xref: /linux/fs/fs-writeback.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30 
31 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
32 
33 /*
34  * We don't actually have pdflush, but this one is exported though /proc...
35  */
36 int nr_pdflush_threads;
37 
38 /*
39  * Passed into wb_writeback(), essentially a subset of writeback_control
40  */
41 struct wb_writeback_args {
42 	long nr_pages;
43 	struct super_block *sb;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int for_kupdate:1;
46 	unsigned int range_cyclic:1;
47 	unsigned int for_background:1;
48 };
49 
50 /*
51  * Work items for the bdi_writeback threads
52  */
53 struct bdi_work {
54 	struct list_head list;		/* pending work list */
55 	struct rcu_head rcu_head;	/* for RCU free/clear of work */
56 
57 	unsigned long seen;		/* threads that have seen this work */
58 	atomic_t pending;		/* number of threads still to do work */
59 
60 	struct wb_writeback_args args;	/* writeback arguments */
61 
62 	unsigned long state;		/* flag bits, see WS_* */
63 };
64 
65 enum {
66 	WS_USED_B = 0,
67 	WS_ONSTACK_B,
68 };
69 
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72 
73 static inline bool bdi_work_on_stack(struct bdi_work *work)
74 {
75 	return test_bit(WS_ONSTACK_B, &work->state);
76 }
77 
78 static inline void bdi_work_init(struct bdi_work *work,
79 				 struct wb_writeback_args *args)
80 {
81 	INIT_RCU_HEAD(&work->rcu_head);
82 	work->args = *args;
83 	work->state = WS_USED;
84 }
85 
86 /**
87  * writeback_in_progress - determine whether there is writeback in progress
88  * @bdi: the device's backing_dev_info structure.
89  *
90  * Determine whether there is writeback waiting to be handled against a
91  * backing device.
92  */
93 int writeback_in_progress(struct backing_dev_info *bdi)
94 {
95 	return !list_empty(&bdi->work_list);
96 }
97 
98 static void bdi_work_clear(struct bdi_work *work)
99 {
100 	clear_bit(WS_USED_B, &work->state);
101 	smp_mb__after_clear_bit();
102 	/*
103 	 * work can have disappeared at this point. bit waitq functions
104 	 * should be able to tolerate this, provided bdi_sched_wait does
105 	 * not dereference it's pointer argument.
106 	*/
107 	wake_up_bit(&work->state, WS_USED_B);
108 }
109 
110 static void bdi_work_free(struct rcu_head *head)
111 {
112 	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
113 
114 	if (!bdi_work_on_stack(work))
115 		kfree(work);
116 	else
117 		bdi_work_clear(work);
118 }
119 
120 static void wb_work_complete(struct bdi_work *work)
121 {
122 	const enum writeback_sync_modes sync_mode = work->args.sync_mode;
123 	int onstack = bdi_work_on_stack(work);
124 
125 	/*
126 	 * For allocated work, we can clear the done/seen bit right here.
127 	 * For on-stack work, we need to postpone both the clear and free
128 	 * to after the RCU grace period, since the stack could be invalidated
129 	 * as soon as bdi_work_clear() has done the wakeup.
130 	 */
131 	if (!onstack)
132 		bdi_work_clear(work);
133 	if (sync_mode == WB_SYNC_NONE || onstack)
134 		call_rcu(&work->rcu_head, bdi_work_free);
135 }
136 
137 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
138 {
139 	/*
140 	 * The caller has retrieved the work arguments from this work,
141 	 * drop our reference. If this is the last ref, delete and free it
142 	 */
143 	if (atomic_dec_and_test(&work->pending)) {
144 		struct backing_dev_info *bdi = wb->bdi;
145 
146 		spin_lock(&bdi->wb_lock);
147 		list_del_rcu(&work->list);
148 		spin_unlock(&bdi->wb_lock);
149 
150 		wb_work_complete(work);
151 	}
152 }
153 
154 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
155 {
156 	work->seen = bdi->wb_mask;
157 	BUG_ON(!work->seen);
158 	atomic_set(&work->pending, bdi->wb_cnt);
159 	BUG_ON(!bdi->wb_cnt);
160 
161 	/*
162 	 * list_add_tail_rcu() contains the necessary barriers to
163 	 * make sure the above stores are seen before the item is
164 	 * noticed on the list
165 	 */
166 	spin_lock(&bdi->wb_lock);
167 	list_add_tail_rcu(&work->list, &bdi->work_list);
168 	spin_unlock(&bdi->wb_lock);
169 
170 	/*
171 	 * If the default thread isn't there, make sure we add it. When
172 	 * it gets created and wakes up, we'll run this work.
173 	 */
174 	if (unlikely(list_empty_careful(&bdi->wb_list)))
175 		wake_up_process(default_backing_dev_info.wb.task);
176 	else {
177 		struct bdi_writeback *wb = &bdi->wb;
178 
179 		if (wb->task)
180 			wake_up_process(wb->task);
181 	}
182 }
183 
184 /*
185  * Used for on-stack allocated work items. The caller needs to wait until
186  * the wb threads have acked the work before it's safe to continue.
187  */
188 static void bdi_wait_on_work_clear(struct bdi_work *work)
189 {
190 	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
191 		    TASK_UNINTERRUPTIBLE);
192 }
193 
194 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
195 				 struct wb_writeback_args *args)
196 {
197 	struct bdi_work *work;
198 
199 	/*
200 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
201 	 * wakeup the thread for old dirty data writeback
202 	 */
203 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
204 	if (work) {
205 		bdi_work_init(work, args);
206 		bdi_queue_work(bdi, work);
207 	} else {
208 		struct bdi_writeback *wb = &bdi->wb;
209 
210 		if (wb->task)
211 			wake_up_process(wb->task);
212 	}
213 }
214 
215 /**
216  * bdi_sync_writeback - start and wait for writeback
217  * @bdi: the backing device to write from
218  * @sb: write inodes from this super_block
219  *
220  * Description:
221  *   This does WB_SYNC_ALL data integrity writeback and waits for the
222  *   IO to complete. Callers must hold the sb s_umount semaphore for
223  *   reading, to avoid having the super disappear before we are done.
224  */
225 static void bdi_sync_writeback(struct backing_dev_info *bdi,
226 			       struct super_block *sb)
227 {
228 	struct wb_writeback_args args = {
229 		.sb		= sb,
230 		.sync_mode	= WB_SYNC_ALL,
231 		.nr_pages	= LONG_MAX,
232 		.range_cyclic	= 0,
233 	};
234 	struct bdi_work work;
235 
236 	bdi_work_init(&work, &args);
237 	work.state |= WS_ONSTACK;
238 
239 	bdi_queue_work(bdi, &work);
240 	bdi_wait_on_work_clear(&work);
241 }
242 
243 /**
244  * bdi_start_writeback - start writeback
245  * @bdi: the backing device to write from
246  * @sb: write inodes from this super_block
247  * @nr_pages: the number of pages to write
248  *
249  * Description:
250  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
251  *   started when this function returns, we make no guarentees on
252  *   completion. Caller need not hold sb s_umount semaphore.
253  *
254  */
255 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
256 			 long nr_pages)
257 {
258 	struct wb_writeback_args args = {
259 		.sb		= sb,
260 		.sync_mode	= WB_SYNC_NONE,
261 		.nr_pages	= nr_pages,
262 		.range_cyclic	= 1,
263 	};
264 
265 	/*
266 	 * We treat @nr_pages=0 as the special case to do background writeback,
267 	 * ie. to sync pages until the background dirty threshold is reached.
268 	 */
269 	if (!nr_pages) {
270 		args.nr_pages = LONG_MAX;
271 		args.for_background = 1;
272 	}
273 
274 	bdi_alloc_queue_work(bdi, &args);
275 }
276 
277 /*
278  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279  * furthest end of its superblock's dirty-inode list.
280  *
281  * Before stamping the inode's ->dirtied_when, we check to see whether it is
282  * already the most-recently-dirtied inode on the b_dirty list.  If that is
283  * the case then the inode must have been redirtied while it was being written
284  * out and we don't reset its dirtied_when.
285  */
286 static void redirty_tail(struct inode *inode)
287 {
288 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
289 
290 	if (!list_empty(&wb->b_dirty)) {
291 		struct inode *tail;
292 
293 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
294 		if (time_before(inode->dirtied_when, tail->dirtied_when))
295 			inode->dirtied_when = jiffies;
296 	}
297 	list_move(&inode->i_list, &wb->b_dirty);
298 }
299 
300 /*
301  * requeue inode for re-scanning after bdi->b_io list is exhausted.
302  */
303 static void requeue_io(struct inode *inode)
304 {
305 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
306 
307 	list_move(&inode->i_list, &wb->b_more_io);
308 }
309 
310 static void inode_sync_complete(struct inode *inode)
311 {
312 	/*
313 	 * Prevent speculative execution through spin_unlock(&inode_lock);
314 	 */
315 	smp_mb();
316 	wake_up_bit(&inode->i_state, __I_SYNC);
317 }
318 
319 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
320 {
321 	bool ret = time_after(inode->dirtied_when, t);
322 #ifndef CONFIG_64BIT
323 	/*
324 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
325 	 * It _appears_ to be in the future, but is actually in distant past.
326 	 * This test is necessary to prevent such wrapped-around relative times
327 	 * from permanently stopping the whole bdi writeback.
328 	 */
329 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
330 #endif
331 	return ret;
332 }
333 
334 /*
335  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
336  */
337 static void move_expired_inodes(struct list_head *delaying_queue,
338 			       struct list_head *dispatch_queue,
339 				unsigned long *older_than_this)
340 {
341 	LIST_HEAD(tmp);
342 	struct list_head *pos, *node;
343 	struct super_block *sb = NULL;
344 	struct inode *inode;
345 	int do_sb_sort = 0;
346 
347 	while (!list_empty(delaying_queue)) {
348 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
349 		if (older_than_this &&
350 		    inode_dirtied_after(inode, *older_than_this))
351 			break;
352 		if (sb && sb != inode->i_sb)
353 			do_sb_sort = 1;
354 		sb = inode->i_sb;
355 		list_move(&inode->i_list, &tmp);
356 	}
357 
358 	/* just one sb in list, splice to dispatch_queue and we're done */
359 	if (!do_sb_sort) {
360 		list_splice(&tmp, dispatch_queue);
361 		return;
362 	}
363 
364 	/* Move inodes from one superblock together */
365 	while (!list_empty(&tmp)) {
366 		inode = list_entry(tmp.prev, struct inode, i_list);
367 		sb = inode->i_sb;
368 		list_for_each_prev_safe(pos, node, &tmp) {
369 			inode = list_entry(pos, struct inode, i_list);
370 			if (inode->i_sb == sb)
371 				list_move(&inode->i_list, dispatch_queue);
372 		}
373 	}
374 }
375 
376 /*
377  * Queue all expired dirty inodes for io, eldest first.
378  */
379 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
380 {
381 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
382 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
383 }
384 
385 static int write_inode(struct inode *inode, struct writeback_control *wbc)
386 {
387 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
388 		return inode->i_sb->s_op->write_inode(inode, wbc);
389 	return 0;
390 }
391 
392 /*
393  * Wait for writeback on an inode to complete.
394  */
395 static void inode_wait_for_writeback(struct inode *inode)
396 {
397 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
398 	wait_queue_head_t *wqh;
399 
400 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
401 	 while (inode->i_state & I_SYNC) {
402 		spin_unlock(&inode_lock);
403 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
404 		spin_lock(&inode_lock);
405 	}
406 }
407 
408 /*
409  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
410  * caller has ref on the inode (either via __iget or via syscall against an fd)
411  * or the inode has I_WILL_FREE set (via generic_forget_inode)
412  *
413  * If `wait' is set, wait on the writeout.
414  *
415  * The whole writeout design is quite complex and fragile.  We want to avoid
416  * starvation of particular inodes when others are being redirtied, prevent
417  * livelocks, etc.
418  *
419  * Called under inode_lock.
420  */
421 static int
422 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
423 {
424 	struct address_space *mapping = inode->i_mapping;
425 	unsigned dirty;
426 	int ret;
427 
428 	if (!atomic_read(&inode->i_count))
429 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
430 	else
431 		WARN_ON(inode->i_state & I_WILL_FREE);
432 
433 	if (inode->i_state & I_SYNC) {
434 		/*
435 		 * If this inode is locked for writeback and we are not doing
436 		 * writeback-for-data-integrity, move it to b_more_io so that
437 		 * writeback can proceed with the other inodes on s_io.
438 		 *
439 		 * We'll have another go at writing back this inode when we
440 		 * completed a full scan of b_io.
441 		 */
442 		if (wbc->sync_mode != WB_SYNC_ALL) {
443 			requeue_io(inode);
444 			return 0;
445 		}
446 
447 		/*
448 		 * It's a data-integrity sync.  We must wait.
449 		 */
450 		inode_wait_for_writeback(inode);
451 	}
452 
453 	BUG_ON(inode->i_state & I_SYNC);
454 
455 	/* Set I_SYNC, reset I_DIRTY_PAGES */
456 	inode->i_state |= I_SYNC;
457 	inode->i_state &= ~I_DIRTY_PAGES;
458 	spin_unlock(&inode_lock);
459 
460 	ret = do_writepages(mapping, wbc);
461 
462 	/*
463 	 * Make sure to wait on the data before writing out the metadata.
464 	 * This is important for filesystems that modify metadata on data
465 	 * I/O completion.
466 	 */
467 	if (wbc->sync_mode == WB_SYNC_ALL) {
468 		int err = filemap_fdatawait(mapping);
469 		if (ret == 0)
470 			ret = err;
471 	}
472 
473 	/*
474 	 * Some filesystems may redirty the inode during the writeback
475 	 * due to delalloc, clear dirty metadata flags right before
476 	 * write_inode()
477 	 */
478 	spin_lock(&inode_lock);
479 	dirty = inode->i_state & I_DIRTY;
480 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
481 	spin_unlock(&inode_lock);
482 	/* Don't write the inode if only I_DIRTY_PAGES was set */
483 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
484 		int err = write_inode(inode, wbc);
485 		if (ret == 0)
486 			ret = err;
487 	}
488 
489 	spin_lock(&inode_lock);
490 	inode->i_state &= ~I_SYNC;
491 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
492 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
493 			/*
494 			 * More pages get dirtied by a fast dirtier.
495 			 */
496 			goto select_queue;
497 		} else if (inode->i_state & I_DIRTY) {
498 			/*
499 			 * At least XFS will redirty the inode during the
500 			 * writeback (delalloc) and on io completion (isize).
501 			 */
502 			redirty_tail(inode);
503 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
504 			/*
505 			 * We didn't write back all the pages.  nfs_writepages()
506 			 * sometimes bales out without doing anything. Redirty
507 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
508 			 */
509 			/*
510 			 * akpm: if the caller was the kupdate function we put
511 			 * this inode at the head of b_dirty so it gets first
512 			 * consideration.  Otherwise, move it to the tail, for
513 			 * the reasons described there.  I'm not really sure
514 			 * how much sense this makes.  Presumably I had a good
515 			 * reasons for doing it this way, and I'd rather not
516 			 * muck with it at present.
517 			 */
518 			if (wbc->for_kupdate) {
519 				/*
520 				 * For the kupdate function we move the inode
521 				 * to b_more_io so it will get more writeout as
522 				 * soon as the queue becomes uncongested.
523 				 */
524 				inode->i_state |= I_DIRTY_PAGES;
525 select_queue:
526 				if (wbc->nr_to_write <= 0) {
527 					/*
528 					 * slice used up: queue for next turn
529 					 */
530 					requeue_io(inode);
531 				} else {
532 					/*
533 					 * somehow blocked: retry later
534 					 */
535 					redirty_tail(inode);
536 				}
537 			} else {
538 				/*
539 				 * Otherwise fully redirty the inode so that
540 				 * other inodes on this superblock will get some
541 				 * writeout.  Otherwise heavy writing to one
542 				 * file would indefinitely suspend writeout of
543 				 * all the other files.
544 				 */
545 				inode->i_state |= I_DIRTY_PAGES;
546 				redirty_tail(inode);
547 			}
548 		} else if (atomic_read(&inode->i_count)) {
549 			/*
550 			 * The inode is clean, inuse
551 			 */
552 			list_move(&inode->i_list, &inode_in_use);
553 		} else {
554 			/*
555 			 * The inode is clean, unused
556 			 */
557 			list_move(&inode->i_list, &inode_unused);
558 		}
559 	}
560 	inode_sync_complete(inode);
561 	return ret;
562 }
563 
564 static void unpin_sb_for_writeback(struct super_block *sb)
565 {
566 	up_read(&sb->s_umount);
567 	put_super(sb);
568 }
569 
570 enum sb_pin_state {
571 	SB_PINNED,
572 	SB_NOT_PINNED,
573 	SB_PIN_FAILED
574 };
575 
576 /*
577  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
578  * before calling writeback. So make sure that we do pin it, so it doesn't
579  * go away while we are writing inodes from it.
580  */
581 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
582 					      struct super_block *sb)
583 {
584 	/*
585 	 * Caller must already hold the ref for this
586 	 */
587 	if (wbc->sync_mode == WB_SYNC_ALL) {
588 		WARN_ON(!rwsem_is_locked(&sb->s_umount));
589 		return SB_NOT_PINNED;
590 	}
591 	spin_lock(&sb_lock);
592 	sb->s_count++;
593 	if (down_read_trylock(&sb->s_umount)) {
594 		if (sb->s_root) {
595 			spin_unlock(&sb_lock);
596 			return SB_PINNED;
597 		}
598 		/*
599 		 * umounted, drop rwsem again and fall through to failure
600 		 */
601 		up_read(&sb->s_umount);
602 	}
603 	sb->s_count--;
604 	spin_unlock(&sb_lock);
605 	return SB_PIN_FAILED;
606 }
607 
608 /*
609  * Write a portion of b_io inodes which belong to @sb.
610  * If @wbc->sb != NULL, then find and write all such
611  * inodes. Otherwise write only ones which go sequentially
612  * in reverse order.
613  * Return 1, if the caller writeback routine should be
614  * interrupted. Otherwise return 0.
615  */
616 static int writeback_sb_inodes(struct super_block *sb,
617 			       struct bdi_writeback *wb,
618 			       struct writeback_control *wbc)
619 {
620 	while (!list_empty(&wb->b_io)) {
621 		long pages_skipped;
622 		struct inode *inode = list_entry(wb->b_io.prev,
623 						 struct inode, i_list);
624 		if (wbc->sb && sb != inode->i_sb) {
625 			/* super block given and doesn't
626 			   match, skip this inode */
627 			redirty_tail(inode);
628 			continue;
629 		}
630 		if (sb != inode->i_sb)
631 			/* finish with this superblock */
632 			return 0;
633 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
634 			requeue_io(inode);
635 			continue;
636 		}
637 		/*
638 		 * Was this inode dirtied after sync_sb_inodes was called?
639 		 * This keeps sync from extra jobs and livelock.
640 		 */
641 		if (inode_dirtied_after(inode, wbc->wb_start))
642 			return 1;
643 
644 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
645 		__iget(inode);
646 		pages_skipped = wbc->pages_skipped;
647 		writeback_single_inode(inode, wbc);
648 		if (wbc->pages_skipped != pages_skipped) {
649 			/*
650 			 * writeback is not making progress due to locked
651 			 * buffers.  Skip this inode for now.
652 			 */
653 			redirty_tail(inode);
654 		}
655 		spin_unlock(&inode_lock);
656 		iput(inode);
657 		cond_resched();
658 		spin_lock(&inode_lock);
659 		if (wbc->nr_to_write <= 0) {
660 			wbc->more_io = 1;
661 			return 1;
662 		}
663 		if (!list_empty(&wb->b_more_io))
664 			wbc->more_io = 1;
665 	}
666 	/* b_io is empty */
667 	return 1;
668 }
669 
670 static void writeback_inodes_wb(struct bdi_writeback *wb,
671 				struct writeback_control *wbc)
672 {
673 	int ret = 0;
674 
675 	wbc->wb_start = jiffies; /* livelock avoidance */
676 	spin_lock(&inode_lock);
677 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
678 		queue_io(wb, wbc->older_than_this);
679 
680 	while (!list_empty(&wb->b_io)) {
681 		struct inode *inode = list_entry(wb->b_io.prev,
682 						 struct inode, i_list);
683 		struct super_block *sb = inode->i_sb;
684 		enum sb_pin_state state;
685 
686 		if (wbc->sb && sb != wbc->sb) {
687 			/* super block given and doesn't
688 			   match, skip this inode */
689 			redirty_tail(inode);
690 			continue;
691 		}
692 		state = pin_sb_for_writeback(wbc, sb);
693 
694 		if (state == SB_PIN_FAILED) {
695 			requeue_io(inode);
696 			continue;
697 		}
698 		ret = writeback_sb_inodes(sb, wb, wbc);
699 
700 		if (state == SB_PINNED)
701 			unpin_sb_for_writeback(sb);
702 		if (ret)
703 			break;
704 	}
705 	spin_unlock(&inode_lock);
706 	/* Leave any unwritten inodes on b_io */
707 }
708 
709 void writeback_inodes_wbc(struct writeback_control *wbc)
710 {
711 	struct backing_dev_info *bdi = wbc->bdi;
712 
713 	writeback_inodes_wb(&bdi->wb, wbc);
714 }
715 
716 /*
717  * The maximum number of pages to writeout in a single bdi flush/kupdate
718  * operation.  We do this so we don't hold I_SYNC against an inode for
719  * enormous amounts of time, which would block a userspace task which has
720  * been forced to throttle against that inode.  Also, the code reevaluates
721  * the dirty each time it has written this many pages.
722  */
723 #define MAX_WRITEBACK_PAGES     1024
724 
725 static inline bool over_bground_thresh(void)
726 {
727 	unsigned long background_thresh, dirty_thresh;
728 
729 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
730 
731 	return (global_page_state(NR_FILE_DIRTY) +
732 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
733 }
734 
735 /*
736  * Explicit flushing or periodic writeback of "old" data.
737  *
738  * Define "old": the first time one of an inode's pages is dirtied, we mark the
739  * dirtying-time in the inode's address_space.  So this periodic writeback code
740  * just walks the superblock inode list, writing back any inodes which are
741  * older than a specific point in time.
742  *
743  * Try to run once per dirty_writeback_interval.  But if a writeback event
744  * takes longer than a dirty_writeback_interval interval, then leave a
745  * one-second gap.
746  *
747  * older_than_this takes precedence over nr_to_write.  So we'll only write back
748  * all dirty pages if they are all attached to "old" mappings.
749  */
750 static long wb_writeback(struct bdi_writeback *wb,
751 			 struct wb_writeback_args *args)
752 {
753 	struct writeback_control wbc = {
754 		.bdi			= wb->bdi,
755 		.sb			= args->sb,
756 		.sync_mode		= args->sync_mode,
757 		.older_than_this	= NULL,
758 		.for_kupdate		= args->for_kupdate,
759 		.for_background		= args->for_background,
760 		.range_cyclic		= args->range_cyclic,
761 	};
762 	unsigned long oldest_jif;
763 	long wrote = 0;
764 	struct inode *inode;
765 
766 	if (wbc.for_kupdate) {
767 		wbc.older_than_this = &oldest_jif;
768 		oldest_jif = jiffies -
769 				msecs_to_jiffies(dirty_expire_interval * 10);
770 	}
771 	if (!wbc.range_cyclic) {
772 		wbc.range_start = 0;
773 		wbc.range_end = LLONG_MAX;
774 	}
775 
776 	for (;;) {
777 		/*
778 		 * Stop writeback when nr_pages has been consumed
779 		 */
780 		if (args->nr_pages <= 0)
781 			break;
782 
783 		/*
784 		 * For background writeout, stop when we are below the
785 		 * background dirty threshold
786 		 */
787 		if (args->for_background && !over_bground_thresh())
788 			break;
789 
790 		wbc.more_io = 0;
791 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
792 		wbc.pages_skipped = 0;
793 		writeback_inodes_wb(wb, &wbc);
794 		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
795 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
796 
797 		/*
798 		 * If we consumed everything, see if we have more
799 		 */
800 		if (wbc.nr_to_write <= 0)
801 			continue;
802 		/*
803 		 * Didn't write everything and we don't have more IO, bail
804 		 */
805 		if (!wbc.more_io)
806 			break;
807 		/*
808 		 * Did we write something? Try for more
809 		 */
810 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
811 			continue;
812 		/*
813 		 * Nothing written. Wait for some inode to
814 		 * become available for writeback. Otherwise
815 		 * we'll just busyloop.
816 		 */
817 		spin_lock(&inode_lock);
818 		if (!list_empty(&wb->b_more_io))  {
819 			inode = list_entry(wb->b_more_io.prev,
820 						struct inode, i_list);
821 			inode_wait_for_writeback(inode);
822 		}
823 		spin_unlock(&inode_lock);
824 	}
825 
826 	return wrote;
827 }
828 
829 /*
830  * Return the next bdi_work struct that hasn't been processed by this
831  * wb thread yet. ->seen is initially set for each thread that exists
832  * for this device, when a thread first notices a piece of work it
833  * clears its bit. Depending on writeback type, the thread will notify
834  * completion on either receiving the work (WB_SYNC_NONE) or after
835  * it is done (WB_SYNC_ALL).
836  */
837 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
838 					   struct bdi_writeback *wb)
839 {
840 	struct bdi_work *work, *ret = NULL;
841 
842 	rcu_read_lock();
843 
844 	list_for_each_entry_rcu(work, &bdi->work_list, list) {
845 		if (!test_bit(wb->nr, &work->seen))
846 			continue;
847 		clear_bit(wb->nr, &work->seen);
848 
849 		ret = work;
850 		break;
851 	}
852 
853 	rcu_read_unlock();
854 	return ret;
855 }
856 
857 static long wb_check_old_data_flush(struct bdi_writeback *wb)
858 {
859 	unsigned long expired;
860 	long nr_pages;
861 
862 	/*
863 	 * When set to zero, disable periodic writeback
864 	 */
865 	if (!dirty_writeback_interval)
866 		return 0;
867 
868 	expired = wb->last_old_flush +
869 			msecs_to_jiffies(dirty_writeback_interval * 10);
870 	if (time_before(jiffies, expired))
871 		return 0;
872 
873 	wb->last_old_flush = jiffies;
874 	nr_pages = global_page_state(NR_FILE_DIRTY) +
875 			global_page_state(NR_UNSTABLE_NFS) +
876 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
877 
878 	if (nr_pages) {
879 		struct wb_writeback_args args = {
880 			.nr_pages	= nr_pages,
881 			.sync_mode	= WB_SYNC_NONE,
882 			.for_kupdate	= 1,
883 			.range_cyclic	= 1,
884 		};
885 
886 		return wb_writeback(wb, &args);
887 	}
888 
889 	return 0;
890 }
891 
892 /*
893  * Retrieve work items and do the writeback they describe
894  */
895 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
896 {
897 	struct backing_dev_info *bdi = wb->bdi;
898 	struct bdi_work *work;
899 	long wrote = 0;
900 
901 	while ((work = get_next_work_item(bdi, wb)) != NULL) {
902 		struct wb_writeback_args args = work->args;
903 
904 		/*
905 		 * Override sync mode, in case we must wait for completion
906 		 */
907 		if (force_wait)
908 			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
909 
910 		/*
911 		 * If this isn't a data integrity operation, just notify
912 		 * that we have seen this work and we are now starting it.
913 		 */
914 		if (args.sync_mode == WB_SYNC_NONE)
915 			wb_clear_pending(wb, work);
916 
917 		wrote += wb_writeback(wb, &args);
918 
919 		/*
920 		 * This is a data integrity writeback, so only do the
921 		 * notification when we have completed the work.
922 		 */
923 		if (args.sync_mode == WB_SYNC_ALL)
924 			wb_clear_pending(wb, work);
925 	}
926 
927 	/*
928 	 * Check for periodic writeback, kupdated() style
929 	 */
930 	wrote += wb_check_old_data_flush(wb);
931 
932 	return wrote;
933 }
934 
935 /*
936  * Handle writeback of dirty data for the device backed by this bdi. Also
937  * wakes up periodically and does kupdated style flushing.
938  */
939 int bdi_writeback_task(struct bdi_writeback *wb)
940 {
941 	unsigned long last_active = jiffies;
942 	unsigned long wait_jiffies = -1UL;
943 	long pages_written;
944 
945 	while (!kthread_should_stop()) {
946 		pages_written = wb_do_writeback(wb, 0);
947 
948 		if (pages_written)
949 			last_active = jiffies;
950 		else if (wait_jiffies != -1UL) {
951 			unsigned long max_idle;
952 
953 			/*
954 			 * Longest period of inactivity that we tolerate. If we
955 			 * see dirty data again later, the task will get
956 			 * recreated automatically.
957 			 */
958 			max_idle = max(5UL * 60 * HZ, wait_jiffies);
959 			if (time_after(jiffies, max_idle + last_active))
960 				break;
961 		}
962 
963 		if (dirty_writeback_interval) {
964 			wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
965 			schedule_timeout_interruptible(wait_jiffies);
966 		} else {
967 			set_current_state(TASK_INTERRUPTIBLE);
968 			if (list_empty_careful(&wb->bdi->work_list) &&
969 			    !kthread_should_stop())
970 				schedule();
971 			__set_current_state(TASK_RUNNING);
972 		}
973 
974 		try_to_freeze();
975 	}
976 
977 	return 0;
978 }
979 
980 /*
981  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
982  * writeback, for integrity writeback see bdi_sync_writeback().
983  */
984 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
985 {
986 	struct wb_writeback_args args = {
987 		.sb		= sb,
988 		.nr_pages	= nr_pages,
989 		.sync_mode	= WB_SYNC_NONE,
990 	};
991 	struct backing_dev_info *bdi;
992 
993 	rcu_read_lock();
994 
995 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
996 		if (!bdi_has_dirty_io(bdi))
997 			continue;
998 
999 		bdi_alloc_queue_work(bdi, &args);
1000 	}
1001 
1002 	rcu_read_unlock();
1003 }
1004 
1005 /*
1006  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1007  * the whole world.
1008  */
1009 void wakeup_flusher_threads(long nr_pages)
1010 {
1011 	if (nr_pages == 0)
1012 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1013 				global_page_state(NR_UNSTABLE_NFS);
1014 	bdi_writeback_all(NULL, nr_pages);
1015 }
1016 
1017 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1018 {
1019 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1020 		struct dentry *dentry;
1021 		const char *name = "?";
1022 
1023 		dentry = d_find_alias(inode);
1024 		if (dentry) {
1025 			spin_lock(&dentry->d_lock);
1026 			name = (const char *) dentry->d_name.name;
1027 		}
1028 		printk(KERN_DEBUG
1029 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1030 		       current->comm, task_pid_nr(current), inode->i_ino,
1031 		       name, inode->i_sb->s_id);
1032 		if (dentry) {
1033 			spin_unlock(&dentry->d_lock);
1034 			dput(dentry);
1035 		}
1036 	}
1037 }
1038 
1039 /**
1040  *	__mark_inode_dirty -	internal function
1041  *	@inode: inode to mark
1042  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1043  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1044  *  	mark_inode_dirty_sync.
1045  *
1046  * Put the inode on the super block's dirty list.
1047  *
1048  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1049  * dirty list only if it is hashed or if it refers to a blockdev.
1050  * If it was not hashed, it will never be added to the dirty list
1051  * even if it is later hashed, as it will have been marked dirty already.
1052  *
1053  * In short, make sure you hash any inodes _before_ you start marking
1054  * them dirty.
1055  *
1056  * This function *must* be atomic for the I_DIRTY_PAGES case -
1057  * set_page_dirty() is called under spinlock in several places.
1058  *
1059  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1060  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1061  * the kernel-internal blockdev inode represents the dirtying time of the
1062  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1063  * page->mapping->host, so the page-dirtying time is recorded in the internal
1064  * blockdev inode.
1065  */
1066 void __mark_inode_dirty(struct inode *inode, int flags)
1067 {
1068 	struct super_block *sb = inode->i_sb;
1069 
1070 	/*
1071 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1072 	 * dirty the inode itself
1073 	 */
1074 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1075 		if (sb->s_op->dirty_inode)
1076 			sb->s_op->dirty_inode(inode);
1077 	}
1078 
1079 	/*
1080 	 * make sure that changes are seen by all cpus before we test i_state
1081 	 * -- mikulas
1082 	 */
1083 	smp_mb();
1084 
1085 	/* avoid the locking if we can */
1086 	if ((inode->i_state & flags) == flags)
1087 		return;
1088 
1089 	if (unlikely(block_dump))
1090 		block_dump___mark_inode_dirty(inode);
1091 
1092 	spin_lock(&inode_lock);
1093 	if ((inode->i_state & flags) != flags) {
1094 		const int was_dirty = inode->i_state & I_DIRTY;
1095 
1096 		inode->i_state |= flags;
1097 
1098 		/*
1099 		 * If the inode is being synced, just update its dirty state.
1100 		 * The unlocker will place the inode on the appropriate
1101 		 * superblock list, based upon its state.
1102 		 */
1103 		if (inode->i_state & I_SYNC)
1104 			goto out;
1105 
1106 		/*
1107 		 * Only add valid (hashed) inodes to the superblock's
1108 		 * dirty list.  Add blockdev inodes as well.
1109 		 */
1110 		if (!S_ISBLK(inode->i_mode)) {
1111 			if (hlist_unhashed(&inode->i_hash))
1112 				goto out;
1113 		}
1114 		if (inode->i_state & (I_FREEING|I_CLEAR))
1115 			goto out;
1116 
1117 		/*
1118 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1119 		 * reposition it (that would break b_dirty time-ordering).
1120 		 */
1121 		if (!was_dirty) {
1122 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1123 			struct backing_dev_info *bdi = wb->bdi;
1124 
1125 			if (bdi_cap_writeback_dirty(bdi) &&
1126 			    !test_bit(BDI_registered, &bdi->state)) {
1127 				WARN_ON(1);
1128 				printk(KERN_ERR "bdi-%s not registered\n",
1129 								bdi->name);
1130 			}
1131 
1132 			inode->dirtied_when = jiffies;
1133 			list_move(&inode->i_list, &wb->b_dirty);
1134 		}
1135 	}
1136 out:
1137 	spin_unlock(&inode_lock);
1138 }
1139 EXPORT_SYMBOL(__mark_inode_dirty);
1140 
1141 /*
1142  * Write out a superblock's list of dirty inodes.  A wait will be performed
1143  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1144  *
1145  * If older_than_this is non-NULL, then only write out inodes which
1146  * had their first dirtying at a time earlier than *older_than_this.
1147  *
1148  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1149  * This function assumes that the blockdev superblock's inodes are backed by
1150  * a variety of queues, so all inodes are searched.  For other superblocks,
1151  * assume that all inodes are backed by the same queue.
1152  *
1153  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1154  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1155  * on the writer throttling path, and we get decent balancing between many
1156  * throttled threads: we don't want them all piling up on inode_sync_wait.
1157  */
1158 static void wait_sb_inodes(struct super_block *sb)
1159 {
1160 	struct inode *inode, *old_inode = NULL;
1161 
1162 	/*
1163 	 * We need to be protected against the filesystem going from
1164 	 * r/o to r/w or vice versa.
1165 	 */
1166 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1167 
1168 	spin_lock(&inode_lock);
1169 
1170 	/*
1171 	 * Data integrity sync. Must wait for all pages under writeback,
1172 	 * because there may have been pages dirtied before our sync
1173 	 * call, but which had writeout started before we write it out.
1174 	 * In which case, the inode may not be on the dirty list, but
1175 	 * we still have to wait for that writeout.
1176 	 */
1177 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1178 		struct address_space *mapping;
1179 
1180 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1181 			continue;
1182 		mapping = inode->i_mapping;
1183 		if (mapping->nrpages == 0)
1184 			continue;
1185 		__iget(inode);
1186 		spin_unlock(&inode_lock);
1187 		/*
1188 		 * We hold a reference to 'inode' so it couldn't have
1189 		 * been removed from s_inodes list while we dropped the
1190 		 * inode_lock.  We cannot iput the inode now as we can
1191 		 * be holding the last reference and we cannot iput it
1192 		 * under inode_lock. So we keep the reference and iput
1193 		 * it later.
1194 		 */
1195 		iput(old_inode);
1196 		old_inode = inode;
1197 
1198 		filemap_fdatawait(mapping);
1199 
1200 		cond_resched();
1201 
1202 		spin_lock(&inode_lock);
1203 	}
1204 	spin_unlock(&inode_lock);
1205 	iput(old_inode);
1206 }
1207 
1208 /**
1209  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1210  * @sb: the superblock
1211  *
1212  * Start writeback on some inodes on this super_block. No guarantees are made
1213  * on how many (if any) will be written, and this function does not wait
1214  * for IO completion of submitted IO. The number of pages submitted is
1215  * returned.
1216  */
1217 void writeback_inodes_sb(struct super_block *sb)
1218 {
1219 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1220 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1221 	long nr_to_write;
1222 
1223 	nr_to_write = nr_dirty + nr_unstable +
1224 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1225 
1226 	bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1227 }
1228 EXPORT_SYMBOL(writeback_inodes_sb);
1229 
1230 /**
1231  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1232  * @sb: the superblock
1233  *
1234  * Invoke writeback_inodes_sb if no writeback is currently underway.
1235  * Returns 1 if writeback was started, 0 if not.
1236  */
1237 int writeback_inodes_sb_if_idle(struct super_block *sb)
1238 {
1239 	if (!writeback_in_progress(sb->s_bdi)) {
1240 		writeback_inodes_sb(sb);
1241 		return 1;
1242 	} else
1243 		return 0;
1244 }
1245 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1246 
1247 /**
1248  * sync_inodes_sb	-	sync sb inode pages
1249  * @sb: the superblock
1250  *
1251  * This function writes and waits on any dirty inode belonging to this
1252  * super_block. The number of pages synced is returned.
1253  */
1254 void sync_inodes_sb(struct super_block *sb)
1255 {
1256 	bdi_sync_writeback(sb->s_bdi, sb);
1257 	wait_sb_inodes(sb);
1258 }
1259 EXPORT_SYMBOL(sync_inodes_sb);
1260 
1261 /**
1262  * write_inode_now	-	write an inode to disk
1263  * @inode: inode to write to disk
1264  * @sync: whether the write should be synchronous or not
1265  *
1266  * This function commits an inode to disk immediately if it is dirty. This is
1267  * primarily needed by knfsd.
1268  *
1269  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1270  */
1271 int write_inode_now(struct inode *inode, int sync)
1272 {
1273 	int ret;
1274 	struct writeback_control wbc = {
1275 		.nr_to_write = LONG_MAX,
1276 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1277 		.range_start = 0,
1278 		.range_end = LLONG_MAX,
1279 	};
1280 
1281 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1282 		wbc.nr_to_write = 0;
1283 
1284 	might_sleep();
1285 	spin_lock(&inode_lock);
1286 	ret = writeback_single_inode(inode, &wbc);
1287 	spin_unlock(&inode_lock);
1288 	if (sync)
1289 		inode_sync_wait(inode);
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL(write_inode_now);
1293 
1294 /**
1295  * sync_inode - write an inode and its pages to disk.
1296  * @inode: the inode to sync
1297  * @wbc: controls the writeback mode
1298  *
1299  * sync_inode() will write an inode and its pages to disk.  It will also
1300  * correctly update the inode on its superblock's dirty inode lists and will
1301  * update inode->i_state.
1302  *
1303  * The caller must have a ref on the inode.
1304  */
1305 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1306 {
1307 	int ret;
1308 
1309 	spin_lock(&inode_lock);
1310 	ret = writeback_single_inode(inode, wbc);
1311 	spin_unlock(&inode_lock);
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL(sync_inode);
1315