1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Provide a way to create a superblock configuration context within the kernel 3 * that allows a superblock to be set up prior to mounting. 4 * 5 * Copyright (C) 2017 Red Hat, Inc. All Rights Reserved. 6 * Written by David Howells (dhowells@redhat.com) 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 #include <linux/module.h> 11 #include <linux/fs_context.h> 12 #include <linux/fs_parser.h> 13 #include <linux/fs.h> 14 #include <linux/mount.h> 15 #include <linux/nsproxy.h> 16 #include <linux/slab.h> 17 #include <linux/magic.h> 18 #include <linux/security.h> 19 #include <linux/mnt_namespace.h> 20 #include <linux/pid_namespace.h> 21 #include <linux/user_namespace.h> 22 #include <net/net_namespace.h> 23 #include <asm/sections.h> 24 #include "mount.h" 25 #include "internal.h" 26 27 enum legacy_fs_param { 28 LEGACY_FS_UNSET_PARAMS, 29 LEGACY_FS_MONOLITHIC_PARAMS, 30 LEGACY_FS_INDIVIDUAL_PARAMS, 31 }; 32 33 struct legacy_fs_context { 34 char *legacy_data; /* Data page for legacy filesystems */ 35 size_t data_size; 36 enum legacy_fs_param param_type; 37 }; 38 39 static int legacy_init_fs_context(struct fs_context *fc); 40 41 static const struct constant_table common_set_sb_flag[] = { 42 { "dirsync", SB_DIRSYNC }, 43 { "lazytime", SB_LAZYTIME }, 44 { "mand", SB_MANDLOCK }, 45 { "ro", SB_RDONLY }, 46 { "sync", SB_SYNCHRONOUS }, 47 { }, 48 }; 49 50 static const struct constant_table common_clear_sb_flag[] = { 51 { "async", SB_SYNCHRONOUS }, 52 { "nolazytime", SB_LAZYTIME }, 53 { "nomand", SB_MANDLOCK }, 54 { "rw", SB_RDONLY }, 55 { }, 56 }; 57 58 /* 59 * Check for a common mount option that manipulates s_flags. 60 */ 61 static int vfs_parse_sb_flag(struct fs_context *fc, const char *key) 62 { 63 unsigned int token; 64 65 token = lookup_constant(common_set_sb_flag, key, 0); 66 if (token) { 67 fc->sb_flags |= token; 68 fc->sb_flags_mask |= token; 69 return 0; 70 } 71 72 token = lookup_constant(common_clear_sb_flag, key, 0); 73 if (token) { 74 fc->sb_flags &= ~token; 75 fc->sb_flags_mask |= token; 76 return 0; 77 } 78 79 return -ENOPARAM; 80 } 81 82 /** 83 * vfs_parse_fs_param_source - Handle setting "source" via parameter 84 * @fc: The filesystem context to modify 85 * @param: The parameter 86 * 87 * This is a simple helper for filesystems to verify that the "source" they 88 * accept is sane. 89 * 90 * Returns 0 on success, -ENOPARAM if this is not "source" parameter, and 91 * -EINVAL otherwise. In the event of failure, supplementary error information 92 * is logged. 93 */ 94 int vfs_parse_fs_param_source(struct fs_context *fc, struct fs_parameter *param) 95 { 96 if (strcmp(param->key, "source") != 0) 97 return -ENOPARAM; 98 99 if (param->type != fs_value_is_string) 100 return invalf(fc, "Non-string source"); 101 102 if (fc->source) 103 return invalf(fc, "Multiple sources"); 104 105 fc->source = param->string; 106 param->string = NULL; 107 return 0; 108 } 109 EXPORT_SYMBOL(vfs_parse_fs_param_source); 110 111 /** 112 * vfs_parse_fs_param - Add a single parameter to a superblock config 113 * @fc: The filesystem context to modify 114 * @param: The parameter 115 * 116 * A single mount option in string form is applied to the filesystem context 117 * being set up. Certain standard options (for example "ro") are translated 118 * into flag bits without going to the filesystem. The active security module 119 * is allowed to observe and poach options. Any other options are passed over 120 * to the filesystem to parse. 121 * 122 * This may be called multiple times for a context. 123 * 124 * Returns 0 on success and a negative error code on failure. In the event of 125 * failure, supplementary error information may have been set. 126 */ 127 int vfs_parse_fs_param(struct fs_context *fc, struct fs_parameter *param) 128 { 129 int ret; 130 131 if (!param->key) 132 return invalf(fc, "Unnamed parameter\n"); 133 134 ret = vfs_parse_sb_flag(fc, param->key); 135 if (ret != -ENOPARAM) 136 return ret; 137 138 ret = security_fs_context_parse_param(fc, param); 139 if (ret != -ENOPARAM) 140 /* Param belongs to the LSM or is disallowed by the LSM; so 141 * don't pass to the FS. 142 */ 143 return ret; 144 145 if (fc->ops->parse_param) { 146 ret = fc->ops->parse_param(fc, param); 147 if (ret != -ENOPARAM) 148 return ret; 149 } 150 151 /* If the filesystem doesn't take any arguments, give it the 152 * default handling of source. 153 */ 154 ret = vfs_parse_fs_param_source(fc, param); 155 if (ret != -ENOPARAM) 156 return ret; 157 158 return invalf(fc, "%s: Unknown parameter '%s'", 159 fc->fs_type->name, param->key); 160 } 161 EXPORT_SYMBOL(vfs_parse_fs_param); 162 163 /** 164 * vfs_parse_fs_string - Convenience function to just parse a string. 165 * @fc: Filesystem context. 166 * @key: Parameter name. 167 * @value: Default value. 168 * @v_size: Maximum number of bytes in the value. 169 */ 170 int vfs_parse_fs_string(struct fs_context *fc, const char *key, 171 const char *value, size_t v_size) 172 { 173 int ret; 174 175 struct fs_parameter param = { 176 .key = key, 177 .type = fs_value_is_flag, 178 .size = v_size, 179 }; 180 181 if (value) { 182 param.string = kmemdup_nul(value, v_size, GFP_KERNEL); 183 if (!param.string) 184 return -ENOMEM; 185 param.type = fs_value_is_string; 186 } 187 188 ret = vfs_parse_fs_param(fc, ¶m); 189 kfree(param.string); 190 return ret; 191 } 192 EXPORT_SYMBOL(vfs_parse_fs_string); 193 194 /** 195 * vfs_parse_monolithic_sep - Parse key[=val][,key[=val]]* mount data 196 * @fc: The superblock configuration to fill in. 197 * @data: The data to parse 198 * @sep: callback for separating next option 199 * 200 * Parse a blob of data that's in key[=val][,key[=val]]* form with a custom 201 * option separator callback. 202 * 203 * Returns 0 on success or the error returned by the ->parse_option() fs_context 204 * operation on failure. 205 */ 206 int vfs_parse_monolithic_sep(struct fs_context *fc, void *data, 207 char *(*sep)(char **)) 208 { 209 char *options = data, *key; 210 int ret = 0; 211 212 if (!options) 213 return 0; 214 215 ret = security_sb_eat_lsm_opts(options, &fc->security); 216 if (ret) 217 return ret; 218 219 while ((key = sep(&options)) != NULL) { 220 if (*key) { 221 size_t v_len = 0; 222 char *value = strchr(key, '='); 223 224 if (value) { 225 if (value == key) 226 continue; 227 *value++ = 0; 228 v_len = strlen(value); 229 } 230 ret = vfs_parse_fs_string(fc, key, value, v_len); 231 if (ret < 0) 232 break; 233 } 234 } 235 236 return ret; 237 } 238 EXPORT_SYMBOL(vfs_parse_monolithic_sep); 239 240 static char *vfs_parse_comma_sep(char **s) 241 { 242 return strsep(s, ","); 243 } 244 245 /** 246 * generic_parse_monolithic - Parse key[=val][,key[=val]]* mount data 247 * @fc: The superblock configuration to fill in. 248 * @data: The data to parse 249 * 250 * Parse a blob of data that's in key[=val][,key[=val]]* form. This can be 251 * called from the ->monolithic_mount_data() fs_context operation. 252 * 253 * Returns 0 on success or the error returned by the ->parse_option() fs_context 254 * operation on failure. 255 */ 256 int generic_parse_monolithic(struct fs_context *fc, void *data) 257 { 258 return vfs_parse_monolithic_sep(fc, data, vfs_parse_comma_sep); 259 } 260 EXPORT_SYMBOL(generic_parse_monolithic); 261 262 /** 263 * alloc_fs_context - Create a filesystem context. 264 * @fs_type: The filesystem type. 265 * @reference: The dentry from which this one derives (or NULL) 266 * @sb_flags: Filesystem/superblock flags (SB_*) 267 * @sb_flags_mask: Applicable members of @sb_flags 268 * @purpose: The purpose that this configuration shall be used for. 269 * 270 * Open a filesystem and create a mount context. The mount context is 271 * initialised with the supplied flags and, if a submount/automount from 272 * another superblock (referred to by @reference) is supplied, may have 273 * parameters such as namespaces copied across from that superblock. 274 */ 275 static struct fs_context *alloc_fs_context(struct file_system_type *fs_type, 276 struct dentry *reference, 277 unsigned int sb_flags, 278 unsigned int sb_flags_mask, 279 enum fs_context_purpose purpose) 280 { 281 int (*init_fs_context)(struct fs_context *); 282 struct fs_context *fc; 283 int ret = -ENOMEM; 284 285 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL_ACCOUNT); 286 if (!fc) 287 return ERR_PTR(-ENOMEM); 288 289 fc->purpose = purpose; 290 fc->sb_flags = sb_flags; 291 fc->sb_flags_mask = sb_flags_mask; 292 fc->fs_type = get_filesystem(fs_type); 293 fc->cred = get_current_cred(); 294 fc->net_ns = get_net(current->nsproxy->net_ns); 295 fc->log.prefix = fs_type->name; 296 297 mutex_init(&fc->uapi_mutex); 298 299 switch (purpose) { 300 case FS_CONTEXT_FOR_MOUNT: 301 fc->user_ns = get_user_ns(fc->cred->user_ns); 302 break; 303 case FS_CONTEXT_FOR_SUBMOUNT: 304 fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); 305 break; 306 case FS_CONTEXT_FOR_RECONFIGURE: 307 atomic_inc(&reference->d_sb->s_active); 308 fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); 309 fc->root = dget(reference); 310 break; 311 } 312 313 /* TODO: Make all filesystems support this unconditionally */ 314 init_fs_context = fc->fs_type->init_fs_context; 315 if (!init_fs_context) 316 init_fs_context = legacy_init_fs_context; 317 318 ret = init_fs_context(fc); 319 if (ret < 0) 320 goto err_fc; 321 fc->need_free = true; 322 return fc; 323 324 err_fc: 325 put_fs_context(fc); 326 return ERR_PTR(ret); 327 } 328 329 struct fs_context *fs_context_for_mount(struct file_system_type *fs_type, 330 unsigned int sb_flags) 331 { 332 return alloc_fs_context(fs_type, NULL, sb_flags, 0, 333 FS_CONTEXT_FOR_MOUNT); 334 } 335 EXPORT_SYMBOL(fs_context_for_mount); 336 337 struct fs_context *fs_context_for_reconfigure(struct dentry *dentry, 338 unsigned int sb_flags, 339 unsigned int sb_flags_mask) 340 { 341 return alloc_fs_context(dentry->d_sb->s_type, dentry, sb_flags, 342 sb_flags_mask, FS_CONTEXT_FOR_RECONFIGURE); 343 } 344 EXPORT_SYMBOL(fs_context_for_reconfigure); 345 346 /** 347 * fs_context_for_submount: allocate a new fs_context for a submount 348 * @type: file_system_type of the new context 349 * @reference: reference dentry from which to copy relevant info 350 * 351 * Allocate a new fs_context suitable for a submount. This also ensures that 352 * the fc->security object is inherited from @reference (if needed). 353 */ 354 struct fs_context *fs_context_for_submount(struct file_system_type *type, 355 struct dentry *reference) 356 { 357 struct fs_context *fc; 358 int ret; 359 360 fc = alloc_fs_context(type, reference, 0, 0, FS_CONTEXT_FOR_SUBMOUNT); 361 if (IS_ERR(fc)) 362 return fc; 363 364 ret = security_fs_context_submount(fc, reference->d_sb); 365 if (ret) { 366 put_fs_context(fc); 367 return ERR_PTR(ret); 368 } 369 370 return fc; 371 } 372 EXPORT_SYMBOL(fs_context_for_submount); 373 374 void fc_drop_locked(struct fs_context *fc) 375 { 376 struct super_block *sb = fc->root->d_sb; 377 dput(fc->root); 378 fc->root = NULL; 379 deactivate_locked_super(sb); 380 } 381 382 static void legacy_fs_context_free(struct fs_context *fc); 383 384 /** 385 * vfs_dup_fs_context - Duplicate a filesystem context. 386 * @src_fc: The context to copy. 387 */ 388 struct fs_context *vfs_dup_fs_context(struct fs_context *src_fc) 389 { 390 struct fs_context *fc; 391 int ret; 392 393 if (!src_fc->ops->dup) 394 return ERR_PTR(-EOPNOTSUPP); 395 396 fc = kmemdup(src_fc, sizeof(struct fs_context), GFP_KERNEL); 397 if (!fc) 398 return ERR_PTR(-ENOMEM); 399 400 mutex_init(&fc->uapi_mutex); 401 402 fc->fs_private = NULL; 403 fc->s_fs_info = NULL; 404 fc->source = NULL; 405 fc->security = NULL; 406 get_filesystem(fc->fs_type); 407 get_net(fc->net_ns); 408 get_user_ns(fc->user_ns); 409 get_cred(fc->cred); 410 if (fc->log.log) 411 refcount_inc(&fc->log.log->usage); 412 413 /* Can't call put until we've called ->dup */ 414 ret = fc->ops->dup(fc, src_fc); 415 if (ret < 0) 416 goto err_fc; 417 418 ret = security_fs_context_dup(fc, src_fc); 419 if (ret < 0) 420 goto err_fc; 421 return fc; 422 423 err_fc: 424 put_fs_context(fc); 425 return ERR_PTR(ret); 426 } 427 EXPORT_SYMBOL(vfs_dup_fs_context); 428 429 /** 430 * logfc - Log a message to a filesystem context 431 * @log: The filesystem context to log to, or NULL to use printk. 432 * @prefix: A string to prefix the output with, or NULL. 433 * @level: 'w' for a warning, 'e' for an error. Anything else is a notice. 434 * @fmt: The format of the buffer. 435 */ 436 void logfc(struct fc_log *log, const char *prefix, char level, const char *fmt, ...) 437 { 438 va_list va; 439 struct va_format vaf = {.fmt = fmt, .va = &va}; 440 441 va_start(va, fmt); 442 if (!log) { 443 switch (level) { 444 case 'w': 445 printk(KERN_WARNING "%s%s%pV\n", prefix ? prefix : "", 446 prefix ? ": " : "", &vaf); 447 break; 448 case 'e': 449 printk(KERN_ERR "%s%s%pV\n", prefix ? prefix : "", 450 prefix ? ": " : "", &vaf); 451 break; 452 default: 453 printk(KERN_NOTICE "%s%s%pV\n", prefix ? prefix : "", 454 prefix ? ": " : "", &vaf); 455 break; 456 } 457 } else { 458 unsigned int logsize = ARRAY_SIZE(log->buffer); 459 u8 index; 460 char *q = kasprintf(GFP_KERNEL, "%c %s%s%pV\n", level, 461 prefix ? prefix : "", 462 prefix ? ": " : "", &vaf); 463 464 index = log->head & (logsize - 1); 465 BUILD_BUG_ON(sizeof(log->head) != sizeof(u8) || 466 sizeof(log->tail) != sizeof(u8)); 467 if ((u8)(log->head - log->tail) == logsize) { 468 /* The buffer is full, discard the oldest message */ 469 if (log->need_free & (1 << index)) 470 kfree(log->buffer[index]); 471 log->tail++; 472 } 473 474 log->buffer[index] = q ? q : "OOM: Can't store error string"; 475 if (q) 476 log->need_free |= 1 << index; 477 else 478 log->need_free &= ~(1 << index); 479 log->head++; 480 } 481 va_end(va); 482 } 483 EXPORT_SYMBOL(logfc); 484 485 /* 486 * Free a logging structure. 487 */ 488 static void put_fc_log(struct fs_context *fc) 489 { 490 struct fc_log *log = fc->log.log; 491 int i; 492 493 if (log) { 494 if (refcount_dec_and_test(&log->usage)) { 495 fc->log.log = NULL; 496 for (i = 0; i <= 7; i++) 497 if (log->need_free & (1 << i)) 498 kfree(log->buffer[i]); 499 kfree(log); 500 } 501 } 502 } 503 504 /** 505 * put_fs_context - Dispose of a superblock configuration context. 506 * @fc: The context to dispose of. 507 */ 508 void put_fs_context(struct fs_context *fc) 509 { 510 struct super_block *sb; 511 512 if (fc->root) { 513 sb = fc->root->d_sb; 514 dput(fc->root); 515 fc->root = NULL; 516 deactivate_super(sb); 517 } 518 519 if (fc->need_free && fc->ops && fc->ops->free) 520 fc->ops->free(fc); 521 522 security_free_mnt_opts(&fc->security); 523 put_net(fc->net_ns); 524 put_user_ns(fc->user_ns); 525 put_cred(fc->cred); 526 put_fc_log(fc); 527 put_filesystem(fc->fs_type); 528 kfree(fc->source); 529 kfree(fc); 530 } 531 EXPORT_SYMBOL(put_fs_context); 532 533 /* 534 * Free the config for a filesystem that doesn't support fs_context. 535 */ 536 static void legacy_fs_context_free(struct fs_context *fc) 537 { 538 struct legacy_fs_context *ctx = fc->fs_private; 539 540 if (ctx) { 541 if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) 542 kfree(ctx->legacy_data); 543 kfree(ctx); 544 } 545 } 546 547 /* 548 * Duplicate a legacy config. 549 */ 550 static int legacy_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 551 { 552 struct legacy_fs_context *ctx; 553 struct legacy_fs_context *src_ctx = src_fc->fs_private; 554 555 ctx = kmemdup(src_ctx, sizeof(*src_ctx), GFP_KERNEL); 556 if (!ctx) 557 return -ENOMEM; 558 559 if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) { 560 ctx->legacy_data = kmemdup(src_ctx->legacy_data, 561 src_ctx->data_size, GFP_KERNEL); 562 if (!ctx->legacy_data) { 563 kfree(ctx); 564 return -ENOMEM; 565 } 566 } 567 568 fc->fs_private = ctx; 569 return 0; 570 } 571 572 /* 573 * Add a parameter to a legacy config. We build up a comma-separated list of 574 * options. 575 */ 576 static int legacy_parse_param(struct fs_context *fc, struct fs_parameter *param) 577 { 578 struct legacy_fs_context *ctx = fc->fs_private; 579 unsigned int size = ctx->data_size; 580 size_t len = 0; 581 int ret; 582 583 ret = vfs_parse_fs_param_source(fc, param); 584 if (ret != -ENOPARAM) 585 return ret; 586 587 if (ctx->param_type == LEGACY_FS_MONOLITHIC_PARAMS) 588 return invalf(fc, "VFS: Legacy: Can't mix monolithic and individual options"); 589 590 switch (param->type) { 591 case fs_value_is_string: 592 len = 1 + param->size; 593 fallthrough; 594 case fs_value_is_flag: 595 len += strlen(param->key); 596 break; 597 default: 598 return invalf(fc, "VFS: Legacy: Parameter type for '%s' not supported", 599 param->key); 600 } 601 602 if (size + len + 2 > PAGE_SIZE) 603 return invalf(fc, "VFS: Legacy: Cumulative options too large"); 604 if (strchr(param->key, ',') || 605 (param->type == fs_value_is_string && 606 memchr(param->string, ',', param->size))) 607 return invalf(fc, "VFS: Legacy: Option '%s' contained comma", 608 param->key); 609 if (!ctx->legacy_data) { 610 ctx->legacy_data = kmalloc(PAGE_SIZE, GFP_KERNEL); 611 if (!ctx->legacy_data) 612 return -ENOMEM; 613 } 614 615 if (size) 616 ctx->legacy_data[size++] = ','; 617 len = strlen(param->key); 618 memcpy(ctx->legacy_data + size, param->key, len); 619 size += len; 620 if (param->type == fs_value_is_string) { 621 ctx->legacy_data[size++] = '='; 622 memcpy(ctx->legacy_data + size, param->string, param->size); 623 size += param->size; 624 } 625 ctx->legacy_data[size] = '\0'; 626 ctx->data_size = size; 627 ctx->param_type = LEGACY_FS_INDIVIDUAL_PARAMS; 628 return 0; 629 } 630 631 /* 632 * Add monolithic mount data. 633 */ 634 static int legacy_parse_monolithic(struct fs_context *fc, void *data) 635 { 636 struct legacy_fs_context *ctx = fc->fs_private; 637 638 if (ctx->param_type != LEGACY_FS_UNSET_PARAMS) { 639 pr_warn("VFS: Can't mix monolithic and individual options\n"); 640 return -EINVAL; 641 } 642 643 ctx->legacy_data = data; 644 ctx->param_type = LEGACY_FS_MONOLITHIC_PARAMS; 645 if (!ctx->legacy_data) 646 return 0; 647 648 if (fc->fs_type->fs_flags & FS_BINARY_MOUNTDATA) 649 return 0; 650 return security_sb_eat_lsm_opts(ctx->legacy_data, &fc->security); 651 } 652 653 /* 654 * Get a mountable root with the legacy mount command. 655 */ 656 static int legacy_get_tree(struct fs_context *fc) 657 { 658 struct legacy_fs_context *ctx = fc->fs_private; 659 struct super_block *sb; 660 struct dentry *root; 661 662 root = fc->fs_type->mount(fc->fs_type, fc->sb_flags, 663 fc->source, ctx->legacy_data); 664 if (IS_ERR(root)) 665 return PTR_ERR(root); 666 667 sb = root->d_sb; 668 BUG_ON(!sb); 669 670 fc->root = root; 671 return 0; 672 } 673 674 /* 675 * Handle remount. 676 */ 677 static int legacy_reconfigure(struct fs_context *fc) 678 { 679 struct legacy_fs_context *ctx = fc->fs_private; 680 struct super_block *sb = fc->root->d_sb; 681 682 if (!sb->s_op->remount_fs) 683 return 0; 684 685 return sb->s_op->remount_fs(sb, &fc->sb_flags, 686 ctx ? ctx->legacy_data : NULL); 687 } 688 689 const struct fs_context_operations legacy_fs_context_ops = { 690 .free = legacy_fs_context_free, 691 .dup = legacy_fs_context_dup, 692 .parse_param = legacy_parse_param, 693 .parse_monolithic = legacy_parse_monolithic, 694 .get_tree = legacy_get_tree, 695 .reconfigure = legacy_reconfigure, 696 }; 697 698 /* 699 * Initialise a legacy context for a filesystem that doesn't support 700 * fs_context. 701 */ 702 static int legacy_init_fs_context(struct fs_context *fc) 703 { 704 fc->fs_private = kzalloc(sizeof(struct legacy_fs_context), GFP_KERNEL_ACCOUNT); 705 if (!fc->fs_private) 706 return -ENOMEM; 707 fc->ops = &legacy_fs_context_ops; 708 return 0; 709 } 710 711 int parse_monolithic_mount_data(struct fs_context *fc, void *data) 712 { 713 int (*monolithic_mount_data)(struct fs_context *, void *); 714 715 monolithic_mount_data = fc->ops->parse_monolithic; 716 if (!monolithic_mount_data) 717 monolithic_mount_data = generic_parse_monolithic; 718 719 return monolithic_mount_data(fc, data); 720 } 721 722 /* 723 * Clean up a context after performing an action on it and put it into a state 724 * from where it can be used to reconfigure a superblock. 725 * 726 * Note that here we do only the parts that can't fail; the rest is in 727 * finish_clean_context() below and in between those fs_context is marked 728 * FS_CONTEXT_AWAITING_RECONF. The reason for splitup is that after 729 * successful mount or remount we need to report success to userland. 730 * Trying to do full reinit (for the sake of possible subsequent remount) 731 * and failing to allocate memory would've put us into a nasty situation. 732 * So here we only discard the old state and reinitialization is left 733 * until we actually try to reconfigure. 734 */ 735 void vfs_clean_context(struct fs_context *fc) 736 { 737 if (fc->need_free && fc->ops && fc->ops->free) 738 fc->ops->free(fc); 739 fc->need_free = false; 740 fc->fs_private = NULL; 741 fc->s_fs_info = NULL; 742 fc->sb_flags = 0; 743 security_free_mnt_opts(&fc->security); 744 kfree(fc->source); 745 fc->source = NULL; 746 fc->exclusive = false; 747 748 fc->purpose = FS_CONTEXT_FOR_RECONFIGURE; 749 fc->phase = FS_CONTEXT_AWAITING_RECONF; 750 } 751 752 int finish_clean_context(struct fs_context *fc) 753 { 754 int error; 755 756 if (fc->phase != FS_CONTEXT_AWAITING_RECONF) 757 return 0; 758 759 if (fc->fs_type->init_fs_context) 760 error = fc->fs_type->init_fs_context(fc); 761 else 762 error = legacy_init_fs_context(fc); 763 if (unlikely(error)) { 764 fc->phase = FS_CONTEXT_FAILED; 765 return error; 766 } 767 fc->need_free = true; 768 fc->phase = FS_CONTEXT_RECONF_PARAMS; 769 return 0; 770 } 771