1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /** 56 * writeback_in_progress - determine whether there is writeback in progress 57 * @bdi: the device's backing_dev_info structure. 58 * 59 * Determine whether there is writeback waiting to be handled against a 60 * backing device. 61 */ 62 int writeback_in_progress(struct backing_dev_info *bdi) 63 { 64 return test_bit(BDI_writeback_running, &bdi->state); 65 } 66 EXPORT_SYMBOL(writeback_in_progress); 67 68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 69 { 70 struct super_block *sb = inode->i_sb; 71 72 if (strcmp(sb->s_type->name, "bdev") == 0) 73 return inode->i_mapping->backing_dev_info; 74 75 return sb->s_bdi; 76 } 77 78 static inline struct inode *wb_inode(struct list_head *head) 79 { 80 return list_entry(head, struct inode, i_wb_list); 81 } 82 83 /* 84 * Include the creation of the trace points after defining the 85 * wb_writeback_work structure and inline functions so that the definition 86 * remains local to this file. 87 */ 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/writeback.h> 90 91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 93 { 94 if (bdi->wb.task) { 95 wake_up_process(bdi->wb.task); 96 } else { 97 /* 98 * The bdi thread isn't there, wake up the forker thread which 99 * will create and run it. 100 */ 101 wake_up_process(default_backing_dev_info.wb.task); 102 } 103 } 104 105 static void bdi_queue_work(struct backing_dev_info *bdi, 106 struct wb_writeback_work *work) 107 { 108 trace_writeback_queue(bdi, work); 109 110 spin_lock_bh(&bdi->wb_lock); 111 list_add_tail(&work->list, &bdi->work_list); 112 if (!bdi->wb.task) 113 trace_writeback_nothread(bdi, work); 114 bdi_wakeup_flusher(bdi); 115 spin_unlock_bh(&bdi->wb_lock); 116 } 117 118 static void 119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 120 bool range_cyclic, enum wb_reason reason) 121 { 122 struct wb_writeback_work *work; 123 124 /* 125 * This is WB_SYNC_NONE writeback, so if allocation fails just 126 * wakeup the thread for old dirty data writeback 127 */ 128 work = kzalloc(sizeof(*work), GFP_ATOMIC); 129 if (!work) { 130 if (bdi->wb.task) { 131 trace_writeback_nowork(bdi); 132 wake_up_process(bdi->wb.task); 133 } 134 return; 135 } 136 137 work->sync_mode = WB_SYNC_NONE; 138 work->nr_pages = nr_pages; 139 work->range_cyclic = range_cyclic; 140 work->reason = reason; 141 142 bdi_queue_work(bdi, work); 143 } 144 145 /** 146 * bdi_start_writeback - start writeback 147 * @bdi: the backing device to write from 148 * @nr_pages: the number of pages to write 149 * @reason: reason why some writeback work was initiated 150 * 151 * Description: 152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 153 * started when this function returns, we make no guarantees on 154 * completion. Caller need not hold sb s_umount semaphore. 155 * 156 */ 157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 158 enum wb_reason reason) 159 { 160 __bdi_start_writeback(bdi, nr_pages, true, reason); 161 } 162 163 /** 164 * bdi_start_background_writeback - start background writeback 165 * @bdi: the backing device to write from 166 * 167 * Description: 168 * This makes sure WB_SYNC_NONE background writeback happens. When 169 * this function returns, it is only guaranteed that for given BDI 170 * some IO is happening if we are over background dirty threshold. 171 * Caller need not hold sb s_umount semaphore. 172 */ 173 void bdi_start_background_writeback(struct backing_dev_info *bdi) 174 { 175 /* 176 * We just wake up the flusher thread. It will perform background 177 * writeback as soon as there is no other work to do. 178 */ 179 trace_writeback_wake_background(bdi); 180 spin_lock_bh(&bdi->wb_lock); 181 bdi_wakeup_flusher(bdi); 182 spin_unlock_bh(&bdi->wb_lock); 183 } 184 185 /* 186 * Remove the inode from the writeback list it is on. 187 */ 188 void inode_wb_list_del(struct inode *inode) 189 { 190 struct backing_dev_info *bdi = inode_to_bdi(inode); 191 192 spin_lock(&bdi->wb.list_lock); 193 list_del_init(&inode->i_wb_list); 194 spin_unlock(&bdi->wb.list_lock); 195 } 196 197 /* 198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 199 * furthest end of its superblock's dirty-inode list. 200 * 201 * Before stamping the inode's ->dirtied_when, we check to see whether it is 202 * already the most-recently-dirtied inode on the b_dirty list. If that is 203 * the case then the inode must have been redirtied while it was being written 204 * out and we don't reset its dirtied_when. 205 */ 206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 207 { 208 assert_spin_locked(&wb->list_lock); 209 if (!list_empty(&wb->b_dirty)) { 210 struct inode *tail; 211 212 tail = wb_inode(wb->b_dirty.next); 213 if (time_before(inode->dirtied_when, tail->dirtied_when)) 214 inode->dirtied_when = jiffies; 215 } 216 list_move(&inode->i_wb_list, &wb->b_dirty); 217 } 218 219 /* 220 * requeue inode for re-scanning after bdi->b_io list is exhausted. 221 */ 222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 223 { 224 assert_spin_locked(&wb->list_lock); 225 list_move(&inode->i_wb_list, &wb->b_more_io); 226 } 227 228 static void inode_sync_complete(struct inode *inode) 229 { 230 inode->i_state &= ~I_SYNC; 231 /* Waiters must see I_SYNC cleared before being woken up */ 232 smp_mb(); 233 wake_up_bit(&inode->i_state, __I_SYNC); 234 } 235 236 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 237 { 238 bool ret = time_after(inode->dirtied_when, t); 239 #ifndef CONFIG_64BIT 240 /* 241 * For inodes being constantly redirtied, dirtied_when can get stuck. 242 * It _appears_ to be in the future, but is actually in distant past. 243 * This test is necessary to prevent such wrapped-around relative times 244 * from permanently stopping the whole bdi writeback. 245 */ 246 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 247 #endif 248 return ret; 249 } 250 251 /* 252 * Move expired (dirtied before work->older_than_this) dirty inodes from 253 * @delaying_queue to @dispatch_queue. 254 */ 255 static int move_expired_inodes(struct list_head *delaying_queue, 256 struct list_head *dispatch_queue, 257 struct wb_writeback_work *work) 258 { 259 LIST_HEAD(tmp); 260 struct list_head *pos, *node; 261 struct super_block *sb = NULL; 262 struct inode *inode; 263 int do_sb_sort = 0; 264 int moved = 0; 265 266 while (!list_empty(delaying_queue)) { 267 inode = wb_inode(delaying_queue->prev); 268 if (work->older_than_this && 269 inode_dirtied_after(inode, *work->older_than_this)) 270 break; 271 if (sb && sb != inode->i_sb) 272 do_sb_sort = 1; 273 sb = inode->i_sb; 274 list_move(&inode->i_wb_list, &tmp); 275 moved++; 276 } 277 278 /* just one sb in list, splice to dispatch_queue and we're done */ 279 if (!do_sb_sort) { 280 list_splice(&tmp, dispatch_queue); 281 goto out; 282 } 283 284 /* Move inodes from one superblock together */ 285 while (!list_empty(&tmp)) { 286 sb = wb_inode(tmp.prev)->i_sb; 287 list_for_each_prev_safe(pos, node, &tmp) { 288 inode = wb_inode(pos); 289 if (inode->i_sb == sb) 290 list_move(&inode->i_wb_list, dispatch_queue); 291 } 292 } 293 out: 294 return moved; 295 } 296 297 /* 298 * Queue all expired dirty inodes for io, eldest first. 299 * Before 300 * newly dirtied b_dirty b_io b_more_io 301 * =============> gf edc BA 302 * After 303 * newly dirtied b_dirty b_io b_more_io 304 * =============> g fBAedc 305 * | 306 * +--> dequeue for IO 307 */ 308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 309 { 310 int moved; 311 assert_spin_locked(&wb->list_lock); 312 list_splice_init(&wb->b_more_io, &wb->b_io); 313 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 314 trace_writeback_queue_io(wb, work, moved); 315 } 316 317 static int write_inode(struct inode *inode, struct writeback_control *wbc) 318 { 319 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 320 return inode->i_sb->s_op->write_inode(inode, wbc); 321 return 0; 322 } 323 324 /* 325 * Wait for writeback on an inode to complete. Called with i_lock held. 326 * Caller must make sure inode cannot go away when we drop i_lock. 327 */ 328 static void __inode_wait_for_writeback(struct inode *inode) 329 __releases(inode->i_lock) 330 __acquires(inode->i_lock) 331 { 332 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 333 wait_queue_head_t *wqh; 334 335 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 336 while (inode->i_state & I_SYNC) { 337 spin_unlock(&inode->i_lock); 338 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 339 spin_lock(&inode->i_lock); 340 } 341 } 342 343 /* 344 * Wait for writeback on an inode to complete. Caller must have inode pinned. 345 */ 346 void inode_wait_for_writeback(struct inode *inode) 347 { 348 spin_lock(&inode->i_lock); 349 __inode_wait_for_writeback(inode); 350 spin_unlock(&inode->i_lock); 351 } 352 353 /* 354 * Sleep until I_SYNC is cleared. This function must be called with i_lock 355 * held and drops it. It is aimed for callers not holding any inode reference 356 * so once i_lock is dropped, inode can go away. 357 */ 358 static void inode_sleep_on_writeback(struct inode *inode) 359 __releases(inode->i_lock) 360 { 361 DEFINE_WAIT(wait); 362 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 363 int sleep; 364 365 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 366 sleep = inode->i_state & I_SYNC; 367 spin_unlock(&inode->i_lock); 368 if (sleep) 369 schedule(); 370 finish_wait(wqh, &wait); 371 } 372 373 /* 374 * Find proper writeback list for the inode depending on its current state and 375 * possibly also change of its state while we were doing writeback. Here we 376 * handle things such as livelock prevention or fairness of writeback among 377 * inodes. This function can be called only by flusher thread - noone else 378 * processes all inodes in writeback lists and requeueing inodes behind flusher 379 * thread's back can have unexpected consequences. 380 */ 381 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 382 struct writeback_control *wbc) 383 { 384 if (inode->i_state & I_FREEING) 385 return; 386 387 /* 388 * Sync livelock prevention. Each inode is tagged and synced in one 389 * shot. If still dirty, it will be redirty_tail()'ed below. Update 390 * the dirty time to prevent enqueue and sync it again. 391 */ 392 if ((inode->i_state & I_DIRTY) && 393 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 394 inode->dirtied_when = jiffies; 395 396 if (wbc->pages_skipped) { 397 /* 398 * writeback is not making progress due to locked 399 * buffers. Skip this inode for now. 400 */ 401 redirty_tail(inode, wb); 402 return; 403 } 404 405 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 406 /* 407 * We didn't write back all the pages. nfs_writepages() 408 * sometimes bales out without doing anything. 409 */ 410 if (wbc->nr_to_write <= 0) { 411 /* Slice used up. Queue for next turn. */ 412 requeue_io(inode, wb); 413 } else { 414 /* 415 * Writeback blocked by something other than 416 * congestion. Delay the inode for some time to 417 * avoid spinning on the CPU (100% iowait) 418 * retrying writeback of the dirty page/inode 419 * that cannot be performed immediately. 420 */ 421 redirty_tail(inode, wb); 422 } 423 } else if (inode->i_state & I_DIRTY) { 424 /* 425 * Filesystems can dirty the inode during writeback operations, 426 * such as delayed allocation during submission or metadata 427 * updates after data IO completion. 428 */ 429 redirty_tail(inode, wb); 430 } else { 431 /* The inode is clean. Remove from writeback lists. */ 432 list_del_init(&inode->i_wb_list); 433 } 434 } 435 436 /* 437 * Write out an inode and its dirty pages. Do not update the writeback list 438 * linkage. That is left to the caller. The caller is also responsible for 439 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 440 */ 441 static int 442 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 443 { 444 struct address_space *mapping = inode->i_mapping; 445 long nr_to_write = wbc->nr_to_write; 446 unsigned dirty; 447 int ret; 448 449 WARN_ON(!(inode->i_state & I_SYNC)); 450 451 ret = do_writepages(mapping, wbc); 452 453 /* 454 * Make sure to wait on the data before writing out the metadata. 455 * This is important for filesystems that modify metadata on data 456 * I/O completion. 457 */ 458 if (wbc->sync_mode == WB_SYNC_ALL) { 459 int err = filemap_fdatawait(mapping); 460 if (ret == 0) 461 ret = err; 462 } 463 464 /* 465 * Some filesystems may redirty the inode during the writeback 466 * due to delalloc, clear dirty metadata flags right before 467 * write_inode() 468 */ 469 spin_lock(&inode->i_lock); 470 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 471 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 472 inode->i_state &= ~I_DIRTY_PAGES; 473 dirty = inode->i_state & I_DIRTY; 474 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 475 spin_unlock(&inode->i_lock); 476 /* Don't write the inode if only I_DIRTY_PAGES was set */ 477 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 478 int err = write_inode(inode, wbc); 479 if (ret == 0) 480 ret = err; 481 } 482 trace_writeback_single_inode(inode, wbc, nr_to_write); 483 return ret; 484 } 485 486 /* 487 * Write out an inode's dirty pages. Either the caller has an active reference 488 * on the inode or the inode has I_WILL_FREE set. 489 * 490 * This function is designed to be called for writing back one inode which 491 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 492 * and does more profound writeback list handling in writeback_sb_inodes(). 493 */ 494 static int 495 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 496 struct writeback_control *wbc) 497 { 498 int ret = 0; 499 500 spin_lock(&inode->i_lock); 501 if (!atomic_read(&inode->i_count)) 502 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 503 else 504 WARN_ON(inode->i_state & I_WILL_FREE); 505 506 if (inode->i_state & I_SYNC) { 507 if (wbc->sync_mode != WB_SYNC_ALL) 508 goto out; 509 /* 510 * It's a data-integrity sync. We must wait. Since callers hold 511 * inode reference or inode has I_WILL_FREE set, it cannot go 512 * away under us. 513 */ 514 __inode_wait_for_writeback(inode); 515 } 516 WARN_ON(inode->i_state & I_SYNC); 517 /* 518 * Skip inode if it is clean. We don't want to mess with writeback 519 * lists in this function since flusher thread may be doing for example 520 * sync in parallel and if we move the inode, it could get skipped. So 521 * here we make sure inode is on some writeback list and leave it there 522 * unless we have completely cleaned the inode. 523 */ 524 if (!(inode->i_state & I_DIRTY)) 525 goto out; 526 inode->i_state |= I_SYNC; 527 spin_unlock(&inode->i_lock); 528 529 ret = __writeback_single_inode(inode, wbc); 530 531 spin_lock(&wb->list_lock); 532 spin_lock(&inode->i_lock); 533 /* 534 * If inode is clean, remove it from writeback lists. Otherwise don't 535 * touch it. See comment above for explanation. 536 */ 537 if (!(inode->i_state & I_DIRTY)) 538 list_del_init(&inode->i_wb_list); 539 spin_unlock(&wb->list_lock); 540 inode_sync_complete(inode); 541 out: 542 spin_unlock(&inode->i_lock); 543 return ret; 544 } 545 546 static long writeback_chunk_size(struct backing_dev_info *bdi, 547 struct wb_writeback_work *work) 548 { 549 long pages; 550 551 /* 552 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 553 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 554 * here avoids calling into writeback_inodes_wb() more than once. 555 * 556 * The intended call sequence for WB_SYNC_ALL writeback is: 557 * 558 * wb_writeback() 559 * writeback_sb_inodes() <== called only once 560 * write_cache_pages() <== called once for each inode 561 * (quickly) tag currently dirty pages 562 * (maybe slowly) sync all tagged pages 563 */ 564 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 565 pages = LONG_MAX; 566 else { 567 pages = min(bdi->avg_write_bandwidth / 2, 568 global_dirty_limit / DIRTY_SCOPE); 569 pages = min(pages, work->nr_pages); 570 pages = round_down(pages + MIN_WRITEBACK_PAGES, 571 MIN_WRITEBACK_PAGES); 572 } 573 574 return pages; 575 } 576 577 /* 578 * Write a portion of b_io inodes which belong to @sb. 579 * 580 * Return the number of pages and/or inodes written. 581 */ 582 static long writeback_sb_inodes(struct super_block *sb, 583 struct bdi_writeback *wb, 584 struct wb_writeback_work *work) 585 { 586 struct writeback_control wbc = { 587 .sync_mode = work->sync_mode, 588 .tagged_writepages = work->tagged_writepages, 589 .for_kupdate = work->for_kupdate, 590 .for_background = work->for_background, 591 .range_cyclic = work->range_cyclic, 592 .range_start = 0, 593 .range_end = LLONG_MAX, 594 }; 595 unsigned long start_time = jiffies; 596 long write_chunk; 597 long wrote = 0; /* count both pages and inodes */ 598 599 while (!list_empty(&wb->b_io)) { 600 struct inode *inode = wb_inode(wb->b_io.prev); 601 602 if (inode->i_sb != sb) { 603 if (work->sb) { 604 /* 605 * We only want to write back data for this 606 * superblock, move all inodes not belonging 607 * to it back onto the dirty list. 608 */ 609 redirty_tail(inode, wb); 610 continue; 611 } 612 613 /* 614 * The inode belongs to a different superblock. 615 * Bounce back to the caller to unpin this and 616 * pin the next superblock. 617 */ 618 break; 619 } 620 621 /* 622 * Don't bother with new inodes or inodes being freed, first 623 * kind does not need periodic writeout yet, and for the latter 624 * kind writeout is handled by the freer. 625 */ 626 spin_lock(&inode->i_lock); 627 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 628 spin_unlock(&inode->i_lock); 629 redirty_tail(inode, wb); 630 continue; 631 } 632 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 633 /* 634 * If this inode is locked for writeback and we are not 635 * doing writeback-for-data-integrity, move it to 636 * b_more_io so that writeback can proceed with the 637 * other inodes on s_io. 638 * 639 * We'll have another go at writing back this inode 640 * when we completed a full scan of b_io. 641 */ 642 spin_unlock(&inode->i_lock); 643 requeue_io(inode, wb); 644 trace_writeback_sb_inodes_requeue(inode); 645 continue; 646 } 647 spin_unlock(&wb->list_lock); 648 649 /* 650 * We already requeued the inode if it had I_SYNC set and we 651 * are doing WB_SYNC_NONE writeback. So this catches only the 652 * WB_SYNC_ALL case. 653 */ 654 if (inode->i_state & I_SYNC) { 655 /* Wait for I_SYNC. This function drops i_lock... */ 656 inode_sleep_on_writeback(inode); 657 /* Inode may be gone, start again */ 658 spin_lock(&wb->list_lock); 659 continue; 660 } 661 inode->i_state |= I_SYNC; 662 spin_unlock(&inode->i_lock); 663 664 write_chunk = writeback_chunk_size(wb->bdi, work); 665 wbc.nr_to_write = write_chunk; 666 wbc.pages_skipped = 0; 667 668 /* 669 * We use I_SYNC to pin the inode in memory. While it is set 670 * evict_inode() will wait so the inode cannot be freed. 671 */ 672 __writeback_single_inode(inode, &wbc); 673 674 work->nr_pages -= write_chunk - wbc.nr_to_write; 675 wrote += write_chunk - wbc.nr_to_write; 676 spin_lock(&wb->list_lock); 677 spin_lock(&inode->i_lock); 678 if (!(inode->i_state & I_DIRTY)) 679 wrote++; 680 requeue_inode(inode, wb, &wbc); 681 inode_sync_complete(inode); 682 spin_unlock(&inode->i_lock); 683 cond_resched_lock(&wb->list_lock); 684 /* 685 * bail out to wb_writeback() often enough to check 686 * background threshold and other termination conditions. 687 */ 688 if (wrote) { 689 if (time_is_before_jiffies(start_time + HZ / 10UL)) 690 break; 691 if (work->nr_pages <= 0) 692 break; 693 } 694 } 695 return wrote; 696 } 697 698 static long __writeback_inodes_wb(struct bdi_writeback *wb, 699 struct wb_writeback_work *work) 700 { 701 unsigned long start_time = jiffies; 702 long wrote = 0; 703 704 while (!list_empty(&wb->b_io)) { 705 struct inode *inode = wb_inode(wb->b_io.prev); 706 struct super_block *sb = inode->i_sb; 707 708 if (!grab_super_passive(sb)) { 709 /* 710 * grab_super_passive() may fail consistently due to 711 * s_umount being grabbed by someone else. Don't use 712 * requeue_io() to avoid busy retrying the inode/sb. 713 */ 714 redirty_tail(inode, wb); 715 continue; 716 } 717 wrote += writeback_sb_inodes(sb, wb, work); 718 drop_super(sb); 719 720 /* refer to the same tests at the end of writeback_sb_inodes */ 721 if (wrote) { 722 if (time_is_before_jiffies(start_time + HZ / 10UL)) 723 break; 724 if (work->nr_pages <= 0) 725 break; 726 } 727 } 728 /* Leave any unwritten inodes on b_io */ 729 return wrote; 730 } 731 732 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 733 enum wb_reason reason) 734 { 735 struct wb_writeback_work work = { 736 .nr_pages = nr_pages, 737 .sync_mode = WB_SYNC_NONE, 738 .range_cyclic = 1, 739 .reason = reason, 740 }; 741 742 spin_lock(&wb->list_lock); 743 if (list_empty(&wb->b_io)) 744 queue_io(wb, &work); 745 __writeback_inodes_wb(wb, &work); 746 spin_unlock(&wb->list_lock); 747 748 return nr_pages - work.nr_pages; 749 } 750 751 static bool over_bground_thresh(struct backing_dev_info *bdi) 752 { 753 unsigned long background_thresh, dirty_thresh; 754 755 global_dirty_limits(&background_thresh, &dirty_thresh); 756 757 if (global_page_state(NR_FILE_DIRTY) + 758 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 759 return true; 760 761 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 762 bdi_dirty_limit(bdi, background_thresh)) 763 return true; 764 765 return false; 766 } 767 768 /* 769 * Called under wb->list_lock. If there are multiple wb per bdi, 770 * only the flusher working on the first wb should do it. 771 */ 772 static void wb_update_bandwidth(struct bdi_writeback *wb, 773 unsigned long start_time) 774 { 775 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 776 } 777 778 /* 779 * Explicit flushing or periodic writeback of "old" data. 780 * 781 * Define "old": the first time one of an inode's pages is dirtied, we mark the 782 * dirtying-time in the inode's address_space. So this periodic writeback code 783 * just walks the superblock inode list, writing back any inodes which are 784 * older than a specific point in time. 785 * 786 * Try to run once per dirty_writeback_interval. But if a writeback event 787 * takes longer than a dirty_writeback_interval interval, then leave a 788 * one-second gap. 789 * 790 * older_than_this takes precedence over nr_to_write. So we'll only write back 791 * all dirty pages if they are all attached to "old" mappings. 792 */ 793 static long wb_writeback(struct bdi_writeback *wb, 794 struct wb_writeback_work *work) 795 { 796 unsigned long wb_start = jiffies; 797 long nr_pages = work->nr_pages; 798 unsigned long oldest_jif; 799 struct inode *inode; 800 long progress; 801 802 oldest_jif = jiffies; 803 work->older_than_this = &oldest_jif; 804 805 spin_lock(&wb->list_lock); 806 for (;;) { 807 /* 808 * Stop writeback when nr_pages has been consumed 809 */ 810 if (work->nr_pages <= 0) 811 break; 812 813 /* 814 * Background writeout and kupdate-style writeback may 815 * run forever. Stop them if there is other work to do 816 * so that e.g. sync can proceed. They'll be restarted 817 * after the other works are all done. 818 */ 819 if ((work->for_background || work->for_kupdate) && 820 !list_empty(&wb->bdi->work_list)) 821 break; 822 823 /* 824 * For background writeout, stop when we are below the 825 * background dirty threshold 826 */ 827 if (work->for_background && !over_bground_thresh(wb->bdi)) 828 break; 829 830 /* 831 * Kupdate and background works are special and we want to 832 * include all inodes that need writing. Livelock avoidance is 833 * handled by these works yielding to any other work so we are 834 * safe. 835 */ 836 if (work->for_kupdate) { 837 oldest_jif = jiffies - 838 msecs_to_jiffies(dirty_expire_interval * 10); 839 } else if (work->for_background) 840 oldest_jif = jiffies; 841 842 trace_writeback_start(wb->bdi, work); 843 if (list_empty(&wb->b_io)) 844 queue_io(wb, work); 845 if (work->sb) 846 progress = writeback_sb_inodes(work->sb, wb, work); 847 else 848 progress = __writeback_inodes_wb(wb, work); 849 trace_writeback_written(wb->bdi, work); 850 851 wb_update_bandwidth(wb, wb_start); 852 853 /* 854 * Did we write something? Try for more 855 * 856 * Dirty inodes are moved to b_io for writeback in batches. 857 * The completion of the current batch does not necessarily 858 * mean the overall work is done. So we keep looping as long 859 * as made some progress on cleaning pages or inodes. 860 */ 861 if (progress) 862 continue; 863 /* 864 * No more inodes for IO, bail 865 */ 866 if (list_empty(&wb->b_more_io)) 867 break; 868 /* 869 * Nothing written. Wait for some inode to 870 * become available for writeback. Otherwise 871 * we'll just busyloop. 872 */ 873 if (!list_empty(&wb->b_more_io)) { 874 trace_writeback_wait(wb->bdi, work); 875 inode = wb_inode(wb->b_more_io.prev); 876 spin_lock(&inode->i_lock); 877 spin_unlock(&wb->list_lock); 878 /* This function drops i_lock... */ 879 inode_sleep_on_writeback(inode); 880 spin_lock(&wb->list_lock); 881 } 882 } 883 spin_unlock(&wb->list_lock); 884 885 return nr_pages - work->nr_pages; 886 } 887 888 /* 889 * Return the next wb_writeback_work struct that hasn't been processed yet. 890 */ 891 static struct wb_writeback_work * 892 get_next_work_item(struct backing_dev_info *bdi) 893 { 894 struct wb_writeback_work *work = NULL; 895 896 spin_lock_bh(&bdi->wb_lock); 897 if (!list_empty(&bdi->work_list)) { 898 work = list_entry(bdi->work_list.next, 899 struct wb_writeback_work, list); 900 list_del_init(&work->list); 901 } 902 spin_unlock_bh(&bdi->wb_lock); 903 return work; 904 } 905 906 /* 907 * Add in the number of potentially dirty inodes, because each inode 908 * write can dirty pagecache in the underlying blockdev. 909 */ 910 static unsigned long get_nr_dirty_pages(void) 911 { 912 return global_page_state(NR_FILE_DIRTY) + 913 global_page_state(NR_UNSTABLE_NFS) + 914 get_nr_dirty_inodes(); 915 } 916 917 static long wb_check_background_flush(struct bdi_writeback *wb) 918 { 919 if (over_bground_thresh(wb->bdi)) { 920 921 struct wb_writeback_work work = { 922 .nr_pages = LONG_MAX, 923 .sync_mode = WB_SYNC_NONE, 924 .for_background = 1, 925 .range_cyclic = 1, 926 .reason = WB_REASON_BACKGROUND, 927 }; 928 929 return wb_writeback(wb, &work); 930 } 931 932 return 0; 933 } 934 935 static long wb_check_old_data_flush(struct bdi_writeback *wb) 936 { 937 unsigned long expired; 938 long nr_pages; 939 940 /* 941 * When set to zero, disable periodic writeback 942 */ 943 if (!dirty_writeback_interval) 944 return 0; 945 946 expired = wb->last_old_flush + 947 msecs_to_jiffies(dirty_writeback_interval * 10); 948 if (time_before(jiffies, expired)) 949 return 0; 950 951 wb->last_old_flush = jiffies; 952 nr_pages = get_nr_dirty_pages(); 953 954 if (nr_pages) { 955 struct wb_writeback_work work = { 956 .nr_pages = nr_pages, 957 .sync_mode = WB_SYNC_NONE, 958 .for_kupdate = 1, 959 .range_cyclic = 1, 960 .reason = WB_REASON_PERIODIC, 961 }; 962 963 return wb_writeback(wb, &work); 964 } 965 966 return 0; 967 } 968 969 /* 970 * Retrieve work items and do the writeback they describe 971 */ 972 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 973 { 974 struct backing_dev_info *bdi = wb->bdi; 975 struct wb_writeback_work *work; 976 long wrote = 0; 977 978 set_bit(BDI_writeback_running, &wb->bdi->state); 979 while ((work = get_next_work_item(bdi)) != NULL) { 980 /* 981 * Override sync mode, in case we must wait for completion 982 * because this thread is exiting now. 983 */ 984 if (force_wait) 985 work->sync_mode = WB_SYNC_ALL; 986 987 trace_writeback_exec(bdi, work); 988 989 wrote += wb_writeback(wb, work); 990 991 /* 992 * Notify the caller of completion if this is a synchronous 993 * work item, otherwise just free it. 994 */ 995 if (work->done) 996 complete(work->done); 997 else 998 kfree(work); 999 } 1000 1001 /* 1002 * Check for periodic writeback, kupdated() style 1003 */ 1004 wrote += wb_check_old_data_flush(wb); 1005 wrote += wb_check_background_flush(wb); 1006 clear_bit(BDI_writeback_running, &wb->bdi->state); 1007 1008 return wrote; 1009 } 1010 1011 /* 1012 * Handle writeback of dirty data for the device backed by this bdi. Also 1013 * wakes up periodically and does kupdated style flushing. 1014 */ 1015 int bdi_writeback_thread(void *data) 1016 { 1017 struct bdi_writeback *wb = data; 1018 struct backing_dev_info *bdi = wb->bdi; 1019 long pages_written; 1020 1021 current->flags |= PF_SWAPWRITE; 1022 set_freezable(); 1023 wb->last_active = jiffies; 1024 1025 /* 1026 * Our parent may run at a different priority, just set us to normal 1027 */ 1028 set_user_nice(current, 0); 1029 1030 trace_writeback_thread_start(bdi); 1031 1032 while (!kthread_freezable_should_stop(NULL)) { 1033 /* 1034 * Remove own delayed wake-up timer, since we are already awake 1035 * and we'll take care of the preriodic write-back. 1036 */ 1037 del_timer(&wb->wakeup_timer); 1038 1039 pages_written = wb_do_writeback(wb, 0); 1040 1041 trace_writeback_pages_written(pages_written); 1042 1043 if (pages_written) 1044 wb->last_active = jiffies; 1045 1046 set_current_state(TASK_INTERRUPTIBLE); 1047 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 1048 __set_current_state(TASK_RUNNING); 1049 continue; 1050 } 1051 1052 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1053 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 1054 else { 1055 /* 1056 * We have nothing to do, so can go sleep without any 1057 * timeout and save power. When a work is queued or 1058 * something is made dirty - we will be woken up. 1059 */ 1060 schedule(); 1061 } 1062 } 1063 1064 /* Flush any work that raced with us exiting */ 1065 if (!list_empty(&bdi->work_list)) 1066 wb_do_writeback(wb, 1); 1067 1068 trace_writeback_thread_stop(bdi); 1069 return 0; 1070 } 1071 1072 1073 /* 1074 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1075 * the whole world. 1076 */ 1077 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1078 { 1079 struct backing_dev_info *bdi; 1080 1081 if (!nr_pages) { 1082 nr_pages = global_page_state(NR_FILE_DIRTY) + 1083 global_page_state(NR_UNSTABLE_NFS); 1084 } 1085 1086 rcu_read_lock(); 1087 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1088 if (!bdi_has_dirty_io(bdi)) 1089 continue; 1090 __bdi_start_writeback(bdi, nr_pages, false, reason); 1091 } 1092 rcu_read_unlock(); 1093 } 1094 1095 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1096 { 1097 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1098 struct dentry *dentry; 1099 const char *name = "?"; 1100 1101 dentry = d_find_alias(inode); 1102 if (dentry) { 1103 spin_lock(&dentry->d_lock); 1104 name = (const char *) dentry->d_name.name; 1105 } 1106 printk(KERN_DEBUG 1107 "%s(%d): dirtied inode %lu (%s) on %s\n", 1108 current->comm, task_pid_nr(current), inode->i_ino, 1109 name, inode->i_sb->s_id); 1110 if (dentry) { 1111 spin_unlock(&dentry->d_lock); 1112 dput(dentry); 1113 } 1114 } 1115 } 1116 1117 /** 1118 * __mark_inode_dirty - internal function 1119 * @inode: inode to mark 1120 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1121 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1122 * mark_inode_dirty_sync. 1123 * 1124 * Put the inode on the super block's dirty list. 1125 * 1126 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1127 * dirty list only if it is hashed or if it refers to a blockdev. 1128 * If it was not hashed, it will never be added to the dirty list 1129 * even if it is later hashed, as it will have been marked dirty already. 1130 * 1131 * In short, make sure you hash any inodes _before_ you start marking 1132 * them dirty. 1133 * 1134 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1135 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1136 * the kernel-internal blockdev inode represents the dirtying time of the 1137 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1138 * page->mapping->host, so the page-dirtying time is recorded in the internal 1139 * blockdev inode. 1140 */ 1141 void __mark_inode_dirty(struct inode *inode, int flags) 1142 { 1143 struct super_block *sb = inode->i_sb; 1144 struct backing_dev_info *bdi = NULL; 1145 1146 /* 1147 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1148 * dirty the inode itself 1149 */ 1150 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1151 if (sb->s_op->dirty_inode) 1152 sb->s_op->dirty_inode(inode, flags); 1153 } 1154 1155 /* 1156 * make sure that changes are seen by all cpus before we test i_state 1157 * -- mikulas 1158 */ 1159 smp_mb(); 1160 1161 /* avoid the locking if we can */ 1162 if ((inode->i_state & flags) == flags) 1163 return; 1164 1165 if (unlikely(block_dump)) 1166 block_dump___mark_inode_dirty(inode); 1167 1168 spin_lock(&inode->i_lock); 1169 if ((inode->i_state & flags) != flags) { 1170 const int was_dirty = inode->i_state & I_DIRTY; 1171 1172 inode->i_state |= flags; 1173 1174 /* 1175 * If the inode is being synced, just update its dirty state. 1176 * The unlocker will place the inode on the appropriate 1177 * superblock list, based upon its state. 1178 */ 1179 if (inode->i_state & I_SYNC) 1180 goto out_unlock_inode; 1181 1182 /* 1183 * Only add valid (hashed) inodes to the superblock's 1184 * dirty list. Add blockdev inodes as well. 1185 */ 1186 if (!S_ISBLK(inode->i_mode)) { 1187 if (inode_unhashed(inode)) 1188 goto out_unlock_inode; 1189 } 1190 if (inode->i_state & I_FREEING) 1191 goto out_unlock_inode; 1192 1193 /* 1194 * If the inode was already on b_dirty/b_io/b_more_io, don't 1195 * reposition it (that would break b_dirty time-ordering). 1196 */ 1197 if (!was_dirty) { 1198 bool wakeup_bdi = false; 1199 bdi = inode_to_bdi(inode); 1200 1201 if (bdi_cap_writeback_dirty(bdi)) { 1202 WARN(!test_bit(BDI_registered, &bdi->state), 1203 "bdi-%s not registered\n", bdi->name); 1204 1205 /* 1206 * If this is the first dirty inode for this 1207 * bdi, we have to wake-up the corresponding 1208 * bdi thread to make sure background 1209 * write-back happens later. 1210 */ 1211 if (!wb_has_dirty_io(&bdi->wb)) 1212 wakeup_bdi = true; 1213 } 1214 1215 spin_unlock(&inode->i_lock); 1216 spin_lock(&bdi->wb.list_lock); 1217 inode->dirtied_when = jiffies; 1218 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1219 spin_unlock(&bdi->wb.list_lock); 1220 1221 if (wakeup_bdi) 1222 bdi_wakeup_thread_delayed(bdi); 1223 return; 1224 } 1225 } 1226 out_unlock_inode: 1227 spin_unlock(&inode->i_lock); 1228 1229 } 1230 EXPORT_SYMBOL(__mark_inode_dirty); 1231 1232 static void wait_sb_inodes(struct super_block *sb) 1233 { 1234 struct inode *inode, *old_inode = NULL; 1235 1236 /* 1237 * We need to be protected against the filesystem going from 1238 * r/o to r/w or vice versa. 1239 */ 1240 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1241 1242 spin_lock(&inode_sb_list_lock); 1243 1244 /* 1245 * Data integrity sync. Must wait for all pages under writeback, 1246 * because there may have been pages dirtied before our sync 1247 * call, but which had writeout started before we write it out. 1248 * In which case, the inode may not be on the dirty list, but 1249 * we still have to wait for that writeout. 1250 */ 1251 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1252 struct address_space *mapping = inode->i_mapping; 1253 1254 spin_lock(&inode->i_lock); 1255 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1256 (mapping->nrpages == 0)) { 1257 spin_unlock(&inode->i_lock); 1258 continue; 1259 } 1260 __iget(inode); 1261 spin_unlock(&inode->i_lock); 1262 spin_unlock(&inode_sb_list_lock); 1263 1264 /* 1265 * We hold a reference to 'inode' so it couldn't have been 1266 * removed from s_inodes list while we dropped the 1267 * inode_sb_list_lock. We cannot iput the inode now as we can 1268 * be holding the last reference and we cannot iput it under 1269 * inode_sb_list_lock. So we keep the reference and iput it 1270 * later. 1271 */ 1272 iput(old_inode); 1273 old_inode = inode; 1274 1275 filemap_fdatawait(mapping); 1276 1277 cond_resched(); 1278 1279 spin_lock(&inode_sb_list_lock); 1280 } 1281 spin_unlock(&inode_sb_list_lock); 1282 iput(old_inode); 1283 } 1284 1285 /** 1286 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1287 * @sb: the superblock 1288 * @nr: the number of pages to write 1289 * @reason: reason why some writeback work initiated 1290 * 1291 * Start writeback on some inodes on this super_block. No guarantees are made 1292 * on how many (if any) will be written, and this function does not wait 1293 * for IO completion of submitted IO. 1294 */ 1295 void writeback_inodes_sb_nr(struct super_block *sb, 1296 unsigned long nr, 1297 enum wb_reason reason) 1298 { 1299 DECLARE_COMPLETION_ONSTACK(done); 1300 struct wb_writeback_work work = { 1301 .sb = sb, 1302 .sync_mode = WB_SYNC_NONE, 1303 .tagged_writepages = 1, 1304 .done = &done, 1305 .nr_pages = nr, 1306 .reason = reason, 1307 }; 1308 1309 if (sb->s_bdi == &noop_backing_dev_info) 1310 return; 1311 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1312 bdi_queue_work(sb->s_bdi, &work); 1313 wait_for_completion(&done); 1314 } 1315 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1316 1317 /** 1318 * writeback_inodes_sb - writeback dirty inodes from given super_block 1319 * @sb: the superblock 1320 * @reason: reason why some writeback work was initiated 1321 * 1322 * Start writeback on some inodes on this super_block. No guarantees are made 1323 * on how many (if any) will be written, and this function does not wait 1324 * for IO completion of submitted IO. 1325 */ 1326 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1327 { 1328 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1329 } 1330 EXPORT_SYMBOL(writeback_inodes_sb); 1331 1332 /** 1333 * writeback_inodes_sb_if_idle - start writeback if none underway 1334 * @sb: the superblock 1335 * @reason: reason why some writeback work was initiated 1336 * 1337 * Invoke writeback_inodes_sb if no writeback is currently underway. 1338 * Returns 1 if writeback was started, 0 if not. 1339 */ 1340 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1341 { 1342 if (!writeback_in_progress(sb->s_bdi)) { 1343 down_read(&sb->s_umount); 1344 writeback_inodes_sb(sb, reason); 1345 up_read(&sb->s_umount); 1346 return 1; 1347 } else 1348 return 0; 1349 } 1350 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1351 1352 /** 1353 * writeback_inodes_sb_nr_if_idle - start writeback if none underway 1354 * @sb: the superblock 1355 * @nr: the number of pages to write 1356 * @reason: reason why some writeback work was initiated 1357 * 1358 * Invoke writeback_inodes_sb if no writeback is currently underway. 1359 * Returns 1 if writeback was started, 0 if not. 1360 */ 1361 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1362 unsigned long nr, 1363 enum wb_reason reason) 1364 { 1365 if (!writeback_in_progress(sb->s_bdi)) { 1366 down_read(&sb->s_umount); 1367 writeback_inodes_sb_nr(sb, nr, reason); 1368 up_read(&sb->s_umount); 1369 return 1; 1370 } else 1371 return 0; 1372 } 1373 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1374 1375 /** 1376 * sync_inodes_sb - sync sb inode pages 1377 * @sb: the superblock 1378 * 1379 * This function writes and waits on any dirty inode belonging to this 1380 * super_block. 1381 */ 1382 void sync_inodes_sb(struct super_block *sb) 1383 { 1384 DECLARE_COMPLETION_ONSTACK(done); 1385 struct wb_writeback_work work = { 1386 .sb = sb, 1387 .sync_mode = WB_SYNC_ALL, 1388 .nr_pages = LONG_MAX, 1389 .range_cyclic = 0, 1390 .done = &done, 1391 .reason = WB_REASON_SYNC, 1392 }; 1393 1394 /* Nothing to do? */ 1395 if (sb->s_bdi == &noop_backing_dev_info) 1396 return; 1397 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1398 1399 bdi_queue_work(sb->s_bdi, &work); 1400 wait_for_completion(&done); 1401 1402 wait_sb_inodes(sb); 1403 } 1404 EXPORT_SYMBOL(sync_inodes_sb); 1405 1406 /** 1407 * write_inode_now - write an inode to disk 1408 * @inode: inode to write to disk 1409 * @sync: whether the write should be synchronous or not 1410 * 1411 * This function commits an inode to disk immediately if it is dirty. This is 1412 * primarily needed by knfsd. 1413 * 1414 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1415 */ 1416 int write_inode_now(struct inode *inode, int sync) 1417 { 1418 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1419 struct writeback_control wbc = { 1420 .nr_to_write = LONG_MAX, 1421 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1422 .range_start = 0, 1423 .range_end = LLONG_MAX, 1424 }; 1425 1426 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1427 wbc.nr_to_write = 0; 1428 1429 might_sleep(); 1430 return writeback_single_inode(inode, wb, &wbc); 1431 } 1432 EXPORT_SYMBOL(write_inode_now); 1433 1434 /** 1435 * sync_inode - write an inode and its pages to disk. 1436 * @inode: the inode to sync 1437 * @wbc: controls the writeback mode 1438 * 1439 * sync_inode() will write an inode and its pages to disk. It will also 1440 * correctly update the inode on its superblock's dirty inode lists and will 1441 * update inode->i_state. 1442 * 1443 * The caller must have a ref on the inode. 1444 */ 1445 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1446 { 1447 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1448 } 1449 EXPORT_SYMBOL(sync_inode); 1450 1451 /** 1452 * sync_inode_metadata - write an inode to disk 1453 * @inode: the inode to sync 1454 * @wait: wait for I/O to complete. 1455 * 1456 * Write an inode to disk and adjust its dirty state after completion. 1457 * 1458 * Note: only writes the actual inode, no associated data or other metadata. 1459 */ 1460 int sync_inode_metadata(struct inode *inode, int wait) 1461 { 1462 struct writeback_control wbc = { 1463 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1464 .nr_to_write = 0, /* metadata-only */ 1465 }; 1466 1467 return sync_inode(inode, &wbc); 1468 } 1469 EXPORT_SYMBOL(sync_inode_metadata); 1470