xref: /linux/fs/fs-writeback.c (revision ff9f065318e17a1a97981d9e535fcfc6ce5d5614)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160 	unsigned long timeout;
161 
162 	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 	spin_lock_irq(&wb->work_lock);
164 	if (test_bit(WB_registered, &wb->state))
165 		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 	spin_unlock_irq(&wb->work_lock);
167 }
168 
169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171 	struct wb_completion *done = work->done;
172 
173 	if (work->auto_free)
174 		kfree(work);
175 	if (done) {
176 		wait_queue_head_t *waitq = done->waitq;
177 
178 		/* @done can't be accessed after the following dec */
179 		if (atomic_dec_and_test(&done->cnt))
180 			wake_up_all(waitq);
181 	}
182 }
183 
184 static void wb_queue_work(struct bdi_writeback *wb,
185 			  struct wb_writeback_work *work)
186 {
187 	trace_writeback_queue(wb, work);
188 
189 	if (work->done)
190 		atomic_inc(&work->done->cnt);
191 
192 	spin_lock_irq(&wb->work_lock);
193 
194 	if (test_bit(WB_registered, &wb->state)) {
195 		list_add_tail(&work->list, &wb->work_list);
196 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 	} else
198 		finish_writeback_work(work);
199 
200 	spin_unlock_irq(&wb->work_lock);
201 }
202 
203 /**
204  * wb_wait_for_completion - wait for completion of bdi_writeback_works
205  * @done: target wb_completion
206  *
207  * Wait for one or more work items issued to @bdi with their ->done field
208  * set to @done, which should have been initialized with
209  * DEFINE_WB_COMPLETION().  This function returns after all such work items
210  * are completed.  Work items which are waited upon aren't freed
211  * automatically on completion.
212  */
213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215 	atomic_dec(&done->cnt);		/* put down the initial count */
216 	wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218 
219 #ifdef CONFIG_CGROUP_WRITEBACK
220 
221 /*
222  * Parameters for foreign inode detection, see wbc_detach_inode() to see
223  * how they're used.
224  *
225  * These paramters are inherently heuristical as the detection target
226  * itself is fuzzy.  All we want to do is detaching an inode from the
227  * current owner if it's being written to by some other cgroups too much.
228  *
229  * The current cgroup writeback is built on the assumption that multiple
230  * cgroups writing to the same inode concurrently is very rare and a mode
231  * of operation which isn't well supported.  As such, the goal is not
232  * taking too long when a different cgroup takes over an inode while
233  * avoiding too aggressive flip-flops from occasional foreign writes.
234  *
235  * We record, very roughly, 2s worth of IO time history and if more than
236  * half of that is foreign, trigger the switch.  The recording is quantized
237  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238  * writes smaller than 1/8 of avg size are ignored.
239  */
240 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
244 
245 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 					/* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
249 					/* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 					/* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
253 
254 /*
255  * Maximum inodes per isw.  A specific value has been chosen to make
256  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257  */
258 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                 / sizeof(struct inode *))
260 
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263 
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266 	struct backing_dev_info *bdi = inode_to_bdi(inode);
267 	struct bdi_writeback *wb = NULL;
268 
269 	if (inode_cgwb_enabled(inode)) {
270 		struct cgroup_subsys_state *memcg_css;
271 
272 		if (folio) {
273 			memcg_css = mem_cgroup_css_from_folio(folio);
274 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 		} else {
276 			/* must pin memcg_css, see wb_get_create() */
277 			memcg_css = task_get_css(current, memory_cgrp_id);
278 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 			css_put(memcg_css);
280 		}
281 	}
282 
283 	if (!wb)
284 		wb = &bdi->wb;
285 
286 	/*
287 	 * There may be multiple instances of this function racing to
288 	 * update the same inode.  Use cmpxchg() to tell the winner.
289 	 */
290 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 		wb_put(wb);
292 }
293 EXPORT_SYMBOL_GPL(__inode_attach_wb);
294 
295 /**
296  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
297  * @inode: inode of interest with i_lock held
298  * @wb: target bdi_writeback
299  *
300  * Remove the inode from wb's io lists and if necessarily put onto b_attached
301  * list.  Only inodes attached to cgwb's are kept on this list.
302  */
303 static void inode_cgwb_move_to_attached(struct inode *inode,
304 					struct bdi_writeback *wb)
305 {
306 	assert_spin_locked(&wb->list_lock);
307 	assert_spin_locked(&inode->i_lock);
308 	WARN_ON_ONCE(inode->i_state & I_FREEING);
309 
310 	inode->i_state &= ~I_SYNC_QUEUED;
311 	if (wb != &wb->bdi->wb)
312 		list_move(&inode->i_io_list, &wb->b_attached);
313 	else
314 		list_del_init(&inode->i_io_list);
315 	wb_io_lists_depopulated(wb);
316 }
317 
318 /**
319  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
320  * @inode: inode of interest with i_lock held
321  *
322  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
323  * held on entry and is released on return.  The returned wb is guaranteed
324  * to stay @inode's associated wb until its list_lock is released.
325  */
326 static struct bdi_writeback *
327 locked_inode_to_wb_and_lock_list(struct inode *inode)
328 	__releases(&inode->i_lock)
329 	__acquires(&wb->list_lock)
330 {
331 	while (true) {
332 		struct bdi_writeback *wb = inode_to_wb(inode);
333 
334 		/*
335 		 * inode_to_wb() association is protected by both
336 		 * @inode->i_lock and @wb->list_lock but list_lock nests
337 		 * outside i_lock.  Drop i_lock and verify that the
338 		 * association hasn't changed after acquiring list_lock.
339 		 */
340 		wb_get(wb);
341 		spin_unlock(&inode->i_lock);
342 		spin_lock(&wb->list_lock);
343 
344 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
345 		if (likely(wb == inode->i_wb)) {
346 			wb_put(wb);	/* @inode already has ref */
347 			return wb;
348 		}
349 
350 		spin_unlock(&wb->list_lock);
351 		wb_put(wb);
352 		cpu_relax();
353 		spin_lock(&inode->i_lock);
354 	}
355 }
356 
357 /**
358  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
359  * @inode: inode of interest
360  *
361  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
362  * on entry.
363  */
364 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
365 	__acquires(&wb->list_lock)
366 {
367 	spin_lock(&inode->i_lock);
368 	return locked_inode_to_wb_and_lock_list(inode);
369 }
370 
371 struct inode_switch_wbs_context {
372 	struct rcu_work		work;
373 
374 	/*
375 	 * Multiple inodes can be switched at once.  The switching procedure
376 	 * consists of two parts, separated by a RCU grace period.  To make
377 	 * sure that the second part is executed for each inode gone through
378 	 * the first part, all inode pointers are placed into a NULL-terminated
379 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
380 	 * an inode could be left in a non-consistent state.
381 	 */
382 	struct bdi_writeback	*new_wb;
383 	struct inode		*inodes[];
384 };
385 
386 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
387 {
388 	down_write(&bdi->wb_switch_rwsem);
389 }
390 
391 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
392 {
393 	up_write(&bdi->wb_switch_rwsem);
394 }
395 
396 static bool inode_do_switch_wbs(struct inode *inode,
397 				struct bdi_writeback *old_wb,
398 				struct bdi_writeback *new_wb)
399 {
400 	struct address_space *mapping = inode->i_mapping;
401 	XA_STATE(xas, &mapping->i_pages, 0);
402 	struct folio *folio;
403 	bool switched = false;
404 
405 	spin_lock(&inode->i_lock);
406 	xa_lock_irq(&mapping->i_pages);
407 
408 	/*
409 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
410 	 * path owns the inode and we shouldn't modify ->i_io_list.
411 	 */
412 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
413 		goto skip_switch;
414 
415 	trace_inode_switch_wbs(inode, old_wb, new_wb);
416 
417 	/*
418 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
419 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
420 	 * folios actually under writeback.
421 	 */
422 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
423 		if (folio_test_dirty(folio)) {
424 			long nr = folio_nr_pages(folio);
425 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
426 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
427 		}
428 	}
429 
430 	xas_set(&xas, 0);
431 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
432 		long nr = folio_nr_pages(folio);
433 		WARN_ON_ONCE(!folio_test_writeback(folio));
434 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
435 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
436 	}
437 
438 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
439 		atomic_dec(&old_wb->writeback_inodes);
440 		atomic_inc(&new_wb->writeback_inodes);
441 	}
442 
443 	wb_get(new_wb);
444 
445 	/*
446 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
447 	 * the specific list @inode was on is ignored and the @inode is put on
448 	 * ->b_dirty which is always correct including from ->b_dirty_time.
449 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
450 	 * was clean, it means it was on the b_attached list, so move it onto
451 	 * the b_attached list of @new_wb.
452 	 */
453 	if (!list_empty(&inode->i_io_list)) {
454 		inode->i_wb = new_wb;
455 
456 		if (inode->i_state & I_DIRTY_ALL) {
457 			struct inode *pos;
458 
459 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
460 				if (time_after_eq(inode->dirtied_when,
461 						  pos->dirtied_when))
462 					break;
463 			inode_io_list_move_locked(inode, new_wb,
464 						  pos->i_io_list.prev);
465 		} else {
466 			inode_cgwb_move_to_attached(inode, new_wb);
467 		}
468 	} else {
469 		inode->i_wb = new_wb;
470 	}
471 
472 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473 	inode->i_wb_frn_winner = 0;
474 	inode->i_wb_frn_avg_time = 0;
475 	inode->i_wb_frn_history = 0;
476 	switched = true;
477 skip_switch:
478 	/*
479 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
481 	 */
482 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483 
484 	xa_unlock_irq(&mapping->i_pages);
485 	spin_unlock(&inode->i_lock);
486 
487 	return switched;
488 }
489 
490 static void inode_switch_wbs_work_fn(struct work_struct *work)
491 {
492 	struct inode_switch_wbs_context *isw =
493 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
494 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
495 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
496 	struct bdi_writeback *new_wb = isw->new_wb;
497 	unsigned long nr_switched = 0;
498 	struct inode **inodep;
499 
500 	/*
501 	 * If @inode switches cgwb membership while sync_inodes_sb() is
502 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
503 	 */
504 	down_read(&bdi->wb_switch_rwsem);
505 
506 	/*
507 	 * By the time control reaches here, RCU grace period has passed
508 	 * since I_WB_SWITCH assertion and all wb stat update transactions
509 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
510 	 * synchronizing against the i_pages lock.
511 	 *
512 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
513 	 * gives us exclusion against all wb related operations on @inode
514 	 * including IO list manipulations and stat updates.
515 	 */
516 	if (old_wb < new_wb) {
517 		spin_lock(&old_wb->list_lock);
518 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519 	} else {
520 		spin_lock(&new_wb->list_lock);
521 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522 	}
523 
524 	for (inodep = isw->inodes; *inodep; inodep++) {
525 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527 			nr_switched++;
528 	}
529 
530 	spin_unlock(&new_wb->list_lock);
531 	spin_unlock(&old_wb->list_lock);
532 
533 	up_read(&bdi->wb_switch_rwsem);
534 
535 	if (nr_switched) {
536 		wb_wakeup(new_wb);
537 		wb_put_many(old_wb, nr_switched);
538 	}
539 
540 	for (inodep = isw->inodes; *inodep; inodep++)
541 		iput(*inodep);
542 	wb_put(new_wb);
543 	kfree(isw);
544 	atomic_dec(&isw_nr_in_flight);
545 }
546 
547 static bool inode_prepare_wbs_switch(struct inode *inode,
548 				     struct bdi_writeback *new_wb)
549 {
550 	/*
551 	 * Paired with smp_mb() in cgroup_writeback_umount().
552 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
553 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
554 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
555 	 */
556 	smp_mb();
557 
558 	if (IS_DAX(inode))
559 		return false;
560 
561 	/* while holding I_WB_SWITCH, no one else can update the association */
562 	spin_lock(&inode->i_lock);
563 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
564 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
565 	    inode_to_wb(inode) == new_wb) {
566 		spin_unlock(&inode->i_lock);
567 		return false;
568 	}
569 	inode->i_state |= I_WB_SWITCH;
570 	__iget(inode);
571 	spin_unlock(&inode->i_lock);
572 
573 	return true;
574 }
575 
576 /**
577  * inode_switch_wbs - change the wb association of an inode
578  * @inode: target inode
579  * @new_wb_id: ID of the new wb
580  *
581  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
582  * switching is performed asynchronously and may fail silently.
583  */
584 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
585 {
586 	struct backing_dev_info *bdi = inode_to_bdi(inode);
587 	struct cgroup_subsys_state *memcg_css;
588 	struct inode_switch_wbs_context *isw;
589 
590 	/* noop if seems to be already in progress */
591 	if (inode->i_state & I_WB_SWITCH)
592 		return;
593 
594 	/* avoid queueing a new switch if too many are already in flight */
595 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
596 		return;
597 
598 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
599 	if (!isw)
600 		return;
601 
602 	atomic_inc(&isw_nr_in_flight);
603 
604 	/* find and pin the new wb */
605 	rcu_read_lock();
606 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
607 	if (memcg_css && !css_tryget(memcg_css))
608 		memcg_css = NULL;
609 	rcu_read_unlock();
610 	if (!memcg_css)
611 		goto out_free;
612 
613 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
614 	css_put(memcg_css);
615 	if (!isw->new_wb)
616 		goto out_free;
617 
618 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619 		goto out_free;
620 
621 	isw->inodes[0] = inode;
622 
623 	/*
624 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
625 	 * the RCU protected stat update paths to grab the i_page
626 	 * lock so that stat transfer can synchronize against them.
627 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
628 	 */
629 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
630 	queue_rcu_work(isw_wq, &isw->work);
631 	return;
632 
633 out_free:
634 	atomic_dec(&isw_nr_in_flight);
635 	if (isw->new_wb)
636 		wb_put(isw->new_wb);
637 	kfree(isw);
638 }
639 
640 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
641 				   struct list_head *list, int *nr)
642 {
643 	struct inode *inode;
644 
645 	list_for_each_entry(inode, list, i_io_list) {
646 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647 			continue;
648 
649 		isw->inodes[*nr] = inode;
650 		(*nr)++;
651 
652 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
653 			return true;
654 	}
655 	return false;
656 }
657 
658 /**
659  * cleanup_offline_cgwb - detach associated inodes
660  * @wb: target wb
661  *
662  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
663  * to eventually release the dying @wb.  Returns %true if not all inodes were
664  * switched and the function has to be restarted.
665  */
666 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
667 {
668 	struct cgroup_subsys_state *memcg_css;
669 	struct inode_switch_wbs_context *isw;
670 	int nr;
671 	bool restart = false;
672 
673 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
674 		      GFP_KERNEL);
675 	if (!isw)
676 		return restart;
677 
678 	atomic_inc(&isw_nr_in_flight);
679 
680 	for (memcg_css = wb->memcg_css->parent; memcg_css;
681 	     memcg_css = memcg_css->parent) {
682 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
683 		if (isw->new_wb)
684 			break;
685 	}
686 	if (unlikely(!isw->new_wb))
687 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
688 
689 	nr = 0;
690 	spin_lock(&wb->list_lock);
691 	/*
692 	 * In addition to the inodes that have completed writeback, also switch
693 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
694 	 * inodes won't be written back for a long time when lazytime is
695 	 * enabled, and thus pinning the dying cgwbs. It won't break the
696 	 * bandwidth restrictions, as writeback of inode metadata is not
697 	 * accounted for.
698 	 */
699 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
700 	if (!restart)
701 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
702 	spin_unlock(&wb->list_lock);
703 
704 	/* no attached inodes? bail out */
705 	if (nr == 0) {
706 		atomic_dec(&isw_nr_in_flight);
707 		wb_put(isw->new_wb);
708 		kfree(isw);
709 		return restart;
710 	}
711 
712 	/*
713 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
714 	 * the RCU protected stat update paths to grab the i_page
715 	 * lock so that stat transfer can synchronize against them.
716 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
717 	 */
718 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
719 	queue_rcu_work(isw_wq, &isw->work);
720 
721 	return restart;
722 }
723 
724 /**
725  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
726  * @wbc: writeback_control of interest
727  * @inode: target inode
728  *
729  * @inode is locked and about to be written back under the control of @wbc.
730  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
731  * writeback completion, wbc_detach_inode() should be called.  This is used
732  * to track the cgroup writeback context.
733  */
734 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
735 				 struct inode *inode)
736 {
737 	if (!inode_cgwb_enabled(inode)) {
738 		spin_unlock(&inode->i_lock);
739 		return;
740 	}
741 
742 	wbc->wb = inode_to_wb(inode);
743 	wbc->inode = inode;
744 
745 	wbc->wb_id = wbc->wb->memcg_css->id;
746 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
747 	wbc->wb_tcand_id = 0;
748 	wbc->wb_bytes = 0;
749 	wbc->wb_lcand_bytes = 0;
750 	wbc->wb_tcand_bytes = 0;
751 
752 	wb_get(wbc->wb);
753 	spin_unlock(&inode->i_lock);
754 
755 	/*
756 	 * A dying wb indicates that either the blkcg associated with the
757 	 * memcg changed or the associated memcg is dying.  In the first
758 	 * case, a replacement wb should already be available and we should
759 	 * refresh the wb immediately.  In the second case, trying to
760 	 * refresh will keep failing.
761 	 */
762 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763 		inode_switch_wbs(inode, wbc->wb_id);
764 }
765 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
766 
767 /**
768  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
769  * @wbc: writeback_control of the just finished writeback
770  *
771  * To be called after a writeback attempt of an inode finishes and undoes
772  * wbc_attach_and_unlock_inode().  Can be called under any context.
773  *
774  * As concurrent write sharing of an inode is expected to be very rare and
775  * memcg only tracks page ownership on first-use basis severely confining
776  * the usefulness of such sharing, cgroup writeback tracks ownership
777  * per-inode.  While the support for concurrent write sharing of an inode
778  * is deemed unnecessary, an inode being written to by different cgroups at
779  * different points in time is a lot more common, and, more importantly,
780  * charging only by first-use can too readily lead to grossly incorrect
781  * behaviors (single foreign page can lead to gigabytes of writeback to be
782  * incorrectly attributed).
783  *
784  * To resolve this issue, cgroup writeback detects the majority dirtier of
785  * an inode and transfers the ownership to it.  To avoid unnecessary
786  * oscillation, the detection mechanism keeps track of history and gives
787  * out the switch verdict only if the foreign usage pattern is stable over
788  * a certain amount of time and/or writeback attempts.
789  *
790  * On each writeback attempt, @wbc tries to detect the majority writer
791  * using Boyer-Moore majority vote algorithm.  In addition to the byte
792  * count from the majority voting, it also counts the bytes written for the
793  * current wb and the last round's winner wb (max of last round's current
794  * wb, the winner from two rounds ago, and the last round's majority
795  * candidate).  Keeping track of the historical winner helps the algorithm
796  * to semi-reliably detect the most active writer even when it's not the
797  * absolute majority.
798  *
799  * Once the winner of the round is determined, whether the winner is
800  * foreign or not and how much IO time the round consumed is recorded in
801  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
802  * over a certain threshold, the switch verdict is given.
803  */
804 void wbc_detach_inode(struct writeback_control *wbc)
805 {
806 	struct bdi_writeback *wb = wbc->wb;
807 	struct inode *inode = wbc->inode;
808 	unsigned long avg_time, max_bytes, max_time;
809 	u16 history;
810 	int max_id;
811 
812 	if (!wb)
813 		return;
814 
815 	history = inode->i_wb_frn_history;
816 	avg_time = inode->i_wb_frn_avg_time;
817 
818 	/* pick the winner of this round */
819 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
820 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
821 		max_id = wbc->wb_id;
822 		max_bytes = wbc->wb_bytes;
823 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
824 		max_id = wbc->wb_lcand_id;
825 		max_bytes = wbc->wb_lcand_bytes;
826 	} else {
827 		max_id = wbc->wb_tcand_id;
828 		max_bytes = wbc->wb_tcand_bytes;
829 	}
830 
831 	/*
832 	 * Calculate the amount of IO time the winner consumed and fold it
833 	 * into the running average kept per inode.  If the consumed IO
834 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
835 	 * deciding whether to switch or not.  This is to prevent one-off
836 	 * small dirtiers from skewing the verdict.
837 	 */
838 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
839 				wb->avg_write_bandwidth);
840 	if (avg_time)
841 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
842 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
843 	else
844 		avg_time = max_time;	/* immediate catch up on first run */
845 
846 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
847 		int slots;
848 
849 		/*
850 		 * The switch verdict is reached if foreign wb's consume
851 		 * more than a certain proportion of IO time in a
852 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
853 		 * history mask where each bit represents one sixteenth of
854 		 * the period.  Determine the number of slots to shift into
855 		 * history from @max_time.
856 		 */
857 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
858 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
859 		history <<= slots;
860 		if (wbc->wb_id != max_id)
861 			history |= (1U << slots) - 1;
862 
863 		if (history)
864 			trace_inode_foreign_history(inode, wbc, history);
865 
866 		/*
867 		 * Switch if the current wb isn't the consistent winner.
868 		 * If there are multiple closely competing dirtiers, the
869 		 * inode may switch across them repeatedly over time, which
870 		 * is okay.  The main goal is avoiding keeping an inode on
871 		 * the wrong wb for an extended period of time.
872 		 */
873 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
874 			inode_switch_wbs(inode, max_id);
875 	}
876 
877 	/*
878 	 * Multiple instances of this function may race to update the
879 	 * following fields but we don't mind occassional inaccuracies.
880 	 */
881 	inode->i_wb_frn_winner = max_id;
882 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
883 	inode->i_wb_frn_history = history;
884 
885 	wb_put(wbc->wb);
886 	wbc->wb = NULL;
887 }
888 EXPORT_SYMBOL_GPL(wbc_detach_inode);
889 
890 /**
891  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
892  * @wbc: writeback_control of the writeback in progress
893  * @page: page being written out
894  * @bytes: number of bytes being written out
895  *
896  * @bytes from @page are about to written out during the writeback
897  * controlled by @wbc.  Keep the book for foreign inode detection.  See
898  * wbc_detach_inode().
899  */
900 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
901 			      size_t bytes)
902 {
903 	struct folio *folio;
904 	struct cgroup_subsys_state *css;
905 	int id;
906 
907 	/*
908 	 * pageout() path doesn't attach @wbc to the inode being written
909 	 * out.  This is intentional as we don't want the function to block
910 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
911 	 * regular writeback instead of writing things out itself.
912 	 */
913 	if (!wbc->wb || wbc->no_cgroup_owner)
914 		return;
915 
916 	folio = page_folio(page);
917 	css = mem_cgroup_css_from_folio(folio);
918 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
919 	if (!(css->flags & CSS_ONLINE))
920 		return;
921 
922 	id = css->id;
923 
924 	if (id == wbc->wb_id) {
925 		wbc->wb_bytes += bytes;
926 		return;
927 	}
928 
929 	if (id == wbc->wb_lcand_id)
930 		wbc->wb_lcand_bytes += bytes;
931 
932 	/* Boyer-Moore majority vote algorithm */
933 	if (!wbc->wb_tcand_bytes)
934 		wbc->wb_tcand_id = id;
935 	if (id == wbc->wb_tcand_id)
936 		wbc->wb_tcand_bytes += bytes;
937 	else
938 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
939 }
940 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
941 
942 /**
943  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
944  * @wb: target bdi_writeback to split @nr_pages to
945  * @nr_pages: number of pages to write for the whole bdi
946  *
947  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
948  * relation to the total write bandwidth of all wb's w/ dirty inodes on
949  * @wb->bdi.
950  */
951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952 {
953 	unsigned long this_bw = wb->avg_write_bandwidth;
954 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
955 
956 	if (nr_pages == LONG_MAX)
957 		return LONG_MAX;
958 
959 	/*
960 	 * This may be called on clean wb's and proportional distribution
961 	 * may not make sense, just use the original @nr_pages in those
962 	 * cases.  In general, we wanna err on the side of writing more.
963 	 */
964 	if (!tot_bw || this_bw >= tot_bw)
965 		return nr_pages;
966 	else
967 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
968 }
969 
970 /**
971  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
972  * @bdi: target backing_dev_info
973  * @base_work: wb_writeback_work to issue
974  * @skip_if_busy: skip wb's which already have writeback in progress
975  *
976  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
977  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
978  * distributed to the busy wbs according to each wb's proportion in the
979  * total active write bandwidth of @bdi.
980  */
981 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
982 				  struct wb_writeback_work *base_work,
983 				  bool skip_if_busy)
984 {
985 	struct bdi_writeback *last_wb = NULL;
986 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
987 					      struct bdi_writeback, bdi_node);
988 
989 	might_sleep();
990 restart:
991 	rcu_read_lock();
992 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
993 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
994 		struct wb_writeback_work fallback_work;
995 		struct wb_writeback_work *work;
996 		long nr_pages;
997 
998 		if (last_wb) {
999 			wb_put(last_wb);
1000 			last_wb = NULL;
1001 		}
1002 
1003 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1004 		if (!wb_has_dirty_io(wb) &&
1005 		    (base_work->sync_mode == WB_SYNC_NONE ||
1006 		     list_empty(&wb->b_dirty_time)))
1007 			continue;
1008 		if (skip_if_busy && writeback_in_progress(wb))
1009 			continue;
1010 
1011 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1012 
1013 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014 		if (work) {
1015 			*work = *base_work;
1016 			work->nr_pages = nr_pages;
1017 			work->auto_free = 1;
1018 			wb_queue_work(wb, work);
1019 			continue;
1020 		}
1021 
1022 		/*
1023 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1024 		 *
1025 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1026 		 * continuing iteration from @wb after dropping and
1027 		 * regrabbing rcu read lock.
1028 		 */
1029 		if (!wb_tryget(wb))
1030 			continue;
1031 
1032 		/* alloc failed, execute synchronously using on-stack fallback */
1033 		work = &fallback_work;
1034 		*work = *base_work;
1035 		work->nr_pages = nr_pages;
1036 		work->auto_free = 0;
1037 		work->done = &fallback_work_done;
1038 
1039 		wb_queue_work(wb, work);
1040 		last_wb = wb;
1041 
1042 		rcu_read_unlock();
1043 		wb_wait_for_completion(&fallback_work_done);
1044 		goto restart;
1045 	}
1046 	rcu_read_unlock();
1047 
1048 	if (last_wb)
1049 		wb_put(last_wb);
1050 }
1051 
1052 /**
1053  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1054  * @bdi_id: target bdi id
1055  * @memcg_id: target memcg css id
1056  * @reason: reason why some writeback work initiated
1057  * @done: target wb_completion
1058  *
1059  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1060  * with the specified parameters.
1061  */
1062 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1063 			   enum wb_reason reason, struct wb_completion *done)
1064 {
1065 	struct backing_dev_info *bdi;
1066 	struct cgroup_subsys_state *memcg_css;
1067 	struct bdi_writeback *wb;
1068 	struct wb_writeback_work *work;
1069 	unsigned long dirty;
1070 	int ret;
1071 
1072 	/* lookup bdi and memcg */
1073 	bdi = bdi_get_by_id(bdi_id);
1074 	if (!bdi)
1075 		return -ENOENT;
1076 
1077 	rcu_read_lock();
1078 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1079 	if (memcg_css && !css_tryget(memcg_css))
1080 		memcg_css = NULL;
1081 	rcu_read_unlock();
1082 	if (!memcg_css) {
1083 		ret = -ENOENT;
1084 		goto out_bdi_put;
1085 	}
1086 
1087 	/*
1088 	 * And find the associated wb.  If the wb isn't there already
1089 	 * there's nothing to flush, don't create one.
1090 	 */
1091 	wb = wb_get_lookup(bdi, memcg_css);
1092 	if (!wb) {
1093 		ret = -ENOENT;
1094 		goto out_css_put;
1095 	}
1096 
1097 	/*
1098 	 * The caller is attempting to write out most of
1099 	 * the currently dirty pages.  Let's take the current dirty page
1100 	 * count and inflate it by 25% which should be large enough to
1101 	 * flush out most dirty pages while avoiding getting livelocked by
1102 	 * concurrent dirtiers.
1103 	 *
1104 	 * BTW the memcg stats are flushed periodically and this is best-effort
1105 	 * estimation, so some potential error is ok.
1106 	 */
1107 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1108 	dirty = dirty * 10 / 8;
1109 
1110 	/* issue the writeback work */
1111 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1112 	if (work) {
1113 		work->nr_pages = dirty;
1114 		work->sync_mode = WB_SYNC_NONE;
1115 		work->range_cyclic = 1;
1116 		work->reason = reason;
1117 		work->done = done;
1118 		work->auto_free = 1;
1119 		wb_queue_work(wb, work);
1120 		ret = 0;
1121 	} else {
1122 		ret = -ENOMEM;
1123 	}
1124 
1125 	wb_put(wb);
1126 out_css_put:
1127 	css_put(memcg_css);
1128 out_bdi_put:
1129 	bdi_put(bdi);
1130 	return ret;
1131 }
1132 
1133 /**
1134  * cgroup_writeback_umount - flush inode wb switches for umount
1135  *
1136  * This function is called when a super_block is about to be destroyed and
1137  * flushes in-flight inode wb switches.  An inode wb switch goes through
1138  * RCU and then workqueue, so the two need to be flushed in order to ensure
1139  * that all previously scheduled switches are finished.  As wb switches are
1140  * rare occurrences and synchronize_rcu() can take a while, perform
1141  * flushing iff wb switches are in flight.
1142  */
1143 void cgroup_writeback_umount(void)
1144 {
1145 	/*
1146 	 * SB_ACTIVE should be reliably cleared before checking
1147 	 * isw_nr_in_flight, see generic_shutdown_super().
1148 	 */
1149 	smp_mb();
1150 
1151 	if (atomic_read(&isw_nr_in_flight)) {
1152 		/*
1153 		 * Use rcu_barrier() to wait for all pending callbacks to
1154 		 * ensure that all in-flight wb switches are in the workqueue.
1155 		 */
1156 		rcu_barrier();
1157 		flush_workqueue(isw_wq);
1158 	}
1159 }
1160 
1161 static int __init cgroup_writeback_init(void)
1162 {
1163 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1164 	if (!isw_wq)
1165 		return -ENOMEM;
1166 	return 0;
1167 }
1168 fs_initcall(cgroup_writeback_init);
1169 
1170 #else	/* CONFIG_CGROUP_WRITEBACK */
1171 
1172 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1173 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1174 
1175 static void inode_cgwb_move_to_attached(struct inode *inode,
1176 					struct bdi_writeback *wb)
1177 {
1178 	assert_spin_locked(&wb->list_lock);
1179 	assert_spin_locked(&inode->i_lock);
1180 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1181 
1182 	inode->i_state &= ~I_SYNC_QUEUED;
1183 	list_del_init(&inode->i_io_list);
1184 	wb_io_lists_depopulated(wb);
1185 }
1186 
1187 static struct bdi_writeback *
1188 locked_inode_to_wb_and_lock_list(struct inode *inode)
1189 	__releases(&inode->i_lock)
1190 	__acquires(&wb->list_lock)
1191 {
1192 	struct bdi_writeback *wb = inode_to_wb(inode);
1193 
1194 	spin_unlock(&inode->i_lock);
1195 	spin_lock(&wb->list_lock);
1196 	return wb;
1197 }
1198 
1199 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1200 	__acquires(&wb->list_lock)
1201 {
1202 	struct bdi_writeback *wb = inode_to_wb(inode);
1203 
1204 	spin_lock(&wb->list_lock);
1205 	return wb;
1206 }
1207 
1208 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1209 {
1210 	return nr_pages;
1211 }
1212 
1213 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1214 				  struct wb_writeback_work *base_work,
1215 				  bool skip_if_busy)
1216 {
1217 	might_sleep();
1218 
1219 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1220 		base_work->auto_free = 0;
1221 		wb_queue_work(&bdi->wb, base_work);
1222 	}
1223 }
1224 
1225 #endif	/* CONFIG_CGROUP_WRITEBACK */
1226 
1227 /*
1228  * Add in the number of potentially dirty inodes, because each inode
1229  * write can dirty pagecache in the underlying blockdev.
1230  */
1231 static unsigned long get_nr_dirty_pages(void)
1232 {
1233 	return global_node_page_state(NR_FILE_DIRTY) +
1234 		get_nr_dirty_inodes();
1235 }
1236 
1237 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1238 {
1239 	if (!wb_has_dirty_io(wb))
1240 		return;
1241 
1242 	/*
1243 	 * All callers of this function want to start writeback of all
1244 	 * dirty pages. Places like vmscan can call this at a very
1245 	 * high frequency, causing pointless allocations of tons of
1246 	 * work items and keeping the flusher threads busy retrieving
1247 	 * that work. Ensure that we only allow one of them pending and
1248 	 * inflight at the time.
1249 	 */
1250 	if (test_bit(WB_start_all, &wb->state) ||
1251 	    test_and_set_bit(WB_start_all, &wb->state))
1252 		return;
1253 
1254 	wb->start_all_reason = reason;
1255 	wb_wakeup(wb);
1256 }
1257 
1258 /**
1259  * wb_start_background_writeback - start background writeback
1260  * @wb: bdi_writback to write from
1261  *
1262  * Description:
1263  *   This makes sure WB_SYNC_NONE background writeback happens. When
1264  *   this function returns, it is only guaranteed that for given wb
1265  *   some IO is happening if we are over background dirty threshold.
1266  *   Caller need not hold sb s_umount semaphore.
1267  */
1268 void wb_start_background_writeback(struct bdi_writeback *wb)
1269 {
1270 	/*
1271 	 * We just wake up the flusher thread. It will perform background
1272 	 * writeback as soon as there is no other work to do.
1273 	 */
1274 	trace_writeback_wake_background(wb);
1275 	wb_wakeup(wb);
1276 }
1277 
1278 /*
1279  * Remove the inode from the writeback list it is on.
1280  */
1281 void inode_io_list_del(struct inode *inode)
1282 {
1283 	struct bdi_writeback *wb;
1284 
1285 	wb = inode_to_wb_and_lock_list(inode);
1286 	spin_lock(&inode->i_lock);
1287 
1288 	inode->i_state &= ~I_SYNC_QUEUED;
1289 	list_del_init(&inode->i_io_list);
1290 	wb_io_lists_depopulated(wb);
1291 
1292 	spin_unlock(&inode->i_lock);
1293 	spin_unlock(&wb->list_lock);
1294 }
1295 EXPORT_SYMBOL(inode_io_list_del);
1296 
1297 /*
1298  * mark an inode as under writeback on the sb
1299  */
1300 void sb_mark_inode_writeback(struct inode *inode)
1301 {
1302 	struct super_block *sb = inode->i_sb;
1303 	unsigned long flags;
1304 
1305 	if (list_empty(&inode->i_wb_list)) {
1306 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1307 		if (list_empty(&inode->i_wb_list)) {
1308 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1309 			trace_sb_mark_inode_writeback(inode);
1310 		}
1311 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1312 	}
1313 }
1314 
1315 /*
1316  * clear an inode as under writeback on the sb
1317  */
1318 void sb_clear_inode_writeback(struct inode *inode)
1319 {
1320 	struct super_block *sb = inode->i_sb;
1321 	unsigned long flags;
1322 
1323 	if (!list_empty(&inode->i_wb_list)) {
1324 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1325 		if (!list_empty(&inode->i_wb_list)) {
1326 			list_del_init(&inode->i_wb_list);
1327 			trace_sb_clear_inode_writeback(inode);
1328 		}
1329 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1330 	}
1331 }
1332 
1333 /*
1334  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1335  * furthest end of its superblock's dirty-inode list.
1336  *
1337  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1338  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1339  * the case then the inode must have been redirtied while it was being written
1340  * out and we don't reset its dirtied_when.
1341  */
1342 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1343 {
1344 	assert_spin_locked(&inode->i_lock);
1345 
1346 	inode->i_state &= ~I_SYNC_QUEUED;
1347 	/*
1348 	 * When the inode is being freed just don't bother with dirty list
1349 	 * tracking. Flush worker will ignore this inode anyway and it will
1350 	 * trigger assertions in inode_io_list_move_locked().
1351 	 */
1352 	if (inode->i_state & I_FREEING) {
1353 		list_del_init(&inode->i_io_list);
1354 		wb_io_lists_depopulated(wb);
1355 		return;
1356 	}
1357 	if (!list_empty(&wb->b_dirty)) {
1358 		struct inode *tail;
1359 
1360 		tail = wb_inode(wb->b_dirty.next);
1361 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1362 			inode->dirtied_when = jiffies;
1363 	}
1364 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1365 }
1366 
1367 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1368 {
1369 	spin_lock(&inode->i_lock);
1370 	redirty_tail_locked(inode, wb);
1371 	spin_unlock(&inode->i_lock);
1372 }
1373 
1374 /*
1375  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1376  */
1377 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1378 {
1379 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1380 }
1381 
1382 static void inode_sync_complete(struct inode *inode)
1383 {
1384 	inode->i_state &= ~I_SYNC;
1385 	/* If inode is clean an unused, put it into LRU now... */
1386 	inode_add_lru(inode);
1387 	/* Waiters must see I_SYNC cleared before being woken up */
1388 	smp_mb();
1389 	wake_up_bit(&inode->i_state, __I_SYNC);
1390 }
1391 
1392 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1393 {
1394 	bool ret = time_after(inode->dirtied_when, t);
1395 #ifndef CONFIG_64BIT
1396 	/*
1397 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1398 	 * It _appears_ to be in the future, but is actually in distant past.
1399 	 * This test is necessary to prevent such wrapped-around relative times
1400 	 * from permanently stopping the whole bdi writeback.
1401 	 */
1402 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1403 #endif
1404 	return ret;
1405 }
1406 
1407 /*
1408  * Move expired (dirtied before dirtied_before) dirty inodes from
1409  * @delaying_queue to @dispatch_queue.
1410  */
1411 static int move_expired_inodes(struct list_head *delaying_queue,
1412 			       struct list_head *dispatch_queue,
1413 			       unsigned long dirtied_before)
1414 {
1415 	LIST_HEAD(tmp);
1416 	struct list_head *pos, *node;
1417 	struct super_block *sb = NULL;
1418 	struct inode *inode;
1419 	int do_sb_sort = 0;
1420 	int moved = 0;
1421 
1422 	while (!list_empty(delaying_queue)) {
1423 		inode = wb_inode(delaying_queue->prev);
1424 		if (inode_dirtied_after(inode, dirtied_before))
1425 			break;
1426 		spin_lock(&inode->i_lock);
1427 		list_move(&inode->i_io_list, &tmp);
1428 		moved++;
1429 		inode->i_state |= I_SYNC_QUEUED;
1430 		spin_unlock(&inode->i_lock);
1431 		if (sb_is_blkdev_sb(inode->i_sb))
1432 			continue;
1433 		if (sb && sb != inode->i_sb)
1434 			do_sb_sort = 1;
1435 		sb = inode->i_sb;
1436 	}
1437 
1438 	/* just one sb in list, splice to dispatch_queue and we're done */
1439 	if (!do_sb_sort) {
1440 		list_splice(&tmp, dispatch_queue);
1441 		goto out;
1442 	}
1443 
1444 	/*
1445 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1446 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1447 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1448 	 * fully under our control.
1449 	 */
1450 	while (!list_empty(&tmp)) {
1451 		sb = wb_inode(tmp.prev)->i_sb;
1452 		list_for_each_prev_safe(pos, node, &tmp) {
1453 			inode = wb_inode(pos);
1454 			if (inode->i_sb == sb)
1455 				list_move(&inode->i_io_list, dispatch_queue);
1456 		}
1457 	}
1458 out:
1459 	return moved;
1460 }
1461 
1462 /*
1463  * Queue all expired dirty inodes for io, eldest first.
1464  * Before
1465  *         newly dirtied     b_dirty    b_io    b_more_io
1466  *         =============>    gf         edc     BA
1467  * After
1468  *         newly dirtied     b_dirty    b_io    b_more_io
1469  *         =============>    g          fBAedc
1470  *                                           |
1471  *                                           +--> dequeue for IO
1472  */
1473 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1474 		     unsigned long dirtied_before)
1475 {
1476 	int moved;
1477 	unsigned long time_expire_jif = dirtied_before;
1478 
1479 	assert_spin_locked(&wb->list_lock);
1480 	list_splice_init(&wb->b_more_io, &wb->b_io);
1481 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1482 	if (!work->for_sync)
1483 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1484 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1485 				     time_expire_jif);
1486 	if (moved)
1487 		wb_io_lists_populated(wb);
1488 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1489 }
1490 
1491 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1492 {
1493 	int ret;
1494 
1495 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1496 		trace_writeback_write_inode_start(inode, wbc);
1497 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1498 		trace_writeback_write_inode(inode, wbc);
1499 		return ret;
1500 	}
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Wait for writeback on an inode to complete. Called with i_lock held.
1506  * Caller must make sure inode cannot go away when we drop i_lock.
1507  */
1508 static void __inode_wait_for_writeback(struct inode *inode)
1509 	__releases(inode->i_lock)
1510 	__acquires(inode->i_lock)
1511 {
1512 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1513 	wait_queue_head_t *wqh;
1514 
1515 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1516 	while (inode->i_state & I_SYNC) {
1517 		spin_unlock(&inode->i_lock);
1518 		__wait_on_bit(wqh, &wq, bit_wait,
1519 			      TASK_UNINTERRUPTIBLE);
1520 		spin_lock(&inode->i_lock);
1521 	}
1522 }
1523 
1524 /*
1525  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1526  */
1527 void inode_wait_for_writeback(struct inode *inode)
1528 {
1529 	spin_lock(&inode->i_lock);
1530 	__inode_wait_for_writeback(inode);
1531 	spin_unlock(&inode->i_lock);
1532 }
1533 
1534 /*
1535  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1536  * held and drops it. It is aimed for callers not holding any inode reference
1537  * so once i_lock is dropped, inode can go away.
1538  */
1539 static void inode_sleep_on_writeback(struct inode *inode)
1540 	__releases(inode->i_lock)
1541 {
1542 	DEFINE_WAIT(wait);
1543 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1544 	int sleep;
1545 
1546 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1547 	sleep = inode->i_state & I_SYNC;
1548 	spin_unlock(&inode->i_lock);
1549 	if (sleep)
1550 		schedule();
1551 	finish_wait(wqh, &wait);
1552 }
1553 
1554 /*
1555  * Find proper writeback list for the inode depending on its current state and
1556  * possibly also change of its state while we were doing writeback.  Here we
1557  * handle things such as livelock prevention or fairness of writeback among
1558  * inodes. This function can be called only by flusher thread - noone else
1559  * processes all inodes in writeback lists and requeueing inodes behind flusher
1560  * thread's back can have unexpected consequences.
1561  */
1562 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1563 			  struct writeback_control *wbc,
1564 			  unsigned long dirtied_before)
1565 {
1566 	if (inode->i_state & I_FREEING)
1567 		return;
1568 
1569 	/*
1570 	 * Sync livelock prevention. Each inode is tagged and synced in one
1571 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1572 	 * the dirty time to prevent enqueue and sync it again.
1573 	 */
1574 	if ((inode->i_state & I_DIRTY) &&
1575 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1576 		inode->dirtied_when = jiffies;
1577 
1578 	if (wbc->pages_skipped) {
1579 		/*
1580 		 * Writeback is not making progress due to locked buffers.
1581 		 * Skip this inode for now. Although having skipped pages
1582 		 * is odd for clean inodes, it can happen for some
1583 		 * filesystems so handle that gracefully.
1584 		 */
1585 		if (inode->i_state & I_DIRTY_ALL)
1586 			redirty_tail_locked(inode, wb);
1587 		else
1588 			inode_cgwb_move_to_attached(inode, wb);
1589 		return;
1590 	}
1591 
1592 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1593 		/*
1594 		 * We didn't write back all the pages.  nfs_writepages()
1595 		 * sometimes bales out without doing anything.
1596 		 */
1597 		if (wbc->nr_to_write <= 0 &&
1598 		    !inode_dirtied_after(inode, dirtied_before)) {
1599 			/* Slice used up. Queue for next turn. */
1600 			requeue_io(inode, wb);
1601 		} else {
1602 			/*
1603 			 * Writeback blocked by something other than
1604 			 * congestion. Delay the inode for some time to
1605 			 * avoid spinning on the CPU (100% iowait)
1606 			 * retrying writeback of the dirty page/inode
1607 			 * that cannot be performed immediately.
1608 			 */
1609 			redirty_tail_locked(inode, wb);
1610 		}
1611 	} else if (inode->i_state & I_DIRTY) {
1612 		/*
1613 		 * Filesystems can dirty the inode during writeback operations,
1614 		 * such as delayed allocation during submission or metadata
1615 		 * updates after data IO completion.
1616 		 */
1617 		redirty_tail_locked(inode, wb);
1618 	} else if (inode->i_state & I_DIRTY_TIME) {
1619 		inode->dirtied_when = jiffies;
1620 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1621 		inode->i_state &= ~I_SYNC_QUEUED;
1622 	} else {
1623 		/* The inode is clean. Remove from writeback lists. */
1624 		inode_cgwb_move_to_attached(inode, wb);
1625 	}
1626 }
1627 
1628 /*
1629  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1630  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1631  *
1632  * This doesn't remove the inode from the writeback list it is on, except
1633  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1634  * expiration.  The caller is otherwise responsible for writeback list handling.
1635  *
1636  * The caller is also responsible for setting the I_SYNC flag beforehand and
1637  * calling inode_sync_complete() to clear it afterwards.
1638  */
1639 static int
1640 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1641 {
1642 	struct address_space *mapping = inode->i_mapping;
1643 	long nr_to_write = wbc->nr_to_write;
1644 	unsigned dirty;
1645 	int ret;
1646 
1647 	WARN_ON(!(inode->i_state & I_SYNC));
1648 
1649 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1650 
1651 	ret = do_writepages(mapping, wbc);
1652 
1653 	/*
1654 	 * Make sure to wait on the data before writing out the metadata.
1655 	 * This is important for filesystems that modify metadata on data
1656 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1657 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1658 	 * inode metadata is written back correctly.
1659 	 */
1660 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1661 		int err = filemap_fdatawait(mapping);
1662 		if (ret == 0)
1663 			ret = err;
1664 	}
1665 
1666 	/*
1667 	 * If the inode has dirty timestamps and we need to write them, call
1668 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1669 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1670 	 */
1671 	if ((inode->i_state & I_DIRTY_TIME) &&
1672 	    (wbc->sync_mode == WB_SYNC_ALL ||
1673 	     time_after(jiffies, inode->dirtied_time_when +
1674 			dirtytime_expire_interval * HZ))) {
1675 		trace_writeback_lazytime(inode);
1676 		mark_inode_dirty_sync(inode);
1677 	}
1678 
1679 	/*
1680 	 * Get and clear the dirty flags from i_state.  This needs to be done
1681 	 * after calling writepages because some filesystems may redirty the
1682 	 * inode during writepages due to delalloc.  It also needs to be done
1683 	 * after handling timestamp expiration, as that may dirty the inode too.
1684 	 */
1685 	spin_lock(&inode->i_lock);
1686 	dirty = inode->i_state & I_DIRTY;
1687 	inode->i_state &= ~dirty;
1688 
1689 	/*
1690 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1691 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1692 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1693 	 * inode.
1694 	 *
1695 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1696 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1697 	 * necessary.  This guarantees that either __mark_inode_dirty()
1698 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1699 	 */
1700 	smp_mb();
1701 
1702 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1703 		inode->i_state |= I_DIRTY_PAGES;
1704 	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1705 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1706 			inode->i_state &= ~I_PINNING_NETFS_WB;
1707 			wbc->unpinned_netfs_wb = true;
1708 			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1709 		}
1710 	}
1711 
1712 	spin_unlock(&inode->i_lock);
1713 
1714 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1715 	if (dirty & ~I_DIRTY_PAGES) {
1716 		int err = write_inode(inode, wbc);
1717 		if (ret == 0)
1718 			ret = err;
1719 	}
1720 	wbc->unpinned_netfs_wb = false;
1721 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1722 	return ret;
1723 }
1724 
1725 /*
1726  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1727  * the regular batched writeback done by the flusher threads in
1728  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1729  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1730  *
1731  * To prevent the inode from going away, either the caller must have a reference
1732  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1733  */
1734 static int writeback_single_inode(struct inode *inode,
1735 				  struct writeback_control *wbc)
1736 {
1737 	struct bdi_writeback *wb;
1738 	int ret = 0;
1739 
1740 	spin_lock(&inode->i_lock);
1741 	if (!atomic_read(&inode->i_count))
1742 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1743 	else
1744 		WARN_ON(inode->i_state & I_WILL_FREE);
1745 
1746 	if (inode->i_state & I_SYNC) {
1747 		/*
1748 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1749 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1750 		 * must wait for the existing writeback to complete, then do
1751 		 * writeback again if there's anything left.
1752 		 */
1753 		if (wbc->sync_mode != WB_SYNC_ALL)
1754 			goto out;
1755 		__inode_wait_for_writeback(inode);
1756 	}
1757 	WARN_ON(inode->i_state & I_SYNC);
1758 	/*
1759 	 * If the inode is already fully clean, then there's nothing to do.
1760 	 *
1761 	 * For data-integrity syncs we also need to check whether any pages are
1762 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1763 	 * there are any such pages, we'll need to wait for them.
1764 	 */
1765 	if (!(inode->i_state & I_DIRTY_ALL) &&
1766 	    (wbc->sync_mode != WB_SYNC_ALL ||
1767 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1768 		goto out;
1769 	inode->i_state |= I_SYNC;
1770 	wbc_attach_and_unlock_inode(wbc, inode);
1771 
1772 	ret = __writeback_single_inode(inode, wbc);
1773 
1774 	wbc_detach_inode(wbc);
1775 
1776 	wb = inode_to_wb_and_lock_list(inode);
1777 	spin_lock(&inode->i_lock);
1778 	/*
1779 	 * If the inode is freeing, its i_io_list shoudn't be updated
1780 	 * as it can be finally deleted at this moment.
1781 	 */
1782 	if (!(inode->i_state & I_FREEING)) {
1783 		/*
1784 		 * If the inode is now fully clean, then it can be safely
1785 		 * removed from its writeback list (if any). Otherwise the
1786 		 * flusher threads are responsible for the writeback lists.
1787 		 */
1788 		if (!(inode->i_state & I_DIRTY_ALL))
1789 			inode_cgwb_move_to_attached(inode, wb);
1790 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1791 			if ((inode->i_state & I_DIRTY))
1792 				redirty_tail_locked(inode, wb);
1793 			else if (inode->i_state & I_DIRTY_TIME) {
1794 				inode->dirtied_when = jiffies;
1795 				inode_io_list_move_locked(inode,
1796 							  wb,
1797 							  &wb->b_dirty_time);
1798 			}
1799 		}
1800 	}
1801 
1802 	spin_unlock(&wb->list_lock);
1803 	inode_sync_complete(inode);
1804 out:
1805 	spin_unlock(&inode->i_lock);
1806 	return ret;
1807 }
1808 
1809 static long writeback_chunk_size(struct bdi_writeback *wb,
1810 				 struct wb_writeback_work *work)
1811 {
1812 	long pages;
1813 
1814 	/*
1815 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1816 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1817 	 * here avoids calling into writeback_inodes_wb() more than once.
1818 	 *
1819 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1820 	 *
1821 	 *      wb_writeback()
1822 	 *          writeback_sb_inodes()       <== called only once
1823 	 *              write_cache_pages()     <== called once for each inode
1824 	 *                   (quickly) tag currently dirty pages
1825 	 *                   (maybe slowly) sync all tagged pages
1826 	 */
1827 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1828 		pages = LONG_MAX;
1829 	else {
1830 		pages = min(wb->avg_write_bandwidth / 2,
1831 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1832 		pages = min(pages, work->nr_pages);
1833 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1834 				   MIN_WRITEBACK_PAGES);
1835 	}
1836 
1837 	return pages;
1838 }
1839 
1840 /*
1841  * Write a portion of b_io inodes which belong to @sb.
1842  *
1843  * Return the number of pages and/or inodes written.
1844  *
1845  * NOTE! This is called with wb->list_lock held, and will
1846  * unlock and relock that for each inode it ends up doing
1847  * IO for.
1848  */
1849 static long writeback_sb_inodes(struct super_block *sb,
1850 				struct bdi_writeback *wb,
1851 				struct wb_writeback_work *work)
1852 {
1853 	struct writeback_control wbc = {
1854 		.sync_mode		= work->sync_mode,
1855 		.tagged_writepages	= work->tagged_writepages,
1856 		.for_kupdate		= work->for_kupdate,
1857 		.for_background		= work->for_background,
1858 		.for_sync		= work->for_sync,
1859 		.range_cyclic		= work->range_cyclic,
1860 		.range_start		= 0,
1861 		.range_end		= LLONG_MAX,
1862 	};
1863 	unsigned long start_time = jiffies;
1864 	long write_chunk;
1865 	long total_wrote = 0;  /* count both pages and inodes */
1866 	unsigned long dirtied_before = jiffies;
1867 
1868 	if (work->for_kupdate)
1869 		dirtied_before = jiffies -
1870 			msecs_to_jiffies(dirty_expire_interval * 10);
1871 
1872 	while (!list_empty(&wb->b_io)) {
1873 		struct inode *inode = wb_inode(wb->b_io.prev);
1874 		struct bdi_writeback *tmp_wb;
1875 		long wrote;
1876 
1877 		if (inode->i_sb != sb) {
1878 			if (work->sb) {
1879 				/*
1880 				 * We only want to write back data for this
1881 				 * superblock, move all inodes not belonging
1882 				 * to it back onto the dirty list.
1883 				 */
1884 				redirty_tail(inode, wb);
1885 				continue;
1886 			}
1887 
1888 			/*
1889 			 * The inode belongs to a different superblock.
1890 			 * Bounce back to the caller to unpin this and
1891 			 * pin the next superblock.
1892 			 */
1893 			break;
1894 		}
1895 
1896 		/*
1897 		 * Don't bother with new inodes or inodes being freed, first
1898 		 * kind does not need periodic writeout yet, and for the latter
1899 		 * kind writeout is handled by the freer.
1900 		 */
1901 		spin_lock(&inode->i_lock);
1902 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1903 			redirty_tail_locked(inode, wb);
1904 			spin_unlock(&inode->i_lock);
1905 			continue;
1906 		}
1907 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1908 			/*
1909 			 * If this inode is locked for writeback and we are not
1910 			 * doing writeback-for-data-integrity, move it to
1911 			 * b_more_io so that writeback can proceed with the
1912 			 * other inodes on s_io.
1913 			 *
1914 			 * We'll have another go at writing back this inode
1915 			 * when we completed a full scan of b_io.
1916 			 */
1917 			requeue_io(inode, wb);
1918 			spin_unlock(&inode->i_lock);
1919 			trace_writeback_sb_inodes_requeue(inode);
1920 			continue;
1921 		}
1922 		spin_unlock(&wb->list_lock);
1923 
1924 		/*
1925 		 * We already requeued the inode if it had I_SYNC set and we
1926 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1927 		 * WB_SYNC_ALL case.
1928 		 */
1929 		if (inode->i_state & I_SYNC) {
1930 			/* Wait for I_SYNC. This function drops i_lock... */
1931 			inode_sleep_on_writeback(inode);
1932 			/* Inode may be gone, start again */
1933 			spin_lock(&wb->list_lock);
1934 			continue;
1935 		}
1936 		inode->i_state |= I_SYNC;
1937 		wbc_attach_and_unlock_inode(&wbc, inode);
1938 
1939 		write_chunk = writeback_chunk_size(wb, work);
1940 		wbc.nr_to_write = write_chunk;
1941 		wbc.pages_skipped = 0;
1942 
1943 		/*
1944 		 * We use I_SYNC to pin the inode in memory. While it is set
1945 		 * evict_inode() will wait so the inode cannot be freed.
1946 		 */
1947 		__writeback_single_inode(inode, &wbc);
1948 
1949 		wbc_detach_inode(&wbc);
1950 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1951 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1952 		wrote = wrote < 0 ? 0 : wrote;
1953 		total_wrote += wrote;
1954 
1955 		if (need_resched()) {
1956 			/*
1957 			 * We're trying to balance between building up a nice
1958 			 * long list of IOs to improve our merge rate, and
1959 			 * getting those IOs out quickly for anyone throttling
1960 			 * in balance_dirty_pages().  cond_resched() doesn't
1961 			 * unplug, so get our IOs out the door before we
1962 			 * give up the CPU.
1963 			 */
1964 			blk_flush_plug(current->plug, false);
1965 			cond_resched();
1966 		}
1967 
1968 		/*
1969 		 * Requeue @inode if still dirty.  Be careful as @inode may
1970 		 * have been switched to another wb in the meantime.
1971 		 */
1972 		tmp_wb = inode_to_wb_and_lock_list(inode);
1973 		spin_lock(&inode->i_lock);
1974 		if (!(inode->i_state & I_DIRTY_ALL))
1975 			total_wrote++;
1976 		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1977 		inode_sync_complete(inode);
1978 		spin_unlock(&inode->i_lock);
1979 
1980 		if (unlikely(tmp_wb != wb)) {
1981 			spin_unlock(&tmp_wb->list_lock);
1982 			spin_lock(&wb->list_lock);
1983 		}
1984 
1985 		/*
1986 		 * bail out to wb_writeback() often enough to check
1987 		 * background threshold and other termination conditions.
1988 		 */
1989 		if (total_wrote) {
1990 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1991 				break;
1992 			if (work->nr_pages <= 0)
1993 				break;
1994 		}
1995 	}
1996 	return total_wrote;
1997 }
1998 
1999 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2000 				  struct wb_writeback_work *work)
2001 {
2002 	unsigned long start_time = jiffies;
2003 	long wrote = 0;
2004 
2005 	while (!list_empty(&wb->b_io)) {
2006 		struct inode *inode = wb_inode(wb->b_io.prev);
2007 		struct super_block *sb = inode->i_sb;
2008 
2009 		if (!super_trylock_shared(sb)) {
2010 			/*
2011 			 * super_trylock_shared() may fail consistently due to
2012 			 * s_umount being grabbed by someone else. Don't use
2013 			 * requeue_io() to avoid busy retrying the inode/sb.
2014 			 */
2015 			redirty_tail(inode, wb);
2016 			continue;
2017 		}
2018 		wrote += writeback_sb_inodes(sb, wb, work);
2019 		up_read(&sb->s_umount);
2020 
2021 		/* refer to the same tests at the end of writeback_sb_inodes */
2022 		if (wrote) {
2023 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2024 				break;
2025 			if (work->nr_pages <= 0)
2026 				break;
2027 		}
2028 	}
2029 	/* Leave any unwritten inodes on b_io */
2030 	return wrote;
2031 }
2032 
2033 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2034 				enum wb_reason reason)
2035 {
2036 	struct wb_writeback_work work = {
2037 		.nr_pages	= nr_pages,
2038 		.sync_mode	= WB_SYNC_NONE,
2039 		.range_cyclic	= 1,
2040 		.reason		= reason,
2041 	};
2042 	struct blk_plug plug;
2043 
2044 	blk_start_plug(&plug);
2045 	spin_lock(&wb->list_lock);
2046 	if (list_empty(&wb->b_io))
2047 		queue_io(wb, &work, jiffies);
2048 	__writeback_inodes_wb(wb, &work);
2049 	spin_unlock(&wb->list_lock);
2050 	blk_finish_plug(&plug);
2051 
2052 	return nr_pages - work.nr_pages;
2053 }
2054 
2055 /*
2056  * Explicit flushing or periodic writeback of "old" data.
2057  *
2058  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2059  * dirtying-time in the inode's address_space.  So this periodic writeback code
2060  * just walks the superblock inode list, writing back any inodes which are
2061  * older than a specific point in time.
2062  *
2063  * Try to run once per dirty_writeback_interval.  But if a writeback event
2064  * takes longer than a dirty_writeback_interval interval, then leave a
2065  * one-second gap.
2066  *
2067  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2068  * all dirty pages if they are all attached to "old" mappings.
2069  */
2070 static long wb_writeback(struct bdi_writeback *wb,
2071 			 struct wb_writeback_work *work)
2072 {
2073 	long nr_pages = work->nr_pages;
2074 	unsigned long dirtied_before = jiffies;
2075 	struct inode *inode;
2076 	long progress;
2077 	struct blk_plug plug;
2078 	bool queued = false;
2079 
2080 	blk_start_plug(&plug);
2081 	for (;;) {
2082 		/*
2083 		 * Stop writeback when nr_pages has been consumed
2084 		 */
2085 		if (work->nr_pages <= 0)
2086 			break;
2087 
2088 		/*
2089 		 * Background writeout and kupdate-style writeback may
2090 		 * run forever. Stop them if there is other work to do
2091 		 * so that e.g. sync can proceed. They'll be restarted
2092 		 * after the other works are all done.
2093 		 */
2094 		if ((work->for_background || work->for_kupdate) &&
2095 		    !list_empty(&wb->work_list))
2096 			break;
2097 
2098 		/*
2099 		 * For background writeout, stop when we are below the
2100 		 * background dirty threshold
2101 		 */
2102 		if (work->for_background && !wb_over_bg_thresh(wb))
2103 			break;
2104 
2105 
2106 		spin_lock(&wb->list_lock);
2107 
2108 		trace_writeback_start(wb, work);
2109 		if (list_empty(&wb->b_io)) {
2110 			/*
2111 			 * Kupdate and background works are special and we want
2112 			 * to include all inodes that need writing. Livelock
2113 			 * avoidance is handled by these works yielding to any
2114 			 * other work so we are safe.
2115 			 */
2116 			if (work->for_kupdate) {
2117 				dirtied_before = jiffies -
2118 					msecs_to_jiffies(dirty_expire_interval *
2119 							 10);
2120 			} else if (work->for_background)
2121 				dirtied_before = jiffies;
2122 
2123 			queue_io(wb, work, dirtied_before);
2124 			queued = true;
2125 		}
2126 		if (work->sb)
2127 			progress = writeback_sb_inodes(work->sb, wb, work);
2128 		else
2129 			progress = __writeback_inodes_wb(wb, work);
2130 		trace_writeback_written(wb, work);
2131 
2132 		/*
2133 		 * Did we write something? Try for more
2134 		 *
2135 		 * Dirty inodes are moved to b_io for writeback in batches.
2136 		 * The completion of the current batch does not necessarily
2137 		 * mean the overall work is done. So we keep looping as long
2138 		 * as made some progress on cleaning pages or inodes.
2139 		 */
2140 		if (progress || !queued) {
2141 			spin_unlock(&wb->list_lock);
2142 			continue;
2143 		}
2144 
2145 		/*
2146 		 * No more inodes for IO, bail
2147 		 */
2148 		if (list_empty(&wb->b_more_io)) {
2149 			spin_unlock(&wb->list_lock);
2150 			break;
2151 		}
2152 
2153 		/*
2154 		 * Nothing written. Wait for some inode to
2155 		 * become available for writeback. Otherwise
2156 		 * we'll just busyloop.
2157 		 */
2158 		trace_writeback_wait(wb, work);
2159 		inode = wb_inode(wb->b_more_io.prev);
2160 		spin_lock(&inode->i_lock);
2161 		spin_unlock(&wb->list_lock);
2162 		/* This function drops i_lock... */
2163 		inode_sleep_on_writeback(inode);
2164 	}
2165 	blk_finish_plug(&plug);
2166 
2167 	return nr_pages - work->nr_pages;
2168 }
2169 
2170 /*
2171  * Return the next wb_writeback_work struct that hasn't been processed yet.
2172  */
2173 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2174 {
2175 	struct wb_writeback_work *work = NULL;
2176 
2177 	spin_lock_irq(&wb->work_lock);
2178 	if (!list_empty(&wb->work_list)) {
2179 		work = list_entry(wb->work_list.next,
2180 				  struct wb_writeback_work, list);
2181 		list_del_init(&work->list);
2182 	}
2183 	spin_unlock_irq(&wb->work_lock);
2184 	return work;
2185 }
2186 
2187 static long wb_check_background_flush(struct bdi_writeback *wb)
2188 {
2189 	if (wb_over_bg_thresh(wb)) {
2190 
2191 		struct wb_writeback_work work = {
2192 			.nr_pages	= LONG_MAX,
2193 			.sync_mode	= WB_SYNC_NONE,
2194 			.for_background	= 1,
2195 			.range_cyclic	= 1,
2196 			.reason		= WB_REASON_BACKGROUND,
2197 		};
2198 
2199 		return wb_writeback(wb, &work);
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2206 {
2207 	unsigned long expired;
2208 	long nr_pages;
2209 
2210 	/*
2211 	 * When set to zero, disable periodic writeback
2212 	 */
2213 	if (!dirty_writeback_interval)
2214 		return 0;
2215 
2216 	expired = wb->last_old_flush +
2217 			msecs_to_jiffies(dirty_writeback_interval * 10);
2218 	if (time_before(jiffies, expired))
2219 		return 0;
2220 
2221 	wb->last_old_flush = jiffies;
2222 	nr_pages = get_nr_dirty_pages();
2223 
2224 	if (nr_pages) {
2225 		struct wb_writeback_work work = {
2226 			.nr_pages	= nr_pages,
2227 			.sync_mode	= WB_SYNC_NONE,
2228 			.for_kupdate	= 1,
2229 			.range_cyclic	= 1,
2230 			.reason		= WB_REASON_PERIODIC,
2231 		};
2232 
2233 		return wb_writeback(wb, &work);
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 static long wb_check_start_all(struct bdi_writeback *wb)
2240 {
2241 	long nr_pages;
2242 
2243 	if (!test_bit(WB_start_all, &wb->state))
2244 		return 0;
2245 
2246 	nr_pages = get_nr_dirty_pages();
2247 	if (nr_pages) {
2248 		struct wb_writeback_work work = {
2249 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2250 			.sync_mode	= WB_SYNC_NONE,
2251 			.range_cyclic	= 1,
2252 			.reason		= wb->start_all_reason,
2253 		};
2254 
2255 		nr_pages = wb_writeback(wb, &work);
2256 	}
2257 
2258 	clear_bit(WB_start_all, &wb->state);
2259 	return nr_pages;
2260 }
2261 
2262 
2263 /*
2264  * Retrieve work items and do the writeback they describe
2265  */
2266 static long wb_do_writeback(struct bdi_writeback *wb)
2267 {
2268 	struct wb_writeback_work *work;
2269 	long wrote = 0;
2270 
2271 	set_bit(WB_writeback_running, &wb->state);
2272 	while ((work = get_next_work_item(wb)) != NULL) {
2273 		trace_writeback_exec(wb, work);
2274 		wrote += wb_writeback(wb, work);
2275 		finish_writeback_work(work);
2276 	}
2277 
2278 	/*
2279 	 * Check for a flush-everything request
2280 	 */
2281 	wrote += wb_check_start_all(wb);
2282 
2283 	/*
2284 	 * Check for periodic writeback, kupdated() style
2285 	 */
2286 	wrote += wb_check_old_data_flush(wb);
2287 	wrote += wb_check_background_flush(wb);
2288 	clear_bit(WB_writeback_running, &wb->state);
2289 
2290 	return wrote;
2291 }
2292 
2293 /*
2294  * Handle writeback of dirty data for the device backed by this bdi. Also
2295  * reschedules periodically and does kupdated style flushing.
2296  */
2297 void wb_workfn(struct work_struct *work)
2298 {
2299 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2300 						struct bdi_writeback, dwork);
2301 	long pages_written;
2302 
2303 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2304 
2305 	if (likely(!current_is_workqueue_rescuer() ||
2306 		   !test_bit(WB_registered, &wb->state))) {
2307 		/*
2308 		 * The normal path.  Keep writing back @wb until its
2309 		 * work_list is empty.  Note that this path is also taken
2310 		 * if @wb is shutting down even when we're running off the
2311 		 * rescuer as work_list needs to be drained.
2312 		 */
2313 		do {
2314 			pages_written = wb_do_writeback(wb);
2315 			trace_writeback_pages_written(pages_written);
2316 		} while (!list_empty(&wb->work_list));
2317 	} else {
2318 		/*
2319 		 * bdi_wq can't get enough workers and we're running off
2320 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2321 		 * enough for efficient IO.
2322 		 */
2323 		pages_written = writeback_inodes_wb(wb, 1024,
2324 						    WB_REASON_FORKER_THREAD);
2325 		trace_writeback_pages_written(pages_written);
2326 	}
2327 
2328 	if (!list_empty(&wb->work_list))
2329 		wb_wakeup(wb);
2330 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2331 		wb_wakeup_delayed(wb);
2332 }
2333 
2334 /*
2335  * Start writeback of all dirty pages on this bdi.
2336  */
2337 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2338 					 enum wb_reason reason)
2339 {
2340 	struct bdi_writeback *wb;
2341 
2342 	if (!bdi_has_dirty_io(bdi))
2343 		return;
2344 
2345 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2346 		wb_start_writeback(wb, reason);
2347 }
2348 
2349 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2350 				enum wb_reason reason)
2351 {
2352 	rcu_read_lock();
2353 	__wakeup_flusher_threads_bdi(bdi, reason);
2354 	rcu_read_unlock();
2355 }
2356 
2357 /*
2358  * Wakeup the flusher threads to start writeback of all currently dirty pages
2359  */
2360 void wakeup_flusher_threads(enum wb_reason reason)
2361 {
2362 	struct backing_dev_info *bdi;
2363 
2364 	/*
2365 	 * If we are expecting writeback progress we must submit plugged IO.
2366 	 */
2367 	blk_flush_plug(current->plug, true);
2368 
2369 	rcu_read_lock();
2370 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2371 		__wakeup_flusher_threads_bdi(bdi, reason);
2372 	rcu_read_unlock();
2373 }
2374 
2375 /*
2376  * Wake up bdi's periodically to make sure dirtytime inodes gets
2377  * written back periodically.  We deliberately do *not* check the
2378  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2379  * kernel to be constantly waking up once there are any dirtytime
2380  * inodes on the system.  So instead we define a separate delayed work
2381  * function which gets called much more rarely.  (By default, only
2382  * once every 12 hours.)
2383  *
2384  * If there is any other write activity going on in the file system,
2385  * this function won't be necessary.  But if the only thing that has
2386  * happened on the file system is a dirtytime inode caused by an atime
2387  * update, we need this infrastructure below to make sure that inode
2388  * eventually gets pushed out to disk.
2389  */
2390 static void wakeup_dirtytime_writeback(struct work_struct *w);
2391 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2392 
2393 static void wakeup_dirtytime_writeback(struct work_struct *w)
2394 {
2395 	struct backing_dev_info *bdi;
2396 
2397 	rcu_read_lock();
2398 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2399 		struct bdi_writeback *wb;
2400 
2401 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2402 			if (!list_empty(&wb->b_dirty_time))
2403 				wb_wakeup(wb);
2404 	}
2405 	rcu_read_unlock();
2406 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2407 }
2408 
2409 static int __init start_dirtytime_writeback(void)
2410 {
2411 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2412 	return 0;
2413 }
2414 __initcall(start_dirtytime_writeback);
2415 
2416 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2417 			       void *buffer, size_t *lenp, loff_t *ppos)
2418 {
2419 	int ret;
2420 
2421 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2422 	if (ret == 0 && write)
2423 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2424 	return ret;
2425 }
2426 
2427 /**
2428  * __mark_inode_dirty -	internal function to mark an inode dirty
2429  *
2430  * @inode: inode to mark
2431  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2432  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2433  *	   with I_DIRTY_PAGES.
2434  *
2435  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2436  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2437  *
2438  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2439  * instead of calling this directly.
2440  *
2441  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2442  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2443  * even if they are later hashed, as they will have been marked dirty already.
2444  *
2445  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2446  *
2447  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2448  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2449  * the kernel-internal blockdev inode represents the dirtying time of the
2450  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2451  * page->mapping->host, so the page-dirtying time is recorded in the internal
2452  * blockdev inode.
2453  */
2454 void __mark_inode_dirty(struct inode *inode, int flags)
2455 {
2456 	struct super_block *sb = inode->i_sb;
2457 	int dirtytime = 0;
2458 	struct bdi_writeback *wb = NULL;
2459 
2460 	trace_writeback_mark_inode_dirty(inode, flags);
2461 
2462 	if (flags & I_DIRTY_INODE) {
2463 		/*
2464 		 * Inode timestamp update will piggback on this dirtying.
2465 		 * We tell ->dirty_inode callback that timestamps need to
2466 		 * be updated by setting I_DIRTY_TIME in flags.
2467 		 */
2468 		if (inode->i_state & I_DIRTY_TIME) {
2469 			spin_lock(&inode->i_lock);
2470 			if (inode->i_state & I_DIRTY_TIME) {
2471 				inode->i_state &= ~I_DIRTY_TIME;
2472 				flags |= I_DIRTY_TIME;
2473 			}
2474 			spin_unlock(&inode->i_lock);
2475 		}
2476 
2477 		/*
2478 		 * Notify the filesystem about the inode being dirtied, so that
2479 		 * (if needed) it can update on-disk fields and journal the
2480 		 * inode.  This is only needed when the inode itself is being
2481 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2482 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2483 		 */
2484 		trace_writeback_dirty_inode_start(inode, flags);
2485 		if (sb->s_op->dirty_inode)
2486 			sb->s_op->dirty_inode(inode,
2487 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2488 		trace_writeback_dirty_inode(inode, flags);
2489 
2490 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2491 		flags &= ~I_DIRTY_TIME;
2492 	} else {
2493 		/*
2494 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2495 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2496 		 * in one call to __mark_inode_dirty().)
2497 		 */
2498 		dirtytime = flags & I_DIRTY_TIME;
2499 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2500 	}
2501 
2502 	/*
2503 	 * Paired with smp_mb() in __writeback_single_inode() for the
2504 	 * following lockless i_state test.  See there for details.
2505 	 */
2506 	smp_mb();
2507 
2508 	if ((inode->i_state & flags) == flags)
2509 		return;
2510 
2511 	spin_lock(&inode->i_lock);
2512 	if ((inode->i_state & flags) != flags) {
2513 		const int was_dirty = inode->i_state & I_DIRTY;
2514 
2515 		inode_attach_wb(inode, NULL);
2516 
2517 		inode->i_state |= flags;
2518 
2519 		/*
2520 		 * Grab inode's wb early because it requires dropping i_lock and we
2521 		 * need to make sure following checks happen atomically with dirty
2522 		 * list handling so that we don't move inodes under flush worker's
2523 		 * hands.
2524 		 */
2525 		if (!was_dirty) {
2526 			wb = locked_inode_to_wb_and_lock_list(inode);
2527 			spin_lock(&inode->i_lock);
2528 		}
2529 
2530 		/*
2531 		 * If the inode is queued for writeback by flush worker, just
2532 		 * update its dirty state. Once the flush worker is done with
2533 		 * the inode it will place it on the appropriate superblock
2534 		 * list, based upon its state.
2535 		 */
2536 		if (inode->i_state & I_SYNC_QUEUED)
2537 			goto out_unlock;
2538 
2539 		/*
2540 		 * Only add valid (hashed) inodes to the superblock's
2541 		 * dirty list.  Add blockdev inodes as well.
2542 		 */
2543 		if (!S_ISBLK(inode->i_mode)) {
2544 			if (inode_unhashed(inode))
2545 				goto out_unlock;
2546 		}
2547 		if (inode->i_state & I_FREEING)
2548 			goto out_unlock;
2549 
2550 		/*
2551 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2552 		 * reposition it (that would break b_dirty time-ordering).
2553 		 */
2554 		if (!was_dirty) {
2555 			struct list_head *dirty_list;
2556 			bool wakeup_bdi = false;
2557 
2558 			inode->dirtied_when = jiffies;
2559 			if (dirtytime)
2560 				inode->dirtied_time_when = jiffies;
2561 
2562 			if (inode->i_state & I_DIRTY)
2563 				dirty_list = &wb->b_dirty;
2564 			else
2565 				dirty_list = &wb->b_dirty_time;
2566 
2567 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2568 							       dirty_list);
2569 
2570 			spin_unlock(&wb->list_lock);
2571 			spin_unlock(&inode->i_lock);
2572 			trace_writeback_dirty_inode_enqueue(inode);
2573 
2574 			/*
2575 			 * If this is the first dirty inode for this bdi,
2576 			 * we have to wake-up the corresponding bdi thread
2577 			 * to make sure background write-back happens
2578 			 * later.
2579 			 */
2580 			if (wakeup_bdi &&
2581 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2582 				wb_wakeup_delayed(wb);
2583 			return;
2584 		}
2585 	}
2586 out_unlock:
2587 	if (wb)
2588 		spin_unlock(&wb->list_lock);
2589 	spin_unlock(&inode->i_lock);
2590 }
2591 EXPORT_SYMBOL(__mark_inode_dirty);
2592 
2593 /*
2594  * The @s_sync_lock is used to serialise concurrent sync operations
2595  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2596  * Concurrent callers will block on the s_sync_lock rather than doing contending
2597  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2598  * has been issued up to the time this function is enter is guaranteed to be
2599  * completed by the time we have gained the lock and waited for all IO that is
2600  * in progress regardless of the order callers are granted the lock.
2601  */
2602 static void wait_sb_inodes(struct super_block *sb)
2603 {
2604 	LIST_HEAD(sync_list);
2605 
2606 	/*
2607 	 * We need to be protected against the filesystem going from
2608 	 * r/o to r/w or vice versa.
2609 	 */
2610 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2611 
2612 	mutex_lock(&sb->s_sync_lock);
2613 
2614 	/*
2615 	 * Splice the writeback list onto a temporary list to avoid waiting on
2616 	 * inodes that have started writeback after this point.
2617 	 *
2618 	 * Use rcu_read_lock() to keep the inodes around until we have a
2619 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2620 	 * the local list because inodes can be dropped from either by writeback
2621 	 * completion.
2622 	 */
2623 	rcu_read_lock();
2624 	spin_lock_irq(&sb->s_inode_wblist_lock);
2625 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2626 
2627 	/*
2628 	 * Data integrity sync. Must wait for all pages under writeback, because
2629 	 * there may have been pages dirtied before our sync call, but which had
2630 	 * writeout started before we write it out.  In which case, the inode
2631 	 * may not be on the dirty list, but we still have to wait for that
2632 	 * writeout.
2633 	 */
2634 	while (!list_empty(&sync_list)) {
2635 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2636 						       i_wb_list);
2637 		struct address_space *mapping = inode->i_mapping;
2638 
2639 		/*
2640 		 * Move each inode back to the wb list before we drop the lock
2641 		 * to preserve consistency between i_wb_list and the mapping
2642 		 * writeback tag. Writeback completion is responsible to remove
2643 		 * the inode from either list once the writeback tag is cleared.
2644 		 */
2645 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2646 
2647 		/*
2648 		 * The mapping can appear untagged while still on-list since we
2649 		 * do not have the mapping lock. Skip it here, wb completion
2650 		 * will remove it.
2651 		 */
2652 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2653 			continue;
2654 
2655 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2656 
2657 		spin_lock(&inode->i_lock);
2658 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2659 			spin_unlock(&inode->i_lock);
2660 
2661 			spin_lock_irq(&sb->s_inode_wblist_lock);
2662 			continue;
2663 		}
2664 		__iget(inode);
2665 		spin_unlock(&inode->i_lock);
2666 		rcu_read_unlock();
2667 
2668 		/*
2669 		 * We keep the error status of individual mapping so that
2670 		 * applications can catch the writeback error using fsync(2).
2671 		 * See filemap_fdatawait_keep_errors() for details.
2672 		 */
2673 		filemap_fdatawait_keep_errors(mapping);
2674 
2675 		cond_resched();
2676 
2677 		iput(inode);
2678 
2679 		rcu_read_lock();
2680 		spin_lock_irq(&sb->s_inode_wblist_lock);
2681 	}
2682 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2683 	rcu_read_unlock();
2684 	mutex_unlock(&sb->s_sync_lock);
2685 }
2686 
2687 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2688 				     enum wb_reason reason, bool skip_if_busy)
2689 {
2690 	struct backing_dev_info *bdi = sb->s_bdi;
2691 	DEFINE_WB_COMPLETION(done, bdi);
2692 	struct wb_writeback_work work = {
2693 		.sb			= sb,
2694 		.sync_mode		= WB_SYNC_NONE,
2695 		.tagged_writepages	= 1,
2696 		.done			= &done,
2697 		.nr_pages		= nr,
2698 		.reason			= reason,
2699 	};
2700 
2701 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2702 		return;
2703 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2704 
2705 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2706 	wb_wait_for_completion(&done);
2707 }
2708 
2709 /**
2710  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2711  * @sb: the superblock
2712  * @nr: the number of pages to write
2713  * @reason: reason why some writeback work initiated
2714  *
2715  * Start writeback on some inodes on this super_block. No guarantees are made
2716  * on how many (if any) will be written, and this function does not wait
2717  * for IO completion of submitted IO.
2718  */
2719 void writeback_inodes_sb_nr(struct super_block *sb,
2720 			    unsigned long nr,
2721 			    enum wb_reason reason)
2722 {
2723 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2724 }
2725 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2726 
2727 /**
2728  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2729  * @sb: the superblock
2730  * @reason: reason why some writeback work was initiated
2731  *
2732  * Start writeback on some inodes on this super_block. No guarantees are made
2733  * on how many (if any) will be written, and this function does not wait
2734  * for IO completion of submitted IO.
2735  */
2736 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2737 {
2738 	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2739 }
2740 EXPORT_SYMBOL(writeback_inodes_sb);
2741 
2742 /**
2743  * try_to_writeback_inodes_sb - try to start writeback if none underway
2744  * @sb: the superblock
2745  * @reason: reason why some writeback work was initiated
2746  *
2747  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2748  */
2749 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2750 {
2751 	if (!down_read_trylock(&sb->s_umount))
2752 		return;
2753 
2754 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2755 	up_read(&sb->s_umount);
2756 }
2757 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2758 
2759 /**
2760  * sync_inodes_sb	-	sync sb inode pages
2761  * @sb: the superblock
2762  *
2763  * This function writes and waits on any dirty inode belonging to this
2764  * super_block.
2765  */
2766 void sync_inodes_sb(struct super_block *sb)
2767 {
2768 	struct backing_dev_info *bdi = sb->s_bdi;
2769 	DEFINE_WB_COMPLETION(done, bdi);
2770 	struct wb_writeback_work work = {
2771 		.sb		= sb,
2772 		.sync_mode	= WB_SYNC_ALL,
2773 		.nr_pages	= LONG_MAX,
2774 		.range_cyclic	= 0,
2775 		.done		= &done,
2776 		.reason		= WB_REASON_SYNC,
2777 		.for_sync	= 1,
2778 	};
2779 
2780 	/*
2781 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2782 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2783 	 * bdi_has_dirty() need to be written out too.
2784 	 */
2785 	if (bdi == &noop_backing_dev_info)
2786 		return;
2787 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2788 
2789 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2790 	bdi_down_write_wb_switch_rwsem(bdi);
2791 	bdi_split_work_to_wbs(bdi, &work, false);
2792 	wb_wait_for_completion(&done);
2793 	bdi_up_write_wb_switch_rwsem(bdi);
2794 
2795 	wait_sb_inodes(sb);
2796 }
2797 EXPORT_SYMBOL(sync_inodes_sb);
2798 
2799 /**
2800  * write_inode_now	-	write an inode to disk
2801  * @inode: inode to write to disk
2802  * @sync: whether the write should be synchronous or not
2803  *
2804  * This function commits an inode to disk immediately if it is dirty. This is
2805  * primarily needed by knfsd.
2806  *
2807  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2808  */
2809 int write_inode_now(struct inode *inode, int sync)
2810 {
2811 	struct writeback_control wbc = {
2812 		.nr_to_write = LONG_MAX,
2813 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2814 		.range_start = 0,
2815 		.range_end = LLONG_MAX,
2816 	};
2817 
2818 	if (!mapping_can_writeback(inode->i_mapping))
2819 		wbc.nr_to_write = 0;
2820 
2821 	might_sleep();
2822 	return writeback_single_inode(inode, &wbc);
2823 }
2824 EXPORT_SYMBOL(write_inode_now);
2825 
2826 /**
2827  * sync_inode_metadata - write an inode to disk
2828  * @inode: the inode to sync
2829  * @wait: wait for I/O to complete.
2830  *
2831  * Write an inode to disk and adjust its dirty state after completion.
2832  *
2833  * Note: only writes the actual inode, no associated data or other metadata.
2834  */
2835 int sync_inode_metadata(struct inode *inode, int wait)
2836 {
2837 	struct writeback_control wbc = {
2838 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2839 		.nr_to_write = 0, /* metadata-only */
2840 	};
2841 
2842 	return writeback_single_inode(inode, &wbc);
2843 }
2844 EXPORT_SYMBOL(sync_inode_metadata);
2845