1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void finish_writeback_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 struct wb_completion *done = work->done; 180 181 if (work->auto_free) 182 kfree(work); 183 if (done && atomic_dec_and_test(&done->cnt)) 184 wake_up_all(&wb->bdi->wb_waitq); 185 } 186 187 static void wb_queue_work(struct bdi_writeback *wb, 188 struct wb_writeback_work *work) 189 { 190 trace_writeback_queue(wb, work); 191 192 if (work->done) 193 atomic_inc(&work->done->cnt); 194 195 spin_lock_bh(&wb->work_lock); 196 197 if (test_bit(WB_registered, &wb->state)) { 198 list_add_tail(&work->list, &wb->work_list); 199 mod_delayed_work(bdi_wq, &wb->dwork, 0); 200 } else 201 finish_writeback_work(wb, work); 202 203 spin_unlock_bh(&wb->work_lock); 204 } 205 206 /** 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works 208 * @bdi: bdi work items were issued to 209 * @done: target wb_completion 210 * 211 * Wait for one or more work items issued to @bdi with their ->done field 212 * set to @done, which should have been defined with 213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 214 * work items are completed. Work items which are waited upon aren't freed 215 * automatically on completion. 216 */ 217 static void wb_wait_for_completion(struct backing_dev_info *bdi, 218 struct wb_completion *done) 219 { 220 atomic_dec(&done->cnt); /* put down the initial count */ 221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 222 } 223 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 226 /* parameters for foreign inode detection, see wb_detach_inode() */ 227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 231 232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 234 /* each slot's duration is 2s / 16 */ 235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 236 /* if foreign slots >= 8, switch */ 237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 238 /* one round can affect upto 5 slots */ 239 240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 241 static struct workqueue_struct *isw_wq; 242 243 void __inode_attach_wb(struct inode *inode, struct page *page) 244 { 245 struct backing_dev_info *bdi = inode_to_bdi(inode); 246 struct bdi_writeback *wb = NULL; 247 248 if (inode_cgwb_enabled(inode)) { 249 struct cgroup_subsys_state *memcg_css; 250 251 if (page) { 252 memcg_css = mem_cgroup_css_from_page(page); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 } else { 255 /* must pin memcg_css, see wb_get_create() */ 256 memcg_css = task_get_css(current, memory_cgrp_id); 257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 258 css_put(memcg_css); 259 } 260 } 261 262 if (!wb) 263 wb = &bdi->wb; 264 265 /* 266 * There may be multiple instances of this function racing to 267 * update the same inode. Use cmpxchg() to tell the winner. 268 */ 269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 270 wb_put(wb); 271 } 272 273 /** 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 275 * @inode: inode of interest with i_lock held 276 * 277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 278 * held on entry and is released on return. The returned wb is guaranteed 279 * to stay @inode's associated wb until its list_lock is released. 280 */ 281 static struct bdi_writeback * 282 locked_inode_to_wb_and_lock_list(struct inode *inode) 283 __releases(&inode->i_lock) 284 __acquires(&wb->list_lock) 285 { 286 while (true) { 287 struct bdi_writeback *wb = inode_to_wb(inode); 288 289 /* 290 * inode_to_wb() association is protected by both 291 * @inode->i_lock and @wb->list_lock but list_lock nests 292 * outside i_lock. Drop i_lock and verify that the 293 * association hasn't changed after acquiring list_lock. 294 */ 295 wb_get(wb); 296 spin_unlock(&inode->i_lock); 297 spin_lock(&wb->list_lock); 298 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 300 if (likely(wb == inode->i_wb)) { 301 wb_put(wb); /* @inode already has ref */ 302 return wb; 303 } 304 305 spin_unlock(&wb->list_lock); 306 wb_put(wb); 307 cpu_relax(); 308 spin_lock(&inode->i_lock); 309 } 310 } 311 312 /** 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 314 * @inode: inode of interest 315 * 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 317 * on entry. 318 */ 319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 320 __acquires(&wb->list_lock) 321 { 322 spin_lock(&inode->i_lock); 323 return locked_inode_to_wb_and_lock_list(inode); 324 } 325 326 struct inode_switch_wbs_context { 327 struct inode *inode; 328 struct bdi_writeback *new_wb; 329 330 struct rcu_head rcu_head; 331 struct work_struct work; 332 }; 333 334 static void inode_switch_wbs_work_fn(struct work_struct *work) 335 { 336 struct inode_switch_wbs_context *isw = 337 container_of(work, struct inode_switch_wbs_context, work); 338 struct inode *inode = isw->inode; 339 struct address_space *mapping = inode->i_mapping; 340 struct bdi_writeback *old_wb = inode->i_wb; 341 struct bdi_writeback *new_wb = isw->new_wb; 342 struct radix_tree_iter iter; 343 bool switched = false; 344 void **slot; 345 346 /* 347 * By the time control reaches here, RCU grace period has passed 348 * since I_WB_SWITCH assertion and all wb stat update transactions 349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 350 * synchronizing against the i_pages lock. 351 * 352 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 353 * gives us exclusion against all wb related operations on @inode 354 * including IO list manipulations and stat updates. 355 */ 356 if (old_wb < new_wb) { 357 spin_lock(&old_wb->list_lock); 358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 359 } else { 360 spin_lock(&new_wb->list_lock); 361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 362 } 363 spin_lock(&inode->i_lock); 364 xa_lock_irq(&mapping->i_pages); 365 366 /* 367 * Once I_FREEING is visible under i_lock, the eviction path owns 368 * the inode and we shouldn't modify ->i_io_list. 369 */ 370 if (unlikely(inode->i_state & I_FREEING)) 371 goto skip_switch; 372 373 /* 374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 376 * pages actually under writeback. 377 */ 378 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0, 379 PAGECACHE_TAG_DIRTY) { 380 struct page *page = radix_tree_deref_slot_protected(slot, 381 &mapping->i_pages.xa_lock); 382 if (likely(page) && PageDirty(page)) { 383 dec_wb_stat(old_wb, WB_RECLAIMABLE); 384 inc_wb_stat(new_wb, WB_RECLAIMABLE); 385 } 386 } 387 388 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0, 389 PAGECACHE_TAG_WRITEBACK) { 390 struct page *page = radix_tree_deref_slot_protected(slot, 391 &mapping->i_pages.xa_lock); 392 if (likely(page)) { 393 WARN_ON_ONCE(!PageWriteback(page)); 394 dec_wb_stat(old_wb, WB_WRITEBACK); 395 inc_wb_stat(new_wb, WB_WRITEBACK); 396 } 397 } 398 399 wb_get(new_wb); 400 401 /* 402 * Transfer to @new_wb's IO list if necessary. The specific list 403 * @inode was on is ignored and the inode is put on ->b_dirty which 404 * is always correct including from ->b_dirty_time. The transfer 405 * preserves @inode->dirtied_when ordering. 406 */ 407 if (!list_empty(&inode->i_io_list)) { 408 struct inode *pos; 409 410 inode_io_list_del_locked(inode, old_wb); 411 inode->i_wb = new_wb; 412 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 413 if (time_after_eq(inode->dirtied_when, 414 pos->dirtied_when)) 415 break; 416 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 417 } else { 418 inode->i_wb = new_wb; 419 } 420 421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 422 inode->i_wb_frn_winner = 0; 423 inode->i_wb_frn_avg_time = 0; 424 inode->i_wb_frn_history = 0; 425 switched = true; 426 skip_switch: 427 /* 428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 429 * ensures that the new wb is visible if they see !I_WB_SWITCH. 430 */ 431 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 432 433 xa_unlock_irq(&mapping->i_pages); 434 spin_unlock(&inode->i_lock); 435 spin_unlock(&new_wb->list_lock); 436 spin_unlock(&old_wb->list_lock); 437 438 if (switched) { 439 wb_wakeup(new_wb); 440 wb_put(old_wb); 441 } 442 wb_put(new_wb); 443 444 iput(inode); 445 kfree(isw); 446 447 atomic_dec(&isw_nr_in_flight); 448 } 449 450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 451 { 452 struct inode_switch_wbs_context *isw = container_of(rcu_head, 453 struct inode_switch_wbs_context, rcu_head); 454 455 /* needs to grab bh-unsafe locks, bounce to work item */ 456 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 457 queue_work(isw_wq, &isw->work); 458 } 459 460 /** 461 * inode_switch_wbs - change the wb association of an inode 462 * @inode: target inode 463 * @new_wb_id: ID of the new wb 464 * 465 * Switch @inode's wb association to the wb identified by @new_wb_id. The 466 * switching is performed asynchronously and may fail silently. 467 */ 468 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 469 { 470 struct backing_dev_info *bdi = inode_to_bdi(inode); 471 struct cgroup_subsys_state *memcg_css; 472 struct inode_switch_wbs_context *isw; 473 474 /* noop if seems to be already in progress */ 475 if (inode->i_state & I_WB_SWITCH) 476 return; 477 478 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 479 if (!isw) 480 return; 481 482 /* find and pin the new wb */ 483 rcu_read_lock(); 484 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 485 if (memcg_css) 486 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 487 rcu_read_unlock(); 488 if (!isw->new_wb) 489 goto out_free; 490 491 /* while holding I_WB_SWITCH, no one else can update the association */ 492 spin_lock(&inode->i_lock); 493 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 494 inode->i_state & (I_WB_SWITCH | I_FREEING) || 495 inode_to_wb(inode) == isw->new_wb) { 496 spin_unlock(&inode->i_lock); 497 goto out_free; 498 } 499 inode->i_state |= I_WB_SWITCH; 500 __iget(inode); 501 spin_unlock(&inode->i_lock); 502 503 isw->inode = inode; 504 505 atomic_inc(&isw_nr_in_flight); 506 507 /* 508 * In addition to synchronizing among switchers, I_WB_SWITCH tells 509 * the RCU protected stat update paths to grab the i_page 510 * lock so that stat transfer can synchronize against them. 511 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 512 */ 513 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 514 return; 515 516 out_free: 517 if (isw->new_wb) 518 wb_put(isw->new_wb); 519 kfree(isw); 520 } 521 522 /** 523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 524 * @wbc: writeback_control of interest 525 * @inode: target inode 526 * 527 * @inode is locked and about to be written back under the control of @wbc. 528 * Record @inode's writeback context into @wbc and unlock the i_lock. On 529 * writeback completion, wbc_detach_inode() should be called. This is used 530 * to track the cgroup writeback context. 531 */ 532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 533 struct inode *inode) 534 { 535 if (!inode_cgwb_enabled(inode)) { 536 spin_unlock(&inode->i_lock); 537 return; 538 } 539 540 wbc->wb = inode_to_wb(inode); 541 wbc->inode = inode; 542 543 wbc->wb_id = wbc->wb->memcg_css->id; 544 wbc->wb_lcand_id = inode->i_wb_frn_winner; 545 wbc->wb_tcand_id = 0; 546 wbc->wb_bytes = 0; 547 wbc->wb_lcand_bytes = 0; 548 wbc->wb_tcand_bytes = 0; 549 550 wb_get(wbc->wb); 551 spin_unlock(&inode->i_lock); 552 553 /* 554 * A dying wb indicates that the memcg-blkcg mapping has changed 555 * and a new wb is already serving the memcg. Switch immediately. 556 */ 557 if (unlikely(wb_dying(wbc->wb))) 558 inode_switch_wbs(inode, wbc->wb_id); 559 } 560 561 /** 562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 563 * @wbc: writeback_control of the just finished writeback 564 * 565 * To be called after a writeback attempt of an inode finishes and undoes 566 * wbc_attach_and_unlock_inode(). Can be called under any context. 567 * 568 * As concurrent write sharing of an inode is expected to be very rare and 569 * memcg only tracks page ownership on first-use basis severely confining 570 * the usefulness of such sharing, cgroup writeback tracks ownership 571 * per-inode. While the support for concurrent write sharing of an inode 572 * is deemed unnecessary, an inode being written to by different cgroups at 573 * different points in time is a lot more common, and, more importantly, 574 * charging only by first-use can too readily lead to grossly incorrect 575 * behaviors (single foreign page can lead to gigabytes of writeback to be 576 * incorrectly attributed). 577 * 578 * To resolve this issue, cgroup writeback detects the majority dirtier of 579 * an inode and transfers the ownership to it. To avoid unnnecessary 580 * oscillation, the detection mechanism keeps track of history and gives 581 * out the switch verdict only if the foreign usage pattern is stable over 582 * a certain amount of time and/or writeback attempts. 583 * 584 * On each writeback attempt, @wbc tries to detect the majority writer 585 * using Boyer-Moore majority vote algorithm. In addition to the byte 586 * count from the majority voting, it also counts the bytes written for the 587 * current wb and the last round's winner wb (max of last round's current 588 * wb, the winner from two rounds ago, and the last round's majority 589 * candidate). Keeping track of the historical winner helps the algorithm 590 * to semi-reliably detect the most active writer even when it's not the 591 * absolute majority. 592 * 593 * Once the winner of the round is determined, whether the winner is 594 * foreign or not and how much IO time the round consumed is recorded in 595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 596 * over a certain threshold, the switch verdict is given. 597 */ 598 void wbc_detach_inode(struct writeback_control *wbc) 599 { 600 struct bdi_writeback *wb = wbc->wb; 601 struct inode *inode = wbc->inode; 602 unsigned long avg_time, max_bytes, max_time; 603 u16 history; 604 int max_id; 605 606 if (!wb) 607 return; 608 609 history = inode->i_wb_frn_history; 610 avg_time = inode->i_wb_frn_avg_time; 611 612 /* pick the winner of this round */ 613 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 614 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 615 max_id = wbc->wb_id; 616 max_bytes = wbc->wb_bytes; 617 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 618 max_id = wbc->wb_lcand_id; 619 max_bytes = wbc->wb_lcand_bytes; 620 } else { 621 max_id = wbc->wb_tcand_id; 622 max_bytes = wbc->wb_tcand_bytes; 623 } 624 625 /* 626 * Calculate the amount of IO time the winner consumed and fold it 627 * into the running average kept per inode. If the consumed IO 628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 629 * deciding whether to switch or not. This is to prevent one-off 630 * small dirtiers from skewing the verdict. 631 */ 632 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 633 wb->avg_write_bandwidth); 634 if (avg_time) 635 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 636 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 637 else 638 avg_time = max_time; /* immediate catch up on first run */ 639 640 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 641 int slots; 642 643 /* 644 * The switch verdict is reached if foreign wb's consume 645 * more than a certain proportion of IO time in a 646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 647 * history mask where each bit represents one sixteenth of 648 * the period. Determine the number of slots to shift into 649 * history from @max_time. 650 */ 651 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 652 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 653 history <<= slots; 654 if (wbc->wb_id != max_id) 655 history |= (1U << slots) - 1; 656 657 /* 658 * Switch if the current wb isn't the consistent winner. 659 * If there are multiple closely competing dirtiers, the 660 * inode may switch across them repeatedly over time, which 661 * is okay. The main goal is avoiding keeping an inode on 662 * the wrong wb for an extended period of time. 663 */ 664 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 665 inode_switch_wbs(inode, max_id); 666 } 667 668 /* 669 * Multiple instances of this function may race to update the 670 * following fields but we don't mind occassional inaccuracies. 671 */ 672 inode->i_wb_frn_winner = max_id; 673 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 674 inode->i_wb_frn_history = history; 675 676 wb_put(wbc->wb); 677 wbc->wb = NULL; 678 } 679 680 /** 681 * wbc_account_io - account IO issued during writeback 682 * @wbc: writeback_control of the writeback in progress 683 * @page: page being written out 684 * @bytes: number of bytes being written out 685 * 686 * @bytes from @page are about to written out during the writeback 687 * controlled by @wbc. Keep the book for foreign inode detection. See 688 * wbc_detach_inode(). 689 */ 690 void wbc_account_io(struct writeback_control *wbc, struct page *page, 691 size_t bytes) 692 { 693 int id; 694 695 /* 696 * pageout() path doesn't attach @wbc to the inode being written 697 * out. This is intentional as we don't want the function to block 698 * behind a slow cgroup. Ultimately, we want pageout() to kick off 699 * regular writeback instead of writing things out itself. 700 */ 701 if (!wbc->wb) 702 return; 703 704 id = mem_cgroup_css_from_page(page)->id; 705 706 if (id == wbc->wb_id) { 707 wbc->wb_bytes += bytes; 708 return; 709 } 710 711 if (id == wbc->wb_lcand_id) 712 wbc->wb_lcand_bytes += bytes; 713 714 /* Boyer-Moore majority vote algorithm */ 715 if (!wbc->wb_tcand_bytes) 716 wbc->wb_tcand_id = id; 717 if (id == wbc->wb_tcand_id) 718 wbc->wb_tcand_bytes += bytes; 719 else 720 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 721 } 722 EXPORT_SYMBOL_GPL(wbc_account_io); 723 724 /** 725 * inode_congested - test whether an inode is congested 726 * @inode: inode to test for congestion (may be NULL) 727 * @cong_bits: mask of WB_[a]sync_congested bits to test 728 * 729 * Tests whether @inode is congested. @cong_bits is the mask of congestion 730 * bits to test and the return value is the mask of set bits. 731 * 732 * If cgroup writeback is enabled for @inode, the congestion state is 733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 734 * associated with @inode is congested; otherwise, the root wb's congestion 735 * state is used. 736 * 737 * @inode is allowed to be NULL as this function is often called on 738 * mapping->host which is NULL for the swapper space. 739 */ 740 int inode_congested(struct inode *inode, int cong_bits) 741 { 742 /* 743 * Once set, ->i_wb never becomes NULL while the inode is alive. 744 * Start transaction iff ->i_wb is visible. 745 */ 746 if (inode && inode_to_wb_is_valid(inode)) { 747 struct bdi_writeback *wb; 748 struct wb_lock_cookie lock_cookie = {}; 749 bool congested; 750 751 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 752 congested = wb_congested(wb, cong_bits); 753 unlocked_inode_to_wb_end(inode, &lock_cookie); 754 return congested; 755 } 756 757 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 758 } 759 EXPORT_SYMBOL_GPL(inode_congested); 760 761 /** 762 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 763 * @wb: target bdi_writeback to split @nr_pages to 764 * @nr_pages: number of pages to write for the whole bdi 765 * 766 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 767 * relation to the total write bandwidth of all wb's w/ dirty inodes on 768 * @wb->bdi. 769 */ 770 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 771 { 772 unsigned long this_bw = wb->avg_write_bandwidth; 773 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 774 775 if (nr_pages == LONG_MAX) 776 return LONG_MAX; 777 778 /* 779 * This may be called on clean wb's and proportional distribution 780 * may not make sense, just use the original @nr_pages in those 781 * cases. In general, we wanna err on the side of writing more. 782 */ 783 if (!tot_bw || this_bw >= tot_bw) 784 return nr_pages; 785 else 786 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 787 } 788 789 /** 790 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 791 * @bdi: target backing_dev_info 792 * @base_work: wb_writeback_work to issue 793 * @skip_if_busy: skip wb's which already have writeback in progress 794 * 795 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 796 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 797 * distributed to the busy wbs according to each wb's proportion in the 798 * total active write bandwidth of @bdi. 799 */ 800 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 801 struct wb_writeback_work *base_work, 802 bool skip_if_busy) 803 { 804 struct bdi_writeback *last_wb = NULL; 805 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 806 struct bdi_writeback, bdi_node); 807 808 might_sleep(); 809 restart: 810 rcu_read_lock(); 811 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 812 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 813 struct wb_writeback_work fallback_work; 814 struct wb_writeback_work *work; 815 long nr_pages; 816 817 if (last_wb) { 818 wb_put(last_wb); 819 last_wb = NULL; 820 } 821 822 /* SYNC_ALL writes out I_DIRTY_TIME too */ 823 if (!wb_has_dirty_io(wb) && 824 (base_work->sync_mode == WB_SYNC_NONE || 825 list_empty(&wb->b_dirty_time))) 826 continue; 827 if (skip_if_busy && writeback_in_progress(wb)) 828 continue; 829 830 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 831 832 work = kmalloc(sizeof(*work), GFP_ATOMIC); 833 if (work) { 834 *work = *base_work; 835 work->nr_pages = nr_pages; 836 work->auto_free = 1; 837 wb_queue_work(wb, work); 838 continue; 839 } 840 841 /* alloc failed, execute synchronously using on-stack fallback */ 842 work = &fallback_work; 843 *work = *base_work; 844 work->nr_pages = nr_pages; 845 work->auto_free = 0; 846 work->done = &fallback_work_done; 847 848 wb_queue_work(wb, work); 849 850 /* 851 * Pin @wb so that it stays on @bdi->wb_list. This allows 852 * continuing iteration from @wb after dropping and 853 * regrabbing rcu read lock. 854 */ 855 wb_get(wb); 856 last_wb = wb; 857 858 rcu_read_unlock(); 859 wb_wait_for_completion(bdi, &fallback_work_done); 860 goto restart; 861 } 862 rcu_read_unlock(); 863 864 if (last_wb) 865 wb_put(last_wb); 866 } 867 868 /** 869 * cgroup_writeback_umount - flush inode wb switches for umount 870 * 871 * This function is called when a super_block is about to be destroyed and 872 * flushes in-flight inode wb switches. An inode wb switch goes through 873 * RCU and then workqueue, so the two need to be flushed in order to ensure 874 * that all previously scheduled switches are finished. As wb switches are 875 * rare occurrences and synchronize_rcu() can take a while, perform 876 * flushing iff wb switches are in flight. 877 */ 878 void cgroup_writeback_umount(void) 879 { 880 if (atomic_read(&isw_nr_in_flight)) { 881 synchronize_rcu(); 882 flush_workqueue(isw_wq); 883 } 884 } 885 886 static int __init cgroup_writeback_init(void) 887 { 888 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 889 if (!isw_wq) 890 return -ENOMEM; 891 return 0; 892 } 893 fs_initcall(cgroup_writeback_init); 894 895 #else /* CONFIG_CGROUP_WRITEBACK */ 896 897 static struct bdi_writeback * 898 locked_inode_to_wb_and_lock_list(struct inode *inode) 899 __releases(&inode->i_lock) 900 __acquires(&wb->list_lock) 901 { 902 struct bdi_writeback *wb = inode_to_wb(inode); 903 904 spin_unlock(&inode->i_lock); 905 spin_lock(&wb->list_lock); 906 return wb; 907 } 908 909 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 910 __acquires(&wb->list_lock) 911 { 912 struct bdi_writeback *wb = inode_to_wb(inode); 913 914 spin_lock(&wb->list_lock); 915 return wb; 916 } 917 918 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 919 { 920 return nr_pages; 921 } 922 923 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 924 struct wb_writeback_work *base_work, 925 bool skip_if_busy) 926 { 927 might_sleep(); 928 929 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 930 base_work->auto_free = 0; 931 wb_queue_work(&bdi->wb, base_work); 932 } 933 } 934 935 #endif /* CONFIG_CGROUP_WRITEBACK */ 936 937 /* 938 * Add in the number of potentially dirty inodes, because each inode 939 * write can dirty pagecache in the underlying blockdev. 940 */ 941 static unsigned long get_nr_dirty_pages(void) 942 { 943 return global_node_page_state(NR_FILE_DIRTY) + 944 global_node_page_state(NR_UNSTABLE_NFS) + 945 get_nr_dirty_inodes(); 946 } 947 948 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 949 { 950 if (!wb_has_dirty_io(wb)) 951 return; 952 953 /* 954 * All callers of this function want to start writeback of all 955 * dirty pages. Places like vmscan can call this at a very 956 * high frequency, causing pointless allocations of tons of 957 * work items and keeping the flusher threads busy retrieving 958 * that work. Ensure that we only allow one of them pending and 959 * inflight at the time. 960 */ 961 if (test_bit(WB_start_all, &wb->state) || 962 test_and_set_bit(WB_start_all, &wb->state)) 963 return; 964 965 wb->start_all_reason = reason; 966 wb_wakeup(wb); 967 } 968 969 /** 970 * wb_start_background_writeback - start background writeback 971 * @wb: bdi_writback to write from 972 * 973 * Description: 974 * This makes sure WB_SYNC_NONE background writeback happens. When 975 * this function returns, it is only guaranteed that for given wb 976 * some IO is happening if we are over background dirty threshold. 977 * Caller need not hold sb s_umount semaphore. 978 */ 979 void wb_start_background_writeback(struct bdi_writeback *wb) 980 { 981 /* 982 * We just wake up the flusher thread. It will perform background 983 * writeback as soon as there is no other work to do. 984 */ 985 trace_writeback_wake_background(wb); 986 wb_wakeup(wb); 987 } 988 989 /* 990 * Remove the inode from the writeback list it is on. 991 */ 992 void inode_io_list_del(struct inode *inode) 993 { 994 struct bdi_writeback *wb; 995 996 wb = inode_to_wb_and_lock_list(inode); 997 inode_io_list_del_locked(inode, wb); 998 spin_unlock(&wb->list_lock); 999 } 1000 1001 /* 1002 * mark an inode as under writeback on the sb 1003 */ 1004 void sb_mark_inode_writeback(struct inode *inode) 1005 { 1006 struct super_block *sb = inode->i_sb; 1007 unsigned long flags; 1008 1009 if (list_empty(&inode->i_wb_list)) { 1010 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1011 if (list_empty(&inode->i_wb_list)) { 1012 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1013 trace_sb_mark_inode_writeback(inode); 1014 } 1015 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1016 } 1017 } 1018 1019 /* 1020 * clear an inode as under writeback on the sb 1021 */ 1022 void sb_clear_inode_writeback(struct inode *inode) 1023 { 1024 struct super_block *sb = inode->i_sb; 1025 unsigned long flags; 1026 1027 if (!list_empty(&inode->i_wb_list)) { 1028 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1029 if (!list_empty(&inode->i_wb_list)) { 1030 list_del_init(&inode->i_wb_list); 1031 trace_sb_clear_inode_writeback(inode); 1032 } 1033 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1034 } 1035 } 1036 1037 /* 1038 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1039 * furthest end of its superblock's dirty-inode list. 1040 * 1041 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1042 * already the most-recently-dirtied inode on the b_dirty list. If that is 1043 * the case then the inode must have been redirtied while it was being written 1044 * out and we don't reset its dirtied_when. 1045 */ 1046 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1047 { 1048 if (!list_empty(&wb->b_dirty)) { 1049 struct inode *tail; 1050 1051 tail = wb_inode(wb->b_dirty.next); 1052 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1053 inode->dirtied_when = jiffies; 1054 } 1055 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1056 } 1057 1058 /* 1059 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1060 */ 1061 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1062 { 1063 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1064 } 1065 1066 static void inode_sync_complete(struct inode *inode) 1067 { 1068 inode->i_state &= ~I_SYNC; 1069 /* If inode is clean an unused, put it into LRU now... */ 1070 inode_add_lru(inode); 1071 /* Waiters must see I_SYNC cleared before being woken up */ 1072 smp_mb(); 1073 wake_up_bit(&inode->i_state, __I_SYNC); 1074 } 1075 1076 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1077 { 1078 bool ret = time_after(inode->dirtied_when, t); 1079 #ifndef CONFIG_64BIT 1080 /* 1081 * For inodes being constantly redirtied, dirtied_when can get stuck. 1082 * It _appears_ to be in the future, but is actually in distant past. 1083 * This test is necessary to prevent such wrapped-around relative times 1084 * from permanently stopping the whole bdi writeback. 1085 */ 1086 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1087 #endif 1088 return ret; 1089 } 1090 1091 #define EXPIRE_DIRTY_ATIME 0x0001 1092 1093 /* 1094 * Move expired (dirtied before work->older_than_this) dirty inodes from 1095 * @delaying_queue to @dispatch_queue. 1096 */ 1097 static int move_expired_inodes(struct list_head *delaying_queue, 1098 struct list_head *dispatch_queue, 1099 int flags, 1100 struct wb_writeback_work *work) 1101 { 1102 unsigned long *older_than_this = NULL; 1103 unsigned long expire_time; 1104 LIST_HEAD(tmp); 1105 struct list_head *pos, *node; 1106 struct super_block *sb = NULL; 1107 struct inode *inode; 1108 int do_sb_sort = 0; 1109 int moved = 0; 1110 1111 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1112 older_than_this = work->older_than_this; 1113 else if (!work->for_sync) { 1114 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1115 older_than_this = &expire_time; 1116 } 1117 while (!list_empty(delaying_queue)) { 1118 inode = wb_inode(delaying_queue->prev); 1119 if (older_than_this && 1120 inode_dirtied_after(inode, *older_than_this)) 1121 break; 1122 list_move(&inode->i_io_list, &tmp); 1123 moved++; 1124 if (flags & EXPIRE_DIRTY_ATIME) 1125 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1126 if (sb_is_blkdev_sb(inode->i_sb)) 1127 continue; 1128 if (sb && sb != inode->i_sb) 1129 do_sb_sort = 1; 1130 sb = inode->i_sb; 1131 } 1132 1133 /* just one sb in list, splice to dispatch_queue and we're done */ 1134 if (!do_sb_sort) { 1135 list_splice(&tmp, dispatch_queue); 1136 goto out; 1137 } 1138 1139 /* Move inodes from one superblock together */ 1140 while (!list_empty(&tmp)) { 1141 sb = wb_inode(tmp.prev)->i_sb; 1142 list_for_each_prev_safe(pos, node, &tmp) { 1143 inode = wb_inode(pos); 1144 if (inode->i_sb == sb) 1145 list_move(&inode->i_io_list, dispatch_queue); 1146 } 1147 } 1148 out: 1149 return moved; 1150 } 1151 1152 /* 1153 * Queue all expired dirty inodes for io, eldest first. 1154 * Before 1155 * newly dirtied b_dirty b_io b_more_io 1156 * =============> gf edc BA 1157 * After 1158 * newly dirtied b_dirty b_io b_more_io 1159 * =============> g fBAedc 1160 * | 1161 * +--> dequeue for IO 1162 */ 1163 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1164 { 1165 int moved; 1166 1167 assert_spin_locked(&wb->list_lock); 1168 list_splice_init(&wb->b_more_io, &wb->b_io); 1169 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1170 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1171 EXPIRE_DIRTY_ATIME, work); 1172 if (moved) 1173 wb_io_lists_populated(wb); 1174 trace_writeback_queue_io(wb, work, moved); 1175 } 1176 1177 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1178 { 1179 int ret; 1180 1181 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1182 trace_writeback_write_inode_start(inode, wbc); 1183 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1184 trace_writeback_write_inode(inode, wbc); 1185 return ret; 1186 } 1187 return 0; 1188 } 1189 1190 /* 1191 * Wait for writeback on an inode to complete. Called with i_lock held. 1192 * Caller must make sure inode cannot go away when we drop i_lock. 1193 */ 1194 static void __inode_wait_for_writeback(struct inode *inode) 1195 __releases(inode->i_lock) 1196 __acquires(inode->i_lock) 1197 { 1198 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1199 wait_queue_head_t *wqh; 1200 1201 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1202 while (inode->i_state & I_SYNC) { 1203 spin_unlock(&inode->i_lock); 1204 __wait_on_bit(wqh, &wq, bit_wait, 1205 TASK_UNINTERRUPTIBLE); 1206 spin_lock(&inode->i_lock); 1207 } 1208 } 1209 1210 /* 1211 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1212 */ 1213 void inode_wait_for_writeback(struct inode *inode) 1214 { 1215 spin_lock(&inode->i_lock); 1216 __inode_wait_for_writeback(inode); 1217 spin_unlock(&inode->i_lock); 1218 } 1219 1220 /* 1221 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1222 * held and drops it. It is aimed for callers not holding any inode reference 1223 * so once i_lock is dropped, inode can go away. 1224 */ 1225 static void inode_sleep_on_writeback(struct inode *inode) 1226 __releases(inode->i_lock) 1227 { 1228 DEFINE_WAIT(wait); 1229 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1230 int sleep; 1231 1232 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1233 sleep = inode->i_state & I_SYNC; 1234 spin_unlock(&inode->i_lock); 1235 if (sleep) 1236 schedule(); 1237 finish_wait(wqh, &wait); 1238 } 1239 1240 /* 1241 * Find proper writeback list for the inode depending on its current state and 1242 * possibly also change of its state while we were doing writeback. Here we 1243 * handle things such as livelock prevention or fairness of writeback among 1244 * inodes. This function can be called only by flusher thread - noone else 1245 * processes all inodes in writeback lists and requeueing inodes behind flusher 1246 * thread's back can have unexpected consequences. 1247 */ 1248 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1249 struct writeback_control *wbc) 1250 { 1251 if (inode->i_state & I_FREEING) 1252 return; 1253 1254 /* 1255 * Sync livelock prevention. Each inode is tagged and synced in one 1256 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1257 * the dirty time to prevent enqueue and sync it again. 1258 */ 1259 if ((inode->i_state & I_DIRTY) && 1260 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1261 inode->dirtied_when = jiffies; 1262 1263 if (wbc->pages_skipped) { 1264 /* 1265 * writeback is not making progress due to locked 1266 * buffers. Skip this inode for now. 1267 */ 1268 redirty_tail(inode, wb); 1269 return; 1270 } 1271 1272 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1273 /* 1274 * We didn't write back all the pages. nfs_writepages() 1275 * sometimes bales out without doing anything. 1276 */ 1277 if (wbc->nr_to_write <= 0) { 1278 /* Slice used up. Queue for next turn. */ 1279 requeue_io(inode, wb); 1280 } else { 1281 /* 1282 * Writeback blocked by something other than 1283 * congestion. Delay the inode for some time to 1284 * avoid spinning on the CPU (100% iowait) 1285 * retrying writeback of the dirty page/inode 1286 * that cannot be performed immediately. 1287 */ 1288 redirty_tail(inode, wb); 1289 } 1290 } else if (inode->i_state & I_DIRTY) { 1291 /* 1292 * Filesystems can dirty the inode during writeback operations, 1293 * such as delayed allocation during submission or metadata 1294 * updates after data IO completion. 1295 */ 1296 redirty_tail(inode, wb); 1297 } else if (inode->i_state & I_DIRTY_TIME) { 1298 inode->dirtied_when = jiffies; 1299 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1300 } else { 1301 /* The inode is clean. Remove from writeback lists. */ 1302 inode_io_list_del_locked(inode, wb); 1303 } 1304 } 1305 1306 /* 1307 * Write out an inode and its dirty pages. Do not update the writeback list 1308 * linkage. That is left to the caller. The caller is also responsible for 1309 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1310 */ 1311 static int 1312 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1313 { 1314 struct address_space *mapping = inode->i_mapping; 1315 long nr_to_write = wbc->nr_to_write; 1316 unsigned dirty; 1317 int ret; 1318 1319 WARN_ON(!(inode->i_state & I_SYNC)); 1320 1321 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1322 1323 ret = do_writepages(mapping, wbc); 1324 1325 /* 1326 * Make sure to wait on the data before writing out the metadata. 1327 * This is important for filesystems that modify metadata on data 1328 * I/O completion. We don't do it for sync(2) writeback because it has a 1329 * separate, external IO completion path and ->sync_fs for guaranteeing 1330 * inode metadata is written back correctly. 1331 */ 1332 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1333 int err = filemap_fdatawait(mapping); 1334 if (ret == 0) 1335 ret = err; 1336 } 1337 1338 /* 1339 * Some filesystems may redirty the inode during the writeback 1340 * due to delalloc, clear dirty metadata flags right before 1341 * write_inode() 1342 */ 1343 spin_lock(&inode->i_lock); 1344 1345 dirty = inode->i_state & I_DIRTY; 1346 if (inode->i_state & I_DIRTY_TIME) { 1347 if ((dirty & I_DIRTY_INODE) || 1348 wbc->sync_mode == WB_SYNC_ALL || 1349 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1350 unlikely(time_after(jiffies, 1351 (inode->dirtied_time_when + 1352 dirtytime_expire_interval * HZ)))) { 1353 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1354 trace_writeback_lazytime(inode); 1355 } 1356 } else 1357 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1358 inode->i_state &= ~dirty; 1359 1360 /* 1361 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1362 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1363 * either they see the I_DIRTY bits cleared or we see the dirtied 1364 * inode. 1365 * 1366 * I_DIRTY_PAGES is always cleared together above even if @mapping 1367 * still has dirty pages. The flag is reinstated after smp_mb() if 1368 * necessary. This guarantees that either __mark_inode_dirty() 1369 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1370 */ 1371 smp_mb(); 1372 1373 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1374 inode->i_state |= I_DIRTY_PAGES; 1375 1376 spin_unlock(&inode->i_lock); 1377 1378 if (dirty & I_DIRTY_TIME) 1379 mark_inode_dirty_sync(inode); 1380 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1381 if (dirty & ~I_DIRTY_PAGES) { 1382 int err = write_inode(inode, wbc); 1383 if (ret == 0) 1384 ret = err; 1385 } 1386 trace_writeback_single_inode(inode, wbc, nr_to_write); 1387 return ret; 1388 } 1389 1390 /* 1391 * Write out an inode's dirty pages. Either the caller has an active reference 1392 * on the inode or the inode has I_WILL_FREE set. 1393 * 1394 * This function is designed to be called for writing back one inode which 1395 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1396 * and does more profound writeback list handling in writeback_sb_inodes(). 1397 */ 1398 static int writeback_single_inode(struct inode *inode, 1399 struct writeback_control *wbc) 1400 { 1401 struct bdi_writeback *wb; 1402 int ret = 0; 1403 1404 spin_lock(&inode->i_lock); 1405 if (!atomic_read(&inode->i_count)) 1406 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1407 else 1408 WARN_ON(inode->i_state & I_WILL_FREE); 1409 1410 if (inode->i_state & I_SYNC) { 1411 if (wbc->sync_mode != WB_SYNC_ALL) 1412 goto out; 1413 /* 1414 * It's a data-integrity sync. We must wait. Since callers hold 1415 * inode reference or inode has I_WILL_FREE set, it cannot go 1416 * away under us. 1417 */ 1418 __inode_wait_for_writeback(inode); 1419 } 1420 WARN_ON(inode->i_state & I_SYNC); 1421 /* 1422 * Skip inode if it is clean and we have no outstanding writeback in 1423 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1424 * function since flusher thread may be doing for example sync in 1425 * parallel and if we move the inode, it could get skipped. So here we 1426 * make sure inode is on some writeback list and leave it there unless 1427 * we have completely cleaned the inode. 1428 */ 1429 if (!(inode->i_state & I_DIRTY_ALL) && 1430 (wbc->sync_mode != WB_SYNC_ALL || 1431 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1432 goto out; 1433 inode->i_state |= I_SYNC; 1434 wbc_attach_and_unlock_inode(wbc, inode); 1435 1436 ret = __writeback_single_inode(inode, wbc); 1437 1438 wbc_detach_inode(wbc); 1439 1440 wb = inode_to_wb_and_lock_list(inode); 1441 spin_lock(&inode->i_lock); 1442 /* 1443 * If inode is clean, remove it from writeback lists. Otherwise don't 1444 * touch it. See comment above for explanation. 1445 */ 1446 if (!(inode->i_state & I_DIRTY_ALL)) 1447 inode_io_list_del_locked(inode, wb); 1448 spin_unlock(&wb->list_lock); 1449 inode_sync_complete(inode); 1450 out: 1451 spin_unlock(&inode->i_lock); 1452 return ret; 1453 } 1454 1455 static long writeback_chunk_size(struct bdi_writeback *wb, 1456 struct wb_writeback_work *work) 1457 { 1458 long pages; 1459 1460 /* 1461 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1462 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1463 * here avoids calling into writeback_inodes_wb() more than once. 1464 * 1465 * The intended call sequence for WB_SYNC_ALL writeback is: 1466 * 1467 * wb_writeback() 1468 * writeback_sb_inodes() <== called only once 1469 * write_cache_pages() <== called once for each inode 1470 * (quickly) tag currently dirty pages 1471 * (maybe slowly) sync all tagged pages 1472 */ 1473 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1474 pages = LONG_MAX; 1475 else { 1476 pages = min(wb->avg_write_bandwidth / 2, 1477 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1478 pages = min(pages, work->nr_pages); 1479 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1480 MIN_WRITEBACK_PAGES); 1481 } 1482 1483 return pages; 1484 } 1485 1486 /* 1487 * Write a portion of b_io inodes which belong to @sb. 1488 * 1489 * Return the number of pages and/or inodes written. 1490 * 1491 * NOTE! This is called with wb->list_lock held, and will 1492 * unlock and relock that for each inode it ends up doing 1493 * IO for. 1494 */ 1495 static long writeback_sb_inodes(struct super_block *sb, 1496 struct bdi_writeback *wb, 1497 struct wb_writeback_work *work) 1498 { 1499 struct writeback_control wbc = { 1500 .sync_mode = work->sync_mode, 1501 .tagged_writepages = work->tagged_writepages, 1502 .for_kupdate = work->for_kupdate, 1503 .for_background = work->for_background, 1504 .for_sync = work->for_sync, 1505 .range_cyclic = work->range_cyclic, 1506 .range_start = 0, 1507 .range_end = LLONG_MAX, 1508 }; 1509 unsigned long start_time = jiffies; 1510 long write_chunk; 1511 long wrote = 0; /* count both pages and inodes */ 1512 1513 while (!list_empty(&wb->b_io)) { 1514 struct inode *inode = wb_inode(wb->b_io.prev); 1515 struct bdi_writeback *tmp_wb; 1516 1517 if (inode->i_sb != sb) { 1518 if (work->sb) { 1519 /* 1520 * We only want to write back data for this 1521 * superblock, move all inodes not belonging 1522 * to it back onto the dirty list. 1523 */ 1524 redirty_tail(inode, wb); 1525 continue; 1526 } 1527 1528 /* 1529 * The inode belongs to a different superblock. 1530 * Bounce back to the caller to unpin this and 1531 * pin the next superblock. 1532 */ 1533 break; 1534 } 1535 1536 /* 1537 * Don't bother with new inodes or inodes being freed, first 1538 * kind does not need periodic writeout yet, and for the latter 1539 * kind writeout is handled by the freer. 1540 */ 1541 spin_lock(&inode->i_lock); 1542 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1543 spin_unlock(&inode->i_lock); 1544 redirty_tail(inode, wb); 1545 continue; 1546 } 1547 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1548 /* 1549 * If this inode is locked for writeback and we are not 1550 * doing writeback-for-data-integrity, move it to 1551 * b_more_io so that writeback can proceed with the 1552 * other inodes on s_io. 1553 * 1554 * We'll have another go at writing back this inode 1555 * when we completed a full scan of b_io. 1556 */ 1557 spin_unlock(&inode->i_lock); 1558 requeue_io(inode, wb); 1559 trace_writeback_sb_inodes_requeue(inode); 1560 continue; 1561 } 1562 spin_unlock(&wb->list_lock); 1563 1564 /* 1565 * We already requeued the inode if it had I_SYNC set and we 1566 * are doing WB_SYNC_NONE writeback. So this catches only the 1567 * WB_SYNC_ALL case. 1568 */ 1569 if (inode->i_state & I_SYNC) { 1570 /* Wait for I_SYNC. This function drops i_lock... */ 1571 inode_sleep_on_writeback(inode); 1572 /* Inode may be gone, start again */ 1573 spin_lock(&wb->list_lock); 1574 continue; 1575 } 1576 inode->i_state |= I_SYNC; 1577 wbc_attach_and_unlock_inode(&wbc, inode); 1578 1579 write_chunk = writeback_chunk_size(wb, work); 1580 wbc.nr_to_write = write_chunk; 1581 wbc.pages_skipped = 0; 1582 1583 /* 1584 * We use I_SYNC to pin the inode in memory. While it is set 1585 * evict_inode() will wait so the inode cannot be freed. 1586 */ 1587 __writeback_single_inode(inode, &wbc); 1588 1589 wbc_detach_inode(&wbc); 1590 work->nr_pages -= write_chunk - wbc.nr_to_write; 1591 wrote += write_chunk - wbc.nr_to_write; 1592 1593 if (need_resched()) { 1594 /* 1595 * We're trying to balance between building up a nice 1596 * long list of IOs to improve our merge rate, and 1597 * getting those IOs out quickly for anyone throttling 1598 * in balance_dirty_pages(). cond_resched() doesn't 1599 * unplug, so get our IOs out the door before we 1600 * give up the CPU. 1601 */ 1602 blk_flush_plug(current); 1603 cond_resched(); 1604 } 1605 1606 /* 1607 * Requeue @inode if still dirty. Be careful as @inode may 1608 * have been switched to another wb in the meantime. 1609 */ 1610 tmp_wb = inode_to_wb_and_lock_list(inode); 1611 spin_lock(&inode->i_lock); 1612 if (!(inode->i_state & I_DIRTY_ALL)) 1613 wrote++; 1614 requeue_inode(inode, tmp_wb, &wbc); 1615 inode_sync_complete(inode); 1616 spin_unlock(&inode->i_lock); 1617 1618 if (unlikely(tmp_wb != wb)) { 1619 spin_unlock(&tmp_wb->list_lock); 1620 spin_lock(&wb->list_lock); 1621 } 1622 1623 /* 1624 * bail out to wb_writeback() often enough to check 1625 * background threshold and other termination conditions. 1626 */ 1627 if (wrote) { 1628 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1629 break; 1630 if (work->nr_pages <= 0) 1631 break; 1632 } 1633 } 1634 return wrote; 1635 } 1636 1637 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1638 struct wb_writeback_work *work) 1639 { 1640 unsigned long start_time = jiffies; 1641 long wrote = 0; 1642 1643 while (!list_empty(&wb->b_io)) { 1644 struct inode *inode = wb_inode(wb->b_io.prev); 1645 struct super_block *sb = inode->i_sb; 1646 1647 if (!trylock_super(sb)) { 1648 /* 1649 * trylock_super() may fail consistently due to 1650 * s_umount being grabbed by someone else. Don't use 1651 * requeue_io() to avoid busy retrying the inode/sb. 1652 */ 1653 redirty_tail(inode, wb); 1654 continue; 1655 } 1656 wrote += writeback_sb_inodes(sb, wb, work); 1657 up_read(&sb->s_umount); 1658 1659 /* refer to the same tests at the end of writeback_sb_inodes */ 1660 if (wrote) { 1661 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1662 break; 1663 if (work->nr_pages <= 0) 1664 break; 1665 } 1666 } 1667 /* Leave any unwritten inodes on b_io */ 1668 return wrote; 1669 } 1670 1671 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1672 enum wb_reason reason) 1673 { 1674 struct wb_writeback_work work = { 1675 .nr_pages = nr_pages, 1676 .sync_mode = WB_SYNC_NONE, 1677 .range_cyclic = 1, 1678 .reason = reason, 1679 }; 1680 struct blk_plug plug; 1681 1682 blk_start_plug(&plug); 1683 spin_lock(&wb->list_lock); 1684 if (list_empty(&wb->b_io)) 1685 queue_io(wb, &work); 1686 __writeback_inodes_wb(wb, &work); 1687 spin_unlock(&wb->list_lock); 1688 blk_finish_plug(&plug); 1689 1690 return nr_pages - work.nr_pages; 1691 } 1692 1693 /* 1694 * Explicit flushing or periodic writeback of "old" data. 1695 * 1696 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1697 * dirtying-time in the inode's address_space. So this periodic writeback code 1698 * just walks the superblock inode list, writing back any inodes which are 1699 * older than a specific point in time. 1700 * 1701 * Try to run once per dirty_writeback_interval. But if a writeback event 1702 * takes longer than a dirty_writeback_interval interval, then leave a 1703 * one-second gap. 1704 * 1705 * older_than_this takes precedence over nr_to_write. So we'll only write back 1706 * all dirty pages if they are all attached to "old" mappings. 1707 */ 1708 static long wb_writeback(struct bdi_writeback *wb, 1709 struct wb_writeback_work *work) 1710 { 1711 unsigned long wb_start = jiffies; 1712 long nr_pages = work->nr_pages; 1713 unsigned long oldest_jif; 1714 struct inode *inode; 1715 long progress; 1716 struct blk_plug plug; 1717 1718 oldest_jif = jiffies; 1719 work->older_than_this = &oldest_jif; 1720 1721 blk_start_plug(&plug); 1722 spin_lock(&wb->list_lock); 1723 for (;;) { 1724 /* 1725 * Stop writeback when nr_pages has been consumed 1726 */ 1727 if (work->nr_pages <= 0) 1728 break; 1729 1730 /* 1731 * Background writeout and kupdate-style writeback may 1732 * run forever. Stop them if there is other work to do 1733 * so that e.g. sync can proceed. They'll be restarted 1734 * after the other works are all done. 1735 */ 1736 if ((work->for_background || work->for_kupdate) && 1737 !list_empty(&wb->work_list)) 1738 break; 1739 1740 /* 1741 * For background writeout, stop when we are below the 1742 * background dirty threshold 1743 */ 1744 if (work->for_background && !wb_over_bg_thresh(wb)) 1745 break; 1746 1747 /* 1748 * Kupdate and background works are special and we want to 1749 * include all inodes that need writing. Livelock avoidance is 1750 * handled by these works yielding to any other work so we are 1751 * safe. 1752 */ 1753 if (work->for_kupdate) { 1754 oldest_jif = jiffies - 1755 msecs_to_jiffies(dirty_expire_interval * 10); 1756 } else if (work->for_background) 1757 oldest_jif = jiffies; 1758 1759 trace_writeback_start(wb, work); 1760 if (list_empty(&wb->b_io)) 1761 queue_io(wb, work); 1762 if (work->sb) 1763 progress = writeback_sb_inodes(work->sb, wb, work); 1764 else 1765 progress = __writeback_inodes_wb(wb, work); 1766 trace_writeback_written(wb, work); 1767 1768 wb_update_bandwidth(wb, wb_start); 1769 1770 /* 1771 * Did we write something? Try for more 1772 * 1773 * Dirty inodes are moved to b_io for writeback in batches. 1774 * The completion of the current batch does not necessarily 1775 * mean the overall work is done. So we keep looping as long 1776 * as made some progress on cleaning pages or inodes. 1777 */ 1778 if (progress) 1779 continue; 1780 /* 1781 * No more inodes for IO, bail 1782 */ 1783 if (list_empty(&wb->b_more_io)) 1784 break; 1785 /* 1786 * Nothing written. Wait for some inode to 1787 * become available for writeback. Otherwise 1788 * we'll just busyloop. 1789 */ 1790 trace_writeback_wait(wb, work); 1791 inode = wb_inode(wb->b_more_io.prev); 1792 spin_lock(&inode->i_lock); 1793 spin_unlock(&wb->list_lock); 1794 /* This function drops i_lock... */ 1795 inode_sleep_on_writeback(inode); 1796 spin_lock(&wb->list_lock); 1797 } 1798 spin_unlock(&wb->list_lock); 1799 blk_finish_plug(&plug); 1800 1801 return nr_pages - work->nr_pages; 1802 } 1803 1804 /* 1805 * Return the next wb_writeback_work struct that hasn't been processed yet. 1806 */ 1807 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1808 { 1809 struct wb_writeback_work *work = NULL; 1810 1811 spin_lock_bh(&wb->work_lock); 1812 if (!list_empty(&wb->work_list)) { 1813 work = list_entry(wb->work_list.next, 1814 struct wb_writeback_work, list); 1815 list_del_init(&work->list); 1816 } 1817 spin_unlock_bh(&wb->work_lock); 1818 return work; 1819 } 1820 1821 static long wb_check_background_flush(struct bdi_writeback *wb) 1822 { 1823 if (wb_over_bg_thresh(wb)) { 1824 1825 struct wb_writeback_work work = { 1826 .nr_pages = LONG_MAX, 1827 .sync_mode = WB_SYNC_NONE, 1828 .for_background = 1, 1829 .range_cyclic = 1, 1830 .reason = WB_REASON_BACKGROUND, 1831 }; 1832 1833 return wb_writeback(wb, &work); 1834 } 1835 1836 return 0; 1837 } 1838 1839 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1840 { 1841 unsigned long expired; 1842 long nr_pages; 1843 1844 /* 1845 * When set to zero, disable periodic writeback 1846 */ 1847 if (!dirty_writeback_interval) 1848 return 0; 1849 1850 expired = wb->last_old_flush + 1851 msecs_to_jiffies(dirty_writeback_interval * 10); 1852 if (time_before(jiffies, expired)) 1853 return 0; 1854 1855 wb->last_old_flush = jiffies; 1856 nr_pages = get_nr_dirty_pages(); 1857 1858 if (nr_pages) { 1859 struct wb_writeback_work work = { 1860 .nr_pages = nr_pages, 1861 .sync_mode = WB_SYNC_NONE, 1862 .for_kupdate = 1, 1863 .range_cyclic = 1, 1864 .reason = WB_REASON_PERIODIC, 1865 }; 1866 1867 return wb_writeback(wb, &work); 1868 } 1869 1870 return 0; 1871 } 1872 1873 static long wb_check_start_all(struct bdi_writeback *wb) 1874 { 1875 long nr_pages; 1876 1877 if (!test_bit(WB_start_all, &wb->state)) 1878 return 0; 1879 1880 nr_pages = get_nr_dirty_pages(); 1881 if (nr_pages) { 1882 struct wb_writeback_work work = { 1883 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1884 .sync_mode = WB_SYNC_NONE, 1885 .range_cyclic = 1, 1886 .reason = wb->start_all_reason, 1887 }; 1888 1889 nr_pages = wb_writeback(wb, &work); 1890 } 1891 1892 clear_bit(WB_start_all, &wb->state); 1893 return nr_pages; 1894 } 1895 1896 1897 /* 1898 * Retrieve work items and do the writeback they describe 1899 */ 1900 static long wb_do_writeback(struct bdi_writeback *wb) 1901 { 1902 struct wb_writeback_work *work; 1903 long wrote = 0; 1904 1905 set_bit(WB_writeback_running, &wb->state); 1906 while ((work = get_next_work_item(wb)) != NULL) { 1907 trace_writeback_exec(wb, work); 1908 wrote += wb_writeback(wb, work); 1909 finish_writeback_work(wb, work); 1910 } 1911 1912 /* 1913 * Check for a flush-everything request 1914 */ 1915 wrote += wb_check_start_all(wb); 1916 1917 /* 1918 * Check for periodic writeback, kupdated() style 1919 */ 1920 wrote += wb_check_old_data_flush(wb); 1921 wrote += wb_check_background_flush(wb); 1922 clear_bit(WB_writeback_running, &wb->state); 1923 1924 return wrote; 1925 } 1926 1927 /* 1928 * Handle writeback of dirty data for the device backed by this bdi. Also 1929 * reschedules periodically and does kupdated style flushing. 1930 */ 1931 void wb_workfn(struct work_struct *work) 1932 { 1933 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1934 struct bdi_writeback, dwork); 1935 long pages_written; 1936 1937 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1938 current->flags |= PF_SWAPWRITE; 1939 1940 if (likely(!current_is_workqueue_rescuer() || 1941 !test_bit(WB_registered, &wb->state))) { 1942 /* 1943 * The normal path. Keep writing back @wb until its 1944 * work_list is empty. Note that this path is also taken 1945 * if @wb is shutting down even when we're running off the 1946 * rescuer as work_list needs to be drained. 1947 */ 1948 do { 1949 pages_written = wb_do_writeback(wb); 1950 trace_writeback_pages_written(pages_written); 1951 } while (!list_empty(&wb->work_list)); 1952 } else { 1953 /* 1954 * bdi_wq can't get enough workers and we're running off 1955 * the emergency worker. Don't hog it. Hopefully, 1024 is 1956 * enough for efficient IO. 1957 */ 1958 pages_written = writeback_inodes_wb(wb, 1024, 1959 WB_REASON_FORKER_THREAD); 1960 trace_writeback_pages_written(pages_written); 1961 } 1962 1963 if (!list_empty(&wb->work_list)) 1964 wb_wakeup(wb); 1965 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1966 wb_wakeup_delayed(wb); 1967 1968 current->flags &= ~PF_SWAPWRITE; 1969 } 1970 1971 /* 1972 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 1973 * write back the whole world. 1974 */ 1975 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 1976 enum wb_reason reason) 1977 { 1978 struct bdi_writeback *wb; 1979 1980 if (!bdi_has_dirty_io(bdi)) 1981 return; 1982 1983 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1984 wb_start_writeback(wb, reason); 1985 } 1986 1987 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 1988 enum wb_reason reason) 1989 { 1990 rcu_read_lock(); 1991 __wakeup_flusher_threads_bdi(bdi, reason); 1992 rcu_read_unlock(); 1993 } 1994 1995 /* 1996 * Wakeup the flusher threads to start writeback of all currently dirty pages 1997 */ 1998 void wakeup_flusher_threads(enum wb_reason reason) 1999 { 2000 struct backing_dev_info *bdi; 2001 2002 /* 2003 * If we are expecting writeback progress we must submit plugged IO. 2004 */ 2005 if (blk_needs_flush_plug(current)) 2006 blk_schedule_flush_plug(current); 2007 2008 rcu_read_lock(); 2009 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2010 __wakeup_flusher_threads_bdi(bdi, reason); 2011 rcu_read_unlock(); 2012 } 2013 2014 /* 2015 * Wake up bdi's periodically to make sure dirtytime inodes gets 2016 * written back periodically. We deliberately do *not* check the 2017 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2018 * kernel to be constantly waking up once there are any dirtytime 2019 * inodes on the system. So instead we define a separate delayed work 2020 * function which gets called much more rarely. (By default, only 2021 * once every 12 hours.) 2022 * 2023 * If there is any other write activity going on in the file system, 2024 * this function won't be necessary. But if the only thing that has 2025 * happened on the file system is a dirtytime inode caused by an atime 2026 * update, we need this infrastructure below to make sure that inode 2027 * eventually gets pushed out to disk. 2028 */ 2029 static void wakeup_dirtytime_writeback(struct work_struct *w); 2030 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2031 2032 static void wakeup_dirtytime_writeback(struct work_struct *w) 2033 { 2034 struct backing_dev_info *bdi; 2035 2036 rcu_read_lock(); 2037 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2038 struct bdi_writeback *wb; 2039 2040 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2041 if (!list_empty(&wb->b_dirty_time)) 2042 wb_wakeup(wb); 2043 } 2044 rcu_read_unlock(); 2045 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2046 } 2047 2048 static int __init start_dirtytime_writeback(void) 2049 { 2050 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2051 return 0; 2052 } 2053 __initcall(start_dirtytime_writeback); 2054 2055 int dirtytime_interval_handler(struct ctl_table *table, int write, 2056 void __user *buffer, size_t *lenp, loff_t *ppos) 2057 { 2058 int ret; 2059 2060 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2061 if (ret == 0 && write) 2062 mod_delayed_work(system_wq, &dirtytime_work, 0); 2063 return ret; 2064 } 2065 2066 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2067 { 2068 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2069 struct dentry *dentry; 2070 const char *name = "?"; 2071 2072 dentry = d_find_alias(inode); 2073 if (dentry) { 2074 spin_lock(&dentry->d_lock); 2075 name = (const char *) dentry->d_name.name; 2076 } 2077 printk(KERN_DEBUG 2078 "%s(%d): dirtied inode %lu (%s) on %s\n", 2079 current->comm, task_pid_nr(current), inode->i_ino, 2080 name, inode->i_sb->s_id); 2081 if (dentry) { 2082 spin_unlock(&dentry->d_lock); 2083 dput(dentry); 2084 } 2085 } 2086 } 2087 2088 /** 2089 * __mark_inode_dirty - internal function 2090 * 2091 * @inode: inode to mark 2092 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2093 * 2094 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2095 * mark_inode_dirty_sync. 2096 * 2097 * Put the inode on the super block's dirty list. 2098 * 2099 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2100 * dirty list only if it is hashed or if it refers to a blockdev. 2101 * If it was not hashed, it will never be added to the dirty list 2102 * even if it is later hashed, as it will have been marked dirty already. 2103 * 2104 * In short, make sure you hash any inodes _before_ you start marking 2105 * them dirty. 2106 * 2107 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2108 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2109 * the kernel-internal blockdev inode represents the dirtying time of the 2110 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2111 * page->mapping->host, so the page-dirtying time is recorded in the internal 2112 * blockdev inode. 2113 */ 2114 void __mark_inode_dirty(struct inode *inode, int flags) 2115 { 2116 struct super_block *sb = inode->i_sb; 2117 int dirtytime; 2118 2119 trace_writeback_mark_inode_dirty(inode, flags); 2120 2121 /* 2122 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2123 * dirty the inode itself 2124 */ 2125 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2126 trace_writeback_dirty_inode_start(inode, flags); 2127 2128 if (sb->s_op->dirty_inode) 2129 sb->s_op->dirty_inode(inode, flags); 2130 2131 trace_writeback_dirty_inode(inode, flags); 2132 } 2133 if (flags & I_DIRTY_INODE) 2134 flags &= ~I_DIRTY_TIME; 2135 dirtytime = flags & I_DIRTY_TIME; 2136 2137 /* 2138 * Paired with smp_mb() in __writeback_single_inode() for the 2139 * following lockless i_state test. See there for details. 2140 */ 2141 smp_mb(); 2142 2143 if (((inode->i_state & flags) == flags) || 2144 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2145 return; 2146 2147 if (unlikely(block_dump)) 2148 block_dump___mark_inode_dirty(inode); 2149 2150 spin_lock(&inode->i_lock); 2151 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2152 goto out_unlock_inode; 2153 if ((inode->i_state & flags) != flags) { 2154 const int was_dirty = inode->i_state & I_DIRTY; 2155 2156 inode_attach_wb(inode, NULL); 2157 2158 if (flags & I_DIRTY_INODE) 2159 inode->i_state &= ~I_DIRTY_TIME; 2160 inode->i_state |= flags; 2161 2162 /* 2163 * If the inode is being synced, just update its dirty state. 2164 * The unlocker will place the inode on the appropriate 2165 * superblock list, based upon its state. 2166 */ 2167 if (inode->i_state & I_SYNC) 2168 goto out_unlock_inode; 2169 2170 /* 2171 * Only add valid (hashed) inodes to the superblock's 2172 * dirty list. Add blockdev inodes as well. 2173 */ 2174 if (!S_ISBLK(inode->i_mode)) { 2175 if (inode_unhashed(inode)) 2176 goto out_unlock_inode; 2177 } 2178 if (inode->i_state & I_FREEING) 2179 goto out_unlock_inode; 2180 2181 /* 2182 * If the inode was already on b_dirty/b_io/b_more_io, don't 2183 * reposition it (that would break b_dirty time-ordering). 2184 */ 2185 if (!was_dirty) { 2186 struct bdi_writeback *wb; 2187 struct list_head *dirty_list; 2188 bool wakeup_bdi = false; 2189 2190 wb = locked_inode_to_wb_and_lock_list(inode); 2191 2192 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2193 !test_bit(WB_registered, &wb->state), 2194 "bdi-%s not registered\n", wb->bdi->name); 2195 2196 inode->dirtied_when = jiffies; 2197 if (dirtytime) 2198 inode->dirtied_time_when = jiffies; 2199 2200 if (inode->i_state & I_DIRTY) 2201 dirty_list = &wb->b_dirty; 2202 else 2203 dirty_list = &wb->b_dirty_time; 2204 2205 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2206 dirty_list); 2207 2208 spin_unlock(&wb->list_lock); 2209 trace_writeback_dirty_inode_enqueue(inode); 2210 2211 /* 2212 * If this is the first dirty inode for this bdi, 2213 * we have to wake-up the corresponding bdi thread 2214 * to make sure background write-back happens 2215 * later. 2216 */ 2217 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2218 wb_wakeup_delayed(wb); 2219 return; 2220 } 2221 } 2222 out_unlock_inode: 2223 spin_unlock(&inode->i_lock); 2224 } 2225 EXPORT_SYMBOL(__mark_inode_dirty); 2226 2227 /* 2228 * The @s_sync_lock is used to serialise concurrent sync operations 2229 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2230 * Concurrent callers will block on the s_sync_lock rather than doing contending 2231 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2232 * has been issued up to the time this function is enter is guaranteed to be 2233 * completed by the time we have gained the lock and waited for all IO that is 2234 * in progress regardless of the order callers are granted the lock. 2235 */ 2236 static void wait_sb_inodes(struct super_block *sb) 2237 { 2238 LIST_HEAD(sync_list); 2239 2240 /* 2241 * We need to be protected against the filesystem going from 2242 * r/o to r/w or vice versa. 2243 */ 2244 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2245 2246 mutex_lock(&sb->s_sync_lock); 2247 2248 /* 2249 * Splice the writeback list onto a temporary list to avoid waiting on 2250 * inodes that have started writeback after this point. 2251 * 2252 * Use rcu_read_lock() to keep the inodes around until we have a 2253 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2254 * the local list because inodes can be dropped from either by writeback 2255 * completion. 2256 */ 2257 rcu_read_lock(); 2258 spin_lock_irq(&sb->s_inode_wblist_lock); 2259 list_splice_init(&sb->s_inodes_wb, &sync_list); 2260 2261 /* 2262 * Data integrity sync. Must wait for all pages under writeback, because 2263 * there may have been pages dirtied before our sync call, but which had 2264 * writeout started before we write it out. In which case, the inode 2265 * may not be on the dirty list, but we still have to wait for that 2266 * writeout. 2267 */ 2268 while (!list_empty(&sync_list)) { 2269 struct inode *inode = list_first_entry(&sync_list, struct inode, 2270 i_wb_list); 2271 struct address_space *mapping = inode->i_mapping; 2272 2273 /* 2274 * Move each inode back to the wb list before we drop the lock 2275 * to preserve consistency between i_wb_list and the mapping 2276 * writeback tag. Writeback completion is responsible to remove 2277 * the inode from either list once the writeback tag is cleared. 2278 */ 2279 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2280 2281 /* 2282 * The mapping can appear untagged while still on-list since we 2283 * do not have the mapping lock. Skip it here, wb completion 2284 * will remove it. 2285 */ 2286 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2287 continue; 2288 2289 spin_unlock_irq(&sb->s_inode_wblist_lock); 2290 2291 spin_lock(&inode->i_lock); 2292 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2293 spin_unlock(&inode->i_lock); 2294 2295 spin_lock_irq(&sb->s_inode_wblist_lock); 2296 continue; 2297 } 2298 __iget(inode); 2299 spin_unlock(&inode->i_lock); 2300 rcu_read_unlock(); 2301 2302 /* 2303 * We keep the error status of individual mapping so that 2304 * applications can catch the writeback error using fsync(2). 2305 * See filemap_fdatawait_keep_errors() for details. 2306 */ 2307 filemap_fdatawait_keep_errors(mapping); 2308 2309 cond_resched(); 2310 2311 iput(inode); 2312 2313 rcu_read_lock(); 2314 spin_lock_irq(&sb->s_inode_wblist_lock); 2315 } 2316 spin_unlock_irq(&sb->s_inode_wblist_lock); 2317 rcu_read_unlock(); 2318 mutex_unlock(&sb->s_sync_lock); 2319 } 2320 2321 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2322 enum wb_reason reason, bool skip_if_busy) 2323 { 2324 DEFINE_WB_COMPLETION_ONSTACK(done); 2325 struct wb_writeback_work work = { 2326 .sb = sb, 2327 .sync_mode = WB_SYNC_NONE, 2328 .tagged_writepages = 1, 2329 .done = &done, 2330 .nr_pages = nr, 2331 .reason = reason, 2332 }; 2333 struct backing_dev_info *bdi = sb->s_bdi; 2334 2335 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2336 return; 2337 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2338 2339 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2340 wb_wait_for_completion(bdi, &done); 2341 } 2342 2343 /** 2344 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2345 * @sb: the superblock 2346 * @nr: the number of pages to write 2347 * @reason: reason why some writeback work initiated 2348 * 2349 * Start writeback on some inodes on this super_block. No guarantees are made 2350 * on how many (if any) will be written, and this function does not wait 2351 * for IO completion of submitted IO. 2352 */ 2353 void writeback_inodes_sb_nr(struct super_block *sb, 2354 unsigned long nr, 2355 enum wb_reason reason) 2356 { 2357 __writeback_inodes_sb_nr(sb, nr, reason, false); 2358 } 2359 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2360 2361 /** 2362 * writeback_inodes_sb - writeback dirty inodes from given super_block 2363 * @sb: the superblock 2364 * @reason: reason why some writeback work was initiated 2365 * 2366 * Start writeback on some inodes on this super_block. No guarantees are made 2367 * on how many (if any) will be written, and this function does not wait 2368 * for IO completion of submitted IO. 2369 */ 2370 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2371 { 2372 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2373 } 2374 EXPORT_SYMBOL(writeback_inodes_sb); 2375 2376 /** 2377 * try_to_writeback_inodes_sb - try to start writeback if none underway 2378 * @sb: the superblock 2379 * @reason: reason why some writeback work was initiated 2380 * 2381 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2382 */ 2383 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2384 { 2385 if (!down_read_trylock(&sb->s_umount)) 2386 return; 2387 2388 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2389 up_read(&sb->s_umount); 2390 } 2391 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2392 2393 /** 2394 * sync_inodes_sb - sync sb inode pages 2395 * @sb: the superblock 2396 * 2397 * This function writes and waits on any dirty inode belonging to this 2398 * super_block. 2399 */ 2400 void sync_inodes_sb(struct super_block *sb) 2401 { 2402 DEFINE_WB_COMPLETION_ONSTACK(done); 2403 struct wb_writeback_work work = { 2404 .sb = sb, 2405 .sync_mode = WB_SYNC_ALL, 2406 .nr_pages = LONG_MAX, 2407 .range_cyclic = 0, 2408 .done = &done, 2409 .reason = WB_REASON_SYNC, 2410 .for_sync = 1, 2411 }; 2412 struct backing_dev_info *bdi = sb->s_bdi; 2413 2414 /* 2415 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2416 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2417 * bdi_has_dirty() need to be written out too. 2418 */ 2419 if (bdi == &noop_backing_dev_info) 2420 return; 2421 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2422 2423 bdi_split_work_to_wbs(bdi, &work, false); 2424 wb_wait_for_completion(bdi, &done); 2425 2426 wait_sb_inodes(sb); 2427 } 2428 EXPORT_SYMBOL(sync_inodes_sb); 2429 2430 /** 2431 * write_inode_now - write an inode to disk 2432 * @inode: inode to write to disk 2433 * @sync: whether the write should be synchronous or not 2434 * 2435 * This function commits an inode to disk immediately if it is dirty. This is 2436 * primarily needed by knfsd. 2437 * 2438 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2439 */ 2440 int write_inode_now(struct inode *inode, int sync) 2441 { 2442 struct writeback_control wbc = { 2443 .nr_to_write = LONG_MAX, 2444 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2445 .range_start = 0, 2446 .range_end = LLONG_MAX, 2447 }; 2448 2449 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2450 wbc.nr_to_write = 0; 2451 2452 might_sleep(); 2453 return writeback_single_inode(inode, &wbc); 2454 } 2455 EXPORT_SYMBOL(write_inode_now); 2456 2457 /** 2458 * sync_inode - write an inode and its pages to disk. 2459 * @inode: the inode to sync 2460 * @wbc: controls the writeback mode 2461 * 2462 * sync_inode() will write an inode and its pages to disk. It will also 2463 * correctly update the inode on its superblock's dirty inode lists and will 2464 * update inode->i_state. 2465 * 2466 * The caller must have a ref on the inode. 2467 */ 2468 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2469 { 2470 return writeback_single_inode(inode, wbc); 2471 } 2472 EXPORT_SYMBOL(sync_inode); 2473 2474 /** 2475 * sync_inode_metadata - write an inode to disk 2476 * @inode: the inode to sync 2477 * @wait: wait for I/O to complete. 2478 * 2479 * Write an inode to disk and adjust its dirty state after completion. 2480 * 2481 * Note: only writes the actual inode, no associated data or other metadata. 2482 */ 2483 int sync_inode_metadata(struct inode *inode, int wait) 2484 { 2485 struct writeback_control wbc = { 2486 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2487 .nr_to_write = 0, /* metadata-only */ 2488 }; 2489 2490 return sync_inode(inode, &wbc); 2491 } 2492 EXPORT_SYMBOL(sync_inode_metadata); 2493