list and copies request data to userspace buffer.  If
676  * no reply is needed (FORGET) or request has been aborted or there
677  * was an error during the copying then it's finished by calling
678  * request_end().  Otherwise add it to the processing list, and set
679  * the 'sent' flag.
680  */
681 static ssize_t fuse_dev_readv(struct file *file, const struct iovec *iov,
682 			      unsigned long nr_segs, loff_t *off)
683 {
684 	int err;
685 	struct fuse_req *req;
686 	struct fuse_in *in;
687 	struct fuse_copy_state cs;
688 	unsigned reqsize;
689 	struct fuse_conn *fc = fuse_get_conn(file);
690 	if (!fc)
691 		return -EPERM;
692 
693  restart:
694 	spin_lock(&fc->lock);
695 	err = -EAGAIN;
696 	if ((file->f_flags & O_NONBLOCK) && fc->connected &&
697 	    !request_pending(fc))
698 		goto err_unlock;
699 
700 	request_wait(fc);
701 	err = -ENODEV;
702 	if (!fc->connected)
703 		goto err_unlock;
704 	err = -ERESTARTSYS;
705 	if (!request_pending(fc))
706 		goto err_unlock;
707 
708 	if (!list_empty(&fc->interrupts)) {
709 		req = list_entry(fc->interrupts.next, struct fuse_req,
710 				 intr_entry);
711 		return fuse_read_interrupt(fc, req, iov, nr_segs);
712 	}
713 
714 	req = list_entry(fc->pending.next, struct fuse_req, list);
715 	req->state = FUSE_REQ_READING;
716 	list_move(&req->list, &fc->io);
717 
718 	in = &req->in;
719 	reqsize = in->h.len;
720 	/* If request is too large, reply with an error and restart the read */
721 	if (iov_length(iov, nr_segs) < reqsize) {
722 		req->out.h.error = -EIO;
723 		/* SETXATTR is special, since it may contain too large data */
724 		if (in->h.opcode == FUSE_SETXATTR)
725 			req->out.h.error = -E2BIG;
726 		request_end(fc, req);
727 		goto restart;
728 	}
729 	spin_unlock(&fc->lock);
730 	fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
731 	err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
732 	if (!err)
733 		err = fuse_copy_args(&cs, in->numargs, in->argpages,
734 				     (struct fuse_arg *) in->args, 0);
735 	fuse_copy_finish(&cs);
736 	spin_lock(&fc->lock);
737 	req->locked = 0;
738 	if (!err && req->aborted)
739 		err = -ENOENT;
740 	if (err) {
741 		if (!req->aborted)
742 			req->out.h.error = -EIO;
743 		request_end(fc, req);
744 		return err;
745 	}
746 	if (!req->isreply)
747 		request_end(fc, req);
748 	else {
749 		req->state = FUSE_REQ_SENT;
750 		list_move_tail(&req->list, &fc->processing);
751 		if (req->interrupted)
752 			queue_interrupt(fc, req);
753 		spin_unlock(&fc->lock);
754 	}
755 	return reqsize;
756 
757  err_unlock:
758 	spin_unlock(&fc->lock);
759 	return err;
760 }
761 
762 static ssize_t fuse_dev_read(struct file *file, char __user *buf,
763 			     size_t nbytes, loff_t *off)
764 {
765 	struct iovec iov;
766 	iov.iov_len = nbytes;
767 	iov.iov_base = buf;
768 	return fuse_dev_readv(file, &iov, 1, off);
769 }
770 
771 /* Look up request on processing list by unique ID */
772 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
773 {
774 	struct list_head *entry;
775 
776 	list_for_each(entry, &fc->processing) {
777 		struct fuse_req *req;
778 		req = list_entry(entry, struct fuse_req, list);
779 		if (req->in.h.unique == unique || req->intr_unique == unique)
780 			return req;
781 	}
782 	return NULL;
783 }
784 
785 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
786 			 unsigned nbytes)
787 {
788 	unsigned reqsize = sizeof(struct fuse_out_header);
789 
790 	if (out->h.error)
791 		return nbytes != reqsize ? -EINVAL : 0;
792 
793 	reqsize += len_args(out->numargs, out->args);
794 
795 	if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
796 		return -EINVAL;
797 	else if (reqsize > nbytes) {
798 		struct fuse_arg *lastarg = &out->args[out->numargs-1];
799 		unsigned diffsize = reqsize - nbytes;
800 		if (diffsize > lastarg->size)
801 			return -EINVAL;
802 		lastarg->size -= diffsize;
803 	}
804 	return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
805 			      out->page_zeroing);
806 }
807 
808 /*
809  * Write a single reply to a request.  First the header is copied from
810  * the write buffer.  The request is then searched on the processing
811  * list by the unique ID found in the header.  If found, then remove
812  * it from the list and copy the rest of the buffer to the request.
813  * The request is finished by calling request_end()
814  */
815 static ssize_t fuse_dev_writev(struct file *file, const struct iovec *iov,
816 			       unsigned long nr_segs, loff_t *off)
817 {
818 	int err;
819 	unsigned nbytes = iov_length(iov, nr_segs);
820 	struct fuse_req *req;
821 	struct fuse_out_header oh;
822 	struct fuse_copy_state cs;
823 	struct fuse_conn *fc = fuse_get_conn(file);
824 	if (!fc)
825 		return -EPERM;
826 
827 	fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
828 	if (nbytes < sizeof(struct fuse_out_header))
829 		return -EINVAL;
830 
831 	err = fuse_copy_one(&cs, &oh, sizeof(oh));
832 	if (err)
833 		goto err_finish;
834 	err = -EINVAL;
835 	if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
836 	    oh.len != nbytes)
837 		goto err_finish;
838 
839 	spin_lock(&fc->lock);
840 	err = -ENOENT;
841 	if (!fc->connected)
842 		goto err_unlock;
843 
844 	req = request_find(fc, oh.unique);
845 	if (!req)
846 		goto err_unlock;
847 
848 	if (req->aborted) {
849 		spin_unlock(&fc->lock);
850 		fuse_copy_finish(&cs);
851 		spin_lock(&fc->lock);
852 		request_end(fc, req);
853 		return -ENOENT;
854 	}
855 	/* Is it an interrupt reply? */
856 	if (req->intr_unique == oh.unique) {
857 		err = -EINVAL;
858 		if (nbytes != sizeof(struct fuse_out_header))
859 			goto err_unlock;
860 
861 		if (oh.error == -ENOSYS)
862 			fc->no_interrupt = 1;
863 		else if (oh.error == -EAGAIN)
864 			queue_interrupt(fc, req);
865 
866 		spin_unlock(&fc->lock);
867 		fuse_copy_finish(&cs);
868 		return nbytes;
869 	}
870 
871 	req->state = FUSE_REQ_WRITING;
872 	list_move(&req->list, &fc->io);
873 	req->out.h = oh;
874 	req->locked = 1;
875 	cs.req = req;
876 	spin_unlock(&fc->lock);
877 
878 	err = copy_out_args(&cs, &req->out, nbytes);
879 	fuse_copy_finish(&cs);
880 
881 	spin_lock(&fc->lock);
882 	req->locked = 0;
883 	if (!err) {
884 		if (req->aborted)
885 			err = -ENOENT;
886 	} else if (!req->aborted)
887 		req->out.h.error = -EIO;
888 	request_end(fc, req);
889 
890 	return err ? err : nbytes;
891 
892  err_unlock:
893 	spin_unlock(&fc->lock);
894  err_finish:
895 	fuse_copy_finish(&cs);
896 	return err;
897 }
898 
899 static ssize_t fuse_dev_write(struct file *file, const char __user *buf,
900 			      size_t nbytes, loff_t *off)
901 {
902 	struct iovec iov;
903 	iov.iov_len = nbytes;
904 	iov.iov_base = (char __user *) buf;
905 	return fuse_dev_writev(file, &iov, 1, off);
906 }
907 
908 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
909 {
910 	unsigned mask = POLLOUT | POLLWRNORM;
911 	struct fuse_conn *fc = fuse_get_conn(file);
912 	if (!fc)
913 		return POLLERR;
914 
915 	poll_wait(file, &fc->waitq, wait);
916 
917 	spin_lock(&fc->lock);
918 	if (!fc->connected)
919 		mask = POLLERR;
920 	else if (request_pending(fc))
921 		mask |= POLLIN | POLLRDNORM;
922 	spin_unlock(&fc->lock);
923 
924 	return mask;
925 }
926 
927 /*
928  * Abort all requests on the given list (pending or processing)
929  *
930  * This function releases and reacquires fc->lock
931  */
932 static void end_requests(struct fuse_conn *fc, struct list_head *head)
933 {
934 	while (!list_empty(head)) {
935 		struct fuse_req *req;
936 		req = list_entry(head->next, struct fuse_req, list);
937 		req->out.h.error = -ECONNABORTED;
938 		request_end(fc, req);
939 		spin_lock(&fc->lock);
940 	}
941 }
942 
943 /*
944  * Abort requests under I/O
945  *
946  * The requests are set to aborted and finished, and the request
947  * waiter is woken up.  This will make request_wait_answer() wait
948  * until the request is unlocked and then return.
949  *
950  * If the request is asynchronous, then the end function needs to be
951  * called after waiting for the request to be unlocked (if it was
952  * locked).
953  */
954 static void end_io_requests(struct fuse_conn *fc)
955 {
956 	while (!list_empty(&fc->io)) {
957 		struct fuse_req *req =
958 			list_entry(fc->io.next, struct fuse_req, list);
959 		void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
960 
961 		req->aborted = 1;
962 		req->out.h.error = -ECONNABORTED;
963 		req->state = FUSE_REQ_FINISHED;
964 		list_del_init(&req->list);
965 		wake_up(&req->waitq);
966 		if (end) {
967 			req->end = NULL;
968 			/* The end function will consume this reference */
969 			__fuse_get_request(req);
970 			spin_unlock(&fc->lock);
971 			wait_event(req->waitq, !req->locked);
972 			end(fc, req);
973 			spin_lock(&fc->lock);
974 		}
975 	}
976 }
977 
978 /*
979  * Abort all requests.
980  *
981  * Emergency exit in case of a malicious or accidental deadlock, or
982  * just a hung filesystem.
983  *
984  * The same effect is usually achievable through killing the
985  * filesystem daemon and all users of the filesystem.  The exception
986  * is the combination of an asynchronous request and the tricky
987  * deadlock (see Documentation/filesystems/fuse.txt).
988  *
989  * During the aborting, progression of requests from the pending and
990  * processing lists onto the io list, and progression of new requests
991  * onto the pending list is prevented by req->connected being false.
992  *
993  * Progression of requests under I/O to the processing list is
994  * prevented by the req->aborted flag being true for these requests.
995  * For this reason requests on the io list must be aborted first.
996  */
997 void fuse_abort_conn(struct fuse_conn *fc)
998 {
999 	spin_lock(&fc->lock);
1000 	if (fc->connected) {
1001 		fc->connected = 0;
1002 		fc->blocked = 0;
1003 		end_io_requests(fc);
1004 		end_requests(fc, &fc->pending);
1005 		end_requests(fc, &fc->processing);
1006 		wake_up_all(&fc->waitq);
1007 		wake_up_all(&fc->blocked_waitq);
1008 		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1009 	}
1010 	spin_unlock(&fc->lock);
1011 }
1012 
1013 static int fuse_dev_release(struct inode *inode, struct file *file)
1014 {
1015 	struct fuse_conn *fc = fuse_get_conn(file);
1016 	if (fc) {
1017 		spin_lock(&fc->lock);
1018 		fc->connected = 0;
1019 		end_requests(fc, &fc->pending);
1020 		end_requests(fc, &fc->processing);
1021 		spin_unlock(&fc->lock);
1022 		fasync_helper(-1, file, 0, &fc->fasync);
1023 		fuse_conn_put(fc);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static int fuse_dev_fasync(int fd, struct file *file, int on)
1030 {
1031 	struct fuse_conn *fc = fuse_get_conn(file);
1032 	if (!fc)
1033 		return -EPERM;
1034 
1035 	/* No locking - fasync_helper does its own locking */
1036 	return fasync_helper(fd, file, on, &fc->fasync);
1037 }
1038 
1039 const struct file_operations fuse_dev_operations = {
1040 	.owner		= THIS_MODULE,
1041 	.llseek		= no_llseek,
1042 	.read		= fuse_dev_read,
1043 	.readv		= fuse_dev_readv,
1044 	.write		= fuse_dev_write,
1045 	.writev		= fuse_dev_writev,
1046 	.poll		= fuse_dev_poll,
1047 	.release	= fuse_dev_release,
1048 	.fasync		= fuse_dev_fasync,
1049 };
1050 
1051 static struct miscdevice fuse_miscdevice = {
1052 	.minor = FUSE_MINOR,
1053 	.name  = "fuse",
1054 	.fops = &fuse_dev_operations,
1055 };
1056 
1057 int __init fuse_dev_init(void)
1058 {
1059 	int err = -ENOMEM;
1060 	fuse_req_cachep = kmem_cache_create("fuse_request",
1061 					    sizeof(struct fuse_req),
1062 					    0, 0, NULL, NULL);
1063 	if (!fuse_req_cachep)
1064 		goto out;
1065 
1066 	err = misc_register(&fuse_miscdevice);
1067 	if (err)
1068 		goto out_cache_clean;
1069 
1070 	return 0;
1071 
1072  out_cache_clean:
1073 	kmem_cache_destroy(fuse_req_cachep);
1074  out:
1075 	return err;
1076 }
1077 
1078 void fuse_dev_cleanup(void)
1079 {
1080 	misc_deregister(&fuse_miscdevice);
1081 	kmem_cache_destroy(fuse_req_cachep);
1082 }
1083