xref: /linux/fs/fs-writeback.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 	return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67 
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 	struct super_block *sb = inode->i_sb;
71 
72 	if (strcmp(sb->s_type->name, "bdev") == 0)
73 		return inode->i_mapping->backing_dev_info;
74 
75 	return sb->s_bdi;
76 }
77 
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 	return list_entry(head, struct inode, i_wb_list);
81 }
82 
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90 
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94 	if (bdi->wb.task) {
95 		wake_up_process(bdi->wb.task);
96 	} else {
97 		/*
98 		 * The bdi thread isn't there, wake up the forker thread which
99 		 * will create and run it.
100 		 */
101 		wake_up_process(default_backing_dev_info.wb.task);
102 	}
103 }
104 
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 			   struct wb_writeback_work *work)
107 {
108 	trace_writeback_queue(bdi, work);
109 
110 	spin_lock_bh(&bdi->wb_lock);
111 	list_add_tail(&work->list, &bdi->work_list);
112 	if (!bdi->wb.task)
113 		trace_writeback_nothread(bdi, work);
114 	bdi_wakeup_flusher(bdi);
115 	spin_unlock_bh(&bdi->wb_lock);
116 }
117 
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 		      bool range_cyclic, enum wb_reason reason)
121 {
122 	struct wb_writeback_work *work;
123 
124 	/*
125 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 	 * wakeup the thread for old dirty data writeback
127 	 */
128 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 	if (!work) {
130 		if (bdi->wb.task) {
131 			trace_writeback_nowork(bdi);
132 			wake_up_process(bdi->wb.task);
133 		}
134 		return;
135 	}
136 
137 	work->sync_mode	= WB_SYNC_NONE;
138 	work->nr_pages	= nr_pages;
139 	work->range_cyclic = range_cyclic;
140 	work->reason	= reason;
141 
142 	bdi_queue_work(bdi, work);
143 }
144 
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 			enum wb_reason reason)
159 {
160 	__bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162 
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175 	/*
176 	 * We just wake up the flusher thread. It will perform background
177 	 * writeback as soon as there is no other work to do.
178 	 */
179 	trace_writeback_wake_background(bdi);
180 	spin_lock_bh(&bdi->wb_lock);
181 	bdi_wakeup_flusher(bdi);
182 	spin_unlock_bh(&bdi->wb_lock);
183 }
184 
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190 	struct backing_dev_info *bdi = inode_to_bdi(inode);
191 
192 	spin_lock(&bdi->wb.list_lock);
193 	list_del_init(&inode->i_wb_list);
194 	spin_unlock(&bdi->wb.list_lock);
195 }
196 
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208 	assert_spin_locked(&wb->list_lock);
209 	if (!list_empty(&wb->b_dirty)) {
210 		struct inode *tail;
211 
212 		tail = wb_inode(wb->b_dirty.next);
213 		if (time_before(inode->dirtied_when, tail->dirtied_when))
214 			inode->dirtied_when = jiffies;
215 	}
216 	list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218 
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224 	assert_spin_locked(&wb->list_lock);
225 	list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227 
228 static void inode_sync_complete(struct inode *inode)
229 {
230 	inode->i_state &= ~I_SYNC;
231 	/* Waiters must see I_SYNC cleared before being woken up */
232 	smp_mb();
233 	wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235 
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238 	bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240 	/*
241 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
242 	 * It _appears_ to be in the future, but is actually in distant past.
243 	 * This test is necessary to prevent such wrapped-around relative times
244 	 * from permanently stopping the whole bdi writeback.
245 	 */
246 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248 	return ret;
249 }
250 
251 /*
252  * Move expired (dirtied before work->older_than_this) dirty inodes from
253  * @delaying_queue to @dispatch_queue.
254  */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256 			       struct list_head *dispatch_queue,
257 			       struct wb_writeback_work *work)
258 {
259 	LIST_HEAD(tmp);
260 	struct list_head *pos, *node;
261 	struct super_block *sb = NULL;
262 	struct inode *inode;
263 	int do_sb_sort = 0;
264 	int moved = 0;
265 
266 	while (!list_empty(delaying_queue)) {
267 		inode = wb_inode(delaying_queue->prev);
268 		if (work->older_than_this &&
269 		    inode_dirtied_after(inode, *work->older_than_this))
270 			break;
271 		if (sb && sb != inode->i_sb)
272 			do_sb_sort = 1;
273 		sb = inode->i_sb;
274 		list_move(&inode->i_wb_list, &tmp);
275 		moved++;
276 	}
277 
278 	/* just one sb in list, splice to dispatch_queue and we're done */
279 	if (!do_sb_sort) {
280 		list_splice(&tmp, dispatch_queue);
281 		goto out;
282 	}
283 
284 	/* Move inodes from one superblock together */
285 	while (!list_empty(&tmp)) {
286 		sb = wb_inode(tmp.prev)->i_sb;
287 		list_for_each_prev_safe(pos, node, &tmp) {
288 			inode = wb_inode(pos);
289 			if (inode->i_sb == sb)
290 				list_move(&inode->i_wb_list, dispatch_queue);
291 		}
292 	}
293 out:
294 	return moved;
295 }
296 
297 /*
298  * Queue all expired dirty inodes for io, eldest first.
299  * Before
300  *         newly dirtied     b_dirty    b_io    b_more_io
301  *         =============>    gf         edc     BA
302  * After
303  *         newly dirtied     b_dirty    b_io    b_more_io
304  *         =============>    g          fBAedc
305  *                                           |
306  *                                           +--> dequeue for IO
307  */
308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
309 {
310 	int moved;
311 	assert_spin_locked(&wb->list_lock);
312 	list_splice_init(&wb->b_more_io, &wb->b_io);
313 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
314 	trace_writeback_queue_io(wb, work, moved);
315 }
316 
317 static int write_inode(struct inode *inode, struct writeback_control *wbc)
318 {
319 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320 		return inode->i_sb->s_op->write_inode(inode, wbc);
321 	return 0;
322 }
323 
324 /*
325  * Wait for writeback on an inode to complete. Called with i_lock held.
326  * Caller must make sure inode cannot go away when we drop i_lock.
327  */
328 static void __inode_wait_for_writeback(struct inode *inode)
329 	__releases(inode->i_lock)
330 	__acquires(inode->i_lock)
331 {
332 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333 	wait_queue_head_t *wqh;
334 
335 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336 	while (inode->i_state & I_SYNC) {
337 		spin_unlock(&inode->i_lock);
338 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
339 		spin_lock(&inode->i_lock);
340 	}
341 }
342 
343 /*
344  * Wait for writeback on an inode to complete. Caller must have inode pinned.
345  */
346 void inode_wait_for_writeback(struct inode *inode)
347 {
348 	spin_lock(&inode->i_lock);
349 	__inode_wait_for_writeback(inode);
350 	spin_unlock(&inode->i_lock);
351 }
352 
353 /*
354  * Sleep until I_SYNC is cleared. This function must be called with i_lock
355  * held and drops it. It is aimed for callers not holding any inode reference
356  * so once i_lock is dropped, inode can go away.
357  */
358 static void inode_sleep_on_writeback(struct inode *inode)
359 	__releases(inode->i_lock)
360 {
361 	DEFINE_WAIT(wait);
362 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
363 	int sleep;
364 
365 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
366 	sleep = inode->i_state & I_SYNC;
367 	spin_unlock(&inode->i_lock);
368 	if (sleep)
369 		schedule();
370 	finish_wait(wqh, &wait);
371 }
372 
373 /*
374  * Find proper writeback list for the inode depending on its current state and
375  * possibly also change of its state while we were doing writeback.  Here we
376  * handle things such as livelock prevention or fairness of writeback among
377  * inodes. This function can be called only by flusher thread - noone else
378  * processes all inodes in writeback lists and requeueing inodes behind flusher
379  * thread's back can have unexpected consequences.
380  */
381 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
382 			  struct writeback_control *wbc)
383 {
384 	if (inode->i_state & I_FREEING)
385 		return;
386 
387 	/*
388 	 * Sync livelock prevention. Each inode is tagged and synced in one
389 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
390 	 * the dirty time to prevent enqueue and sync it again.
391 	 */
392 	if ((inode->i_state & I_DIRTY) &&
393 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
394 		inode->dirtied_when = jiffies;
395 
396 	if (wbc->pages_skipped) {
397 		/*
398 		 * writeback is not making progress due to locked
399 		 * buffers. Skip this inode for now.
400 		 */
401 		redirty_tail(inode, wb);
402 		return;
403 	}
404 
405 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
406 		/*
407 		 * We didn't write back all the pages.  nfs_writepages()
408 		 * sometimes bales out without doing anything.
409 		 */
410 		if (wbc->nr_to_write <= 0) {
411 			/* Slice used up. Queue for next turn. */
412 			requeue_io(inode, wb);
413 		} else {
414 			/*
415 			 * Writeback blocked by something other than
416 			 * congestion. Delay the inode for some time to
417 			 * avoid spinning on the CPU (100% iowait)
418 			 * retrying writeback of the dirty page/inode
419 			 * that cannot be performed immediately.
420 			 */
421 			redirty_tail(inode, wb);
422 		}
423 	} else if (inode->i_state & I_DIRTY) {
424 		/*
425 		 * Filesystems can dirty the inode during writeback operations,
426 		 * such as delayed allocation during submission or metadata
427 		 * updates after data IO completion.
428 		 */
429 		redirty_tail(inode, wb);
430 	} else {
431 		/* The inode is clean. Remove from writeback lists. */
432 		list_del_init(&inode->i_wb_list);
433 	}
434 }
435 
436 /*
437  * Write out an inode and its dirty pages. Do not update the writeback list
438  * linkage. That is left to the caller. The caller is also responsible for
439  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
440  */
441 static int
442 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
443 {
444 	struct address_space *mapping = inode->i_mapping;
445 	long nr_to_write = wbc->nr_to_write;
446 	unsigned dirty;
447 	int ret;
448 
449 	WARN_ON(!(inode->i_state & I_SYNC));
450 
451 	ret = do_writepages(mapping, wbc);
452 
453 	/*
454 	 * Make sure to wait on the data before writing out the metadata.
455 	 * This is important for filesystems that modify metadata on data
456 	 * I/O completion.
457 	 */
458 	if (wbc->sync_mode == WB_SYNC_ALL) {
459 		int err = filemap_fdatawait(mapping);
460 		if (ret == 0)
461 			ret = err;
462 	}
463 
464 	/*
465 	 * Some filesystems may redirty the inode during the writeback
466 	 * due to delalloc, clear dirty metadata flags right before
467 	 * write_inode()
468 	 */
469 	spin_lock(&inode->i_lock);
470 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
471 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
472 		inode->i_state &= ~I_DIRTY_PAGES;
473 	dirty = inode->i_state & I_DIRTY;
474 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
475 	spin_unlock(&inode->i_lock);
476 	/* Don't write the inode if only I_DIRTY_PAGES was set */
477 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
478 		int err = write_inode(inode, wbc);
479 		if (ret == 0)
480 			ret = err;
481 	}
482 	trace_writeback_single_inode(inode, wbc, nr_to_write);
483 	return ret;
484 }
485 
486 /*
487  * Write out an inode's dirty pages. Either the caller has an active reference
488  * on the inode or the inode has I_WILL_FREE set.
489  *
490  * This function is designed to be called for writing back one inode which
491  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
492  * and does more profound writeback list handling in writeback_sb_inodes().
493  */
494 static int
495 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
496 		       struct writeback_control *wbc)
497 {
498 	int ret = 0;
499 
500 	spin_lock(&inode->i_lock);
501 	if (!atomic_read(&inode->i_count))
502 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
503 	else
504 		WARN_ON(inode->i_state & I_WILL_FREE);
505 
506 	if (inode->i_state & I_SYNC) {
507 		if (wbc->sync_mode != WB_SYNC_ALL)
508 			goto out;
509 		/*
510 		 * It's a data-integrity sync. We must wait. Since callers hold
511 		 * inode reference or inode has I_WILL_FREE set, it cannot go
512 		 * away under us.
513 		 */
514 		__inode_wait_for_writeback(inode);
515 	}
516 	WARN_ON(inode->i_state & I_SYNC);
517 	/*
518 	 * Skip inode if it is clean. We don't want to mess with writeback
519 	 * lists in this function since flusher thread may be doing for example
520 	 * sync in parallel and if we move the inode, it could get skipped. So
521 	 * here we make sure inode is on some writeback list and leave it there
522 	 * unless we have completely cleaned the inode.
523 	 */
524 	if (!(inode->i_state & I_DIRTY))
525 		goto out;
526 	inode->i_state |= I_SYNC;
527 	spin_unlock(&inode->i_lock);
528 
529 	ret = __writeback_single_inode(inode, wbc);
530 
531 	spin_lock(&wb->list_lock);
532 	spin_lock(&inode->i_lock);
533 	/*
534 	 * If inode is clean, remove it from writeback lists. Otherwise don't
535 	 * touch it. See comment above for explanation.
536 	 */
537 	if (!(inode->i_state & I_DIRTY))
538 		list_del_init(&inode->i_wb_list);
539 	spin_unlock(&wb->list_lock);
540 	inode_sync_complete(inode);
541 out:
542 	spin_unlock(&inode->i_lock);
543 	return ret;
544 }
545 
546 static long writeback_chunk_size(struct backing_dev_info *bdi,
547 				 struct wb_writeback_work *work)
548 {
549 	long pages;
550 
551 	/*
552 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
553 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
554 	 * here avoids calling into writeback_inodes_wb() more than once.
555 	 *
556 	 * The intended call sequence for WB_SYNC_ALL writeback is:
557 	 *
558 	 *      wb_writeback()
559 	 *          writeback_sb_inodes()       <== called only once
560 	 *              write_cache_pages()     <== called once for each inode
561 	 *                   (quickly) tag currently dirty pages
562 	 *                   (maybe slowly) sync all tagged pages
563 	 */
564 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
565 		pages = LONG_MAX;
566 	else {
567 		pages = min(bdi->avg_write_bandwidth / 2,
568 			    global_dirty_limit / DIRTY_SCOPE);
569 		pages = min(pages, work->nr_pages);
570 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
571 				   MIN_WRITEBACK_PAGES);
572 	}
573 
574 	return pages;
575 }
576 
577 /*
578  * Write a portion of b_io inodes which belong to @sb.
579  *
580  * Return the number of pages and/or inodes written.
581  */
582 static long writeback_sb_inodes(struct super_block *sb,
583 				struct bdi_writeback *wb,
584 				struct wb_writeback_work *work)
585 {
586 	struct writeback_control wbc = {
587 		.sync_mode		= work->sync_mode,
588 		.tagged_writepages	= work->tagged_writepages,
589 		.for_kupdate		= work->for_kupdate,
590 		.for_background		= work->for_background,
591 		.range_cyclic		= work->range_cyclic,
592 		.range_start		= 0,
593 		.range_end		= LLONG_MAX,
594 	};
595 	unsigned long start_time = jiffies;
596 	long write_chunk;
597 	long wrote = 0;  /* count both pages and inodes */
598 
599 	while (!list_empty(&wb->b_io)) {
600 		struct inode *inode = wb_inode(wb->b_io.prev);
601 
602 		if (inode->i_sb != sb) {
603 			if (work->sb) {
604 				/*
605 				 * We only want to write back data for this
606 				 * superblock, move all inodes not belonging
607 				 * to it back onto the dirty list.
608 				 */
609 				redirty_tail(inode, wb);
610 				continue;
611 			}
612 
613 			/*
614 			 * The inode belongs to a different superblock.
615 			 * Bounce back to the caller to unpin this and
616 			 * pin the next superblock.
617 			 */
618 			break;
619 		}
620 
621 		/*
622 		 * Don't bother with new inodes or inodes being freed, first
623 		 * kind does not need periodic writeout yet, and for the latter
624 		 * kind writeout is handled by the freer.
625 		 */
626 		spin_lock(&inode->i_lock);
627 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
628 			spin_unlock(&inode->i_lock);
629 			redirty_tail(inode, wb);
630 			continue;
631 		}
632 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
633 			/*
634 			 * If this inode is locked for writeback and we are not
635 			 * doing writeback-for-data-integrity, move it to
636 			 * b_more_io so that writeback can proceed with the
637 			 * other inodes on s_io.
638 			 *
639 			 * We'll have another go at writing back this inode
640 			 * when we completed a full scan of b_io.
641 			 */
642 			spin_unlock(&inode->i_lock);
643 			requeue_io(inode, wb);
644 			trace_writeback_sb_inodes_requeue(inode);
645 			continue;
646 		}
647 		spin_unlock(&wb->list_lock);
648 
649 		/*
650 		 * We already requeued the inode if it had I_SYNC set and we
651 		 * are doing WB_SYNC_NONE writeback. So this catches only the
652 		 * WB_SYNC_ALL case.
653 		 */
654 		if (inode->i_state & I_SYNC) {
655 			/* Wait for I_SYNC. This function drops i_lock... */
656 			inode_sleep_on_writeback(inode);
657 			/* Inode may be gone, start again */
658 			spin_lock(&wb->list_lock);
659 			continue;
660 		}
661 		inode->i_state |= I_SYNC;
662 		spin_unlock(&inode->i_lock);
663 
664 		write_chunk = writeback_chunk_size(wb->bdi, work);
665 		wbc.nr_to_write = write_chunk;
666 		wbc.pages_skipped = 0;
667 
668 		/*
669 		 * We use I_SYNC to pin the inode in memory. While it is set
670 		 * evict_inode() will wait so the inode cannot be freed.
671 		 */
672 		__writeback_single_inode(inode, &wbc);
673 
674 		work->nr_pages -= write_chunk - wbc.nr_to_write;
675 		wrote += write_chunk - wbc.nr_to_write;
676 		spin_lock(&wb->list_lock);
677 		spin_lock(&inode->i_lock);
678 		if (!(inode->i_state & I_DIRTY))
679 			wrote++;
680 		requeue_inode(inode, wb, &wbc);
681 		inode_sync_complete(inode);
682 		spin_unlock(&inode->i_lock);
683 		cond_resched_lock(&wb->list_lock);
684 		/*
685 		 * bail out to wb_writeback() often enough to check
686 		 * background threshold and other termination conditions.
687 		 */
688 		if (wrote) {
689 			if (time_is_before_jiffies(start_time + HZ / 10UL))
690 				break;
691 			if (work->nr_pages <= 0)
692 				break;
693 		}
694 	}
695 	return wrote;
696 }
697 
698 static long __writeback_inodes_wb(struct bdi_writeback *wb,
699 				  struct wb_writeback_work *work)
700 {
701 	unsigned long start_time = jiffies;
702 	long wrote = 0;
703 
704 	while (!list_empty(&wb->b_io)) {
705 		struct inode *inode = wb_inode(wb->b_io.prev);
706 		struct super_block *sb = inode->i_sb;
707 
708 		if (!grab_super_passive(sb)) {
709 			/*
710 			 * grab_super_passive() may fail consistently due to
711 			 * s_umount being grabbed by someone else. Don't use
712 			 * requeue_io() to avoid busy retrying the inode/sb.
713 			 */
714 			redirty_tail(inode, wb);
715 			continue;
716 		}
717 		wrote += writeback_sb_inodes(sb, wb, work);
718 		drop_super(sb);
719 
720 		/* refer to the same tests at the end of writeback_sb_inodes */
721 		if (wrote) {
722 			if (time_is_before_jiffies(start_time + HZ / 10UL))
723 				break;
724 			if (work->nr_pages <= 0)
725 				break;
726 		}
727 	}
728 	/* Leave any unwritten inodes on b_io */
729 	return wrote;
730 }
731 
732 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
733 				enum wb_reason reason)
734 {
735 	struct wb_writeback_work work = {
736 		.nr_pages	= nr_pages,
737 		.sync_mode	= WB_SYNC_NONE,
738 		.range_cyclic	= 1,
739 		.reason		= reason,
740 	};
741 
742 	spin_lock(&wb->list_lock);
743 	if (list_empty(&wb->b_io))
744 		queue_io(wb, &work);
745 	__writeback_inodes_wb(wb, &work);
746 	spin_unlock(&wb->list_lock);
747 
748 	return nr_pages - work.nr_pages;
749 }
750 
751 static bool over_bground_thresh(struct backing_dev_info *bdi)
752 {
753 	unsigned long background_thresh, dirty_thresh;
754 
755 	global_dirty_limits(&background_thresh, &dirty_thresh);
756 
757 	if (global_page_state(NR_FILE_DIRTY) +
758 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
759 		return true;
760 
761 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
762 				bdi_dirty_limit(bdi, background_thresh))
763 		return true;
764 
765 	return false;
766 }
767 
768 /*
769  * Called under wb->list_lock. If there are multiple wb per bdi,
770  * only the flusher working on the first wb should do it.
771  */
772 static void wb_update_bandwidth(struct bdi_writeback *wb,
773 				unsigned long start_time)
774 {
775 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
776 }
777 
778 /*
779  * Explicit flushing or periodic writeback of "old" data.
780  *
781  * Define "old": the first time one of an inode's pages is dirtied, we mark the
782  * dirtying-time in the inode's address_space.  So this periodic writeback code
783  * just walks the superblock inode list, writing back any inodes which are
784  * older than a specific point in time.
785  *
786  * Try to run once per dirty_writeback_interval.  But if a writeback event
787  * takes longer than a dirty_writeback_interval interval, then leave a
788  * one-second gap.
789  *
790  * older_than_this takes precedence over nr_to_write.  So we'll only write back
791  * all dirty pages if they are all attached to "old" mappings.
792  */
793 static long wb_writeback(struct bdi_writeback *wb,
794 			 struct wb_writeback_work *work)
795 {
796 	unsigned long wb_start = jiffies;
797 	long nr_pages = work->nr_pages;
798 	unsigned long oldest_jif;
799 	struct inode *inode;
800 	long progress;
801 
802 	oldest_jif = jiffies;
803 	work->older_than_this = &oldest_jif;
804 
805 	spin_lock(&wb->list_lock);
806 	for (;;) {
807 		/*
808 		 * Stop writeback when nr_pages has been consumed
809 		 */
810 		if (work->nr_pages <= 0)
811 			break;
812 
813 		/*
814 		 * Background writeout and kupdate-style writeback may
815 		 * run forever. Stop them if there is other work to do
816 		 * so that e.g. sync can proceed. They'll be restarted
817 		 * after the other works are all done.
818 		 */
819 		if ((work->for_background || work->for_kupdate) &&
820 		    !list_empty(&wb->bdi->work_list))
821 			break;
822 
823 		/*
824 		 * For background writeout, stop when we are below the
825 		 * background dirty threshold
826 		 */
827 		if (work->for_background && !over_bground_thresh(wb->bdi))
828 			break;
829 
830 		/*
831 		 * Kupdate and background works are special and we want to
832 		 * include all inodes that need writing. Livelock avoidance is
833 		 * handled by these works yielding to any other work so we are
834 		 * safe.
835 		 */
836 		if (work->for_kupdate) {
837 			oldest_jif = jiffies -
838 				msecs_to_jiffies(dirty_expire_interval * 10);
839 		} else if (work->for_background)
840 			oldest_jif = jiffies;
841 
842 		trace_writeback_start(wb->bdi, work);
843 		if (list_empty(&wb->b_io))
844 			queue_io(wb, work);
845 		if (work->sb)
846 			progress = writeback_sb_inodes(work->sb, wb, work);
847 		else
848 			progress = __writeback_inodes_wb(wb, work);
849 		trace_writeback_written(wb->bdi, work);
850 
851 		wb_update_bandwidth(wb, wb_start);
852 
853 		/*
854 		 * Did we write something? Try for more
855 		 *
856 		 * Dirty inodes are moved to b_io for writeback in batches.
857 		 * The completion of the current batch does not necessarily
858 		 * mean the overall work is done. So we keep looping as long
859 		 * as made some progress on cleaning pages or inodes.
860 		 */
861 		if (progress)
862 			continue;
863 		/*
864 		 * No more inodes for IO, bail
865 		 */
866 		if (list_empty(&wb->b_more_io))
867 			break;
868 		/*
869 		 * Nothing written. Wait for some inode to
870 		 * become available for writeback. Otherwise
871 		 * we'll just busyloop.
872 		 */
873 		if (!list_empty(&wb->b_more_io))  {
874 			trace_writeback_wait(wb->bdi, work);
875 			inode = wb_inode(wb->b_more_io.prev);
876 			spin_lock(&inode->i_lock);
877 			spin_unlock(&wb->list_lock);
878 			/* This function drops i_lock... */
879 			inode_sleep_on_writeback(inode);
880 			spin_lock(&wb->list_lock);
881 		}
882 	}
883 	spin_unlock(&wb->list_lock);
884 
885 	return nr_pages - work->nr_pages;
886 }
887 
888 /*
889  * Return the next wb_writeback_work struct that hasn't been processed yet.
890  */
891 static struct wb_writeback_work *
892 get_next_work_item(struct backing_dev_info *bdi)
893 {
894 	struct wb_writeback_work *work = NULL;
895 
896 	spin_lock_bh(&bdi->wb_lock);
897 	if (!list_empty(&bdi->work_list)) {
898 		work = list_entry(bdi->work_list.next,
899 				  struct wb_writeback_work, list);
900 		list_del_init(&work->list);
901 	}
902 	spin_unlock_bh(&bdi->wb_lock);
903 	return work;
904 }
905 
906 /*
907  * Add in the number of potentially dirty inodes, because each inode
908  * write can dirty pagecache in the underlying blockdev.
909  */
910 static unsigned long get_nr_dirty_pages(void)
911 {
912 	return global_page_state(NR_FILE_DIRTY) +
913 		global_page_state(NR_UNSTABLE_NFS) +
914 		get_nr_dirty_inodes();
915 }
916 
917 static long wb_check_background_flush(struct bdi_writeback *wb)
918 {
919 	if (over_bground_thresh(wb->bdi)) {
920 
921 		struct wb_writeback_work work = {
922 			.nr_pages	= LONG_MAX,
923 			.sync_mode	= WB_SYNC_NONE,
924 			.for_background	= 1,
925 			.range_cyclic	= 1,
926 			.reason		= WB_REASON_BACKGROUND,
927 		};
928 
929 		return wb_writeback(wb, &work);
930 	}
931 
932 	return 0;
933 }
934 
935 static long wb_check_old_data_flush(struct bdi_writeback *wb)
936 {
937 	unsigned long expired;
938 	long nr_pages;
939 
940 	/*
941 	 * When set to zero, disable periodic writeback
942 	 */
943 	if (!dirty_writeback_interval)
944 		return 0;
945 
946 	expired = wb->last_old_flush +
947 			msecs_to_jiffies(dirty_writeback_interval * 10);
948 	if (time_before(jiffies, expired))
949 		return 0;
950 
951 	wb->last_old_flush = jiffies;
952 	nr_pages = get_nr_dirty_pages();
953 
954 	if (nr_pages) {
955 		struct wb_writeback_work work = {
956 			.nr_pages	= nr_pages,
957 			.sync_mode	= WB_SYNC_NONE,
958 			.for_kupdate	= 1,
959 			.range_cyclic	= 1,
960 			.reason		= WB_REASON_PERIODIC,
961 		};
962 
963 		return wb_writeback(wb, &work);
964 	}
965 
966 	return 0;
967 }
968 
969 /*
970  * Retrieve work items and do the writeback they describe
971  */
972 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
973 {
974 	struct backing_dev_info *bdi = wb->bdi;
975 	struct wb_writeback_work *work;
976 	long wrote = 0;
977 
978 	set_bit(BDI_writeback_running, &wb->bdi->state);
979 	while ((work = get_next_work_item(bdi)) != NULL) {
980 		/*
981 		 * Override sync mode, in case we must wait for completion
982 		 * because this thread is exiting now.
983 		 */
984 		if (force_wait)
985 			work->sync_mode = WB_SYNC_ALL;
986 
987 		trace_writeback_exec(bdi, work);
988 
989 		wrote += wb_writeback(wb, work);
990 
991 		/*
992 		 * Notify the caller of completion if this is a synchronous
993 		 * work item, otherwise just free it.
994 		 */
995 		if (work->done)
996 			complete(work->done);
997 		else
998 			kfree(work);
999 	}
1000 
1001 	/*
1002 	 * Check for periodic writeback, kupdated() style
1003 	 */
1004 	wrote += wb_check_old_data_flush(wb);
1005 	wrote += wb_check_background_flush(wb);
1006 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1007 
1008 	return wrote;
1009 }
1010 
1011 /*
1012  * Handle writeback of dirty data for the device backed by this bdi. Also
1013  * wakes up periodically and does kupdated style flushing.
1014  */
1015 int bdi_writeback_thread(void *data)
1016 {
1017 	struct bdi_writeback *wb = data;
1018 	struct backing_dev_info *bdi = wb->bdi;
1019 	long pages_written;
1020 
1021 	current->flags |= PF_SWAPWRITE;
1022 	set_freezable();
1023 	wb->last_active = jiffies;
1024 
1025 	/*
1026 	 * Our parent may run at a different priority, just set us to normal
1027 	 */
1028 	set_user_nice(current, 0);
1029 
1030 	trace_writeback_thread_start(bdi);
1031 
1032 	while (!kthread_freezable_should_stop(NULL)) {
1033 		/*
1034 		 * Remove own delayed wake-up timer, since we are already awake
1035 		 * and we'll take care of the preriodic write-back.
1036 		 */
1037 		del_timer(&wb->wakeup_timer);
1038 
1039 		pages_written = wb_do_writeback(wb, 0);
1040 
1041 		trace_writeback_pages_written(pages_written);
1042 
1043 		if (pages_written)
1044 			wb->last_active = jiffies;
1045 
1046 		set_current_state(TASK_INTERRUPTIBLE);
1047 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1048 			__set_current_state(TASK_RUNNING);
1049 			continue;
1050 		}
1051 
1052 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1053 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1054 		else {
1055 			/*
1056 			 * We have nothing to do, so can go sleep without any
1057 			 * timeout and save power. When a work is queued or
1058 			 * something is made dirty - we will be woken up.
1059 			 */
1060 			schedule();
1061 		}
1062 	}
1063 
1064 	/* Flush any work that raced with us exiting */
1065 	if (!list_empty(&bdi->work_list))
1066 		wb_do_writeback(wb, 1);
1067 
1068 	trace_writeback_thread_stop(bdi);
1069 	return 0;
1070 }
1071 
1072 
1073 /*
1074  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1075  * the whole world.
1076  */
1077 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1078 {
1079 	struct backing_dev_info *bdi;
1080 
1081 	if (!nr_pages) {
1082 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1083 				global_page_state(NR_UNSTABLE_NFS);
1084 	}
1085 
1086 	rcu_read_lock();
1087 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1088 		if (!bdi_has_dirty_io(bdi))
1089 			continue;
1090 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1091 	}
1092 	rcu_read_unlock();
1093 }
1094 
1095 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1096 {
1097 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1098 		struct dentry *dentry;
1099 		const char *name = "?";
1100 
1101 		dentry = d_find_alias(inode);
1102 		if (dentry) {
1103 			spin_lock(&dentry->d_lock);
1104 			name = (const char *) dentry->d_name.name;
1105 		}
1106 		printk(KERN_DEBUG
1107 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1108 		       current->comm, task_pid_nr(current), inode->i_ino,
1109 		       name, inode->i_sb->s_id);
1110 		if (dentry) {
1111 			spin_unlock(&dentry->d_lock);
1112 			dput(dentry);
1113 		}
1114 	}
1115 }
1116 
1117 /**
1118  *	__mark_inode_dirty -	internal function
1119  *	@inode: inode to mark
1120  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1121  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1122  *  	mark_inode_dirty_sync.
1123  *
1124  * Put the inode on the super block's dirty list.
1125  *
1126  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1127  * dirty list only if it is hashed or if it refers to a blockdev.
1128  * If it was not hashed, it will never be added to the dirty list
1129  * even if it is later hashed, as it will have been marked dirty already.
1130  *
1131  * In short, make sure you hash any inodes _before_ you start marking
1132  * them dirty.
1133  *
1134  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1135  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1136  * the kernel-internal blockdev inode represents the dirtying time of the
1137  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1138  * page->mapping->host, so the page-dirtying time is recorded in the internal
1139  * blockdev inode.
1140  */
1141 void __mark_inode_dirty(struct inode *inode, int flags)
1142 {
1143 	struct super_block *sb = inode->i_sb;
1144 	struct backing_dev_info *bdi = NULL;
1145 
1146 	/*
1147 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1148 	 * dirty the inode itself
1149 	 */
1150 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1151 		if (sb->s_op->dirty_inode)
1152 			sb->s_op->dirty_inode(inode, flags);
1153 	}
1154 
1155 	/*
1156 	 * make sure that changes are seen by all cpus before we test i_state
1157 	 * -- mikulas
1158 	 */
1159 	smp_mb();
1160 
1161 	/* avoid the locking if we can */
1162 	if ((inode->i_state & flags) == flags)
1163 		return;
1164 
1165 	if (unlikely(block_dump))
1166 		block_dump___mark_inode_dirty(inode);
1167 
1168 	spin_lock(&inode->i_lock);
1169 	if ((inode->i_state & flags) != flags) {
1170 		const int was_dirty = inode->i_state & I_DIRTY;
1171 
1172 		inode->i_state |= flags;
1173 
1174 		/*
1175 		 * If the inode is being synced, just update its dirty state.
1176 		 * The unlocker will place the inode on the appropriate
1177 		 * superblock list, based upon its state.
1178 		 */
1179 		if (inode->i_state & I_SYNC)
1180 			goto out_unlock_inode;
1181 
1182 		/*
1183 		 * Only add valid (hashed) inodes to the superblock's
1184 		 * dirty list.  Add blockdev inodes as well.
1185 		 */
1186 		if (!S_ISBLK(inode->i_mode)) {
1187 			if (inode_unhashed(inode))
1188 				goto out_unlock_inode;
1189 		}
1190 		if (inode->i_state & I_FREEING)
1191 			goto out_unlock_inode;
1192 
1193 		/*
1194 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1195 		 * reposition it (that would break b_dirty time-ordering).
1196 		 */
1197 		if (!was_dirty) {
1198 			bool wakeup_bdi = false;
1199 			bdi = inode_to_bdi(inode);
1200 
1201 			if (bdi_cap_writeback_dirty(bdi)) {
1202 				WARN(!test_bit(BDI_registered, &bdi->state),
1203 				     "bdi-%s not registered\n", bdi->name);
1204 
1205 				/*
1206 				 * If this is the first dirty inode for this
1207 				 * bdi, we have to wake-up the corresponding
1208 				 * bdi thread to make sure background
1209 				 * write-back happens later.
1210 				 */
1211 				if (!wb_has_dirty_io(&bdi->wb))
1212 					wakeup_bdi = true;
1213 			}
1214 
1215 			spin_unlock(&inode->i_lock);
1216 			spin_lock(&bdi->wb.list_lock);
1217 			inode->dirtied_when = jiffies;
1218 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1219 			spin_unlock(&bdi->wb.list_lock);
1220 
1221 			if (wakeup_bdi)
1222 				bdi_wakeup_thread_delayed(bdi);
1223 			return;
1224 		}
1225 	}
1226 out_unlock_inode:
1227 	spin_unlock(&inode->i_lock);
1228 
1229 }
1230 EXPORT_SYMBOL(__mark_inode_dirty);
1231 
1232 static void wait_sb_inodes(struct super_block *sb)
1233 {
1234 	struct inode *inode, *old_inode = NULL;
1235 
1236 	/*
1237 	 * We need to be protected against the filesystem going from
1238 	 * r/o to r/w or vice versa.
1239 	 */
1240 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1241 
1242 	spin_lock(&inode_sb_list_lock);
1243 
1244 	/*
1245 	 * Data integrity sync. Must wait for all pages under writeback,
1246 	 * because there may have been pages dirtied before our sync
1247 	 * call, but which had writeout started before we write it out.
1248 	 * In which case, the inode may not be on the dirty list, but
1249 	 * we still have to wait for that writeout.
1250 	 */
1251 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1252 		struct address_space *mapping = inode->i_mapping;
1253 
1254 		spin_lock(&inode->i_lock);
1255 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1256 		    (mapping->nrpages == 0)) {
1257 			spin_unlock(&inode->i_lock);
1258 			continue;
1259 		}
1260 		__iget(inode);
1261 		spin_unlock(&inode->i_lock);
1262 		spin_unlock(&inode_sb_list_lock);
1263 
1264 		/*
1265 		 * We hold a reference to 'inode' so it couldn't have been
1266 		 * removed from s_inodes list while we dropped the
1267 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1268 		 * be holding the last reference and we cannot iput it under
1269 		 * inode_sb_list_lock. So we keep the reference and iput it
1270 		 * later.
1271 		 */
1272 		iput(old_inode);
1273 		old_inode = inode;
1274 
1275 		filemap_fdatawait(mapping);
1276 
1277 		cond_resched();
1278 
1279 		spin_lock(&inode_sb_list_lock);
1280 	}
1281 	spin_unlock(&inode_sb_list_lock);
1282 	iput(old_inode);
1283 }
1284 
1285 /**
1286  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1287  * @sb: the superblock
1288  * @nr: the number of pages to write
1289  * @reason: reason why some writeback work initiated
1290  *
1291  * Start writeback on some inodes on this super_block. No guarantees are made
1292  * on how many (if any) will be written, and this function does not wait
1293  * for IO completion of submitted IO.
1294  */
1295 void writeback_inodes_sb_nr(struct super_block *sb,
1296 			    unsigned long nr,
1297 			    enum wb_reason reason)
1298 {
1299 	DECLARE_COMPLETION_ONSTACK(done);
1300 	struct wb_writeback_work work = {
1301 		.sb			= sb,
1302 		.sync_mode		= WB_SYNC_NONE,
1303 		.tagged_writepages	= 1,
1304 		.done			= &done,
1305 		.nr_pages		= nr,
1306 		.reason			= reason,
1307 	};
1308 
1309 	if (sb->s_bdi == &noop_backing_dev_info)
1310 		return;
1311 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1312 	bdi_queue_work(sb->s_bdi, &work);
1313 	wait_for_completion(&done);
1314 }
1315 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1316 
1317 /**
1318  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1319  * @sb: the superblock
1320  * @reason: reason why some writeback work was initiated
1321  *
1322  * Start writeback on some inodes on this super_block. No guarantees are made
1323  * on how many (if any) will be written, and this function does not wait
1324  * for IO completion of submitted IO.
1325  */
1326 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1327 {
1328 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1329 }
1330 EXPORT_SYMBOL(writeback_inodes_sb);
1331 
1332 /**
1333  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1334  * @sb: the superblock
1335  * @reason: reason why some writeback work was initiated
1336  *
1337  * Invoke writeback_inodes_sb if no writeback is currently underway.
1338  * Returns 1 if writeback was started, 0 if not.
1339  */
1340 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1341 {
1342 	if (!writeback_in_progress(sb->s_bdi)) {
1343 		down_read(&sb->s_umount);
1344 		writeback_inodes_sb(sb, reason);
1345 		up_read(&sb->s_umount);
1346 		return 1;
1347 	} else
1348 		return 0;
1349 }
1350 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1351 
1352 /**
1353  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1354  * @sb: the superblock
1355  * @nr: the number of pages to write
1356  * @reason: reason why some writeback work was initiated
1357  *
1358  * Invoke writeback_inodes_sb if no writeback is currently underway.
1359  * Returns 1 if writeback was started, 0 if not.
1360  */
1361 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1362 				   unsigned long nr,
1363 				   enum wb_reason reason)
1364 {
1365 	if (!writeback_in_progress(sb->s_bdi)) {
1366 		down_read(&sb->s_umount);
1367 		writeback_inodes_sb_nr(sb, nr, reason);
1368 		up_read(&sb->s_umount);
1369 		return 1;
1370 	} else
1371 		return 0;
1372 }
1373 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1374 
1375 /**
1376  * sync_inodes_sb	-	sync sb inode pages
1377  * @sb: the superblock
1378  *
1379  * This function writes and waits on any dirty inode belonging to this
1380  * super_block.
1381  */
1382 void sync_inodes_sb(struct super_block *sb)
1383 {
1384 	DECLARE_COMPLETION_ONSTACK(done);
1385 	struct wb_writeback_work work = {
1386 		.sb		= sb,
1387 		.sync_mode	= WB_SYNC_ALL,
1388 		.nr_pages	= LONG_MAX,
1389 		.range_cyclic	= 0,
1390 		.done		= &done,
1391 		.reason		= WB_REASON_SYNC,
1392 	};
1393 
1394 	/* Nothing to do? */
1395 	if (sb->s_bdi == &noop_backing_dev_info)
1396 		return;
1397 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1398 
1399 	bdi_queue_work(sb->s_bdi, &work);
1400 	wait_for_completion(&done);
1401 
1402 	wait_sb_inodes(sb);
1403 }
1404 EXPORT_SYMBOL(sync_inodes_sb);
1405 
1406 /**
1407  * write_inode_now	-	write an inode to disk
1408  * @inode: inode to write to disk
1409  * @sync: whether the write should be synchronous or not
1410  *
1411  * This function commits an inode to disk immediately if it is dirty. This is
1412  * primarily needed by knfsd.
1413  *
1414  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1415  */
1416 int write_inode_now(struct inode *inode, int sync)
1417 {
1418 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1419 	struct writeback_control wbc = {
1420 		.nr_to_write = LONG_MAX,
1421 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1422 		.range_start = 0,
1423 		.range_end = LLONG_MAX,
1424 	};
1425 
1426 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1427 		wbc.nr_to_write = 0;
1428 
1429 	might_sleep();
1430 	return writeback_single_inode(inode, wb, &wbc);
1431 }
1432 EXPORT_SYMBOL(write_inode_now);
1433 
1434 /**
1435  * sync_inode - write an inode and its pages to disk.
1436  * @inode: the inode to sync
1437  * @wbc: controls the writeback mode
1438  *
1439  * sync_inode() will write an inode and its pages to disk.  It will also
1440  * correctly update the inode on its superblock's dirty inode lists and will
1441  * update inode->i_state.
1442  *
1443  * The caller must have a ref on the inode.
1444  */
1445 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1446 {
1447 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1448 }
1449 EXPORT_SYMBOL(sync_inode);
1450 
1451 /**
1452  * sync_inode_metadata - write an inode to disk
1453  * @inode: the inode to sync
1454  * @wait: wait for I/O to complete.
1455  *
1456  * Write an inode to disk and adjust its dirty state after completion.
1457  *
1458  * Note: only writes the actual inode, no associated data or other metadata.
1459  */
1460 int sync_inode_metadata(struct inode *inode, int wait)
1461 {
1462 	struct writeback_control wbc = {
1463 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1464 		.nr_to_write = 0, /* metadata-only */
1465 	};
1466 
1467 	return sync_inode(inode, &wbc);
1468 }
1469 EXPORT_SYMBOL(sync_inode_metadata);
1470