1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * dax: direct host memory access 4 * Copyright (C) 2020 Red Hat, Inc. 5 */ 6 7 #include "fuse_i.h" 8 9 #include <linux/delay.h> 10 #include <linux/dax.h> 11 #include <linux/uio.h> 12 #include <linux/pfn_t.h> 13 #include <linux/iomap.h> 14 #include <linux/interval_tree.h> 15 16 /* 17 * Default memory range size. A power of 2 so it agrees with common FUSE_INIT 18 * map_alignment values 4KB and 64KB. 19 */ 20 #define FUSE_DAX_SHIFT 21 21 #define FUSE_DAX_SZ (1 << FUSE_DAX_SHIFT) 22 #define FUSE_DAX_PAGES (FUSE_DAX_SZ / PAGE_SIZE) 23 24 /* Number of ranges reclaimer will try to free in one invocation */ 25 #define FUSE_DAX_RECLAIM_CHUNK (10) 26 27 /* 28 * Dax memory reclaim threshold in percetage of total ranges. When free 29 * number of free ranges drops below this threshold, reclaim can trigger 30 * Default is 20% 31 */ 32 #define FUSE_DAX_RECLAIM_THRESHOLD (20) 33 34 /** Translation information for file offsets to DAX window offsets */ 35 struct fuse_dax_mapping { 36 /* Pointer to inode where this memory range is mapped */ 37 struct inode *inode; 38 39 /* Will connect in fcd->free_ranges to keep track of free memory */ 40 struct list_head list; 41 42 /* For interval tree in file/inode */ 43 struct interval_tree_node itn; 44 45 /* Will connect in fc->busy_ranges to keep track busy memory */ 46 struct list_head busy_list; 47 48 /** Position in DAX window */ 49 u64 window_offset; 50 51 /** Length of mapping, in bytes */ 52 loff_t length; 53 54 /* Is this mapping read-only or read-write */ 55 bool writable; 56 57 /* reference count when the mapping is used by dax iomap. */ 58 refcount_t refcnt; 59 }; 60 61 /* Per-inode dax map */ 62 struct fuse_inode_dax { 63 /* Semaphore to protect modifications to the dmap tree */ 64 struct rw_semaphore sem; 65 66 /* Sorted rb tree of struct fuse_dax_mapping elements */ 67 struct rb_root_cached tree; 68 unsigned long nr; 69 }; 70 71 struct fuse_conn_dax { 72 /* DAX device */ 73 struct dax_device *dev; 74 75 /* Lock protecting accessess to members of this structure */ 76 spinlock_t lock; 77 78 /* List of memory ranges which are busy */ 79 unsigned long nr_busy_ranges; 80 struct list_head busy_ranges; 81 82 /* Worker to free up memory ranges */ 83 struct delayed_work free_work; 84 85 /* Wait queue for a dax range to become free */ 86 wait_queue_head_t range_waitq; 87 88 /* DAX Window Free Ranges */ 89 long nr_free_ranges; 90 struct list_head free_ranges; 91 92 unsigned long nr_ranges; 93 }; 94 95 static inline struct fuse_dax_mapping * 96 node_to_dmap(struct interval_tree_node *node) 97 { 98 if (!node) 99 return NULL; 100 101 return container_of(node, struct fuse_dax_mapping, itn); 102 } 103 104 static struct fuse_dax_mapping * 105 alloc_dax_mapping_reclaim(struct fuse_conn_dax *fcd, struct inode *inode); 106 107 static void 108 __kick_dmap_free_worker(struct fuse_conn_dax *fcd, unsigned long delay_ms) 109 { 110 unsigned long free_threshold; 111 112 /* If number of free ranges are below threshold, start reclaim */ 113 free_threshold = max_t(unsigned long, fcd->nr_ranges * FUSE_DAX_RECLAIM_THRESHOLD / 100, 114 1); 115 if (fcd->nr_free_ranges < free_threshold) 116 queue_delayed_work(system_long_wq, &fcd->free_work, 117 msecs_to_jiffies(delay_ms)); 118 } 119 120 static void kick_dmap_free_worker(struct fuse_conn_dax *fcd, 121 unsigned long delay_ms) 122 { 123 spin_lock(&fcd->lock); 124 __kick_dmap_free_worker(fcd, delay_ms); 125 spin_unlock(&fcd->lock); 126 } 127 128 static struct fuse_dax_mapping *alloc_dax_mapping(struct fuse_conn_dax *fcd) 129 { 130 struct fuse_dax_mapping *dmap; 131 132 spin_lock(&fcd->lock); 133 dmap = list_first_entry_or_null(&fcd->free_ranges, 134 struct fuse_dax_mapping, list); 135 if (dmap) { 136 list_del_init(&dmap->list); 137 WARN_ON(fcd->nr_free_ranges <= 0); 138 fcd->nr_free_ranges--; 139 } 140 spin_unlock(&fcd->lock); 141 142 kick_dmap_free_worker(fcd, 0); 143 return dmap; 144 } 145 146 /* This assumes fcd->lock is held */ 147 static void __dmap_remove_busy_list(struct fuse_conn_dax *fcd, 148 struct fuse_dax_mapping *dmap) 149 { 150 list_del_init(&dmap->busy_list); 151 WARN_ON(fcd->nr_busy_ranges == 0); 152 fcd->nr_busy_ranges--; 153 } 154 155 static void dmap_remove_busy_list(struct fuse_conn_dax *fcd, 156 struct fuse_dax_mapping *dmap) 157 { 158 spin_lock(&fcd->lock); 159 __dmap_remove_busy_list(fcd, dmap); 160 spin_unlock(&fcd->lock); 161 } 162 163 /* This assumes fcd->lock is held */ 164 static void __dmap_add_to_free_pool(struct fuse_conn_dax *fcd, 165 struct fuse_dax_mapping *dmap) 166 { 167 list_add_tail(&dmap->list, &fcd->free_ranges); 168 fcd->nr_free_ranges++; 169 wake_up(&fcd->range_waitq); 170 } 171 172 static void dmap_add_to_free_pool(struct fuse_conn_dax *fcd, 173 struct fuse_dax_mapping *dmap) 174 { 175 /* Return fuse_dax_mapping to free list */ 176 spin_lock(&fcd->lock); 177 __dmap_add_to_free_pool(fcd, dmap); 178 spin_unlock(&fcd->lock); 179 } 180 181 static int fuse_setup_one_mapping(struct inode *inode, unsigned long start_idx, 182 struct fuse_dax_mapping *dmap, bool writable, 183 bool upgrade) 184 { 185 struct fuse_mount *fm = get_fuse_mount(inode); 186 struct fuse_conn_dax *fcd = fm->fc->dax; 187 struct fuse_inode *fi = get_fuse_inode(inode); 188 struct fuse_setupmapping_in inarg; 189 loff_t offset = start_idx << FUSE_DAX_SHIFT; 190 FUSE_ARGS(args); 191 ssize_t err; 192 193 WARN_ON(fcd->nr_free_ranges < 0); 194 195 /* Ask fuse daemon to setup mapping */ 196 memset(&inarg, 0, sizeof(inarg)); 197 inarg.foffset = offset; 198 inarg.fh = -1; 199 inarg.moffset = dmap->window_offset; 200 inarg.len = FUSE_DAX_SZ; 201 inarg.flags |= FUSE_SETUPMAPPING_FLAG_READ; 202 if (writable) 203 inarg.flags |= FUSE_SETUPMAPPING_FLAG_WRITE; 204 args.opcode = FUSE_SETUPMAPPING; 205 args.nodeid = fi->nodeid; 206 args.in_numargs = 1; 207 args.in_args[0].size = sizeof(inarg); 208 args.in_args[0].value = &inarg; 209 err = fuse_simple_request(fm, &args); 210 if (err < 0) 211 return err; 212 dmap->writable = writable; 213 if (!upgrade) { 214 /* 215 * We don't take a refernce on inode. inode is valid right now 216 * and when inode is going away, cleanup logic should first 217 * cleanup dmap entries. 218 */ 219 dmap->inode = inode; 220 dmap->itn.start = dmap->itn.last = start_idx; 221 /* Protected by fi->dax->sem */ 222 interval_tree_insert(&dmap->itn, &fi->dax->tree); 223 fi->dax->nr++; 224 spin_lock(&fcd->lock); 225 list_add_tail(&dmap->busy_list, &fcd->busy_ranges); 226 fcd->nr_busy_ranges++; 227 spin_unlock(&fcd->lock); 228 } 229 return 0; 230 } 231 232 static int fuse_send_removemapping(struct inode *inode, 233 struct fuse_removemapping_in *inargp, 234 struct fuse_removemapping_one *remove_one) 235 { 236 struct fuse_inode *fi = get_fuse_inode(inode); 237 struct fuse_mount *fm = get_fuse_mount(inode); 238 FUSE_ARGS(args); 239 240 args.opcode = FUSE_REMOVEMAPPING; 241 args.nodeid = fi->nodeid; 242 args.in_numargs = 2; 243 args.in_args[0].size = sizeof(*inargp); 244 args.in_args[0].value = inargp; 245 args.in_args[1].size = inargp->count * sizeof(*remove_one); 246 args.in_args[1].value = remove_one; 247 return fuse_simple_request(fm, &args); 248 } 249 250 static int dmap_removemapping_list(struct inode *inode, unsigned int num, 251 struct list_head *to_remove) 252 { 253 struct fuse_removemapping_one *remove_one, *ptr; 254 struct fuse_removemapping_in inarg; 255 struct fuse_dax_mapping *dmap; 256 int ret, i = 0, nr_alloc; 257 258 nr_alloc = min_t(unsigned int, num, FUSE_REMOVEMAPPING_MAX_ENTRY); 259 remove_one = kmalloc_array(nr_alloc, sizeof(*remove_one), GFP_NOFS); 260 if (!remove_one) 261 return -ENOMEM; 262 263 ptr = remove_one; 264 list_for_each_entry(dmap, to_remove, list) { 265 ptr->moffset = dmap->window_offset; 266 ptr->len = dmap->length; 267 ptr++; 268 i++; 269 num--; 270 if (i >= nr_alloc || num == 0) { 271 memset(&inarg, 0, sizeof(inarg)); 272 inarg.count = i; 273 ret = fuse_send_removemapping(inode, &inarg, 274 remove_one); 275 if (ret) 276 goto out; 277 ptr = remove_one; 278 i = 0; 279 } 280 } 281 out: 282 kfree(remove_one); 283 return ret; 284 } 285 286 /* 287 * Cleanup dmap entry and add back to free list. This should be called with 288 * fcd->lock held. 289 */ 290 static void dmap_reinit_add_to_free_pool(struct fuse_conn_dax *fcd, 291 struct fuse_dax_mapping *dmap) 292 { 293 pr_debug("fuse: freeing memory range start_idx=0x%lx end_idx=0x%lx window_offset=0x%llx length=0x%llx\n", 294 dmap->itn.start, dmap->itn.last, dmap->window_offset, 295 dmap->length); 296 __dmap_remove_busy_list(fcd, dmap); 297 dmap->inode = NULL; 298 dmap->itn.start = dmap->itn.last = 0; 299 __dmap_add_to_free_pool(fcd, dmap); 300 } 301 302 /* 303 * Free inode dmap entries whose range falls inside [start, end]. 304 * Does not take any locks. At this point of time it should only be 305 * called from evict_inode() path where we know all dmap entries can be 306 * reclaimed. 307 */ 308 static void inode_reclaim_dmap_range(struct fuse_conn_dax *fcd, 309 struct inode *inode, 310 loff_t start, loff_t end) 311 { 312 struct fuse_inode *fi = get_fuse_inode(inode); 313 struct fuse_dax_mapping *dmap, *n; 314 int err, num = 0; 315 LIST_HEAD(to_remove); 316 unsigned long start_idx = start >> FUSE_DAX_SHIFT; 317 unsigned long end_idx = end >> FUSE_DAX_SHIFT; 318 struct interval_tree_node *node; 319 320 while (1) { 321 node = interval_tree_iter_first(&fi->dax->tree, start_idx, 322 end_idx); 323 if (!node) 324 break; 325 dmap = node_to_dmap(node); 326 /* inode is going away. There should not be any users of dmap */ 327 WARN_ON(refcount_read(&dmap->refcnt) > 1); 328 interval_tree_remove(&dmap->itn, &fi->dax->tree); 329 num++; 330 list_add(&dmap->list, &to_remove); 331 } 332 333 /* Nothing to remove */ 334 if (list_empty(&to_remove)) 335 return; 336 337 WARN_ON(fi->dax->nr < num); 338 fi->dax->nr -= num; 339 err = dmap_removemapping_list(inode, num, &to_remove); 340 if (err && err != -ENOTCONN) { 341 pr_warn("Failed to removemappings. start=0x%llx end=0x%llx\n", 342 start, end); 343 } 344 spin_lock(&fcd->lock); 345 list_for_each_entry_safe(dmap, n, &to_remove, list) { 346 list_del_init(&dmap->list); 347 dmap_reinit_add_to_free_pool(fcd, dmap); 348 } 349 spin_unlock(&fcd->lock); 350 } 351 352 static int dmap_removemapping_one(struct inode *inode, 353 struct fuse_dax_mapping *dmap) 354 { 355 struct fuse_removemapping_one forget_one; 356 struct fuse_removemapping_in inarg; 357 358 memset(&inarg, 0, sizeof(inarg)); 359 inarg.count = 1; 360 memset(&forget_one, 0, sizeof(forget_one)); 361 forget_one.moffset = dmap->window_offset; 362 forget_one.len = dmap->length; 363 364 return fuse_send_removemapping(inode, &inarg, &forget_one); 365 } 366 367 /* 368 * It is called from evict_inode() and by that time inode is going away. So 369 * this function does not take any locks like fi->dax->sem for traversing 370 * that fuse inode interval tree. If that lock is taken then lock validator 371 * complains of deadlock situation w.r.t fs_reclaim lock. 372 */ 373 void fuse_dax_inode_cleanup(struct inode *inode) 374 { 375 struct fuse_conn *fc = get_fuse_conn(inode); 376 struct fuse_inode *fi = get_fuse_inode(inode); 377 378 /* 379 * fuse_evict_inode() has already called truncate_inode_pages_final() 380 * before we arrive here. So we should not have to worry about any 381 * pages/exception entries still associated with inode. 382 */ 383 inode_reclaim_dmap_range(fc->dax, inode, 0, -1); 384 WARN_ON(fi->dax->nr); 385 } 386 387 static void fuse_fill_iomap_hole(struct iomap *iomap, loff_t length) 388 { 389 iomap->addr = IOMAP_NULL_ADDR; 390 iomap->length = length; 391 iomap->type = IOMAP_HOLE; 392 } 393 394 static void fuse_fill_iomap(struct inode *inode, loff_t pos, loff_t length, 395 struct iomap *iomap, struct fuse_dax_mapping *dmap, 396 unsigned int flags) 397 { 398 loff_t offset, len; 399 loff_t i_size = i_size_read(inode); 400 401 offset = pos - (dmap->itn.start << FUSE_DAX_SHIFT); 402 len = min(length, dmap->length - offset); 403 404 /* If length is beyond end of file, truncate further */ 405 if (pos + len > i_size) 406 len = i_size - pos; 407 408 if (len > 0) { 409 iomap->addr = dmap->window_offset + offset; 410 iomap->length = len; 411 if (flags & IOMAP_FAULT) 412 iomap->length = ALIGN(len, PAGE_SIZE); 413 iomap->type = IOMAP_MAPPED; 414 /* 415 * increace refcnt so that reclaim code knows this dmap is in 416 * use. This assumes fi->dax->sem mutex is held either 417 * shared/exclusive. 418 */ 419 refcount_inc(&dmap->refcnt); 420 421 /* iomap->private should be NULL */ 422 WARN_ON_ONCE(iomap->private); 423 iomap->private = dmap; 424 } else { 425 /* Mapping beyond end of file is hole */ 426 fuse_fill_iomap_hole(iomap, length); 427 } 428 } 429 430 static int fuse_setup_new_dax_mapping(struct inode *inode, loff_t pos, 431 loff_t length, unsigned int flags, 432 struct iomap *iomap) 433 { 434 struct fuse_inode *fi = get_fuse_inode(inode); 435 struct fuse_conn *fc = get_fuse_conn(inode); 436 struct fuse_conn_dax *fcd = fc->dax; 437 struct fuse_dax_mapping *dmap, *alloc_dmap = NULL; 438 int ret; 439 bool writable = flags & IOMAP_WRITE; 440 unsigned long start_idx = pos >> FUSE_DAX_SHIFT; 441 struct interval_tree_node *node; 442 443 /* 444 * Can't do inline reclaim in fault path. We call 445 * dax_layout_busy_page() before we free a range. And 446 * fuse_wait_dax_page() drops fi->i_mmap_sem lock and requires it. 447 * In fault path we enter with fi->i_mmap_sem held and can't drop 448 * it. Also in fault path we hold fi->i_mmap_sem shared and not 449 * exclusive, so that creates further issues with fuse_wait_dax_page(). 450 * Hence return -EAGAIN and fuse_dax_fault() will wait for a memory 451 * range to become free and retry. 452 */ 453 if (flags & IOMAP_FAULT) { 454 alloc_dmap = alloc_dax_mapping(fcd); 455 if (!alloc_dmap) 456 return -EAGAIN; 457 } else { 458 alloc_dmap = alloc_dax_mapping_reclaim(fcd, inode); 459 if (IS_ERR(alloc_dmap)) 460 return PTR_ERR(alloc_dmap); 461 } 462 463 /* If we are here, we should have memory allocated */ 464 if (WARN_ON(!alloc_dmap)) 465 return -EIO; 466 467 /* 468 * Take write lock so that only one caller can try to setup mapping 469 * and other waits. 470 */ 471 down_write(&fi->dax->sem); 472 /* 473 * We dropped lock. Check again if somebody else setup 474 * mapping already. 475 */ 476 node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx); 477 if (node) { 478 dmap = node_to_dmap(node); 479 fuse_fill_iomap(inode, pos, length, iomap, dmap, flags); 480 dmap_add_to_free_pool(fcd, alloc_dmap); 481 up_write(&fi->dax->sem); 482 return 0; 483 } 484 485 /* Setup one mapping */ 486 ret = fuse_setup_one_mapping(inode, pos >> FUSE_DAX_SHIFT, alloc_dmap, 487 writable, false); 488 if (ret < 0) { 489 dmap_add_to_free_pool(fcd, alloc_dmap); 490 up_write(&fi->dax->sem); 491 return ret; 492 } 493 fuse_fill_iomap(inode, pos, length, iomap, alloc_dmap, flags); 494 up_write(&fi->dax->sem); 495 return 0; 496 } 497 498 static int fuse_upgrade_dax_mapping(struct inode *inode, loff_t pos, 499 loff_t length, unsigned int flags, 500 struct iomap *iomap) 501 { 502 struct fuse_inode *fi = get_fuse_inode(inode); 503 struct fuse_dax_mapping *dmap; 504 int ret; 505 unsigned long idx = pos >> FUSE_DAX_SHIFT; 506 struct interval_tree_node *node; 507 508 /* 509 * Take exclusive lock so that only one caller can try to setup 510 * mapping and others wait. 511 */ 512 down_write(&fi->dax->sem); 513 node = interval_tree_iter_first(&fi->dax->tree, idx, idx); 514 515 /* We are holding either inode lock or i_mmap_sem, and that should 516 * ensure that dmap can't be truncated. We are holding a reference 517 * on dmap and that should make sure it can't be reclaimed. So dmap 518 * should still be there in tree despite the fact we dropped and 519 * re-acquired the fi->dax->sem lock. 520 */ 521 ret = -EIO; 522 if (WARN_ON(!node)) 523 goto out_err; 524 525 dmap = node_to_dmap(node); 526 527 /* We took an extra reference on dmap to make sure its not reclaimd. 528 * Now we hold fi->dax->sem lock and that reference is not needed 529 * anymore. Drop it. 530 */ 531 if (refcount_dec_and_test(&dmap->refcnt)) { 532 /* refcount should not hit 0. This object only goes 533 * away when fuse connection goes away 534 */ 535 WARN_ON_ONCE(1); 536 } 537 538 /* Maybe another thread already upgraded mapping while we were not 539 * holding lock. 540 */ 541 if (dmap->writable) { 542 ret = 0; 543 goto out_fill_iomap; 544 } 545 546 ret = fuse_setup_one_mapping(inode, pos >> FUSE_DAX_SHIFT, dmap, true, 547 true); 548 if (ret < 0) 549 goto out_err; 550 out_fill_iomap: 551 fuse_fill_iomap(inode, pos, length, iomap, dmap, flags); 552 out_err: 553 up_write(&fi->dax->sem); 554 return ret; 555 } 556 557 /* This is just for DAX and the mapping is ephemeral, do not use it for other 558 * purposes since there is no block device with a permanent mapping. 559 */ 560 static int fuse_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 561 unsigned int flags, struct iomap *iomap, 562 struct iomap *srcmap) 563 { 564 struct fuse_inode *fi = get_fuse_inode(inode); 565 struct fuse_conn *fc = get_fuse_conn(inode); 566 struct fuse_dax_mapping *dmap; 567 bool writable = flags & IOMAP_WRITE; 568 unsigned long start_idx = pos >> FUSE_DAX_SHIFT; 569 struct interval_tree_node *node; 570 571 /* We don't support FIEMAP */ 572 if (WARN_ON(flags & IOMAP_REPORT)) 573 return -EIO; 574 575 iomap->offset = pos; 576 iomap->flags = 0; 577 iomap->bdev = NULL; 578 iomap->dax_dev = fc->dax->dev; 579 580 /* 581 * Both read/write and mmap path can race here. So we need something 582 * to make sure if we are setting up mapping, then other path waits 583 * 584 * For now, use a semaphore for this. It probably needs to be 585 * optimized later. 586 */ 587 down_read(&fi->dax->sem); 588 node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx); 589 if (node) { 590 dmap = node_to_dmap(node); 591 if (writable && !dmap->writable) { 592 /* Upgrade read-only mapping to read-write. This will 593 * require exclusive fi->dax->sem lock as we don't want 594 * two threads to be trying to this simultaneously 595 * for same dmap. So drop shared lock and acquire 596 * exclusive lock. 597 * 598 * Before dropping fi->dax->sem lock, take reference 599 * on dmap so that its not freed by range reclaim. 600 */ 601 refcount_inc(&dmap->refcnt); 602 up_read(&fi->dax->sem); 603 pr_debug("%s: Upgrading mapping at offset 0x%llx length 0x%llx\n", 604 __func__, pos, length); 605 return fuse_upgrade_dax_mapping(inode, pos, length, 606 flags, iomap); 607 } else { 608 fuse_fill_iomap(inode, pos, length, iomap, dmap, flags); 609 up_read(&fi->dax->sem); 610 return 0; 611 } 612 } else { 613 up_read(&fi->dax->sem); 614 pr_debug("%s: no mapping at offset 0x%llx length 0x%llx\n", 615 __func__, pos, length); 616 if (pos >= i_size_read(inode)) 617 goto iomap_hole; 618 619 return fuse_setup_new_dax_mapping(inode, pos, length, flags, 620 iomap); 621 } 622 623 /* 624 * If read beyond end of file happnes, fs code seems to return 625 * it as hole 626 */ 627 iomap_hole: 628 fuse_fill_iomap_hole(iomap, length); 629 pr_debug("%s returning hole mapping. pos=0x%llx length_asked=0x%llx length_returned=0x%llx\n", 630 __func__, pos, length, iomap->length); 631 return 0; 632 } 633 634 static int fuse_iomap_end(struct inode *inode, loff_t pos, loff_t length, 635 ssize_t written, unsigned int flags, 636 struct iomap *iomap) 637 { 638 struct fuse_dax_mapping *dmap = iomap->private; 639 640 if (dmap) { 641 if (refcount_dec_and_test(&dmap->refcnt)) { 642 /* refcount should not hit 0. This object only goes 643 * away when fuse connection goes away 644 */ 645 WARN_ON_ONCE(1); 646 } 647 } 648 649 /* DAX writes beyond end-of-file aren't handled using iomap, so the 650 * file size is unchanged and there is nothing to do here. 651 */ 652 return 0; 653 } 654 655 static const struct iomap_ops fuse_iomap_ops = { 656 .iomap_begin = fuse_iomap_begin, 657 .iomap_end = fuse_iomap_end, 658 }; 659 660 static void fuse_wait_dax_page(struct inode *inode) 661 { 662 struct fuse_inode *fi = get_fuse_inode(inode); 663 664 up_write(&fi->i_mmap_sem); 665 schedule(); 666 down_write(&fi->i_mmap_sem); 667 } 668 669 /* Should be called with fi->i_mmap_sem lock held exclusively */ 670 static int __fuse_dax_break_layouts(struct inode *inode, bool *retry, 671 loff_t start, loff_t end) 672 { 673 struct page *page; 674 675 page = dax_layout_busy_page_range(inode->i_mapping, start, end); 676 if (!page) 677 return 0; 678 679 *retry = true; 680 return ___wait_var_event(&page->_refcount, 681 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 682 0, 0, fuse_wait_dax_page(inode)); 683 } 684 685 /* dmap_end == 0 leads to unmapping of whole file */ 686 int fuse_dax_break_layouts(struct inode *inode, u64 dmap_start, 687 u64 dmap_end) 688 { 689 bool retry; 690 int ret; 691 692 do { 693 retry = false; 694 ret = __fuse_dax_break_layouts(inode, &retry, dmap_start, 695 dmap_end); 696 } while (ret == 0 && retry); 697 698 return ret; 699 } 700 701 ssize_t fuse_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) 702 { 703 struct inode *inode = file_inode(iocb->ki_filp); 704 ssize_t ret; 705 706 if (iocb->ki_flags & IOCB_NOWAIT) { 707 if (!inode_trylock_shared(inode)) 708 return -EAGAIN; 709 } else { 710 inode_lock_shared(inode); 711 } 712 713 ret = dax_iomap_rw(iocb, to, &fuse_iomap_ops); 714 inode_unlock_shared(inode); 715 716 /* TODO file_accessed(iocb->f_filp) */ 717 return ret; 718 } 719 720 static bool file_extending_write(struct kiocb *iocb, struct iov_iter *from) 721 { 722 struct inode *inode = file_inode(iocb->ki_filp); 723 724 return (iov_iter_rw(from) == WRITE && 725 ((iocb->ki_pos) >= i_size_read(inode) || 726 (iocb->ki_pos + iov_iter_count(from) > i_size_read(inode)))); 727 } 728 729 static ssize_t fuse_dax_direct_write(struct kiocb *iocb, struct iov_iter *from) 730 { 731 struct inode *inode = file_inode(iocb->ki_filp); 732 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 733 ssize_t ret; 734 735 ret = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE); 736 if (ret < 0) 737 return ret; 738 739 fuse_invalidate_attr(inode); 740 fuse_write_update_size(inode, iocb->ki_pos); 741 return ret; 742 } 743 744 ssize_t fuse_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) 745 { 746 struct inode *inode = file_inode(iocb->ki_filp); 747 ssize_t ret; 748 749 if (iocb->ki_flags & IOCB_NOWAIT) { 750 if (!inode_trylock(inode)) 751 return -EAGAIN; 752 } else { 753 inode_lock(inode); 754 } 755 756 ret = generic_write_checks(iocb, from); 757 if (ret <= 0) 758 goto out; 759 760 ret = file_remove_privs(iocb->ki_filp); 761 if (ret) 762 goto out; 763 /* TODO file_update_time() but we don't want metadata I/O */ 764 765 /* Do not use dax for file extending writes as write and on 766 * disk i_size increase are not atomic otherwise. 767 */ 768 if (file_extending_write(iocb, from)) 769 ret = fuse_dax_direct_write(iocb, from); 770 else 771 ret = dax_iomap_rw(iocb, from, &fuse_iomap_ops); 772 773 out: 774 inode_unlock(inode); 775 776 if (ret > 0) 777 ret = generic_write_sync(iocb, ret); 778 return ret; 779 } 780 781 static int fuse_dax_writepages(struct address_space *mapping, 782 struct writeback_control *wbc) 783 { 784 785 struct inode *inode = mapping->host; 786 struct fuse_conn *fc = get_fuse_conn(inode); 787 788 return dax_writeback_mapping_range(mapping, fc->dax->dev, wbc); 789 } 790 791 static vm_fault_t __fuse_dax_fault(struct vm_fault *vmf, 792 enum page_entry_size pe_size, bool write) 793 { 794 vm_fault_t ret; 795 struct inode *inode = file_inode(vmf->vma->vm_file); 796 struct super_block *sb = inode->i_sb; 797 pfn_t pfn; 798 int error = 0; 799 struct fuse_conn *fc = get_fuse_conn(inode); 800 struct fuse_conn_dax *fcd = fc->dax; 801 bool retry = false; 802 803 if (write) 804 sb_start_pagefault(sb); 805 retry: 806 if (retry && !(fcd->nr_free_ranges > 0)) 807 wait_event(fcd->range_waitq, (fcd->nr_free_ranges > 0)); 808 809 /* 810 * We need to serialize against not only truncate but also against 811 * fuse dax memory range reclaim. While a range is being reclaimed, 812 * we do not want any read/write/mmap to make progress and try 813 * to populate page cache or access memory we are trying to free. 814 */ 815 down_read(&get_fuse_inode(inode)->i_mmap_sem); 816 ret = dax_iomap_fault(vmf, pe_size, &pfn, &error, &fuse_iomap_ops); 817 if ((ret & VM_FAULT_ERROR) && error == -EAGAIN) { 818 error = 0; 819 retry = true; 820 up_read(&get_fuse_inode(inode)->i_mmap_sem); 821 goto retry; 822 } 823 824 if (ret & VM_FAULT_NEEDDSYNC) 825 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 826 up_read(&get_fuse_inode(inode)->i_mmap_sem); 827 828 if (write) 829 sb_end_pagefault(sb); 830 831 return ret; 832 } 833 834 static vm_fault_t fuse_dax_fault(struct vm_fault *vmf) 835 { 836 return __fuse_dax_fault(vmf, PE_SIZE_PTE, 837 vmf->flags & FAULT_FLAG_WRITE); 838 } 839 840 static vm_fault_t fuse_dax_huge_fault(struct vm_fault *vmf, 841 enum page_entry_size pe_size) 842 { 843 return __fuse_dax_fault(vmf, pe_size, vmf->flags & FAULT_FLAG_WRITE); 844 } 845 846 static vm_fault_t fuse_dax_page_mkwrite(struct vm_fault *vmf) 847 { 848 return __fuse_dax_fault(vmf, PE_SIZE_PTE, true); 849 } 850 851 static vm_fault_t fuse_dax_pfn_mkwrite(struct vm_fault *vmf) 852 { 853 return __fuse_dax_fault(vmf, PE_SIZE_PTE, true); 854 } 855 856 static const struct vm_operations_struct fuse_dax_vm_ops = { 857 .fault = fuse_dax_fault, 858 .huge_fault = fuse_dax_huge_fault, 859 .page_mkwrite = fuse_dax_page_mkwrite, 860 .pfn_mkwrite = fuse_dax_pfn_mkwrite, 861 }; 862 863 int fuse_dax_mmap(struct file *file, struct vm_area_struct *vma) 864 { 865 file_accessed(file); 866 vma->vm_ops = &fuse_dax_vm_ops; 867 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 868 return 0; 869 } 870 871 static int dmap_writeback_invalidate(struct inode *inode, 872 struct fuse_dax_mapping *dmap) 873 { 874 int ret; 875 loff_t start_pos = dmap->itn.start << FUSE_DAX_SHIFT; 876 loff_t end_pos = (start_pos + FUSE_DAX_SZ - 1); 877 878 ret = filemap_fdatawrite_range(inode->i_mapping, start_pos, end_pos); 879 if (ret) { 880 pr_debug("fuse: filemap_fdatawrite_range() failed. err=%d start_pos=0x%llx, end_pos=0x%llx\n", 881 ret, start_pos, end_pos); 882 return ret; 883 } 884 885 ret = invalidate_inode_pages2_range(inode->i_mapping, 886 start_pos >> PAGE_SHIFT, 887 end_pos >> PAGE_SHIFT); 888 if (ret) 889 pr_debug("fuse: invalidate_inode_pages2_range() failed err=%d\n", 890 ret); 891 892 return ret; 893 } 894 895 static int reclaim_one_dmap_locked(struct inode *inode, 896 struct fuse_dax_mapping *dmap) 897 { 898 int ret; 899 struct fuse_inode *fi = get_fuse_inode(inode); 900 901 /* 902 * igrab() was done to make sure inode won't go under us, and this 903 * further avoids the race with evict(). 904 */ 905 ret = dmap_writeback_invalidate(inode, dmap); 906 if (ret) 907 return ret; 908 909 /* Remove dax mapping from inode interval tree now */ 910 interval_tree_remove(&dmap->itn, &fi->dax->tree); 911 fi->dax->nr--; 912 913 /* It is possible that umount/shutdown has killed the fuse connection 914 * and worker thread is trying to reclaim memory in parallel. Don't 915 * warn in that case. 916 */ 917 ret = dmap_removemapping_one(inode, dmap); 918 if (ret && ret != -ENOTCONN) { 919 pr_warn("Failed to remove mapping. offset=0x%llx len=0x%llx ret=%d\n", 920 dmap->window_offset, dmap->length, ret); 921 } 922 return 0; 923 } 924 925 /* Find first mapped dmap for an inode and return file offset. Caller needs 926 * to hold fi->dax->sem lock either shared or exclusive. 927 */ 928 static struct fuse_dax_mapping *inode_lookup_first_dmap(struct inode *inode) 929 { 930 struct fuse_inode *fi = get_fuse_inode(inode); 931 struct fuse_dax_mapping *dmap; 932 struct interval_tree_node *node; 933 934 for (node = interval_tree_iter_first(&fi->dax->tree, 0, -1); node; 935 node = interval_tree_iter_next(node, 0, -1)) { 936 dmap = node_to_dmap(node); 937 /* still in use. */ 938 if (refcount_read(&dmap->refcnt) > 1) 939 continue; 940 941 return dmap; 942 } 943 944 return NULL; 945 } 946 947 /* 948 * Find first mapping in the tree and free it and return it. Do not add 949 * it back to free pool. 950 */ 951 static struct fuse_dax_mapping * 952 inode_inline_reclaim_one_dmap(struct fuse_conn_dax *fcd, struct inode *inode, 953 bool *retry) 954 { 955 struct fuse_inode *fi = get_fuse_inode(inode); 956 struct fuse_dax_mapping *dmap; 957 u64 dmap_start, dmap_end; 958 unsigned long start_idx; 959 int ret; 960 struct interval_tree_node *node; 961 962 down_write(&fi->i_mmap_sem); 963 964 /* Lookup a dmap and corresponding file offset to reclaim. */ 965 down_read(&fi->dax->sem); 966 dmap = inode_lookup_first_dmap(inode); 967 if (dmap) { 968 start_idx = dmap->itn.start; 969 dmap_start = start_idx << FUSE_DAX_SHIFT; 970 dmap_end = dmap_start + FUSE_DAX_SZ - 1; 971 } 972 up_read(&fi->dax->sem); 973 974 if (!dmap) 975 goto out_mmap_sem; 976 /* 977 * Make sure there are no references to inode pages using 978 * get_user_pages() 979 */ 980 ret = fuse_dax_break_layouts(inode, dmap_start, dmap_end); 981 if (ret) { 982 pr_debug("fuse: fuse_dax_break_layouts() failed. err=%d\n", 983 ret); 984 dmap = ERR_PTR(ret); 985 goto out_mmap_sem; 986 } 987 988 down_write(&fi->dax->sem); 989 node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx); 990 /* Range already got reclaimed by somebody else */ 991 if (!node) { 992 if (retry) 993 *retry = true; 994 goto out_write_dmap_sem; 995 } 996 997 dmap = node_to_dmap(node); 998 /* still in use. */ 999 if (refcount_read(&dmap->refcnt) > 1) { 1000 dmap = NULL; 1001 if (retry) 1002 *retry = true; 1003 goto out_write_dmap_sem; 1004 } 1005 1006 ret = reclaim_one_dmap_locked(inode, dmap); 1007 if (ret < 0) { 1008 dmap = ERR_PTR(ret); 1009 goto out_write_dmap_sem; 1010 } 1011 1012 /* Clean up dmap. Do not add back to free list */ 1013 dmap_remove_busy_list(fcd, dmap); 1014 dmap->inode = NULL; 1015 dmap->itn.start = dmap->itn.last = 0; 1016 1017 pr_debug("fuse: %s: inline reclaimed memory range. inode=%p, window_offset=0x%llx, length=0x%llx\n", 1018 __func__, inode, dmap->window_offset, dmap->length); 1019 1020 out_write_dmap_sem: 1021 up_write(&fi->dax->sem); 1022 out_mmap_sem: 1023 up_write(&fi->i_mmap_sem); 1024 return dmap; 1025 } 1026 1027 static struct fuse_dax_mapping * 1028 alloc_dax_mapping_reclaim(struct fuse_conn_dax *fcd, struct inode *inode) 1029 { 1030 struct fuse_dax_mapping *dmap; 1031 struct fuse_inode *fi = get_fuse_inode(inode); 1032 1033 while (1) { 1034 bool retry = false; 1035 1036 dmap = alloc_dax_mapping(fcd); 1037 if (dmap) 1038 return dmap; 1039 1040 dmap = inode_inline_reclaim_one_dmap(fcd, inode, &retry); 1041 /* 1042 * Either we got a mapping or it is an error, return in both 1043 * the cases. 1044 */ 1045 if (dmap) 1046 return dmap; 1047 1048 /* If we could not reclaim a mapping because it 1049 * had a reference or some other temporary failure, 1050 * Try again. We want to give up inline reclaim only 1051 * if there is no range assigned to this node. Otherwise 1052 * if a deadlock is possible if we sleep with fi->i_mmap_sem 1053 * held and worker to free memory can't make progress due 1054 * to unavailability of fi->i_mmap_sem lock. So sleep 1055 * only if fi->dax->nr=0 1056 */ 1057 if (retry) 1058 continue; 1059 /* 1060 * There are no mappings which can be reclaimed. Wait for one. 1061 * We are not holding fi->dax->sem. So it is possible 1062 * that range gets added now. But as we are not holding 1063 * fi->i_mmap_sem, worker should still be able to free up 1064 * a range and wake us up. 1065 */ 1066 if (!fi->dax->nr && !(fcd->nr_free_ranges > 0)) { 1067 if (wait_event_killable_exclusive(fcd->range_waitq, 1068 (fcd->nr_free_ranges > 0))) { 1069 return ERR_PTR(-EINTR); 1070 } 1071 } 1072 } 1073 } 1074 1075 static int lookup_and_reclaim_dmap_locked(struct fuse_conn_dax *fcd, 1076 struct inode *inode, 1077 unsigned long start_idx) 1078 { 1079 int ret; 1080 struct fuse_inode *fi = get_fuse_inode(inode); 1081 struct fuse_dax_mapping *dmap; 1082 struct interval_tree_node *node; 1083 1084 /* Find fuse dax mapping at file offset inode. */ 1085 node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx); 1086 1087 /* Range already got cleaned up by somebody else */ 1088 if (!node) 1089 return 0; 1090 dmap = node_to_dmap(node); 1091 1092 /* still in use. */ 1093 if (refcount_read(&dmap->refcnt) > 1) 1094 return 0; 1095 1096 ret = reclaim_one_dmap_locked(inode, dmap); 1097 if (ret < 0) 1098 return ret; 1099 1100 /* Cleanup dmap entry and add back to free list */ 1101 spin_lock(&fcd->lock); 1102 dmap_reinit_add_to_free_pool(fcd, dmap); 1103 spin_unlock(&fcd->lock); 1104 return ret; 1105 } 1106 1107 /* 1108 * Free a range of memory. 1109 * Locking: 1110 * 1. Take fi->i_mmap_sem to block dax faults. 1111 * 2. Take fi->dax->sem to protect interval tree and also to make sure 1112 * read/write can not reuse a dmap which we might be freeing. 1113 */ 1114 static int lookup_and_reclaim_dmap(struct fuse_conn_dax *fcd, 1115 struct inode *inode, 1116 unsigned long start_idx, 1117 unsigned long end_idx) 1118 { 1119 int ret; 1120 struct fuse_inode *fi = get_fuse_inode(inode); 1121 loff_t dmap_start = start_idx << FUSE_DAX_SHIFT; 1122 loff_t dmap_end = (dmap_start + FUSE_DAX_SZ) - 1; 1123 1124 down_write(&fi->i_mmap_sem); 1125 ret = fuse_dax_break_layouts(inode, dmap_start, dmap_end); 1126 if (ret) { 1127 pr_debug("virtio_fs: fuse_dax_break_layouts() failed. err=%d\n", 1128 ret); 1129 goto out_mmap_sem; 1130 } 1131 1132 down_write(&fi->dax->sem); 1133 ret = lookup_and_reclaim_dmap_locked(fcd, inode, start_idx); 1134 up_write(&fi->dax->sem); 1135 out_mmap_sem: 1136 up_write(&fi->i_mmap_sem); 1137 return ret; 1138 } 1139 1140 static int try_to_free_dmap_chunks(struct fuse_conn_dax *fcd, 1141 unsigned long nr_to_free) 1142 { 1143 struct fuse_dax_mapping *dmap, *pos, *temp; 1144 int ret, nr_freed = 0; 1145 unsigned long start_idx = 0, end_idx = 0; 1146 struct inode *inode = NULL; 1147 1148 /* Pick first busy range and free it for now*/ 1149 while (1) { 1150 if (nr_freed >= nr_to_free) 1151 break; 1152 1153 dmap = NULL; 1154 spin_lock(&fcd->lock); 1155 1156 if (!fcd->nr_busy_ranges) { 1157 spin_unlock(&fcd->lock); 1158 return 0; 1159 } 1160 1161 list_for_each_entry_safe(pos, temp, &fcd->busy_ranges, 1162 busy_list) { 1163 /* skip this range if it's in use. */ 1164 if (refcount_read(&pos->refcnt) > 1) 1165 continue; 1166 1167 inode = igrab(pos->inode); 1168 /* 1169 * This inode is going away. That will free 1170 * up all the ranges anyway, continue to 1171 * next range. 1172 */ 1173 if (!inode) 1174 continue; 1175 /* 1176 * Take this element off list and add it tail. If 1177 * this element can't be freed, it will help with 1178 * selecting new element in next iteration of loop. 1179 */ 1180 dmap = pos; 1181 list_move_tail(&dmap->busy_list, &fcd->busy_ranges); 1182 start_idx = end_idx = dmap->itn.start; 1183 break; 1184 } 1185 spin_unlock(&fcd->lock); 1186 if (!dmap) 1187 return 0; 1188 1189 ret = lookup_and_reclaim_dmap(fcd, inode, start_idx, end_idx); 1190 iput(inode); 1191 if (ret) 1192 return ret; 1193 nr_freed++; 1194 } 1195 return 0; 1196 } 1197 1198 static void fuse_dax_free_mem_worker(struct work_struct *work) 1199 { 1200 int ret; 1201 struct fuse_conn_dax *fcd = container_of(work, struct fuse_conn_dax, 1202 free_work.work); 1203 ret = try_to_free_dmap_chunks(fcd, FUSE_DAX_RECLAIM_CHUNK); 1204 if (ret) { 1205 pr_debug("fuse: try_to_free_dmap_chunks() failed with err=%d\n", 1206 ret); 1207 } 1208 1209 /* If number of free ranges are still below threhold, requeue */ 1210 kick_dmap_free_worker(fcd, 1); 1211 } 1212 1213 static void fuse_free_dax_mem_ranges(struct list_head *mem_list) 1214 { 1215 struct fuse_dax_mapping *range, *temp; 1216 1217 /* Free All allocated elements */ 1218 list_for_each_entry_safe(range, temp, mem_list, list) { 1219 list_del(&range->list); 1220 if (!list_empty(&range->busy_list)) 1221 list_del(&range->busy_list); 1222 kfree(range); 1223 } 1224 } 1225 1226 void fuse_dax_conn_free(struct fuse_conn *fc) 1227 { 1228 if (fc->dax) { 1229 fuse_free_dax_mem_ranges(&fc->dax->free_ranges); 1230 kfree(fc->dax); 1231 } 1232 } 1233 1234 static int fuse_dax_mem_range_init(struct fuse_conn_dax *fcd) 1235 { 1236 long nr_pages, nr_ranges; 1237 void *kaddr; 1238 pfn_t pfn; 1239 struct fuse_dax_mapping *range; 1240 int ret, id; 1241 size_t dax_size = -1; 1242 unsigned long i; 1243 1244 init_waitqueue_head(&fcd->range_waitq); 1245 INIT_LIST_HEAD(&fcd->free_ranges); 1246 INIT_LIST_HEAD(&fcd->busy_ranges); 1247 INIT_DELAYED_WORK(&fcd->free_work, fuse_dax_free_mem_worker); 1248 1249 id = dax_read_lock(); 1250 nr_pages = dax_direct_access(fcd->dev, 0, PHYS_PFN(dax_size), &kaddr, 1251 &pfn); 1252 dax_read_unlock(id); 1253 if (nr_pages < 0) { 1254 pr_debug("dax_direct_access() returned %ld\n", nr_pages); 1255 return nr_pages; 1256 } 1257 1258 nr_ranges = nr_pages/FUSE_DAX_PAGES; 1259 pr_debug("%s: dax mapped %ld pages. nr_ranges=%ld\n", 1260 __func__, nr_pages, nr_ranges); 1261 1262 for (i = 0; i < nr_ranges; i++) { 1263 range = kzalloc(sizeof(struct fuse_dax_mapping), GFP_KERNEL); 1264 ret = -ENOMEM; 1265 if (!range) 1266 goto out_err; 1267 1268 /* TODO: This offset only works if virtio-fs driver is not 1269 * having some memory hidden at the beginning. This needs 1270 * better handling 1271 */ 1272 range->window_offset = i * FUSE_DAX_SZ; 1273 range->length = FUSE_DAX_SZ; 1274 INIT_LIST_HEAD(&range->busy_list); 1275 refcount_set(&range->refcnt, 1); 1276 list_add_tail(&range->list, &fcd->free_ranges); 1277 } 1278 1279 fcd->nr_free_ranges = nr_ranges; 1280 fcd->nr_ranges = nr_ranges; 1281 return 0; 1282 out_err: 1283 /* Free All allocated elements */ 1284 fuse_free_dax_mem_ranges(&fcd->free_ranges); 1285 return ret; 1286 } 1287 1288 int fuse_dax_conn_alloc(struct fuse_conn *fc, struct dax_device *dax_dev) 1289 { 1290 struct fuse_conn_dax *fcd; 1291 int err; 1292 1293 if (!dax_dev) 1294 return 0; 1295 1296 fcd = kzalloc(sizeof(*fcd), GFP_KERNEL); 1297 if (!fcd) 1298 return -ENOMEM; 1299 1300 spin_lock_init(&fcd->lock); 1301 fcd->dev = dax_dev; 1302 err = fuse_dax_mem_range_init(fcd); 1303 if (err) { 1304 kfree(fcd); 1305 return err; 1306 } 1307 1308 fc->dax = fcd; 1309 return 0; 1310 } 1311 1312 bool fuse_dax_inode_alloc(struct super_block *sb, struct fuse_inode *fi) 1313 { 1314 struct fuse_conn *fc = get_fuse_conn_super(sb); 1315 1316 fi->dax = NULL; 1317 if (fc->dax) { 1318 fi->dax = kzalloc(sizeof(*fi->dax), GFP_KERNEL_ACCOUNT); 1319 if (!fi->dax) 1320 return false; 1321 1322 init_rwsem(&fi->dax->sem); 1323 fi->dax->tree = RB_ROOT_CACHED; 1324 } 1325 1326 return true; 1327 } 1328 1329 static const struct address_space_operations fuse_dax_file_aops = { 1330 .writepages = fuse_dax_writepages, 1331 .direct_IO = noop_direct_IO, 1332 .set_page_dirty = noop_set_page_dirty, 1333 .invalidatepage = noop_invalidatepage, 1334 }; 1335 1336 void fuse_dax_inode_init(struct inode *inode) 1337 { 1338 struct fuse_conn *fc = get_fuse_conn(inode); 1339 1340 if (!fc->dax) 1341 return; 1342 1343 inode->i_flags |= S_DAX; 1344 inode->i_data.a_ops = &fuse_dax_file_aops; 1345 } 1346 1347 bool fuse_dax_check_alignment(struct fuse_conn *fc, unsigned int map_alignment) 1348 { 1349 if (fc->dax && (map_alignment > FUSE_DAX_SHIFT)) { 1350 pr_warn("FUSE: map_alignment %u incompatible with dax mem range size %u\n", 1351 map_alignment, FUSE_DAX_SZ); 1352 return false; 1353 } 1354 return true; 1355 } 1356 1357 void fuse_dax_cancel_work(struct fuse_conn *fc) 1358 { 1359 struct fuse_conn_dax *fcd = fc->dax; 1360 1361 if (fcd) 1362 cancel_delayed_work_sync(&fcd->free_work); 1363 1364 } 1365 EXPORT_SYMBOL_GPL(fuse_dax_cancel_work); 1366