1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void finish_writeback_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 struct wb_completion *done = work->done; 180 181 if (work->auto_free) 182 kfree(work); 183 if (done && atomic_dec_and_test(&done->cnt)) 184 wake_up_all(&wb->bdi->wb_waitq); 185 } 186 187 static void wb_queue_work(struct bdi_writeback *wb, 188 struct wb_writeback_work *work) 189 { 190 trace_writeback_queue(wb, work); 191 192 if (work->done) 193 atomic_inc(&work->done->cnt); 194 195 spin_lock_bh(&wb->work_lock); 196 197 if (test_bit(WB_registered, &wb->state)) { 198 list_add_tail(&work->list, &wb->work_list); 199 mod_delayed_work(bdi_wq, &wb->dwork, 0); 200 } else 201 finish_writeback_work(wb, work); 202 203 spin_unlock_bh(&wb->work_lock); 204 } 205 206 /** 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works 208 * @bdi: bdi work items were issued to 209 * @done: target wb_completion 210 * 211 * Wait for one or more work items issued to @bdi with their ->done field 212 * set to @done, which should have been defined with 213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 214 * work items are completed. Work items which are waited upon aren't freed 215 * automatically on completion. 216 */ 217 static void wb_wait_for_completion(struct backing_dev_info *bdi, 218 struct wb_completion *done) 219 { 220 atomic_dec(&done->cnt); /* put down the initial count */ 221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 222 } 223 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 226 /* parameters for foreign inode detection, see wb_detach_inode() */ 227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 231 232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 234 /* each slot's duration is 2s / 16 */ 235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 236 /* if foreign slots >= 8, switch */ 237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 238 /* one round can affect upto 5 slots */ 239 240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 241 static struct workqueue_struct *isw_wq; 242 243 void __inode_attach_wb(struct inode *inode, struct page *page) 244 { 245 struct backing_dev_info *bdi = inode_to_bdi(inode); 246 struct bdi_writeback *wb = NULL; 247 248 if (inode_cgwb_enabled(inode)) { 249 struct cgroup_subsys_state *memcg_css; 250 251 if (page) { 252 memcg_css = mem_cgroup_css_from_page(page); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 } else { 255 /* must pin memcg_css, see wb_get_create() */ 256 memcg_css = task_get_css(current, memory_cgrp_id); 257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 258 css_put(memcg_css); 259 } 260 } 261 262 if (!wb) 263 wb = &bdi->wb; 264 265 /* 266 * There may be multiple instances of this function racing to 267 * update the same inode. Use cmpxchg() to tell the winner. 268 */ 269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 270 wb_put(wb); 271 } 272 273 /** 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 275 * @inode: inode of interest with i_lock held 276 * 277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 278 * held on entry and is released on return. The returned wb is guaranteed 279 * to stay @inode's associated wb until its list_lock is released. 280 */ 281 static struct bdi_writeback * 282 locked_inode_to_wb_and_lock_list(struct inode *inode) 283 __releases(&inode->i_lock) 284 __acquires(&wb->list_lock) 285 { 286 while (true) { 287 struct bdi_writeback *wb = inode_to_wb(inode); 288 289 /* 290 * inode_to_wb() association is protected by both 291 * @inode->i_lock and @wb->list_lock but list_lock nests 292 * outside i_lock. Drop i_lock and verify that the 293 * association hasn't changed after acquiring list_lock. 294 */ 295 wb_get(wb); 296 spin_unlock(&inode->i_lock); 297 spin_lock(&wb->list_lock); 298 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 300 if (likely(wb == inode->i_wb)) { 301 wb_put(wb); /* @inode already has ref */ 302 return wb; 303 } 304 305 spin_unlock(&wb->list_lock); 306 wb_put(wb); 307 cpu_relax(); 308 spin_lock(&inode->i_lock); 309 } 310 } 311 312 /** 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 314 * @inode: inode of interest 315 * 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 317 * on entry. 318 */ 319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 320 __acquires(&wb->list_lock) 321 { 322 spin_lock(&inode->i_lock); 323 return locked_inode_to_wb_and_lock_list(inode); 324 } 325 326 struct inode_switch_wbs_context { 327 struct inode *inode; 328 struct bdi_writeback *new_wb; 329 330 struct rcu_head rcu_head; 331 struct work_struct work; 332 }; 333 334 static void inode_switch_wbs_work_fn(struct work_struct *work) 335 { 336 struct inode_switch_wbs_context *isw = 337 container_of(work, struct inode_switch_wbs_context, work); 338 struct inode *inode = isw->inode; 339 struct address_space *mapping = inode->i_mapping; 340 struct bdi_writeback *old_wb = inode->i_wb; 341 struct bdi_writeback *new_wb = isw->new_wb; 342 struct radix_tree_iter iter; 343 bool switched = false; 344 void **slot; 345 346 /* 347 * By the time control reaches here, RCU grace period has passed 348 * since I_WB_SWITCH assertion and all wb stat update transactions 349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 350 * synchronizing against mapping->tree_lock. 351 * 352 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock 353 * gives us exclusion against all wb related operations on @inode 354 * including IO list manipulations and stat updates. 355 */ 356 if (old_wb < new_wb) { 357 spin_lock(&old_wb->list_lock); 358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 359 } else { 360 spin_lock(&new_wb->list_lock); 361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 362 } 363 spin_lock(&inode->i_lock); 364 spin_lock_irq(&mapping->tree_lock); 365 366 /* 367 * Once I_FREEING is visible under i_lock, the eviction path owns 368 * the inode and we shouldn't modify ->i_io_list. 369 */ 370 if (unlikely(inode->i_state & I_FREEING)) 371 goto skip_switch; 372 373 /* 374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 376 * pages actually under underwriteback. 377 */ 378 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 379 PAGECACHE_TAG_DIRTY) { 380 struct page *page = radix_tree_deref_slot_protected(slot, 381 &mapping->tree_lock); 382 if (likely(page) && PageDirty(page)) { 383 dec_wb_stat(old_wb, WB_RECLAIMABLE); 384 inc_wb_stat(new_wb, WB_RECLAIMABLE); 385 } 386 } 387 388 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 389 PAGECACHE_TAG_WRITEBACK) { 390 struct page *page = radix_tree_deref_slot_protected(slot, 391 &mapping->tree_lock); 392 if (likely(page)) { 393 WARN_ON_ONCE(!PageWriteback(page)); 394 dec_wb_stat(old_wb, WB_WRITEBACK); 395 inc_wb_stat(new_wb, WB_WRITEBACK); 396 } 397 } 398 399 wb_get(new_wb); 400 401 /* 402 * Transfer to @new_wb's IO list if necessary. The specific list 403 * @inode was on is ignored and the inode is put on ->b_dirty which 404 * is always correct including from ->b_dirty_time. The transfer 405 * preserves @inode->dirtied_when ordering. 406 */ 407 if (!list_empty(&inode->i_io_list)) { 408 struct inode *pos; 409 410 inode_io_list_del_locked(inode, old_wb); 411 inode->i_wb = new_wb; 412 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 413 if (time_after_eq(inode->dirtied_when, 414 pos->dirtied_when)) 415 break; 416 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 417 } else { 418 inode->i_wb = new_wb; 419 } 420 421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 422 inode->i_wb_frn_winner = 0; 423 inode->i_wb_frn_avg_time = 0; 424 inode->i_wb_frn_history = 0; 425 switched = true; 426 skip_switch: 427 /* 428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 429 * ensures that the new wb is visible if they see !I_WB_SWITCH. 430 */ 431 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 432 433 spin_unlock_irq(&mapping->tree_lock); 434 spin_unlock(&inode->i_lock); 435 spin_unlock(&new_wb->list_lock); 436 spin_unlock(&old_wb->list_lock); 437 438 if (switched) { 439 wb_wakeup(new_wb); 440 wb_put(old_wb); 441 } 442 wb_put(new_wb); 443 444 iput(inode); 445 kfree(isw); 446 447 atomic_dec(&isw_nr_in_flight); 448 } 449 450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 451 { 452 struct inode_switch_wbs_context *isw = container_of(rcu_head, 453 struct inode_switch_wbs_context, rcu_head); 454 455 /* needs to grab bh-unsafe locks, bounce to work item */ 456 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 457 queue_work(isw_wq, &isw->work); 458 } 459 460 /** 461 * inode_switch_wbs - change the wb association of an inode 462 * @inode: target inode 463 * @new_wb_id: ID of the new wb 464 * 465 * Switch @inode's wb association to the wb identified by @new_wb_id. The 466 * switching is performed asynchronously and may fail silently. 467 */ 468 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 469 { 470 struct backing_dev_info *bdi = inode_to_bdi(inode); 471 struct cgroup_subsys_state *memcg_css; 472 struct inode_switch_wbs_context *isw; 473 474 /* noop if seems to be already in progress */ 475 if (inode->i_state & I_WB_SWITCH) 476 return; 477 478 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 479 if (!isw) 480 return; 481 482 /* find and pin the new wb */ 483 rcu_read_lock(); 484 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 485 if (memcg_css) 486 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 487 rcu_read_unlock(); 488 if (!isw->new_wb) 489 goto out_free; 490 491 /* while holding I_WB_SWITCH, no one else can update the association */ 492 spin_lock(&inode->i_lock); 493 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 494 inode->i_state & (I_WB_SWITCH | I_FREEING) || 495 inode_to_wb(inode) == isw->new_wb) { 496 spin_unlock(&inode->i_lock); 497 goto out_free; 498 } 499 inode->i_state |= I_WB_SWITCH; 500 __iget(inode); 501 spin_unlock(&inode->i_lock); 502 503 isw->inode = inode; 504 505 atomic_inc(&isw_nr_in_flight); 506 507 /* 508 * In addition to synchronizing among switchers, I_WB_SWITCH tells 509 * the RCU protected stat update paths to grab the mapping's 510 * tree_lock so that stat transfer can synchronize against them. 511 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 512 */ 513 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 514 return; 515 516 out_free: 517 if (isw->new_wb) 518 wb_put(isw->new_wb); 519 kfree(isw); 520 } 521 522 /** 523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 524 * @wbc: writeback_control of interest 525 * @inode: target inode 526 * 527 * @inode is locked and about to be written back under the control of @wbc. 528 * Record @inode's writeback context into @wbc and unlock the i_lock. On 529 * writeback completion, wbc_detach_inode() should be called. This is used 530 * to track the cgroup writeback context. 531 */ 532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 533 struct inode *inode) 534 { 535 if (!inode_cgwb_enabled(inode)) { 536 spin_unlock(&inode->i_lock); 537 return; 538 } 539 540 wbc->wb = inode_to_wb(inode); 541 wbc->inode = inode; 542 543 wbc->wb_id = wbc->wb->memcg_css->id; 544 wbc->wb_lcand_id = inode->i_wb_frn_winner; 545 wbc->wb_tcand_id = 0; 546 wbc->wb_bytes = 0; 547 wbc->wb_lcand_bytes = 0; 548 wbc->wb_tcand_bytes = 0; 549 550 wb_get(wbc->wb); 551 spin_unlock(&inode->i_lock); 552 553 /* 554 * A dying wb indicates that the memcg-blkcg mapping has changed 555 * and a new wb is already serving the memcg. Switch immediately. 556 */ 557 if (unlikely(wb_dying(wbc->wb))) 558 inode_switch_wbs(inode, wbc->wb_id); 559 } 560 561 /** 562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 563 * @wbc: writeback_control of the just finished writeback 564 * 565 * To be called after a writeback attempt of an inode finishes and undoes 566 * wbc_attach_and_unlock_inode(). Can be called under any context. 567 * 568 * As concurrent write sharing of an inode is expected to be very rare and 569 * memcg only tracks page ownership on first-use basis severely confining 570 * the usefulness of such sharing, cgroup writeback tracks ownership 571 * per-inode. While the support for concurrent write sharing of an inode 572 * is deemed unnecessary, an inode being written to by different cgroups at 573 * different points in time is a lot more common, and, more importantly, 574 * charging only by first-use can too readily lead to grossly incorrect 575 * behaviors (single foreign page can lead to gigabytes of writeback to be 576 * incorrectly attributed). 577 * 578 * To resolve this issue, cgroup writeback detects the majority dirtier of 579 * an inode and transfers the ownership to it. To avoid unnnecessary 580 * oscillation, the detection mechanism keeps track of history and gives 581 * out the switch verdict only if the foreign usage pattern is stable over 582 * a certain amount of time and/or writeback attempts. 583 * 584 * On each writeback attempt, @wbc tries to detect the majority writer 585 * using Boyer-Moore majority vote algorithm. In addition to the byte 586 * count from the majority voting, it also counts the bytes written for the 587 * current wb and the last round's winner wb (max of last round's current 588 * wb, the winner from two rounds ago, and the last round's majority 589 * candidate). Keeping track of the historical winner helps the algorithm 590 * to semi-reliably detect the most active writer even when it's not the 591 * absolute majority. 592 * 593 * Once the winner of the round is determined, whether the winner is 594 * foreign or not and how much IO time the round consumed is recorded in 595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 596 * over a certain threshold, the switch verdict is given. 597 */ 598 void wbc_detach_inode(struct writeback_control *wbc) 599 { 600 struct bdi_writeback *wb = wbc->wb; 601 struct inode *inode = wbc->inode; 602 unsigned long avg_time, max_bytes, max_time; 603 u16 history; 604 int max_id; 605 606 if (!wb) 607 return; 608 609 history = inode->i_wb_frn_history; 610 avg_time = inode->i_wb_frn_avg_time; 611 612 /* pick the winner of this round */ 613 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 614 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 615 max_id = wbc->wb_id; 616 max_bytes = wbc->wb_bytes; 617 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 618 max_id = wbc->wb_lcand_id; 619 max_bytes = wbc->wb_lcand_bytes; 620 } else { 621 max_id = wbc->wb_tcand_id; 622 max_bytes = wbc->wb_tcand_bytes; 623 } 624 625 /* 626 * Calculate the amount of IO time the winner consumed and fold it 627 * into the running average kept per inode. If the consumed IO 628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 629 * deciding whether to switch or not. This is to prevent one-off 630 * small dirtiers from skewing the verdict. 631 */ 632 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 633 wb->avg_write_bandwidth); 634 if (avg_time) 635 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 636 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 637 else 638 avg_time = max_time; /* immediate catch up on first run */ 639 640 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 641 int slots; 642 643 /* 644 * The switch verdict is reached if foreign wb's consume 645 * more than a certain proportion of IO time in a 646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 647 * history mask where each bit represents one sixteenth of 648 * the period. Determine the number of slots to shift into 649 * history from @max_time. 650 */ 651 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 652 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 653 history <<= slots; 654 if (wbc->wb_id != max_id) 655 history |= (1U << slots) - 1; 656 657 /* 658 * Switch if the current wb isn't the consistent winner. 659 * If there are multiple closely competing dirtiers, the 660 * inode may switch across them repeatedly over time, which 661 * is okay. The main goal is avoiding keeping an inode on 662 * the wrong wb for an extended period of time. 663 */ 664 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 665 inode_switch_wbs(inode, max_id); 666 } 667 668 /* 669 * Multiple instances of this function may race to update the 670 * following fields but we don't mind occassional inaccuracies. 671 */ 672 inode->i_wb_frn_winner = max_id; 673 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 674 inode->i_wb_frn_history = history; 675 676 wb_put(wbc->wb); 677 wbc->wb = NULL; 678 } 679 680 /** 681 * wbc_account_io - account IO issued during writeback 682 * @wbc: writeback_control of the writeback in progress 683 * @page: page being written out 684 * @bytes: number of bytes being written out 685 * 686 * @bytes from @page are about to written out during the writeback 687 * controlled by @wbc. Keep the book for foreign inode detection. See 688 * wbc_detach_inode(). 689 */ 690 void wbc_account_io(struct writeback_control *wbc, struct page *page, 691 size_t bytes) 692 { 693 int id; 694 695 /* 696 * pageout() path doesn't attach @wbc to the inode being written 697 * out. This is intentional as we don't want the function to block 698 * behind a slow cgroup. Ultimately, we want pageout() to kick off 699 * regular writeback instead of writing things out itself. 700 */ 701 if (!wbc->wb) 702 return; 703 704 id = mem_cgroup_css_from_page(page)->id; 705 706 if (id == wbc->wb_id) { 707 wbc->wb_bytes += bytes; 708 return; 709 } 710 711 if (id == wbc->wb_lcand_id) 712 wbc->wb_lcand_bytes += bytes; 713 714 /* Boyer-Moore majority vote algorithm */ 715 if (!wbc->wb_tcand_bytes) 716 wbc->wb_tcand_id = id; 717 if (id == wbc->wb_tcand_id) 718 wbc->wb_tcand_bytes += bytes; 719 else 720 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 721 } 722 EXPORT_SYMBOL_GPL(wbc_account_io); 723 724 /** 725 * inode_congested - test whether an inode is congested 726 * @inode: inode to test for congestion (may be NULL) 727 * @cong_bits: mask of WB_[a]sync_congested bits to test 728 * 729 * Tests whether @inode is congested. @cong_bits is the mask of congestion 730 * bits to test and the return value is the mask of set bits. 731 * 732 * If cgroup writeback is enabled for @inode, the congestion state is 733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 734 * associated with @inode is congested; otherwise, the root wb's congestion 735 * state is used. 736 * 737 * @inode is allowed to be NULL as this function is often called on 738 * mapping->host which is NULL for the swapper space. 739 */ 740 int inode_congested(struct inode *inode, int cong_bits) 741 { 742 /* 743 * Once set, ->i_wb never becomes NULL while the inode is alive. 744 * Start transaction iff ->i_wb is visible. 745 */ 746 if (inode && inode_to_wb_is_valid(inode)) { 747 struct bdi_writeback *wb; 748 bool locked, congested; 749 750 wb = unlocked_inode_to_wb_begin(inode, &locked); 751 congested = wb_congested(wb, cong_bits); 752 unlocked_inode_to_wb_end(inode, locked); 753 return congested; 754 } 755 756 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 757 } 758 EXPORT_SYMBOL_GPL(inode_congested); 759 760 /** 761 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 762 * @wb: target bdi_writeback to split @nr_pages to 763 * @nr_pages: number of pages to write for the whole bdi 764 * 765 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 766 * relation to the total write bandwidth of all wb's w/ dirty inodes on 767 * @wb->bdi. 768 */ 769 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 770 { 771 unsigned long this_bw = wb->avg_write_bandwidth; 772 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 773 774 if (nr_pages == LONG_MAX) 775 return LONG_MAX; 776 777 /* 778 * This may be called on clean wb's and proportional distribution 779 * may not make sense, just use the original @nr_pages in those 780 * cases. In general, we wanna err on the side of writing more. 781 */ 782 if (!tot_bw || this_bw >= tot_bw) 783 return nr_pages; 784 else 785 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 786 } 787 788 /** 789 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 790 * @bdi: target backing_dev_info 791 * @base_work: wb_writeback_work to issue 792 * @skip_if_busy: skip wb's which already have writeback in progress 793 * 794 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 795 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 796 * distributed to the busy wbs according to each wb's proportion in the 797 * total active write bandwidth of @bdi. 798 */ 799 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 800 struct wb_writeback_work *base_work, 801 bool skip_if_busy) 802 { 803 struct bdi_writeback *last_wb = NULL; 804 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 805 struct bdi_writeback, bdi_node); 806 807 might_sleep(); 808 restart: 809 rcu_read_lock(); 810 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 811 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 812 struct wb_writeback_work fallback_work; 813 struct wb_writeback_work *work; 814 long nr_pages; 815 816 if (last_wb) { 817 wb_put(last_wb); 818 last_wb = NULL; 819 } 820 821 /* SYNC_ALL writes out I_DIRTY_TIME too */ 822 if (!wb_has_dirty_io(wb) && 823 (base_work->sync_mode == WB_SYNC_NONE || 824 list_empty(&wb->b_dirty_time))) 825 continue; 826 if (skip_if_busy && writeback_in_progress(wb)) 827 continue; 828 829 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 830 831 work = kmalloc(sizeof(*work), GFP_ATOMIC); 832 if (work) { 833 *work = *base_work; 834 work->nr_pages = nr_pages; 835 work->auto_free = 1; 836 wb_queue_work(wb, work); 837 continue; 838 } 839 840 /* alloc failed, execute synchronously using on-stack fallback */ 841 work = &fallback_work; 842 *work = *base_work; 843 work->nr_pages = nr_pages; 844 work->auto_free = 0; 845 work->done = &fallback_work_done; 846 847 wb_queue_work(wb, work); 848 849 /* 850 * Pin @wb so that it stays on @bdi->wb_list. This allows 851 * continuing iteration from @wb after dropping and 852 * regrabbing rcu read lock. 853 */ 854 wb_get(wb); 855 last_wb = wb; 856 857 rcu_read_unlock(); 858 wb_wait_for_completion(bdi, &fallback_work_done); 859 goto restart; 860 } 861 rcu_read_unlock(); 862 863 if (last_wb) 864 wb_put(last_wb); 865 } 866 867 /** 868 * cgroup_writeback_umount - flush inode wb switches for umount 869 * 870 * This function is called when a super_block is about to be destroyed and 871 * flushes in-flight inode wb switches. An inode wb switch goes through 872 * RCU and then workqueue, so the two need to be flushed in order to ensure 873 * that all previously scheduled switches are finished. As wb switches are 874 * rare occurrences and synchronize_rcu() can take a while, perform 875 * flushing iff wb switches are in flight. 876 */ 877 void cgroup_writeback_umount(void) 878 { 879 if (atomic_read(&isw_nr_in_flight)) { 880 synchronize_rcu(); 881 flush_workqueue(isw_wq); 882 } 883 } 884 885 static int __init cgroup_writeback_init(void) 886 { 887 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 888 if (!isw_wq) 889 return -ENOMEM; 890 return 0; 891 } 892 fs_initcall(cgroup_writeback_init); 893 894 #else /* CONFIG_CGROUP_WRITEBACK */ 895 896 static struct bdi_writeback * 897 locked_inode_to_wb_and_lock_list(struct inode *inode) 898 __releases(&inode->i_lock) 899 __acquires(&wb->list_lock) 900 { 901 struct bdi_writeback *wb = inode_to_wb(inode); 902 903 spin_unlock(&inode->i_lock); 904 spin_lock(&wb->list_lock); 905 return wb; 906 } 907 908 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 909 __acquires(&wb->list_lock) 910 { 911 struct bdi_writeback *wb = inode_to_wb(inode); 912 913 spin_lock(&wb->list_lock); 914 return wb; 915 } 916 917 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 918 { 919 return nr_pages; 920 } 921 922 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 923 struct wb_writeback_work *base_work, 924 bool skip_if_busy) 925 { 926 might_sleep(); 927 928 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 929 base_work->auto_free = 0; 930 wb_queue_work(&bdi->wb, base_work); 931 } 932 } 933 934 #endif /* CONFIG_CGROUP_WRITEBACK */ 935 936 /* 937 * Add in the number of potentially dirty inodes, because each inode 938 * write can dirty pagecache in the underlying blockdev. 939 */ 940 static unsigned long get_nr_dirty_pages(void) 941 { 942 return global_node_page_state(NR_FILE_DIRTY) + 943 global_node_page_state(NR_UNSTABLE_NFS) + 944 get_nr_dirty_inodes(); 945 } 946 947 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 948 { 949 if (!wb_has_dirty_io(wb)) 950 return; 951 952 /* 953 * All callers of this function want to start writeback of all 954 * dirty pages. Places like vmscan can call this at a very 955 * high frequency, causing pointless allocations of tons of 956 * work items and keeping the flusher threads busy retrieving 957 * that work. Ensure that we only allow one of them pending and 958 * inflight at the time. 959 */ 960 if (test_bit(WB_start_all, &wb->state) || 961 test_and_set_bit(WB_start_all, &wb->state)) 962 return; 963 964 wb->start_all_reason = reason; 965 wb_wakeup(wb); 966 } 967 968 /** 969 * wb_start_background_writeback - start background writeback 970 * @wb: bdi_writback to write from 971 * 972 * Description: 973 * This makes sure WB_SYNC_NONE background writeback happens. When 974 * this function returns, it is only guaranteed that for given wb 975 * some IO is happening if we are over background dirty threshold. 976 * Caller need not hold sb s_umount semaphore. 977 */ 978 void wb_start_background_writeback(struct bdi_writeback *wb) 979 { 980 /* 981 * We just wake up the flusher thread. It will perform background 982 * writeback as soon as there is no other work to do. 983 */ 984 trace_writeback_wake_background(wb); 985 wb_wakeup(wb); 986 } 987 988 /* 989 * Remove the inode from the writeback list it is on. 990 */ 991 void inode_io_list_del(struct inode *inode) 992 { 993 struct bdi_writeback *wb; 994 995 wb = inode_to_wb_and_lock_list(inode); 996 inode_io_list_del_locked(inode, wb); 997 spin_unlock(&wb->list_lock); 998 } 999 1000 /* 1001 * mark an inode as under writeback on the sb 1002 */ 1003 void sb_mark_inode_writeback(struct inode *inode) 1004 { 1005 struct super_block *sb = inode->i_sb; 1006 unsigned long flags; 1007 1008 if (list_empty(&inode->i_wb_list)) { 1009 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1010 if (list_empty(&inode->i_wb_list)) { 1011 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1012 trace_sb_mark_inode_writeback(inode); 1013 } 1014 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1015 } 1016 } 1017 1018 /* 1019 * clear an inode as under writeback on the sb 1020 */ 1021 void sb_clear_inode_writeback(struct inode *inode) 1022 { 1023 struct super_block *sb = inode->i_sb; 1024 unsigned long flags; 1025 1026 if (!list_empty(&inode->i_wb_list)) { 1027 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1028 if (!list_empty(&inode->i_wb_list)) { 1029 list_del_init(&inode->i_wb_list); 1030 trace_sb_clear_inode_writeback(inode); 1031 } 1032 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1033 } 1034 } 1035 1036 /* 1037 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1038 * furthest end of its superblock's dirty-inode list. 1039 * 1040 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1041 * already the most-recently-dirtied inode on the b_dirty list. If that is 1042 * the case then the inode must have been redirtied while it was being written 1043 * out and we don't reset its dirtied_when. 1044 */ 1045 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1046 { 1047 if (!list_empty(&wb->b_dirty)) { 1048 struct inode *tail; 1049 1050 tail = wb_inode(wb->b_dirty.next); 1051 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1052 inode->dirtied_when = jiffies; 1053 } 1054 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1055 } 1056 1057 /* 1058 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1059 */ 1060 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1061 { 1062 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1063 } 1064 1065 static void inode_sync_complete(struct inode *inode) 1066 { 1067 inode->i_state &= ~I_SYNC; 1068 /* If inode is clean an unused, put it into LRU now... */ 1069 inode_add_lru(inode); 1070 /* Waiters must see I_SYNC cleared before being woken up */ 1071 smp_mb(); 1072 wake_up_bit(&inode->i_state, __I_SYNC); 1073 } 1074 1075 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1076 { 1077 bool ret = time_after(inode->dirtied_when, t); 1078 #ifndef CONFIG_64BIT 1079 /* 1080 * For inodes being constantly redirtied, dirtied_when can get stuck. 1081 * It _appears_ to be in the future, but is actually in distant past. 1082 * This test is necessary to prevent such wrapped-around relative times 1083 * from permanently stopping the whole bdi writeback. 1084 */ 1085 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1086 #endif 1087 return ret; 1088 } 1089 1090 #define EXPIRE_DIRTY_ATIME 0x0001 1091 1092 /* 1093 * Move expired (dirtied before work->older_than_this) dirty inodes from 1094 * @delaying_queue to @dispatch_queue. 1095 */ 1096 static int move_expired_inodes(struct list_head *delaying_queue, 1097 struct list_head *dispatch_queue, 1098 int flags, 1099 struct wb_writeback_work *work) 1100 { 1101 unsigned long *older_than_this = NULL; 1102 unsigned long expire_time; 1103 LIST_HEAD(tmp); 1104 struct list_head *pos, *node; 1105 struct super_block *sb = NULL; 1106 struct inode *inode; 1107 int do_sb_sort = 0; 1108 int moved = 0; 1109 1110 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1111 older_than_this = work->older_than_this; 1112 else if (!work->for_sync) { 1113 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1114 older_than_this = &expire_time; 1115 } 1116 while (!list_empty(delaying_queue)) { 1117 inode = wb_inode(delaying_queue->prev); 1118 if (older_than_this && 1119 inode_dirtied_after(inode, *older_than_this)) 1120 break; 1121 list_move(&inode->i_io_list, &tmp); 1122 moved++; 1123 if (flags & EXPIRE_DIRTY_ATIME) 1124 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1125 if (sb_is_blkdev_sb(inode->i_sb)) 1126 continue; 1127 if (sb && sb != inode->i_sb) 1128 do_sb_sort = 1; 1129 sb = inode->i_sb; 1130 } 1131 1132 /* just one sb in list, splice to dispatch_queue and we're done */ 1133 if (!do_sb_sort) { 1134 list_splice(&tmp, dispatch_queue); 1135 goto out; 1136 } 1137 1138 /* Move inodes from one superblock together */ 1139 while (!list_empty(&tmp)) { 1140 sb = wb_inode(tmp.prev)->i_sb; 1141 list_for_each_prev_safe(pos, node, &tmp) { 1142 inode = wb_inode(pos); 1143 if (inode->i_sb == sb) 1144 list_move(&inode->i_io_list, dispatch_queue); 1145 } 1146 } 1147 out: 1148 return moved; 1149 } 1150 1151 /* 1152 * Queue all expired dirty inodes for io, eldest first. 1153 * Before 1154 * newly dirtied b_dirty b_io b_more_io 1155 * =============> gf edc BA 1156 * After 1157 * newly dirtied b_dirty b_io b_more_io 1158 * =============> g fBAedc 1159 * | 1160 * +--> dequeue for IO 1161 */ 1162 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1163 { 1164 int moved; 1165 1166 assert_spin_locked(&wb->list_lock); 1167 list_splice_init(&wb->b_more_io, &wb->b_io); 1168 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1169 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1170 EXPIRE_DIRTY_ATIME, work); 1171 if (moved) 1172 wb_io_lists_populated(wb); 1173 trace_writeback_queue_io(wb, work, moved); 1174 } 1175 1176 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1177 { 1178 int ret; 1179 1180 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1181 trace_writeback_write_inode_start(inode, wbc); 1182 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1183 trace_writeback_write_inode(inode, wbc); 1184 return ret; 1185 } 1186 return 0; 1187 } 1188 1189 /* 1190 * Wait for writeback on an inode to complete. Called with i_lock held. 1191 * Caller must make sure inode cannot go away when we drop i_lock. 1192 */ 1193 static void __inode_wait_for_writeback(struct inode *inode) 1194 __releases(inode->i_lock) 1195 __acquires(inode->i_lock) 1196 { 1197 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1198 wait_queue_head_t *wqh; 1199 1200 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1201 while (inode->i_state & I_SYNC) { 1202 spin_unlock(&inode->i_lock); 1203 __wait_on_bit(wqh, &wq, bit_wait, 1204 TASK_UNINTERRUPTIBLE); 1205 spin_lock(&inode->i_lock); 1206 } 1207 } 1208 1209 /* 1210 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1211 */ 1212 void inode_wait_for_writeback(struct inode *inode) 1213 { 1214 spin_lock(&inode->i_lock); 1215 __inode_wait_for_writeback(inode); 1216 spin_unlock(&inode->i_lock); 1217 } 1218 1219 /* 1220 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1221 * held and drops it. It is aimed for callers not holding any inode reference 1222 * so once i_lock is dropped, inode can go away. 1223 */ 1224 static void inode_sleep_on_writeback(struct inode *inode) 1225 __releases(inode->i_lock) 1226 { 1227 DEFINE_WAIT(wait); 1228 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1229 int sleep; 1230 1231 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1232 sleep = inode->i_state & I_SYNC; 1233 spin_unlock(&inode->i_lock); 1234 if (sleep) 1235 schedule(); 1236 finish_wait(wqh, &wait); 1237 } 1238 1239 /* 1240 * Find proper writeback list for the inode depending on its current state and 1241 * possibly also change of its state while we were doing writeback. Here we 1242 * handle things such as livelock prevention or fairness of writeback among 1243 * inodes. This function can be called only by flusher thread - noone else 1244 * processes all inodes in writeback lists and requeueing inodes behind flusher 1245 * thread's back can have unexpected consequences. 1246 */ 1247 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1248 struct writeback_control *wbc) 1249 { 1250 if (inode->i_state & I_FREEING) 1251 return; 1252 1253 /* 1254 * Sync livelock prevention. Each inode is tagged and synced in one 1255 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1256 * the dirty time to prevent enqueue and sync it again. 1257 */ 1258 if ((inode->i_state & I_DIRTY) && 1259 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1260 inode->dirtied_when = jiffies; 1261 1262 if (wbc->pages_skipped) { 1263 /* 1264 * writeback is not making progress due to locked 1265 * buffers. Skip this inode for now. 1266 */ 1267 redirty_tail(inode, wb); 1268 return; 1269 } 1270 1271 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1272 /* 1273 * We didn't write back all the pages. nfs_writepages() 1274 * sometimes bales out without doing anything. 1275 */ 1276 if (wbc->nr_to_write <= 0) { 1277 /* Slice used up. Queue for next turn. */ 1278 requeue_io(inode, wb); 1279 } else { 1280 /* 1281 * Writeback blocked by something other than 1282 * congestion. Delay the inode for some time to 1283 * avoid spinning on the CPU (100% iowait) 1284 * retrying writeback of the dirty page/inode 1285 * that cannot be performed immediately. 1286 */ 1287 redirty_tail(inode, wb); 1288 } 1289 } else if (inode->i_state & I_DIRTY) { 1290 /* 1291 * Filesystems can dirty the inode during writeback operations, 1292 * such as delayed allocation during submission or metadata 1293 * updates after data IO completion. 1294 */ 1295 redirty_tail(inode, wb); 1296 } else if (inode->i_state & I_DIRTY_TIME) { 1297 inode->dirtied_when = jiffies; 1298 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1299 } else { 1300 /* The inode is clean. Remove from writeback lists. */ 1301 inode_io_list_del_locked(inode, wb); 1302 } 1303 } 1304 1305 /* 1306 * Write out an inode and its dirty pages. Do not update the writeback list 1307 * linkage. That is left to the caller. The caller is also responsible for 1308 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1309 */ 1310 static int 1311 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1312 { 1313 struct address_space *mapping = inode->i_mapping; 1314 long nr_to_write = wbc->nr_to_write; 1315 unsigned dirty; 1316 int ret; 1317 1318 WARN_ON(!(inode->i_state & I_SYNC)); 1319 1320 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1321 1322 ret = do_writepages(mapping, wbc); 1323 1324 /* 1325 * Make sure to wait on the data before writing out the metadata. 1326 * This is important for filesystems that modify metadata on data 1327 * I/O completion. We don't do it for sync(2) writeback because it has a 1328 * separate, external IO completion path and ->sync_fs for guaranteeing 1329 * inode metadata is written back correctly. 1330 */ 1331 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1332 int err = filemap_fdatawait(mapping); 1333 if (ret == 0) 1334 ret = err; 1335 } 1336 1337 /* 1338 * Some filesystems may redirty the inode during the writeback 1339 * due to delalloc, clear dirty metadata flags right before 1340 * write_inode() 1341 */ 1342 spin_lock(&inode->i_lock); 1343 1344 dirty = inode->i_state & I_DIRTY; 1345 if (inode->i_state & I_DIRTY_TIME) { 1346 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 1347 wbc->sync_mode == WB_SYNC_ALL || 1348 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1349 unlikely(time_after(jiffies, 1350 (inode->dirtied_time_when + 1351 dirtytime_expire_interval * HZ)))) { 1352 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1353 trace_writeback_lazytime(inode); 1354 } 1355 } else 1356 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1357 inode->i_state &= ~dirty; 1358 1359 /* 1360 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1361 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1362 * either they see the I_DIRTY bits cleared or we see the dirtied 1363 * inode. 1364 * 1365 * I_DIRTY_PAGES is always cleared together above even if @mapping 1366 * still has dirty pages. The flag is reinstated after smp_mb() if 1367 * necessary. This guarantees that either __mark_inode_dirty() 1368 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1369 */ 1370 smp_mb(); 1371 1372 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1373 inode->i_state |= I_DIRTY_PAGES; 1374 1375 spin_unlock(&inode->i_lock); 1376 1377 if (dirty & I_DIRTY_TIME) 1378 mark_inode_dirty_sync(inode); 1379 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1380 if (dirty & ~I_DIRTY_PAGES) { 1381 int err = write_inode(inode, wbc); 1382 if (ret == 0) 1383 ret = err; 1384 } 1385 trace_writeback_single_inode(inode, wbc, nr_to_write); 1386 return ret; 1387 } 1388 1389 /* 1390 * Write out an inode's dirty pages. Either the caller has an active reference 1391 * on the inode or the inode has I_WILL_FREE set. 1392 * 1393 * This function is designed to be called for writing back one inode which 1394 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1395 * and does more profound writeback list handling in writeback_sb_inodes(). 1396 */ 1397 static int writeback_single_inode(struct inode *inode, 1398 struct writeback_control *wbc) 1399 { 1400 struct bdi_writeback *wb; 1401 int ret = 0; 1402 1403 spin_lock(&inode->i_lock); 1404 if (!atomic_read(&inode->i_count)) 1405 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1406 else 1407 WARN_ON(inode->i_state & I_WILL_FREE); 1408 1409 if (inode->i_state & I_SYNC) { 1410 if (wbc->sync_mode != WB_SYNC_ALL) 1411 goto out; 1412 /* 1413 * It's a data-integrity sync. We must wait. Since callers hold 1414 * inode reference or inode has I_WILL_FREE set, it cannot go 1415 * away under us. 1416 */ 1417 __inode_wait_for_writeback(inode); 1418 } 1419 WARN_ON(inode->i_state & I_SYNC); 1420 /* 1421 * Skip inode if it is clean and we have no outstanding writeback in 1422 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1423 * function since flusher thread may be doing for example sync in 1424 * parallel and if we move the inode, it could get skipped. So here we 1425 * make sure inode is on some writeback list and leave it there unless 1426 * we have completely cleaned the inode. 1427 */ 1428 if (!(inode->i_state & I_DIRTY_ALL) && 1429 (wbc->sync_mode != WB_SYNC_ALL || 1430 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1431 goto out; 1432 inode->i_state |= I_SYNC; 1433 wbc_attach_and_unlock_inode(wbc, inode); 1434 1435 ret = __writeback_single_inode(inode, wbc); 1436 1437 wbc_detach_inode(wbc); 1438 1439 wb = inode_to_wb_and_lock_list(inode); 1440 spin_lock(&inode->i_lock); 1441 /* 1442 * If inode is clean, remove it from writeback lists. Otherwise don't 1443 * touch it. See comment above for explanation. 1444 */ 1445 if (!(inode->i_state & I_DIRTY_ALL)) 1446 inode_io_list_del_locked(inode, wb); 1447 spin_unlock(&wb->list_lock); 1448 inode_sync_complete(inode); 1449 out: 1450 spin_unlock(&inode->i_lock); 1451 return ret; 1452 } 1453 1454 static long writeback_chunk_size(struct bdi_writeback *wb, 1455 struct wb_writeback_work *work) 1456 { 1457 long pages; 1458 1459 /* 1460 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1461 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1462 * here avoids calling into writeback_inodes_wb() more than once. 1463 * 1464 * The intended call sequence for WB_SYNC_ALL writeback is: 1465 * 1466 * wb_writeback() 1467 * writeback_sb_inodes() <== called only once 1468 * write_cache_pages() <== called once for each inode 1469 * (quickly) tag currently dirty pages 1470 * (maybe slowly) sync all tagged pages 1471 */ 1472 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1473 pages = LONG_MAX; 1474 else { 1475 pages = min(wb->avg_write_bandwidth / 2, 1476 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1477 pages = min(pages, work->nr_pages); 1478 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1479 MIN_WRITEBACK_PAGES); 1480 } 1481 1482 return pages; 1483 } 1484 1485 /* 1486 * Write a portion of b_io inodes which belong to @sb. 1487 * 1488 * Return the number of pages and/or inodes written. 1489 * 1490 * NOTE! This is called with wb->list_lock held, and will 1491 * unlock and relock that for each inode it ends up doing 1492 * IO for. 1493 */ 1494 static long writeback_sb_inodes(struct super_block *sb, 1495 struct bdi_writeback *wb, 1496 struct wb_writeback_work *work) 1497 { 1498 struct writeback_control wbc = { 1499 .sync_mode = work->sync_mode, 1500 .tagged_writepages = work->tagged_writepages, 1501 .for_kupdate = work->for_kupdate, 1502 .for_background = work->for_background, 1503 .for_sync = work->for_sync, 1504 .range_cyclic = work->range_cyclic, 1505 .range_start = 0, 1506 .range_end = LLONG_MAX, 1507 }; 1508 unsigned long start_time = jiffies; 1509 long write_chunk; 1510 long wrote = 0; /* count both pages and inodes */ 1511 1512 while (!list_empty(&wb->b_io)) { 1513 struct inode *inode = wb_inode(wb->b_io.prev); 1514 struct bdi_writeback *tmp_wb; 1515 1516 if (inode->i_sb != sb) { 1517 if (work->sb) { 1518 /* 1519 * We only want to write back data for this 1520 * superblock, move all inodes not belonging 1521 * to it back onto the dirty list. 1522 */ 1523 redirty_tail(inode, wb); 1524 continue; 1525 } 1526 1527 /* 1528 * The inode belongs to a different superblock. 1529 * Bounce back to the caller to unpin this and 1530 * pin the next superblock. 1531 */ 1532 break; 1533 } 1534 1535 /* 1536 * Don't bother with new inodes or inodes being freed, first 1537 * kind does not need periodic writeout yet, and for the latter 1538 * kind writeout is handled by the freer. 1539 */ 1540 spin_lock(&inode->i_lock); 1541 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1542 spin_unlock(&inode->i_lock); 1543 redirty_tail(inode, wb); 1544 continue; 1545 } 1546 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1547 /* 1548 * If this inode is locked for writeback and we are not 1549 * doing writeback-for-data-integrity, move it to 1550 * b_more_io so that writeback can proceed with the 1551 * other inodes on s_io. 1552 * 1553 * We'll have another go at writing back this inode 1554 * when we completed a full scan of b_io. 1555 */ 1556 spin_unlock(&inode->i_lock); 1557 requeue_io(inode, wb); 1558 trace_writeback_sb_inodes_requeue(inode); 1559 continue; 1560 } 1561 spin_unlock(&wb->list_lock); 1562 1563 /* 1564 * We already requeued the inode if it had I_SYNC set and we 1565 * are doing WB_SYNC_NONE writeback. So this catches only the 1566 * WB_SYNC_ALL case. 1567 */ 1568 if (inode->i_state & I_SYNC) { 1569 /* Wait for I_SYNC. This function drops i_lock... */ 1570 inode_sleep_on_writeback(inode); 1571 /* Inode may be gone, start again */ 1572 spin_lock(&wb->list_lock); 1573 continue; 1574 } 1575 inode->i_state |= I_SYNC; 1576 wbc_attach_and_unlock_inode(&wbc, inode); 1577 1578 write_chunk = writeback_chunk_size(wb, work); 1579 wbc.nr_to_write = write_chunk; 1580 wbc.pages_skipped = 0; 1581 1582 /* 1583 * We use I_SYNC to pin the inode in memory. While it is set 1584 * evict_inode() will wait so the inode cannot be freed. 1585 */ 1586 __writeback_single_inode(inode, &wbc); 1587 1588 wbc_detach_inode(&wbc); 1589 work->nr_pages -= write_chunk - wbc.nr_to_write; 1590 wrote += write_chunk - wbc.nr_to_write; 1591 1592 if (need_resched()) { 1593 /* 1594 * We're trying to balance between building up a nice 1595 * long list of IOs to improve our merge rate, and 1596 * getting those IOs out quickly for anyone throttling 1597 * in balance_dirty_pages(). cond_resched() doesn't 1598 * unplug, so get our IOs out the door before we 1599 * give up the CPU. 1600 */ 1601 blk_flush_plug(current); 1602 cond_resched(); 1603 } 1604 1605 /* 1606 * Requeue @inode if still dirty. Be careful as @inode may 1607 * have been switched to another wb in the meantime. 1608 */ 1609 tmp_wb = inode_to_wb_and_lock_list(inode); 1610 spin_lock(&inode->i_lock); 1611 if (!(inode->i_state & I_DIRTY_ALL)) 1612 wrote++; 1613 requeue_inode(inode, tmp_wb, &wbc); 1614 inode_sync_complete(inode); 1615 spin_unlock(&inode->i_lock); 1616 1617 if (unlikely(tmp_wb != wb)) { 1618 spin_unlock(&tmp_wb->list_lock); 1619 spin_lock(&wb->list_lock); 1620 } 1621 1622 /* 1623 * bail out to wb_writeback() often enough to check 1624 * background threshold and other termination conditions. 1625 */ 1626 if (wrote) { 1627 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1628 break; 1629 if (work->nr_pages <= 0) 1630 break; 1631 } 1632 } 1633 return wrote; 1634 } 1635 1636 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1637 struct wb_writeback_work *work) 1638 { 1639 unsigned long start_time = jiffies; 1640 long wrote = 0; 1641 1642 while (!list_empty(&wb->b_io)) { 1643 struct inode *inode = wb_inode(wb->b_io.prev); 1644 struct super_block *sb = inode->i_sb; 1645 1646 if (!trylock_super(sb)) { 1647 /* 1648 * trylock_super() may fail consistently due to 1649 * s_umount being grabbed by someone else. Don't use 1650 * requeue_io() to avoid busy retrying the inode/sb. 1651 */ 1652 redirty_tail(inode, wb); 1653 continue; 1654 } 1655 wrote += writeback_sb_inodes(sb, wb, work); 1656 up_read(&sb->s_umount); 1657 1658 /* refer to the same tests at the end of writeback_sb_inodes */ 1659 if (wrote) { 1660 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1661 break; 1662 if (work->nr_pages <= 0) 1663 break; 1664 } 1665 } 1666 /* Leave any unwritten inodes on b_io */ 1667 return wrote; 1668 } 1669 1670 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1671 enum wb_reason reason) 1672 { 1673 struct wb_writeback_work work = { 1674 .nr_pages = nr_pages, 1675 .sync_mode = WB_SYNC_NONE, 1676 .range_cyclic = 1, 1677 .reason = reason, 1678 }; 1679 struct blk_plug plug; 1680 1681 blk_start_plug(&plug); 1682 spin_lock(&wb->list_lock); 1683 if (list_empty(&wb->b_io)) 1684 queue_io(wb, &work); 1685 __writeback_inodes_wb(wb, &work); 1686 spin_unlock(&wb->list_lock); 1687 blk_finish_plug(&plug); 1688 1689 return nr_pages - work.nr_pages; 1690 } 1691 1692 /* 1693 * Explicit flushing or periodic writeback of "old" data. 1694 * 1695 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1696 * dirtying-time in the inode's address_space. So this periodic writeback code 1697 * just walks the superblock inode list, writing back any inodes which are 1698 * older than a specific point in time. 1699 * 1700 * Try to run once per dirty_writeback_interval. But if a writeback event 1701 * takes longer than a dirty_writeback_interval interval, then leave a 1702 * one-second gap. 1703 * 1704 * older_than_this takes precedence over nr_to_write. So we'll only write back 1705 * all dirty pages if they are all attached to "old" mappings. 1706 */ 1707 static long wb_writeback(struct bdi_writeback *wb, 1708 struct wb_writeback_work *work) 1709 { 1710 unsigned long wb_start = jiffies; 1711 long nr_pages = work->nr_pages; 1712 unsigned long oldest_jif; 1713 struct inode *inode; 1714 long progress; 1715 struct blk_plug plug; 1716 1717 oldest_jif = jiffies; 1718 work->older_than_this = &oldest_jif; 1719 1720 blk_start_plug(&plug); 1721 spin_lock(&wb->list_lock); 1722 for (;;) { 1723 /* 1724 * Stop writeback when nr_pages has been consumed 1725 */ 1726 if (work->nr_pages <= 0) 1727 break; 1728 1729 /* 1730 * Background writeout and kupdate-style writeback may 1731 * run forever. Stop them if there is other work to do 1732 * so that e.g. sync can proceed. They'll be restarted 1733 * after the other works are all done. 1734 */ 1735 if ((work->for_background || work->for_kupdate) && 1736 !list_empty(&wb->work_list)) 1737 break; 1738 1739 /* 1740 * For background writeout, stop when we are below the 1741 * background dirty threshold 1742 */ 1743 if (work->for_background && !wb_over_bg_thresh(wb)) 1744 break; 1745 1746 /* 1747 * Kupdate and background works are special and we want to 1748 * include all inodes that need writing. Livelock avoidance is 1749 * handled by these works yielding to any other work so we are 1750 * safe. 1751 */ 1752 if (work->for_kupdate) { 1753 oldest_jif = jiffies - 1754 msecs_to_jiffies(dirty_expire_interval * 10); 1755 } else if (work->for_background) 1756 oldest_jif = jiffies; 1757 1758 trace_writeback_start(wb, work); 1759 if (list_empty(&wb->b_io)) 1760 queue_io(wb, work); 1761 if (work->sb) 1762 progress = writeback_sb_inodes(work->sb, wb, work); 1763 else 1764 progress = __writeback_inodes_wb(wb, work); 1765 trace_writeback_written(wb, work); 1766 1767 wb_update_bandwidth(wb, wb_start); 1768 1769 /* 1770 * Did we write something? Try for more 1771 * 1772 * Dirty inodes are moved to b_io for writeback in batches. 1773 * The completion of the current batch does not necessarily 1774 * mean the overall work is done. So we keep looping as long 1775 * as made some progress on cleaning pages or inodes. 1776 */ 1777 if (progress) 1778 continue; 1779 /* 1780 * No more inodes for IO, bail 1781 */ 1782 if (list_empty(&wb->b_more_io)) 1783 break; 1784 /* 1785 * Nothing written. Wait for some inode to 1786 * become available for writeback. Otherwise 1787 * we'll just busyloop. 1788 */ 1789 trace_writeback_wait(wb, work); 1790 inode = wb_inode(wb->b_more_io.prev); 1791 spin_lock(&inode->i_lock); 1792 spin_unlock(&wb->list_lock); 1793 /* This function drops i_lock... */ 1794 inode_sleep_on_writeback(inode); 1795 spin_lock(&wb->list_lock); 1796 } 1797 spin_unlock(&wb->list_lock); 1798 blk_finish_plug(&plug); 1799 1800 return nr_pages - work->nr_pages; 1801 } 1802 1803 /* 1804 * Return the next wb_writeback_work struct that hasn't been processed yet. 1805 */ 1806 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1807 { 1808 struct wb_writeback_work *work = NULL; 1809 1810 spin_lock_bh(&wb->work_lock); 1811 if (!list_empty(&wb->work_list)) { 1812 work = list_entry(wb->work_list.next, 1813 struct wb_writeback_work, list); 1814 list_del_init(&work->list); 1815 } 1816 spin_unlock_bh(&wb->work_lock); 1817 return work; 1818 } 1819 1820 static long wb_check_background_flush(struct bdi_writeback *wb) 1821 { 1822 if (wb_over_bg_thresh(wb)) { 1823 1824 struct wb_writeback_work work = { 1825 .nr_pages = LONG_MAX, 1826 .sync_mode = WB_SYNC_NONE, 1827 .for_background = 1, 1828 .range_cyclic = 1, 1829 .reason = WB_REASON_BACKGROUND, 1830 }; 1831 1832 return wb_writeback(wb, &work); 1833 } 1834 1835 return 0; 1836 } 1837 1838 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1839 { 1840 unsigned long expired; 1841 long nr_pages; 1842 1843 /* 1844 * When set to zero, disable periodic writeback 1845 */ 1846 if (!dirty_writeback_interval) 1847 return 0; 1848 1849 expired = wb->last_old_flush + 1850 msecs_to_jiffies(dirty_writeback_interval * 10); 1851 if (time_before(jiffies, expired)) 1852 return 0; 1853 1854 wb->last_old_flush = jiffies; 1855 nr_pages = get_nr_dirty_pages(); 1856 1857 if (nr_pages) { 1858 struct wb_writeback_work work = { 1859 .nr_pages = nr_pages, 1860 .sync_mode = WB_SYNC_NONE, 1861 .for_kupdate = 1, 1862 .range_cyclic = 1, 1863 .reason = WB_REASON_PERIODIC, 1864 }; 1865 1866 return wb_writeback(wb, &work); 1867 } 1868 1869 return 0; 1870 } 1871 1872 static long wb_check_start_all(struct bdi_writeback *wb) 1873 { 1874 long nr_pages; 1875 1876 if (!test_bit(WB_start_all, &wb->state)) 1877 return 0; 1878 1879 nr_pages = get_nr_dirty_pages(); 1880 if (nr_pages) { 1881 struct wb_writeback_work work = { 1882 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1883 .sync_mode = WB_SYNC_NONE, 1884 .range_cyclic = 1, 1885 .reason = wb->start_all_reason, 1886 }; 1887 1888 nr_pages = wb_writeback(wb, &work); 1889 } 1890 1891 clear_bit(WB_start_all, &wb->state); 1892 return nr_pages; 1893 } 1894 1895 1896 /* 1897 * Retrieve work items and do the writeback they describe 1898 */ 1899 static long wb_do_writeback(struct bdi_writeback *wb) 1900 { 1901 struct wb_writeback_work *work; 1902 long wrote = 0; 1903 1904 set_bit(WB_writeback_running, &wb->state); 1905 while ((work = get_next_work_item(wb)) != NULL) { 1906 trace_writeback_exec(wb, work); 1907 wrote += wb_writeback(wb, work); 1908 finish_writeback_work(wb, work); 1909 } 1910 1911 /* 1912 * Check for a flush-everything request 1913 */ 1914 wrote += wb_check_start_all(wb); 1915 1916 /* 1917 * Check for periodic writeback, kupdated() style 1918 */ 1919 wrote += wb_check_old_data_flush(wb); 1920 wrote += wb_check_background_flush(wb); 1921 clear_bit(WB_writeback_running, &wb->state); 1922 1923 return wrote; 1924 } 1925 1926 /* 1927 * Handle writeback of dirty data for the device backed by this bdi. Also 1928 * reschedules periodically and does kupdated style flushing. 1929 */ 1930 void wb_workfn(struct work_struct *work) 1931 { 1932 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1933 struct bdi_writeback, dwork); 1934 long pages_written; 1935 1936 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1937 current->flags |= PF_SWAPWRITE; 1938 1939 if (likely(!current_is_workqueue_rescuer() || 1940 !test_bit(WB_registered, &wb->state))) { 1941 /* 1942 * The normal path. Keep writing back @wb until its 1943 * work_list is empty. Note that this path is also taken 1944 * if @wb is shutting down even when we're running off the 1945 * rescuer as work_list needs to be drained. 1946 */ 1947 do { 1948 pages_written = wb_do_writeback(wb); 1949 trace_writeback_pages_written(pages_written); 1950 } while (!list_empty(&wb->work_list)); 1951 } else { 1952 /* 1953 * bdi_wq can't get enough workers and we're running off 1954 * the emergency worker. Don't hog it. Hopefully, 1024 is 1955 * enough for efficient IO. 1956 */ 1957 pages_written = writeback_inodes_wb(wb, 1024, 1958 WB_REASON_FORKER_THREAD); 1959 trace_writeback_pages_written(pages_written); 1960 } 1961 1962 if (!list_empty(&wb->work_list)) 1963 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1964 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1965 wb_wakeup_delayed(wb); 1966 1967 current->flags &= ~PF_SWAPWRITE; 1968 } 1969 1970 /* 1971 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 1972 * write back the whole world. 1973 */ 1974 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 1975 enum wb_reason reason) 1976 { 1977 struct bdi_writeback *wb; 1978 1979 if (!bdi_has_dirty_io(bdi)) 1980 return; 1981 1982 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1983 wb_start_writeback(wb, reason); 1984 } 1985 1986 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 1987 enum wb_reason reason) 1988 { 1989 rcu_read_lock(); 1990 __wakeup_flusher_threads_bdi(bdi, reason); 1991 rcu_read_unlock(); 1992 } 1993 1994 /* 1995 * Wakeup the flusher threads to start writeback of all currently dirty pages 1996 */ 1997 void wakeup_flusher_threads(enum wb_reason reason) 1998 { 1999 struct backing_dev_info *bdi; 2000 2001 /* 2002 * If we are expecting writeback progress we must submit plugged IO. 2003 */ 2004 if (blk_needs_flush_plug(current)) 2005 blk_schedule_flush_plug(current); 2006 2007 rcu_read_lock(); 2008 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2009 __wakeup_flusher_threads_bdi(bdi, reason); 2010 rcu_read_unlock(); 2011 } 2012 2013 /* 2014 * Wake up bdi's periodically to make sure dirtytime inodes gets 2015 * written back periodically. We deliberately do *not* check the 2016 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2017 * kernel to be constantly waking up once there are any dirtytime 2018 * inodes on the system. So instead we define a separate delayed work 2019 * function which gets called much more rarely. (By default, only 2020 * once every 12 hours.) 2021 * 2022 * If there is any other write activity going on in the file system, 2023 * this function won't be necessary. But if the only thing that has 2024 * happened on the file system is a dirtytime inode caused by an atime 2025 * update, we need this infrastructure below to make sure that inode 2026 * eventually gets pushed out to disk. 2027 */ 2028 static void wakeup_dirtytime_writeback(struct work_struct *w); 2029 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2030 2031 static void wakeup_dirtytime_writeback(struct work_struct *w) 2032 { 2033 struct backing_dev_info *bdi; 2034 2035 rcu_read_lock(); 2036 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2037 struct bdi_writeback *wb; 2038 2039 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2040 if (!list_empty(&wb->b_dirty_time)) 2041 wb_wakeup(wb); 2042 } 2043 rcu_read_unlock(); 2044 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2045 } 2046 2047 static int __init start_dirtytime_writeback(void) 2048 { 2049 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2050 return 0; 2051 } 2052 __initcall(start_dirtytime_writeback); 2053 2054 int dirtytime_interval_handler(struct ctl_table *table, int write, 2055 void __user *buffer, size_t *lenp, loff_t *ppos) 2056 { 2057 int ret; 2058 2059 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2060 if (ret == 0 && write) 2061 mod_delayed_work(system_wq, &dirtytime_work, 0); 2062 return ret; 2063 } 2064 2065 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2066 { 2067 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2068 struct dentry *dentry; 2069 const char *name = "?"; 2070 2071 dentry = d_find_alias(inode); 2072 if (dentry) { 2073 spin_lock(&dentry->d_lock); 2074 name = (const char *) dentry->d_name.name; 2075 } 2076 printk(KERN_DEBUG 2077 "%s(%d): dirtied inode %lu (%s) on %s\n", 2078 current->comm, task_pid_nr(current), inode->i_ino, 2079 name, inode->i_sb->s_id); 2080 if (dentry) { 2081 spin_unlock(&dentry->d_lock); 2082 dput(dentry); 2083 } 2084 } 2085 } 2086 2087 /** 2088 * __mark_inode_dirty - internal function 2089 * 2090 * @inode: inode to mark 2091 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2092 * 2093 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2094 * mark_inode_dirty_sync. 2095 * 2096 * Put the inode on the super block's dirty list. 2097 * 2098 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2099 * dirty list only if it is hashed or if it refers to a blockdev. 2100 * If it was not hashed, it will never be added to the dirty list 2101 * even if it is later hashed, as it will have been marked dirty already. 2102 * 2103 * In short, make sure you hash any inodes _before_ you start marking 2104 * them dirty. 2105 * 2106 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2107 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2108 * the kernel-internal blockdev inode represents the dirtying time of the 2109 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2110 * page->mapping->host, so the page-dirtying time is recorded in the internal 2111 * blockdev inode. 2112 */ 2113 void __mark_inode_dirty(struct inode *inode, int flags) 2114 { 2115 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2116 struct super_block *sb = inode->i_sb; 2117 int dirtytime; 2118 2119 trace_writeback_mark_inode_dirty(inode, flags); 2120 2121 /* 2122 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2123 * dirty the inode itself 2124 */ 2125 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 2126 trace_writeback_dirty_inode_start(inode, flags); 2127 2128 if (sb->s_op->dirty_inode) 2129 sb->s_op->dirty_inode(inode, flags); 2130 2131 trace_writeback_dirty_inode(inode, flags); 2132 } 2133 if (flags & I_DIRTY_INODE) 2134 flags &= ~I_DIRTY_TIME; 2135 dirtytime = flags & I_DIRTY_TIME; 2136 2137 /* 2138 * Paired with smp_mb() in __writeback_single_inode() for the 2139 * following lockless i_state test. See there for details. 2140 */ 2141 smp_mb(); 2142 2143 if (((inode->i_state & flags) == flags) || 2144 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2145 return; 2146 2147 if (unlikely(block_dump)) 2148 block_dump___mark_inode_dirty(inode); 2149 2150 spin_lock(&inode->i_lock); 2151 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2152 goto out_unlock_inode; 2153 if ((inode->i_state & flags) != flags) { 2154 const int was_dirty = inode->i_state & I_DIRTY; 2155 2156 inode_attach_wb(inode, NULL); 2157 2158 if (flags & I_DIRTY_INODE) 2159 inode->i_state &= ~I_DIRTY_TIME; 2160 inode->i_state |= flags; 2161 2162 /* 2163 * If the inode is being synced, just update its dirty state. 2164 * The unlocker will place the inode on the appropriate 2165 * superblock list, based upon its state. 2166 */ 2167 if (inode->i_state & I_SYNC) 2168 goto out_unlock_inode; 2169 2170 /* 2171 * Only add valid (hashed) inodes to the superblock's 2172 * dirty list. Add blockdev inodes as well. 2173 */ 2174 if (!S_ISBLK(inode->i_mode)) { 2175 if (inode_unhashed(inode)) 2176 goto out_unlock_inode; 2177 } 2178 if (inode->i_state & I_FREEING) 2179 goto out_unlock_inode; 2180 2181 /* 2182 * If the inode was already on b_dirty/b_io/b_more_io, don't 2183 * reposition it (that would break b_dirty time-ordering). 2184 */ 2185 if (!was_dirty) { 2186 struct bdi_writeback *wb; 2187 struct list_head *dirty_list; 2188 bool wakeup_bdi = false; 2189 2190 wb = locked_inode_to_wb_and_lock_list(inode); 2191 2192 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2193 !test_bit(WB_registered, &wb->state), 2194 "bdi-%s not registered\n", wb->bdi->name); 2195 2196 inode->dirtied_when = jiffies; 2197 if (dirtytime) 2198 inode->dirtied_time_when = jiffies; 2199 2200 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES)) 2201 dirty_list = &wb->b_dirty; 2202 else 2203 dirty_list = &wb->b_dirty_time; 2204 2205 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2206 dirty_list); 2207 2208 spin_unlock(&wb->list_lock); 2209 trace_writeback_dirty_inode_enqueue(inode); 2210 2211 /* 2212 * If this is the first dirty inode for this bdi, 2213 * we have to wake-up the corresponding bdi thread 2214 * to make sure background write-back happens 2215 * later. 2216 */ 2217 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2218 wb_wakeup_delayed(wb); 2219 return; 2220 } 2221 } 2222 out_unlock_inode: 2223 spin_unlock(&inode->i_lock); 2224 2225 #undef I_DIRTY_INODE 2226 } 2227 EXPORT_SYMBOL(__mark_inode_dirty); 2228 2229 /* 2230 * The @s_sync_lock is used to serialise concurrent sync operations 2231 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2232 * Concurrent callers will block on the s_sync_lock rather than doing contending 2233 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2234 * has been issued up to the time this function is enter is guaranteed to be 2235 * completed by the time we have gained the lock and waited for all IO that is 2236 * in progress regardless of the order callers are granted the lock. 2237 */ 2238 static void wait_sb_inodes(struct super_block *sb) 2239 { 2240 LIST_HEAD(sync_list); 2241 2242 /* 2243 * We need to be protected against the filesystem going from 2244 * r/o to r/w or vice versa. 2245 */ 2246 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2247 2248 mutex_lock(&sb->s_sync_lock); 2249 2250 /* 2251 * Splice the writeback list onto a temporary list to avoid waiting on 2252 * inodes that have started writeback after this point. 2253 * 2254 * Use rcu_read_lock() to keep the inodes around until we have a 2255 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2256 * the local list because inodes can be dropped from either by writeback 2257 * completion. 2258 */ 2259 rcu_read_lock(); 2260 spin_lock_irq(&sb->s_inode_wblist_lock); 2261 list_splice_init(&sb->s_inodes_wb, &sync_list); 2262 2263 /* 2264 * Data integrity sync. Must wait for all pages under writeback, because 2265 * there may have been pages dirtied before our sync call, but which had 2266 * writeout started before we write it out. In which case, the inode 2267 * may not be on the dirty list, but we still have to wait for that 2268 * writeout. 2269 */ 2270 while (!list_empty(&sync_list)) { 2271 struct inode *inode = list_first_entry(&sync_list, struct inode, 2272 i_wb_list); 2273 struct address_space *mapping = inode->i_mapping; 2274 2275 /* 2276 * Move each inode back to the wb list before we drop the lock 2277 * to preserve consistency between i_wb_list and the mapping 2278 * writeback tag. Writeback completion is responsible to remove 2279 * the inode from either list once the writeback tag is cleared. 2280 */ 2281 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2282 2283 /* 2284 * The mapping can appear untagged while still on-list since we 2285 * do not have the mapping lock. Skip it here, wb completion 2286 * will remove it. 2287 */ 2288 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2289 continue; 2290 2291 spin_unlock_irq(&sb->s_inode_wblist_lock); 2292 2293 spin_lock(&inode->i_lock); 2294 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2295 spin_unlock(&inode->i_lock); 2296 2297 spin_lock_irq(&sb->s_inode_wblist_lock); 2298 continue; 2299 } 2300 __iget(inode); 2301 spin_unlock(&inode->i_lock); 2302 rcu_read_unlock(); 2303 2304 /* 2305 * We keep the error status of individual mapping so that 2306 * applications can catch the writeback error using fsync(2). 2307 * See filemap_fdatawait_keep_errors() for details. 2308 */ 2309 filemap_fdatawait_keep_errors(mapping); 2310 2311 cond_resched(); 2312 2313 iput(inode); 2314 2315 rcu_read_lock(); 2316 spin_lock_irq(&sb->s_inode_wblist_lock); 2317 } 2318 spin_unlock_irq(&sb->s_inode_wblist_lock); 2319 rcu_read_unlock(); 2320 mutex_unlock(&sb->s_sync_lock); 2321 } 2322 2323 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2324 enum wb_reason reason, bool skip_if_busy) 2325 { 2326 DEFINE_WB_COMPLETION_ONSTACK(done); 2327 struct wb_writeback_work work = { 2328 .sb = sb, 2329 .sync_mode = WB_SYNC_NONE, 2330 .tagged_writepages = 1, 2331 .done = &done, 2332 .nr_pages = nr, 2333 .reason = reason, 2334 }; 2335 struct backing_dev_info *bdi = sb->s_bdi; 2336 2337 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2338 return; 2339 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2340 2341 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2342 wb_wait_for_completion(bdi, &done); 2343 } 2344 2345 /** 2346 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2347 * @sb: the superblock 2348 * @nr: the number of pages to write 2349 * @reason: reason why some writeback work initiated 2350 * 2351 * Start writeback on some inodes on this super_block. No guarantees are made 2352 * on how many (if any) will be written, and this function does not wait 2353 * for IO completion of submitted IO. 2354 */ 2355 void writeback_inodes_sb_nr(struct super_block *sb, 2356 unsigned long nr, 2357 enum wb_reason reason) 2358 { 2359 __writeback_inodes_sb_nr(sb, nr, reason, false); 2360 } 2361 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2362 2363 /** 2364 * writeback_inodes_sb - writeback dirty inodes from given super_block 2365 * @sb: the superblock 2366 * @reason: reason why some writeback work was initiated 2367 * 2368 * Start writeback on some inodes on this super_block. No guarantees are made 2369 * on how many (if any) will be written, and this function does not wait 2370 * for IO completion of submitted IO. 2371 */ 2372 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2373 { 2374 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2375 } 2376 EXPORT_SYMBOL(writeback_inodes_sb); 2377 2378 /** 2379 * try_to_writeback_inodes_sb - try to start writeback if none underway 2380 * @sb: the superblock 2381 * @reason: reason why some writeback work was initiated 2382 * 2383 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2384 */ 2385 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2386 { 2387 if (!down_read_trylock(&sb->s_umount)) 2388 return; 2389 2390 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2391 up_read(&sb->s_umount); 2392 } 2393 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2394 2395 /** 2396 * sync_inodes_sb - sync sb inode pages 2397 * @sb: the superblock 2398 * 2399 * This function writes and waits on any dirty inode belonging to this 2400 * super_block. 2401 */ 2402 void sync_inodes_sb(struct super_block *sb) 2403 { 2404 DEFINE_WB_COMPLETION_ONSTACK(done); 2405 struct wb_writeback_work work = { 2406 .sb = sb, 2407 .sync_mode = WB_SYNC_ALL, 2408 .nr_pages = LONG_MAX, 2409 .range_cyclic = 0, 2410 .done = &done, 2411 .reason = WB_REASON_SYNC, 2412 .for_sync = 1, 2413 }; 2414 struct backing_dev_info *bdi = sb->s_bdi; 2415 2416 /* 2417 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2418 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2419 * bdi_has_dirty() need to be written out too. 2420 */ 2421 if (bdi == &noop_backing_dev_info) 2422 return; 2423 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2424 2425 bdi_split_work_to_wbs(bdi, &work, false); 2426 wb_wait_for_completion(bdi, &done); 2427 2428 wait_sb_inodes(sb); 2429 } 2430 EXPORT_SYMBOL(sync_inodes_sb); 2431 2432 /** 2433 * write_inode_now - write an inode to disk 2434 * @inode: inode to write to disk 2435 * @sync: whether the write should be synchronous or not 2436 * 2437 * This function commits an inode to disk immediately if it is dirty. This is 2438 * primarily needed by knfsd. 2439 * 2440 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2441 */ 2442 int write_inode_now(struct inode *inode, int sync) 2443 { 2444 struct writeback_control wbc = { 2445 .nr_to_write = LONG_MAX, 2446 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2447 .range_start = 0, 2448 .range_end = LLONG_MAX, 2449 }; 2450 2451 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2452 wbc.nr_to_write = 0; 2453 2454 might_sleep(); 2455 return writeback_single_inode(inode, &wbc); 2456 } 2457 EXPORT_SYMBOL(write_inode_now); 2458 2459 /** 2460 * sync_inode - write an inode and its pages to disk. 2461 * @inode: the inode to sync 2462 * @wbc: controls the writeback mode 2463 * 2464 * sync_inode() will write an inode and its pages to disk. It will also 2465 * correctly update the inode on its superblock's dirty inode lists and will 2466 * update inode->i_state. 2467 * 2468 * The caller must have a ref on the inode. 2469 */ 2470 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2471 { 2472 return writeback_single_inode(inode, wbc); 2473 } 2474 EXPORT_SYMBOL(sync_inode); 2475 2476 /** 2477 * sync_inode_metadata - write an inode to disk 2478 * @inode: the inode to sync 2479 * @wait: wait for I/O to complete. 2480 * 2481 * Write an inode to disk and adjust its dirty state after completion. 2482 * 2483 * Note: only writes the actual inode, no associated data or other metadata. 2484 */ 2485 int sync_inode_metadata(struct inode *inode, int wait) 2486 { 2487 struct writeback_control wbc = { 2488 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2489 .nr_to_write = 0, /* metadata-only */ 2490 }; 2491 2492 return sync_inode(inode, &wbc); 2493 } 2494 EXPORT_SYMBOL(sync_inode_metadata); 2495