xref: /linux/fs/fs-writeback.c (revision f2527d8f566a45fa00ee5abd04d1c9476d4d704f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
144 static void finish_writeback_work(struct bdi_writeback *wb,
145 				  struct wb_writeback_work *work)
146 {
147 	struct wb_completion *done = work->done;
148 
149 	if (work->auto_free)
150 		kfree(work);
151 	if (done) {
152 		wait_queue_head_t *waitq = done->waitq;
153 
154 		/* @done can't be accessed after the following dec */
155 		if (atomic_dec_and_test(&done->cnt))
156 			wake_up_all(waitq);
157 	}
158 }
159 
160 static void wb_queue_work(struct bdi_writeback *wb,
161 			  struct wb_writeback_work *work)
162 {
163 	trace_writeback_queue(wb, work);
164 
165 	if (work->done)
166 		atomic_inc(&work->done->cnt);
167 
168 	spin_lock_irq(&wb->work_lock);
169 
170 	if (test_bit(WB_registered, &wb->state)) {
171 		list_add_tail(&work->list, &wb->work_list);
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	} else
174 		finish_writeback_work(wb, work);
175 
176 	spin_unlock_irq(&wb->work_lock);
177 }
178 
179 /**
180  * wb_wait_for_completion - wait for completion of bdi_writeback_works
181  * @done: target wb_completion
182  *
183  * Wait for one or more work items issued to @bdi with their ->done field
184  * set to @done, which should have been initialized with
185  * DEFINE_WB_COMPLETION().  This function returns after all such work items
186  * are completed.  Work items which are waited upon aren't freed
187  * automatically on completion.
188  */
189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191 	atomic_dec(&done->cnt);		/* put down the initial count */
192 	wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194 
195 #ifdef CONFIG_CGROUP_WRITEBACK
196 
197 /*
198  * Parameters for foreign inode detection, see wbc_detach_inode() to see
199  * how they're used.
200  *
201  * These paramters are inherently heuristical as the detection target
202  * itself is fuzzy.  All we want to do is detaching an inode from the
203  * current owner if it's being written to by some other cgroups too much.
204  *
205  * The current cgroup writeback is built on the assumption that multiple
206  * cgroups writing to the same inode concurrently is very rare and a mode
207  * of operation which isn't well supported.  As such, the goal is not
208  * taking too long when a different cgroup takes over an inode while
209  * avoiding too aggressive flip-flops from occasional foreign writes.
210  *
211  * We record, very roughly, 2s worth of IO time history and if more than
212  * half of that is foreign, trigger the switch.  The recording is quantized
213  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
214  * writes smaller than 1/8 of avg size are ignored.
215  */
216 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
220 
221 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 					/* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
225 					/* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 					/* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
229 
230 /*
231  * Maximum inodes per isw.  A specific value has been chosen to make
232  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233  */
234 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235                                 / sizeof(struct inode *))
236 
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239 
240 void __inode_attach_wb(struct inode *inode, struct page *page)
241 {
242 	struct backing_dev_info *bdi = inode_to_bdi(inode);
243 	struct bdi_writeback *wb = NULL;
244 
245 	if (inode_cgwb_enabled(inode)) {
246 		struct cgroup_subsys_state *memcg_css;
247 
248 		if (page) {
249 			memcg_css = mem_cgroup_css_from_page(page);
250 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 		} else {
252 			/* must pin memcg_css, see wb_get_create() */
253 			memcg_css = task_get_css(current, memory_cgrp_id);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 			css_put(memcg_css);
256 		}
257 	}
258 
259 	if (!wb)
260 		wb = &bdi->wb;
261 
262 	/*
263 	 * There may be multiple instances of this function racing to
264 	 * update the same inode.  Use cmpxchg() to tell the winner.
265 	 */
266 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 		wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270 
271 /**
272  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273  * @inode: inode of interest with i_lock held
274  * @wb: target bdi_writeback
275  *
276  * Remove the inode from wb's io lists and if necessarily put onto b_attached
277  * list.  Only inodes attached to cgwb's are kept on this list.
278  */
279 static void inode_cgwb_move_to_attached(struct inode *inode,
280 					struct bdi_writeback *wb)
281 {
282 	assert_spin_locked(&wb->list_lock);
283 	assert_spin_locked(&inode->i_lock);
284 	WARN_ON_ONCE(inode->i_state & I_FREEING);
285 
286 	inode->i_state &= ~I_SYNC_QUEUED;
287 	if (wb != &wb->bdi->wb)
288 		list_move(&inode->i_io_list, &wb->b_attached);
289 	else
290 		list_del_init(&inode->i_io_list);
291 	wb_io_lists_depopulated(wb);
292 }
293 
294 /**
295  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296  * @inode: inode of interest with i_lock held
297  *
298  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
299  * held on entry and is released on return.  The returned wb is guaranteed
300  * to stay @inode's associated wb until its list_lock is released.
301  */
302 static struct bdi_writeback *
303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304 	__releases(&inode->i_lock)
305 	__acquires(&wb->list_lock)
306 {
307 	while (true) {
308 		struct bdi_writeback *wb = inode_to_wb(inode);
309 
310 		/*
311 		 * inode_to_wb() association is protected by both
312 		 * @inode->i_lock and @wb->list_lock but list_lock nests
313 		 * outside i_lock.  Drop i_lock and verify that the
314 		 * association hasn't changed after acquiring list_lock.
315 		 */
316 		wb_get(wb);
317 		spin_unlock(&inode->i_lock);
318 		spin_lock(&wb->list_lock);
319 
320 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
321 		if (likely(wb == inode->i_wb)) {
322 			wb_put(wb);	/* @inode already has ref */
323 			return wb;
324 		}
325 
326 		spin_unlock(&wb->list_lock);
327 		wb_put(wb);
328 		cpu_relax();
329 		spin_lock(&inode->i_lock);
330 	}
331 }
332 
333 /**
334  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335  * @inode: inode of interest
336  *
337  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338  * on entry.
339  */
340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 	__acquires(&wb->list_lock)
342 {
343 	spin_lock(&inode->i_lock);
344 	return locked_inode_to_wb_and_lock_list(inode);
345 }
346 
347 struct inode_switch_wbs_context {
348 	struct rcu_work		work;
349 
350 	/*
351 	 * Multiple inodes can be switched at once.  The switching procedure
352 	 * consists of two parts, separated by a RCU grace period.  To make
353 	 * sure that the second part is executed for each inode gone through
354 	 * the first part, all inode pointers are placed into a NULL-terminated
355 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
356 	 * an inode could be left in a non-consistent state.
357 	 */
358 	struct bdi_writeback	*new_wb;
359 	struct inode		*inodes[];
360 };
361 
362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364 	down_write(&bdi->wb_switch_rwsem);
365 }
366 
367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369 	up_write(&bdi->wb_switch_rwsem);
370 }
371 
372 static bool inode_do_switch_wbs(struct inode *inode,
373 				struct bdi_writeback *old_wb,
374 				struct bdi_writeback *new_wb)
375 {
376 	struct address_space *mapping = inode->i_mapping;
377 	XA_STATE(xas, &mapping->i_pages, 0);
378 	struct folio *folio;
379 	bool switched = false;
380 
381 	spin_lock(&inode->i_lock);
382 	xa_lock_irq(&mapping->i_pages);
383 
384 	/*
385 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 	 * path owns the inode and we shouldn't modify ->i_io_list.
387 	 */
388 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 		goto skip_switch;
390 
391 	trace_inode_switch_wbs(inode, old_wb, new_wb);
392 
393 	/*
394 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
395 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 	 * folios actually under writeback.
397 	 */
398 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 		if (folio_test_dirty(folio)) {
400 			long nr = folio_nr_pages(folio);
401 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403 		}
404 	}
405 
406 	xas_set(&xas, 0);
407 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 		long nr = folio_nr_pages(folio);
409 		WARN_ON_ONCE(!folio_test_writeback(folio));
410 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 	}
413 
414 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 		atomic_dec(&old_wb->writeback_inodes);
416 		atomic_inc(&new_wb->writeback_inodes);
417 	}
418 
419 	wb_get(new_wb);
420 
421 	/*
422 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
423 	 * the specific list @inode was on is ignored and the @inode is put on
424 	 * ->b_dirty which is always correct including from ->b_dirty_time.
425 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
426 	 * was clean, it means it was on the b_attached list, so move it onto
427 	 * the b_attached list of @new_wb.
428 	 */
429 	if (!list_empty(&inode->i_io_list)) {
430 		inode->i_wb = new_wb;
431 
432 		if (inode->i_state & I_DIRTY_ALL) {
433 			struct inode *pos;
434 
435 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 				if (time_after_eq(inode->dirtied_when,
437 						  pos->dirtied_when))
438 					break;
439 			inode_io_list_move_locked(inode, new_wb,
440 						  pos->i_io_list.prev);
441 		} else {
442 			inode_cgwb_move_to_attached(inode, new_wb);
443 		}
444 	} else {
445 		inode->i_wb = new_wb;
446 	}
447 
448 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 	inode->i_wb_frn_winner = 0;
450 	inode->i_wb_frn_avg_time = 0;
451 	inode->i_wb_frn_history = 0;
452 	switched = true;
453 skip_switch:
454 	/*
455 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 	 */
458 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459 
460 	xa_unlock_irq(&mapping->i_pages);
461 	spin_unlock(&inode->i_lock);
462 
463 	return switched;
464 }
465 
466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468 	struct inode_switch_wbs_context *isw =
469 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 	struct bdi_writeback *new_wb = isw->new_wb;
473 	unsigned long nr_switched = 0;
474 	struct inode **inodep;
475 
476 	/*
477 	 * If @inode switches cgwb membership while sync_inodes_sb() is
478 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
479 	 */
480 	down_read(&bdi->wb_switch_rwsem);
481 
482 	/*
483 	 * By the time control reaches here, RCU grace period has passed
484 	 * since I_WB_SWITCH assertion and all wb stat update transactions
485 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 	 * synchronizing against the i_pages lock.
487 	 *
488 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 	 * gives us exclusion against all wb related operations on @inode
490 	 * including IO list manipulations and stat updates.
491 	 */
492 	if (old_wb < new_wb) {
493 		spin_lock(&old_wb->list_lock);
494 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 	} else {
496 		spin_lock(&new_wb->list_lock);
497 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 	}
499 
500 	for (inodep = isw->inodes; *inodep; inodep++) {
501 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 			nr_switched++;
504 	}
505 
506 	spin_unlock(&new_wb->list_lock);
507 	spin_unlock(&old_wb->list_lock);
508 
509 	up_read(&bdi->wb_switch_rwsem);
510 
511 	if (nr_switched) {
512 		wb_wakeup(new_wb);
513 		wb_put_many(old_wb, nr_switched);
514 	}
515 
516 	for (inodep = isw->inodes; *inodep; inodep++)
517 		iput(*inodep);
518 	wb_put(new_wb);
519 	kfree(isw);
520 	atomic_dec(&isw_nr_in_flight);
521 }
522 
523 static bool inode_prepare_wbs_switch(struct inode *inode,
524 				     struct bdi_writeback *new_wb)
525 {
526 	/*
527 	 * Paired with smp_mb() in cgroup_writeback_umount().
528 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 	 */
532 	smp_mb();
533 
534 	if (IS_DAX(inode))
535 		return false;
536 
537 	/* while holding I_WB_SWITCH, no one else can update the association */
538 	spin_lock(&inode->i_lock);
539 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 	    inode_to_wb(inode) == new_wb) {
542 		spin_unlock(&inode->i_lock);
543 		return false;
544 	}
545 	inode->i_state |= I_WB_SWITCH;
546 	__iget(inode);
547 	spin_unlock(&inode->i_lock);
548 
549 	return true;
550 }
551 
552 /**
553  * inode_switch_wbs - change the wb association of an inode
554  * @inode: target inode
555  * @new_wb_id: ID of the new wb
556  *
557  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
558  * switching is performed asynchronously and may fail silently.
559  */
560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562 	struct backing_dev_info *bdi = inode_to_bdi(inode);
563 	struct cgroup_subsys_state *memcg_css;
564 	struct inode_switch_wbs_context *isw;
565 
566 	/* noop if seems to be already in progress */
567 	if (inode->i_state & I_WB_SWITCH)
568 		return;
569 
570 	/* avoid queueing a new switch if too many are already in flight */
571 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 		return;
573 
574 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 	if (!isw)
576 		return;
577 
578 	atomic_inc(&isw_nr_in_flight);
579 
580 	/* find and pin the new wb */
581 	rcu_read_lock();
582 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 	if (memcg_css && !css_tryget(memcg_css))
584 		memcg_css = NULL;
585 	rcu_read_unlock();
586 	if (!memcg_css)
587 		goto out_free;
588 
589 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 	css_put(memcg_css);
591 	if (!isw->new_wb)
592 		goto out_free;
593 
594 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 		goto out_free;
596 
597 	isw->inodes[0] = inode;
598 
599 	/*
600 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 	 * the RCU protected stat update paths to grab the i_page
602 	 * lock so that stat transfer can synchronize against them.
603 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 	 */
605 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 	queue_rcu_work(isw_wq, &isw->work);
607 	return;
608 
609 out_free:
610 	atomic_dec(&isw_nr_in_flight);
611 	if (isw->new_wb)
612 		wb_put(isw->new_wb);
613 	kfree(isw);
614 }
615 
616 /**
617  * cleanup_offline_cgwb - detach associated inodes
618  * @wb: target wb
619  *
620  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621  * to eventually release the dying @wb.  Returns %true if not all inodes were
622  * switched and the function has to be restarted.
623  */
624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625 {
626 	struct cgroup_subsys_state *memcg_css;
627 	struct inode_switch_wbs_context *isw;
628 	struct inode *inode;
629 	int nr;
630 	bool restart = false;
631 
632 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633 		      GFP_KERNEL);
634 	if (!isw)
635 		return restart;
636 
637 	atomic_inc(&isw_nr_in_flight);
638 
639 	for (memcg_css = wb->memcg_css->parent; memcg_css;
640 	     memcg_css = memcg_css->parent) {
641 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642 		if (isw->new_wb)
643 			break;
644 	}
645 	if (unlikely(!isw->new_wb))
646 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647 
648 	nr = 0;
649 	spin_lock(&wb->list_lock);
650 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652 			continue;
653 
654 		isw->inodes[nr++] = inode;
655 
656 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657 			restart = true;
658 			break;
659 		}
660 	}
661 	spin_unlock(&wb->list_lock);
662 
663 	/* no attached inodes? bail out */
664 	if (nr == 0) {
665 		atomic_dec(&isw_nr_in_flight);
666 		wb_put(isw->new_wb);
667 		kfree(isw);
668 		return restart;
669 	}
670 
671 	/*
672 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
673 	 * the RCU protected stat update paths to grab the i_page
674 	 * lock so that stat transfer can synchronize against them.
675 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676 	 */
677 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678 	queue_rcu_work(isw_wq, &isw->work);
679 
680 	return restart;
681 }
682 
683 /**
684  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685  * @wbc: writeback_control of interest
686  * @inode: target inode
687  *
688  * @inode is locked and about to be written back under the control of @wbc.
689  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
690  * writeback completion, wbc_detach_inode() should be called.  This is used
691  * to track the cgroup writeback context.
692  */
693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694 				 struct inode *inode)
695 {
696 	if (!inode_cgwb_enabled(inode)) {
697 		spin_unlock(&inode->i_lock);
698 		return;
699 	}
700 
701 	wbc->wb = inode_to_wb(inode);
702 	wbc->inode = inode;
703 
704 	wbc->wb_id = wbc->wb->memcg_css->id;
705 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
706 	wbc->wb_tcand_id = 0;
707 	wbc->wb_bytes = 0;
708 	wbc->wb_lcand_bytes = 0;
709 	wbc->wb_tcand_bytes = 0;
710 
711 	wb_get(wbc->wb);
712 	spin_unlock(&inode->i_lock);
713 
714 	/*
715 	 * A dying wb indicates that either the blkcg associated with the
716 	 * memcg changed or the associated memcg is dying.  In the first
717 	 * case, a replacement wb should already be available and we should
718 	 * refresh the wb immediately.  In the second case, trying to
719 	 * refresh will keep failing.
720 	 */
721 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722 		inode_switch_wbs(inode, wbc->wb_id);
723 }
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725 
726 /**
727  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728  * @wbc: writeback_control of the just finished writeback
729  *
730  * To be called after a writeback attempt of an inode finishes and undoes
731  * wbc_attach_and_unlock_inode().  Can be called under any context.
732  *
733  * As concurrent write sharing of an inode is expected to be very rare and
734  * memcg only tracks page ownership on first-use basis severely confining
735  * the usefulness of such sharing, cgroup writeback tracks ownership
736  * per-inode.  While the support for concurrent write sharing of an inode
737  * is deemed unnecessary, an inode being written to by different cgroups at
738  * different points in time is a lot more common, and, more importantly,
739  * charging only by first-use can too readily lead to grossly incorrect
740  * behaviors (single foreign page can lead to gigabytes of writeback to be
741  * incorrectly attributed).
742  *
743  * To resolve this issue, cgroup writeback detects the majority dirtier of
744  * an inode and transfers the ownership to it.  To avoid unnecessary
745  * oscillation, the detection mechanism keeps track of history and gives
746  * out the switch verdict only if the foreign usage pattern is stable over
747  * a certain amount of time and/or writeback attempts.
748  *
749  * On each writeback attempt, @wbc tries to detect the majority writer
750  * using Boyer-Moore majority vote algorithm.  In addition to the byte
751  * count from the majority voting, it also counts the bytes written for the
752  * current wb and the last round's winner wb (max of last round's current
753  * wb, the winner from two rounds ago, and the last round's majority
754  * candidate).  Keeping track of the historical winner helps the algorithm
755  * to semi-reliably detect the most active writer even when it's not the
756  * absolute majority.
757  *
758  * Once the winner of the round is determined, whether the winner is
759  * foreign or not and how much IO time the round consumed is recorded in
760  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
761  * over a certain threshold, the switch verdict is given.
762  */
763 void wbc_detach_inode(struct writeback_control *wbc)
764 {
765 	struct bdi_writeback *wb = wbc->wb;
766 	struct inode *inode = wbc->inode;
767 	unsigned long avg_time, max_bytes, max_time;
768 	u16 history;
769 	int max_id;
770 
771 	if (!wb)
772 		return;
773 
774 	history = inode->i_wb_frn_history;
775 	avg_time = inode->i_wb_frn_avg_time;
776 
777 	/* pick the winner of this round */
778 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780 		max_id = wbc->wb_id;
781 		max_bytes = wbc->wb_bytes;
782 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783 		max_id = wbc->wb_lcand_id;
784 		max_bytes = wbc->wb_lcand_bytes;
785 	} else {
786 		max_id = wbc->wb_tcand_id;
787 		max_bytes = wbc->wb_tcand_bytes;
788 	}
789 
790 	/*
791 	 * Calculate the amount of IO time the winner consumed and fold it
792 	 * into the running average kept per inode.  If the consumed IO
793 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794 	 * deciding whether to switch or not.  This is to prevent one-off
795 	 * small dirtiers from skewing the verdict.
796 	 */
797 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798 				wb->avg_write_bandwidth);
799 	if (avg_time)
800 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802 	else
803 		avg_time = max_time;	/* immediate catch up on first run */
804 
805 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806 		int slots;
807 
808 		/*
809 		 * The switch verdict is reached if foreign wb's consume
810 		 * more than a certain proportion of IO time in a
811 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
812 		 * history mask where each bit represents one sixteenth of
813 		 * the period.  Determine the number of slots to shift into
814 		 * history from @max_time.
815 		 */
816 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818 		history <<= slots;
819 		if (wbc->wb_id != max_id)
820 			history |= (1U << slots) - 1;
821 
822 		if (history)
823 			trace_inode_foreign_history(inode, wbc, history);
824 
825 		/*
826 		 * Switch if the current wb isn't the consistent winner.
827 		 * If there are multiple closely competing dirtiers, the
828 		 * inode may switch across them repeatedly over time, which
829 		 * is okay.  The main goal is avoiding keeping an inode on
830 		 * the wrong wb for an extended period of time.
831 		 */
832 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
833 			inode_switch_wbs(inode, max_id);
834 	}
835 
836 	/*
837 	 * Multiple instances of this function may race to update the
838 	 * following fields but we don't mind occassional inaccuracies.
839 	 */
840 	inode->i_wb_frn_winner = max_id;
841 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842 	inode->i_wb_frn_history = history;
843 
844 	wb_put(wbc->wb);
845 	wbc->wb = NULL;
846 }
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848 
849 /**
850  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851  * @wbc: writeback_control of the writeback in progress
852  * @page: page being written out
853  * @bytes: number of bytes being written out
854  *
855  * @bytes from @page are about to written out during the writeback
856  * controlled by @wbc.  Keep the book for foreign inode detection.  See
857  * wbc_detach_inode().
858  */
859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860 			      size_t bytes)
861 {
862 	struct cgroup_subsys_state *css;
863 	int id;
864 
865 	/*
866 	 * pageout() path doesn't attach @wbc to the inode being written
867 	 * out.  This is intentional as we don't want the function to block
868 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
869 	 * regular writeback instead of writing things out itself.
870 	 */
871 	if (!wbc->wb || wbc->no_cgroup_owner)
872 		return;
873 
874 	css = mem_cgroup_css_from_page(page);
875 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
876 	if (!(css->flags & CSS_ONLINE))
877 		return;
878 
879 	id = css->id;
880 
881 	if (id == wbc->wb_id) {
882 		wbc->wb_bytes += bytes;
883 		return;
884 	}
885 
886 	if (id == wbc->wb_lcand_id)
887 		wbc->wb_lcand_bytes += bytes;
888 
889 	/* Boyer-Moore majority vote algorithm */
890 	if (!wbc->wb_tcand_bytes)
891 		wbc->wb_tcand_id = id;
892 	if (id == wbc->wb_tcand_id)
893 		wbc->wb_tcand_bytes += bytes;
894 	else
895 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
896 }
897 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
898 
899 /**
900  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
901  * @wb: target bdi_writeback to split @nr_pages to
902  * @nr_pages: number of pages to write for the whole bdi
903  *
904  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
905  * relation to the total write bandwidth of all wb's w/ dirty inodes on
906  * @wb->bdi.
907  */
908 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
909 {
910 	unsigned long this_bw = wb->avg_write_bandwidth;
911 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
912 
913 	if (nr_pages == LONG_MAX)
914 		return LONG_MAX;
915 
916 	/*
917 	 * This may be called on clean wb's and proportional distribution
918 	 * may not make sense, just use the original @nr_pages in those
919 	 * cases.  In general, we wanna err on the side of writing more.
920 	 */
921 	if (!tot_bw || this_bw >= tot_bw)
922 		return nr_pages;
923 	else
924 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
925 }
926 
927 /**
928  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
929  * @bdi: target backing_dev_info
930  * @base_work: wb_writeback_work to issue
931  * @skip_if_busy: skip wb's which already have writeback in progress
932  *
933  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
934  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
935  * distributed to the busy wbs according to each wb's proportion in the
936  * total active write bandwidth of @bdi.
937  */
938 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
939 				  struct wb_writeback_work *base_work,
940 				  bool skip_if_busy)
941 {
942 	struct bdi_writeback *last_wb = NULL;
943 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
944 					      struct bdi_writeback, bdi_node);
945 
946 	might_sleep();
947 restart:
948 	rcu_read_lock();
949 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
950 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
951 		struct wb_writeback_work fallback_work;
952 		struct wb_writeback_work *work;
953 		long nr_pages;
954 
955 		if (last_wb) {
956 			wb_put(last_wb);
957 			last_wb = NULL;
958 		}
959 
960 		/* SYNC_ALL writes out I_DIRTY_TIME too */
961 		if (!wb_has_dirty_io(wb) &&
962 		    (base_work->sync_mode == WB_SYNC_NONE ||
963 		     list_empty(&wb->b_dirty_time)))
964 			continue;
965 		if (skip_if_busy && writeback_in_progress(wb))
966 			continue;
967 
968 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
969 
970 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
971 		if (work) {
972 			*work = *base_work;
973 			work->nr_pages = nr_pages;
974 			work->auto_free = 1;
975 			wb_queue_work(wb, work);
976 			continue;
977 		}
978 
979 		/* alloc failed, execute synchronously using on-stack fallback */
980 		work = &fallback_work;
981 		*work = *base_work;
982 		work->nr_pages = nr_pages;
983 		work->auto_free = 0;
984 		work->done = &fallback_work_done;
985 
986 		wb_queue_work(wb, work);
987 
988 		/*
989 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
990 		 * continuing iteration from @wb after dropping and
991 		 * regrabbing rcu read lock.
992 		 */
993 		wb_get(wb);
994 		last_wb = wb;
995 
996 		rcu_read_unlock();
997 		wb_wait_for_completion(&fallback_work_done);
998 		goto restart;
999 	}
1000 	rcu_read_unlock();
1001 
1002 	if (last_wb)
1003 		wb_put(last_wb);
1004 }
1005 
1006 /**
1007  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1008  * @bdi_id: target bdi id
1009  * @memcg_id: target memcg css id
1010  * @reason: reason why some writeback work initiated
1011  * @done: target wb_completion
1012  *
1013  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1014  * with the specified parameters.
1015  */
1016 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1017 			   enum wb_reason reason, struct wb_completion *done)
1018 {
1019 	struct backing_dev_info *bdi;
1020 	struct cgroup_subsys_state *memcg_css;
1021 	struct bdi_writeback *wb;
1022 	struct wb_writeback_work *work;
1023 	unsigned long dirty;
1024 	int ret;
1025 
1026 	/* lookup bdi and memcg */
1027 	bdi = bdi_get_by_id(bdi_id);
1028 	if (!bdi)
1029 		return -ENOENT;
1030 
1031 	rcu_read_lock();
1032 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1033 	if (memcg_css && !css_tryget(memcg_css))
1034 		memcg_css = NULL;
1035 	rcu_read_unlock();
1036 	if (!memcg_css) {
1037 		ret = -ENOENT;
1038 		goto out_bdi_put;
1039 	}
1040 
1041 	/*
1042 	 * And find the associated wb.  If the wb isn't there already
1043 	 * there's nothing to flush, don't create one.
1044 	 */
1045 	wb = wb_get_lookup(bdi, memcg_css);
1046 	if (!wb) {
1047 		ret = -ENOENT;
1048 		goto out_css_put;
1049 	}
1050 
1051 	/*
1052 	 * The caller is attempting to write out most of
1053 	 * the currently dirty pages.  Let's take the current dirty page
1054 	 * count and inflate it by 25% which should be large enough to
1055 	 * flush out most dirty pages while avoiding getting livelocked by
1056 	 * concurrent dirtiers.
1057 	 *
1058 	 * BTW the memcg stats are flushed periodically and this is best-effort
1059 	 * estimation, so some potential error is ok.
1060 	 */
1061 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1062 	dirty = dirty * 10 / 8;
1063 
1064 	/* issue the writeback work */
1065 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1066 	if (work) {
1067 		work->nr_pages = dirty;
1068 		work->sync_mode = WB_SYNC_NONE;
1069 		work->range_cyclic = 1;
1070 		work->reason = reason;
1071 		work->done = done;
1072 		work->auto_free = 1;
1073 		wb_queue_work(wb, work);
1074 		ret = 0;
1075 	} else {
1076 		ret = -ENOMEM;
1077 	}
1078 
1079 	wb_put(wb);
1080 out_css_put:
1081 	css_put(memcg_css);
1082 out_bdi_put:
1083 	bdi_put(bdi);
1084 	return ret;
1085 }
1086 
1087 /**
1088  * cgroup_writeback_umount - flush inode wb switches for umount
1089  *
1090  * This function is called when a super_block is about to be destroyed and
1091  * flushes in-flight inode wb switches.  An inode wb switch goes through
1092  * RCU and then workqueue, so the two need to be flushed in order to ensure
1093  * that all previously scheduled switches are finished.  As wb switches are
1094  * rare occurrences and synchronize_rcu() can take a while, perform
1095  * flushing iff wb switches are in flight.
1096  */
1097 void cgroup_writeback_umount(void)
1098 {
1099 	/*
1100 	 * SB_ACTIVE should be reliably cleared before checking
1101 	 * isw_nr_in_flight, see generic_shutdown_super().
1102 	 */
1103 	smp_mb();
1104 
1105 	if (atomic_read(&isw_nr_in_flight)) {
1106 		/*
1107 		 * Use rcu_barrier() to wait for all pending callbacks to
1108 		 * ensure that all in-flight wb switches are in the workqueue.
1109 		 */
1110 		rcu_barrier();
1111 		flush_workqueue(isw_wq);
1112 	}
1113 }
1114 
1115 static int __init cgroup_writeback_init(void)
1116 {
1117 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1118 	if (!isw_wq)
1119 		return -ENOMEM;
1120 	return 0;
1121 }
1122 fs_initcall(cgroup_writeback_init);
1123 
1124 #else	/* CONFIG_CGROUP_WRITEBACK */
1125 
1126 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1127 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1128 
1129 static void inode_cgwb_move_to_attached(struct inode *inode,
1130 					struct bdi_writeback *wb)
1131 {
1132 	assert_spin_locked(&wb->list_lock);
1133 	assert_spin_locked(&inode->i_lock);
1134 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1135 
1136 	inode->i_state &= ~I_SYNC_QUEUED;
1137 	list_del_init(&inode->i_io_list);
1138 	wb_io_lists_depopulated(wb);
1139 }
1140 
1141 static struct bdi_writeback *
1142 locked_inode_to_wb_and_lock_list(struct inode *inode)
1143 	__releases(&inode->i_lock)
1144 	__acquires(&wb->list_lock)
1145 {
1146 	struct bdi_writeback *wb = inode_to_wb(inode);
1147 
1148 	spin_unlock(&inode->i_lock);
1149 	spin_lock(&wb->list_lock);
1150 	return wb;
1151 }
1152 
1153 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1154 	__acquires(&wb->list_lock)
1155 {
1156 	struct bdi_writeback *wb = inode_to_wb(inode);
1157 
1158 	spin_lock(&wb->list_lock);
1159 	return wb;
1160 }
1161 
1162 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1163 {
1164 	return nr_pages;
1165 }
1166 
1167 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1168 				  struct wb_writeback_work *base_work,
1169 				  bool skip_if_busy)
1170 {
1171 	might_sleep();
1172 
1173 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1174 		base_work->auto_free = 0;
1175 		wb_queue_work(&bdi->wb, base_work);
1176 	}
1177 }
1178 
1179 #endif	/* CONFIG_CGROUP_WRITEBACK */
1180 
1181 /*
1182  * Add in the number of potentially dirty inodes, because each inode
1183  * write can dirty pagecache in the underlying blockdev.
1184  */
1185 static unsigned long get_nr_dirty_pages(void)
1186 {
1187 	return global_node_page_state(NR_FILE_DIRTY) +
1188 		get_nr_dirty_inodes();
1189 }
1190 
1191 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1192 {
1193 	if (!wb_has_dirty_io(wb))
1194 		return;
1195 
1196 	/*
1197 	 * All callers of this function want to start writeback of all
1198 	 * dirty pages. Places like vmscan can call this at a very
1199 	 * high frequency, causing pointless allocations of tons of
1200 	 * work items and keeping the flusher threads busy retrieving
1201 	 * that work. Ensure that we only allow one of them pending and
1202 	 * inflight at the time.
1203 	 */
1204 	if (test_bit(WB_start_all, &wb->state) ||
1205 	    test_and_set_bit(WB_start_all, &wb->state))
1206 		return;
1207 
1208 	wb->start_all_reason = reason;
1209 	wb_wakeup(wb);
1210 }
1211 
1212 /**
1213  * wb_start_background_writeback - start background writeback
1214  * @wb: bdi_writback to write from
1215  *
1216  * Description:
1217  *   This makes sure WB_SYNC_NONE background writeback happens. When
1218  *   this function returns, it is only guaranteed that for given wb
1219  *   some IO is happening if we are over background dirty threshold.
1220  *   Caller need not hold sb s_umount semaphore.
1221  */
1222 void wb_start_background_writeback(struct bdi_writeback *wb)
1223 {
1224 	/*
1225 	 * We just wake up the flusher thread. It will perform background
1226 	 * writeback as soon as there is no other work to do.
1227 	 */
1228 	trace_writeback_wake_background(wb);
1229 	wb_wakeup(wb);
1230 }
1231 
1232 /*
1233  * Remove the inode from the writeback list it is on.
1234  */
1235 void inode_io_list_del(struct inode *inode)
1236 {
1237 	struct bdi_writeback *wb;
1238 
1239 	wb = inode_to_wb_and_lock_list(inode);
1240 	spin_lock(&inode->i_lock);
1241 
1242 	inode->i_state &= ~I_SYNC_QUEUED;
1243 	list_del_init(&inode->i_io_list);
1244 	wb_io_lists_depopulated(wb);
1245 
1246 	spin_unlock(&inode->i_lock);
1247 	spin_unlock(&wb->list_lock);
1248 }
1249 EXPORT_SYMBOL(inode_io_list_del);
1250 
1251 /*
1252  * mark an inode as under writeback on the sb
1253  */
1254 void sb_mark_inode_writeback(struct inode *inode)
1255 {
1256 	struct super_block *sb = inode->i_sb;
1257 	unsigned long flags;
1258 
1259 	if (list_empty(&inode->i_wb_list)) {
1260 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1261 		if (list_empty(&inode->i_wb_list)) {
1262 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1263 			trace_sb_mark_inode_writeback(inode);
1264 		}
1265 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1266 	}
1267 }
1268 
1269 /*
1270  * clear an inode as under writeback on the sb
1271  */
1272 void sb_clear_inode_writeback(struct inode *inode)
1273 {
1274 	struct super_block *sb = inode->i_sb;
1275 	unsigned long flags;
1276 
1277 	if (!list_empty(&inode->i_wb_list)) {
1278 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1279 		if (!list_empty(&inode->i_wb_list)) {
1280 			list_del_init(&inode->i_wb_list);
1281 			trace_sb_clear_inode_writeback(inode);
1282 		}
1283 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1284 	}
1285 }
1286 
1287 /*
1288  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1289  * furthest end of its superblock's dirty-inode list.
1290  *
1291  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1292  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1293  * the case then the inode must have been redirtied while it was being written
1294  * out and we don't reset its dirtied_when.
1295  */
1296 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1297 {
1298 	assert_spin_locked(&inode->i_lock);
1299 
1300 	inode->i_state &= ~I_SYNC_QUEUED;
1301 	/*
1302 	 * When the inode is being freed just don't bother with dirty list
1303 	 * tracking. Flush worker will ignore this inode anyway and it will
1304 	 * trigger assertions in inode_io_list_move_locked().
1305 	 */
1306 	if (inode->i_state & I_FREEING) {
1307 		list_del_init(&inode->i_io_list);
1308 		wb_io_lists_depopulated(wb);
1309 		return;
1310 	}
1311 	if (!list_empty(&wb->b_dirty)) {
1312 		struct inode *tail;
1313 
1314 		tail = wb_inode(wb->b_dirty.next);
1315 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1316 			inode->dirtied_when = jiffies;
1317 	}
1318 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1319 }
1320 
1321 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1322 {
1323 	spin_lock(&inode->i_lock);
1324 	redirty_tail_locked(inode, wb);
1325 	spin_unlock(&inode->i_lock);
1326 }
1327 
1328 /*
1329  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1330  */
1331 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1332 {
1333 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1334 }
1335 
1336 static void inode_sync_complete(struct inode *inode)
1337 {
1338 	inode->i_state &= ~I_SYNC;
1339 	/* If inode is clean an unused, put it into LRU now... */
1340 	inode_add_lru(inode);
1341 	/* Waiters must see I_SYNC cleared before being woken up */
1342 	smp_mb();
1343 	wake_up_bit(&inode->i_state, __I_SYNC);
1344 }
1345 
1346 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1347 {
1348 	bool ret = time_after(inode->dirtied_when, t);
1349 #ifndef CONFIG_64BIT
1350 	/*
1351 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1352 	 * It _appears_ to be in the future, but is actually in distant past.
1353 	 * This test is necessary to prevent such wrapped-around relative times
1354 	 * from permanently stopping the whole bdi writeback.
1355 	 */
1356 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1357 #endif
1358 	return ret;
1359 }
1360 
1361 /*
1362  * Move expired (dirtied before dirtied_before) dirty inodes from
1363  * @delaying_queue to @dispatch_queue.
1364  */
1365 static int move_expired_inodes(struct list_head *delaying_queue,
1366 			       struct list_head *dispatch_queue,
1367 			       unsigned long dirtied_before)
1368 {
1369 	LIST_HEAD(tmp);
1370 	struct list_head *pos, *node;
1371 	struct super_block *sb = NULL;
1372 	struct inode *inode;
1373 	int do_sb_sort = 0;
1374 	int moved = 0;
1375 
1376 	while (!list_empty(delaying_queue)) {
1377 		inode = wb_inode(delaying_queue->prev);
1378 		if (inode_dirtied_after(inode, dirtied_before))
1379 			break;
1380 		spin_lock(&inode->i_lock);
1381 		list_move(&inode->i_io_list, &tmp);
1382 		moved++;
1383 		inode->i_state |= I_SYNC_QUEUED;
1384 		spin_unlock(&inode->i_lock);
1385 		if (sb_is_blkdev_sb(inode->i_sb))
1386 			continue;
1387 		if (sb && sb != inode->i_sb)
1388 			do_sb_sort = 1;
1389 		sb = inode->i_sb;
1390 	}
1391 
1392 	/* just one sb in list, splice to dispatch_queue and we're done */
1393 	if (!do_sb_sort) {
1394 		list_splice(&tmp, dispatch_queue);
1395 		goto out;
1396 	}
1397 
1398 	/*
1399 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1400 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1401 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1402 	 * fully under our control.
1403 	 */
1404 	while (!list_empty(&tmp)) {
1405 		sb = wb_inode(tmp.prev)->i_sb;
1406 		list_for_each_prev_safe(pos, node, &tmp) {
1407 			inode = wb_inode(pos);
1408 			if (inode->i_sb == sb)
1409 				list_move(&inode->i_io_list, dispatch_queue);
1410 		}
1411 	}
1412 out:
1413 	return moved;
1414 }
1415 
1416 /*
1417  * Queue all expired dirty inodes for io, eldest first.
1418  * Before
1419  *         newly dirtied     b_dirty    b_io    b_more_io
1420  *         =============>    gf         edc     BA
1421  * After
1422  *         newly dirtied     b_dirty    b_io    b_more_io
1423  *         =============>    g          fBAedc
1424  *                                           |
1425  *                                           +--> dequeue for IO
1426  */
1427 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1428 		     unsigned long dirtied_before)
1429 {
1430 	int moved;
1431 	unsigned long time_expire_jif = dirtied_before;
1432 
1433 	assert_spin_locked(&wb->list_lock);
1434 	list_splice_init(&wb->b_more_io, &wb->b_io);
1435 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1436 	if (!work->for_sync)
1437 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1438 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1439 				     time_expire_jif);
1440 	if (moved)
1441 		wb_io_lists_populated(wb);
1442 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1443 }
1444 
1445 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1446 {
1447 	int ret;
1448 
1449 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1450 		trace_writeback_write_inode_start(inode, wbc);
1451 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1452 		trace_writeback_write_inode(inode, wbc);
1453 		return ret;
1454 	}
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Wait for writeback on an inode to complete. Called with i_lock held.
1460  * Caller must make sure inode cannot go away when we drop i_lock.
1461  */
1462 static void __inode_wait_for_writeback(struct inode *inode)
1463 	__releases(inode->i_lock)
1464 	__acquires(inode->i_lock)
1465 {
1466 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1467 	wait_queue_head_t *wqh;
1468 
1469 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1470 	while (inode->i_state & I_SYNC) {
1471 		spin_unlock(&inode->i_lock);
1472 		__wait_on_bit(wqh, &wq, bit_wait,
1473 			      TASK_UNINTERRUPTIBLE);
1474 		spin_lock(&inode->i_lock);
1475 	}
1476 }
1477 
1478 /*
1479  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1480  */
1481 void inode_wait_for_writeback(struct inode *inode)
1482 {
1483 	spin_lock(&inode->i_lock);
1484 	__inode_wait_for_writeback(inode);
1485 	spin_unlock(&inode->i_lock);
1486 }
1487 
1488 /*
1489  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1490  * held and drops it. It is aimed for callers not holding any inode reference
1491  * so once i_lock is dropped, inode can go away.
1492  */
1493 static void inode_sleep_on_writeback(struct inode *inode)
1494 	__releases(inode->i_lock)
1495 {
1496 	DEFINE_WAIT(wait);
1497 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1498 	int sleep;
1499 
1500 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1501 	sleep = inode->i_state & I_SYNC;
1502 	spin_unlock(&inode->i_lock);
1503 	if (sleep)
1504 		schedule();
1505 	finish_wait(wqh, &wait);
1506 }
1507 
1508 /*
1509  * Find proper writeback list for the inode depending on its current state and
1510  * possibly also change of its state while we were doing writeback.  Here we
1511  * handle things such as livelock prevention or fairness of writeback among
1512  * inodes. This function can be called only by flusher thread - noone else
1513  * processes all inodes in writeback lists and requeueing inodes behind flusher
1514  * thread's back can have unexpected consequences.
1515  */
1516 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1517 			  struct writeback_control *wbc)
1518 {
1519 	if (inode->i_state & I_FREEING)
1520 		return;
1521 
1522 	/*
1523 	 * Sync livelock prevention. Each inode is tagged and synced in one
1524 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1525 	 * the dirty time to prevent enqueue and sync it again.
1526 	 */
1527 	if ((inode->i_state & I_DIRTY) &&
1528 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1529 		inode->dirtied_when = jiffies;
1530 
1531 	if (wbc->pages_skipped) {
1532 		/*
1533 		 * writeback is not making progress due to locked
1534 		 * buffers. Skip this inode for now.
1535 		 */
1536 		redirty_tail_locked(inode, wb);
1537 		return;
1538 	}
1539 
1540 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1541 		/*
1542 		 * We didn't write back all the pages.  nfs_writepages()
1543 		 * sometimes bales out without doing anything.
1544 		 */
1545 		if (wbc->nr_to_write <= 0) {
1546 			/* Slice used up. Queue for next turn. */
1547 			requeue_io(inode, wb);
1548 		} else {
1549 			/*
1550 			 * Writeback blocked by something other than
1551 			 * congestion. Delay the inode for some time to
1552 			 * avoid spinning on the CPU (100% iowait)
1553 			 * retrying writeback of the dirty page/inode
1554 			 * that cannot be performed immediately.
1555 			 */
1556 			redirty_tail_locked(inode, wb);
1557 		}
1558 	} else if (inode->i_state & I_DIRTY) {
1559 		/*
1560 		 * Filesystems can dirty the inode during writeback operations,
1561 		 * such as delayed allocation during submission or metadata
1562 		 * updates after data IO completion.
1563 		 */
1564 		redirty_tail_locked(inode, wb);
1565 	} else if (inode->i_state & I_DIRTY_TIME) {
1566 		inode->dirtied_when = jiffies;
1567 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1568 		inode->i_state &= ~I_SYNC_QUEUED;
1569 	} else {
1570 		/* The inode is clean. Remove from writeback lists. */
1571 		inode_cgwb_move_to_attached(inode, wb);
1572 	}
1573 }
1574 
1575 /*
1576  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1577  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1578  *
1579  * This doesn't remove the inode from the writeback list it is on, except
1580  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1581  * expiration.  The caller is otherwise responsible for writeback list handling.
1582  *
1583  * The caller is also responsible for setting the I_SYNC flag beforehand and
1584  * calling inode_sync_complete() to clear it afterwards.
1585  */
1586 static int
1587 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1588 {
1589 	struct address_space *mapping = inode->i_mapping;
1590 	long nr_to_write = wbc->nr_to_write;
1591 	unsigned dirty;
1592 	int ret;
1593 
1594 	WARN_ON(!(inode->i_state & I_SYNC));
1595 
1596 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1597 
1598 	ret = do_writepages(mapping, wbc);
1599 
1600 	/*
1601 	 * Make sure to wait on the data before writing out the metadata.
1602 	 * This is important for filesystems that modify metadata on data
1603 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1604 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1605 	 * inode metadata is written back correctly.
1606 	 */
1607 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1608 		int err = filemap_fdatawait(mapping);
1609 		if (ret == 0)
1610 			ret = err;
1611 	}
1612 
1613 	/*
1614 	 * If the inode has dirty timestamps and we need to write them, call
1615 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1616 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1617 	 */
1618 	if ((inode->i_state & I_DIRTY_TIME) &&
1619 	    (wbc->sync_mode == WB_SYNC_ALL ||
1620 	     time_after(jiffies, inode->dirtied_time_when +
1621 			dirtytime_expire_interval * HZ))) {
1622 		trace_writeback_lazytime(inode);
1623 		mark_inode_dirty_sync(inode);
1624 	}
1625 
1626 	/*
1627 	 * Get and clear the dirty flags from i_state.  This needs to be done
1628 	 * after calling writepages because some filesystems may redirty the
1629 	 * inode during writepages due to delalloc.  It also needs to be done
1630 	 * after handling timestamp expiration, as that may dirty the inode too.
1631 	 */
1632 	spin_lock(&inode->i_lock);
1633 	dirty = inode->i_state & I_DIRTY;
1634 	inode->i_state &= ~dirty;
1635 
1636 	/*
1637 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1638 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1639 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1640 	 * inode.
1641 	 *
1642 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1643 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1644 	 * necessary.  This guarantees that either __mark_inode_dirty()
1645 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1646 	 */
1647 	smp_mb();
1648 
1649 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1650 		inode->i_state |= I_DIRTY_PAGES;
1651 	else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1652 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1653 			inode->i_state &= ~I_PINNING_FSCACHE_WB;
1654 			wbc->unpinned_fscache_wb = true;
1655 			dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1656 		}
1657 	}
1658 
1659 	spin_unlock(&inode->i_lock);
1660 
1661 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1662 	if (dirty & ~I_DIRTY_PAGES) {
1663 		int err = write_inode(inode, wbc);
1664 		if (ret == 0)
1665 			ret = err;
1666 	}
1667 	wbc->unpinned_fscache_wb = false;
1668 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1669 	return ret;
1670 }
1671 
1672 /*
1673  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1674  * the regular batched writeback done by the flusher threads in
1675  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1676  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1677  *
1678  * To prevent the inode from going away, either the caller must have a reference
1679  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1680  */
1681 static int writeback_single_inode(struct inode *inode,
1682 				  struct writeback_control *wbc)
1683 {
1684 	struct bdi_writeback *wb;
1685 	int ret = 0;
1686 
1687 	spin_lock(&inode->i_lock);
1688 	if (!atomic_read(&inode->i_count))
1689 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1690 	else
1691 		WARN_ON(inode->i_state & I_WILL_FREE);
1692 
1693 	if (inode->i_state & I_SYNC) {
1694 		/*
1695 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1696 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1697 		 * must wait for the existing writeback to complete, then do
1698 		 * writeback again if there's anything left.
1699 		 */
1700 		if (wbc->sync_mode != WB_SYNC_ALL)
1701 			goto out;
1702 		__inode_wait_for_writeback(inode);
1703 	}
1704 	WARN_ON(inode->i_state & I_SYNC);
1705 	/*
1706 	 * If the inode is already fully clean, then there's nothing to do.
1707 	 *
1708 	 * For data-integrity syncs we also need to check whether any pages are
1709 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1710 	 * there are any such pages, we'll need to wait for them.
1711 	 */
1712 	if (!(inode->i_state & I_DIRTY_ALL) &&
1713 	    (wbc->sync_mode != WB_SYNC_ALL ||
1714 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1715 		goto out;
1716 	inode->i_state |= I_SYNC;
1717 	wbc_attach_and_unlock_inode(wbc, inode);
1718 
1719 	ret = __writeback_single_inode(inode, wbc);
1720 
1721 	wbc_detach_inode(wbc);
1722 
1723 	wb = inode_to_wb_and_lock_list(inode);
1724 	spin_lock(&inode->i_lock);
1725 	/*
1726 	 * If the inode is freeing, its i_io_list shoudn't be updated
1727 	 * as it can be finally deleted at this moment.
1728 	 */
1729 	if (!(inode->i_state & I_FREEING)) {
1730 		/*
1731 		 * If the inode is now fully clean, then it can be safely
1732 		 * removed from its writeback list (if any). Otherwise the
1733 		 * flusher threads are responsible for the writeback lists.
1734 		 */
1735 		if (!(inode->i_state & I_DIRTY_ALL))
1736 			inode_cgwb_move_to_attached(inode, wb);
1737 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1738 			if ((inode->i_state & I_DIRTY))
1739 				redirty_tail_locked(inode, wb);
1740 			else if (inode->i_state & I_DIRTY_TIME) {
1741 				inode->dirtied_when = jiffies;
1742 				inode_io_list_move_locked(inode,
1743 							  wb,
1744 							  &wb->b_dirty_time);
1745 			}
1746 		}
1747 	}
1748 
1749 	spin_unlock(&wb->list_lock);
1750 	inode_sync_complete(inode);
1751 out:
1752 	spin_unlock(&inode->i_lock);
1753 	return ret;
1754 }
1755 
1756 static long writeback_chunk_size(struct bdi_writeback *wb,
1757 				 struct wb_writeback_work *work)
1758 {
1759 	long pages;
1760 
1761 	/*
1762 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1763 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1764 	 * here avoids calling into writeback_inodes_wb() more than once.
1765 	 *
1766 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1767 	 *
1768 	 *      wb_writeback()
1769 	 *          writeback_sb_inodes()       <== called only once
1770 	 *              write_cache_pages()     <== called once for each inode
1771 	 *                   (quickly) tag currently dirty pages
1772 	 *                   (maybe slowly) sync all tagged pages
1773 	 */
1774 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1775 		pages = LONG_MAX;
1776 	else {
1777 		pages = min(wb->avg_write_bandwidth / 2,
1778 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1779 		pages = min(pages, work->nr_pages);
1780 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1781 				   MIN_WRITEBACK_PAGES);
1782 	}
1783 
1784 	return pages;
1785 }
1786 
1787 /*
1788  * Write a portion of b_io inodes which belong to @sb.
1789  *
1790  * Return the number of pages and/or inodes written.
1791  *
1792  * NOTE! This is called with wb->list_lock held, and will
1793  * unlock and relock that for each inode it ends up doing
1794  * IO for.
1795  */
1796 static long writeback_sb_inodes(struct super_block *sb,
1797 				struct bdi_writeback *wb,
1798 				struct wb_writeback_work *work)
1799 {
1800 	struct writeback_control wbc = {
1801 		.sync_mode		= work->sync_mode,
1802 		.tagged_writepages	= work->tagged_writepages,
1803 		.for_kupdate		= work->for_kupdate,
1804 		.for_background		= work->for_background,
1805 		.for_sync		= work->for_sync,
1806 		.range_cyclic		= work->range_cyclic,
1807 		.range_start		= 0,
1808 		.range_end		= LLONG_MAX,
1809 	};
1810 	unsigned long start_time = jiffies;
1811 	long write_chunk;
1812 	long total_wrote = 0;  /* count both pages and inodes */
1813 
1814 	while (!list_empty(&wb->b_io)) {
1815 		struct inode *inode = wb_inode(wb->b_io.prev);
1816 		struct bdi_writeback *tmp_wb;
1817 		long wrote;
1818 
1819 		if (inode->i_sb != sb) {
1820 			if (work->sb) {
1821 				/*
1822 				 * We only want to write back data for this
1823 				 * superblock, move all inodes not belonging
1824 				 * to it back onto the dirty list.
1825 				 */
1826 				redirty_tail(inode, wb);
1827 				continue;
1828 			}
1829 
1830 			/*
1831 			 * The inode belongs to a different superblock.
1832 			 * Bounce back to the caller to unpin this and
1833 			 * pin the next superblock.
1834 			 */
1835 			break;
1836 		}
1837 
1838 		/*
1839 		 * Don't bother with new inodes or inodes being freed, first
1840 		 * kind does not need periodic writeout yet, and for the latter
1841 		 * kind writeout is handled by the freer.
1842 		 */
1843 		spin_lock(&inode->i_lock);
1844 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1845 			redirty_tail_locked(inode, wb);
1846 			spin_unlock(&inode->i_lock);
1847 			continue;
1848 		}
1849 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1850 			/*
1851 			 * If this inode is locked for writeback and we are not
1852 			 * doing writeback-for-data-integrity, move it to
1853 			 * b_more_io so that writeback can proceed with the
1854 			 * other inodes on s_io.
1855 			 *
1856 			 * We'll have another go at writing back this inode
1857 			 * when we completed a full scan of b_io.
1858 			 */
1859 			requeue_io(inode, wb);
1860 			spin_unlock(&inode->i_lock);
1861 			trace_writeback_sb_inodes_requeue(inode);
1862 			continue;
1863 		}
1864 		spin_unlock(&wb->list_lock);
1865 
1866 		/*
1867 		 * We already requeued the inode if it had I_SYNC set and we
1868 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1869 		 * WB_SYNC_ALL case.
1870 		 */
1871 		if (inode->i_state & I_SYNC) {
1872 			/* Wait for I_SYNC. This function drops i_lock... */
1873 			inode_sleep_on_writeback(inode);
1874 			/* Inode may be gone, start again */
1875 			spin_lock(&wb->list_lock);
1876 			continue;
1877 		}
1878 		inode->i_state |= I_SYNC;
1879 		wbc_attach_and_unlock_inode(&wbc, inode);
1880 
1881 		write_chunk = writeback_chunk_size(wb, work);
1882 		wbc.nr_to_write = write_chunk;
1883 		wbc.pages_skipped = 0;
1884 
1885 		/*
1886 		 * We use I_SYNC to pin the inode in memory. While it is set
1887 		 * evict_inode() will wait so the inode cannot be freed.
1888 		 */
1889 		__writeback_single_inode(inode, &wbc);
1890 
1891 		wbc_detach_inode(&wbc);
1892 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1893 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1894 		wrote = wrote < 0 ? 0 : wrote;
1895 		total_wrote += wrote;
1896 
1897 		if (need_resched()) {
1898 			/*
1899 			 * We're trying to balance between building up a nice
1900 			 * long list of IOs to improve our merge rate, and
1901 			 * getting those IOs out quickly for anyone throttling
1902 			 * in balance_dirty_pages().  cond_resched() doesn't
1903 			 * unplug, so get our IOs out the door before we
1904 			 * give up the CPU.
1905 			 */
1906 			blk_flush_plug(current->plug, false);
1907 			cond_resched();
1908 		}
1909 
1910 		/*
1911 		 * Requeue @inode if still dirty.  Be careful as @inode may
1912 		 * have been switched to another wb in the meantime.
1913 		 */
1914 		tmp_wb = inode_to_wb_and_lock_list(inode);
1915 		spin_lock(&inode->i_lock);
1916 		if (!(inode->i_state & I_DIRTY_ALL))
1917 			total_wrote++;
1918 		requeue_inode(inode, tmp_wb, &wbc);
1919 		inode_sync_complete(inode);
1920 		spin_unlock(&inode->i_lock);
1921 
1922 		if (unlikely(tmp_wb != wb)) {
1923 			spin_unlock(&tmp_wb->list_lock);
1924 			spin_lock(&wb->list_lock);
1925 		}
1926 
1927 		/*
1928 		 * bail out to wb_writeback() often enough to check
1929 		 * background threshold and other termination conditions.
1930 		 */
1931 		if (total_wrote) {
1932 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1933 				break;
1934 			if (work->nr_pages <= 0)
1935 				break;
1936 		}
1937 	}
1938 	return total_wrote;
1939 }
1940 
1941 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1942 				  struct wb_writeback_work *work)
1943 {
1944 	unsigned long start_time = jiffies;
1945 	long wrote = 0;
1946 
1947 	while (!list_empty(&wb->b_io)) {
1948 		struct inode *inode = wb_inode(wb->b_io.prev);
1949 		struct super_block *sb = inode->i_sb;
1950 
1951 		if (!trylock_super(sb)) {
1952 			/*
1953 			 * trylock_super() may fail consistently due to
1954 			 * s_umount being grabbed by someone else. Don't use
1955 			 * requeue_io() to avoid busy retrying the inode/sb.
1956 			 */
1957 			redirty_tail(inode, wb);
1958 			continue;
1959 		}
1960 		wrote += writeback_sb_inodes(sb, wb, work);
1961 		up_read(&sb->s_umount);
1962 
1963 		/* refer to the same tests at the end of writeback_sb_inodes */
1964 		if (wrote) {
1965 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1966 				break;
1967 			if (work->nr_pages <= 0)
1968 				break;
1969 		}
1970 	}
1971 	/* Leave any unwritten inodes on b_io */
1972 	return wrote;
1973 }
1974 
1975 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1976 				enum wb_reason reason)
1977 {
1978 	struct wb_writeback_work work = {
1979 		.nr_pages	= nr_pages,
1980 		.sync_mode	= WB_SYNC_NONE,
1981 		.range_cyclic	= 1,
1982 		.reason		= reason,
1983 	};
1984 	struct blk_plug plug;
1985 
1986 	blk_start_plug(&plug);
1987 	spin_lock(&wb->list_lock);
1988 	if (list_empty(&wb->b_io))
1989 		queue_io(wb, &work, jiffies);
1990 	__writeback_inodes_wb(wb, &work);
1991 	spin_unlock(&wb->list_lock);
1992 	blk_finish_plug(&plug);
1993 
1994 	return nr_pages - work.nr_pages;
1995 }
1996 
1997 /*
1998  * Explicit flushing or periodic writeback of "old" data.
1999  *
2000  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2001  * dirtying-time in the inode's address_space.  So this periodic writeback code
2002  * just walks the superblock inode list, writing back any inodes which are
2003  * older than a specific point in time.
2004  *
2005  * Try to run once per dirty_writeback_interval.  But if a writeback event
2006  * takes longer than a dirty_writeback_interval interval, then leave a
2007  * one-second gap.
2008  *
2009  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2010  * all dirty pages if they are all attached to "old" mappings.
2011  */
2012 static long wb_writeback(struct bdi_writeback *wb,
2013 			 struct wb_writeback_work *work)
2014 {
2015 	long nr_pages = work->nr_pages;
2016 	unsigned long dirtied_before = jiffies;
2017 	struct inode *inode;
2018 	long progress;
2019 	struct blk_plug plug;
2020 
2021 	blk_start_plug(&plug);
2022 	spin_lock(&wb->list_lock);
2023 	for (;;) {
2024 		/*
2025 		 * Stop writeback when nr_pages has been consumed
2026 		 */
2027 		if (work->nr_pages <= 0)
2028 			break;
2029 
2030 		/*
2031 		 * Background writeout and kupdate-style writeback may
2032 		 * run forever. Stop them if there is other work to do
2033 		 * so that e.g. sync can proceed. They'll be restarted
2034 		 * after the other works are all done.
2035 		 */
2036 		if ((work->for_background || work->for_kupdate) &&
2037 		    !list_empty(&wb->work_list))
2038 			break;
2039 
2040 		/*
2041 		 * For background writeout, stop when we are below the
2042 		 * background dirty threshold
2043 		 */
2044 		if (work->for_background && !wb_over_bg_thresh(wb))
2045 			break;
2046 
2047 		/*
2048 		 * Kupdate and background works are special and we want to
2049 		 * include all inodes that need writing. Livelock avoidance is
2050 		 * handled by these works yielding to any other work so we are
2051 		 * safe.
2052 		 */
2053 		if (work->for_kupdate) {
2054 			dirtied_before = jiffies -
2055 				msecs_to_jiffies(dirty_expire_interval * 10);
2056 		} else if (work->for_background)
2057 			dirtied_before = jiffies;
2058 
2059 		trace_writeback_start(wb, work);
2060 		if (list_empty(&wb->b_io))
2061 			queue_io(wb, work, dirtied_before);
2062 		if (work->sb)
2063 			progress = writeback_sb_inodes(work->sb, wb, work);
2064 		else
2065 			progress = __writeback_inodes_wb(wb, work);
2066 		trace_writeback_written(wb, work);
2067 
2068 		/*
2069 		 * Did we write something? Try for more
2070 		 *
2071 		 * Dirty inodes are moved to b_io for writeback in batches.
2072 		 * The completion of the current batch does not necessarily
2073 		 * mean the overall work is done. So we keep looping as long
2074 		 * as made some progress on cleaning pages or inodes.
2075 		 */
2076 		if (progress)
2077 			continue;
2078 		/*
2079 		 * No more inodes for IO, bail
2080 		 */
2081 		if (list_empty(&wb->b_more_io))
2082 			break;
2083 		/*
2084 		 * Nothing written. Wait for some inode to
2085 		 * become available for writeback. Otherwise
2086 		 * we'll just busyloop.
2087 		 */
2088 		trace_writeback_wait(wb, work);
2089 		inode = wb_inode(wb->b_more_io.prev);
2090 		spin_lock(&inode->i_lock);
2091 		spin_unlock(&wb->list_lock);
2092 		/* This function drops i_lock... */
2093 		inode_sleep_on_writeback(inode);
2094 		spin_lock(&wb->list_lock);
2095 	}
2096 	spin_unlock(&wb->list_lock);
2097 	blk_finish_plug(&plug);
2098 
2099 	return nr_pages - work->nr_pages;
2100 }
2101 
2102 /*
2103  * Return the next wb_writeback_work struct that hasn't been processed yet.
2104  */
2105 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2106 {
2107 	struct wb_writeback_work *work = NULL;
2108 
2109 	spin_lock_irq(&wb->work_lock);
2110 	if (!list_empty(&wb->work_list)) {
2111 		work = list_entry(wb->work_list.next,
2112 				  struct wb_writeback_work, list);
2113 		list_del_init(&work->list);
2114 	}
2115 	spin_unlock_irq(&wb->work_lock);
2116 	return work;
2117 }
2118 
2119 static long wb_check_background_flush(struct bdi_writeback *wb)
2120 {
2121 	if (wb_over_bg_thresh(wb)) {
2122 
2123 		struct wb_writeback_work work = {
2124 			.nr_pages	= LONG_MAX,
2125 			.sync_mode	= WB_SYNC_NONE,
2126 			.for_background	= 1,
2127 			.range_cyclic	= 1,
2128 			.reason		= WB_REASON_BACKGROUND,
2129 		};
2130 
2131 		return wb_writeback(wb, &work);
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2138 {
2139 	unsigned long expired;
2140 	long nr_pages;
2141 
2142 	/*
2143 	 * When set to zero, disable periodic writeback
2144 	 */
2145 	if (!dirty_writeback_interval)
2146 		return 0;
2147 
2148 	expired = wb->last_old_flush +
2149 			msecs_to_jiffies(dirty_writeback_interval * 10);
2150 	if (time_before(jiffies, expired))
2151 		return 0;
2152 
2153 	wb->last_old_flush = jiffies;
2154 	nr_pages = get_nr_dirty_pages();
2155 
2156 	if (nr_pages) {
2157 		struct wb_writeback_work work = {
2158 			.nr_pages	= nr_pages,
2159 			.sync_mode	= WB_SYNC_NONE,
2160 			.for_kupdate	= 1,
2161 			.range_cyclic	= 1,
2162 			.reason		= WB_REASON_PERIODIC,
2163 		};
2164 
2165 		return wb_writeback(wb, &work);
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static long wb_check_start_all(struct bdi_writeback *wb)
2172 {
2173 	long nr_pages;
2174 
2175 	if (!test_bit(WB_start_all, &wb->state))
2176 		return 0;
2177 
2178 	nr_pages = get_nr_dirty_pages();
2179 	if (nr_pages) {
2180 		struct wb_writeback_work work = {
2181 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2182 			.sync_mode	= WB_SYNC_NONE,
2183 			.range_cyclic	= 1,
2184 			.reason		= wb->start_all_reason,
2185 		};
2186 
2187 		nr_pages = wb_writeback(wb, &work);
2188 	}
2189 
2190 	clear_bit(WB_start_all, &wb->state);
2191 	return nr_pages;
2192 }
2193 
2194 
2195 /*
2196  * Retrieve work items and do the writeback they describe
2197  */
2198 static long wb_do_writeback(struct bdi_writeback *wb)
2199 {
2200 	struct wb_writeback_work *work;
2201 	long wrote = 0;
2202 
2203 	set_bit(WB_writeback_running, &wb->state);
2204 	while ((work = get_next_work_item(wb)) != NULL) {
2205 		trace_writeback_exec(wb, work);
2206 		wrote += wb_writeback(wb, work);
2207 		finish_writeback_work(wb, work);
2208 	}
2209 
2210 	/*
2211 	 * Check for a flush-everything request
2212 	 */
2213 	wrote += wb_check_start_all(wb);
2214 
2215 	/*
2216 	 * Check for periodic writeback, kupdated() style
2217 	 */
2218 	wrote += wb_check_old_data_flush(wb);
2219 	wrote += wb_check_background_flush(wb);
2220 	clear_bit(WB_writeback_running, &wb->state);
2221 
2222 	return wrote;
2223 }
2224 
2225 /*
2226  * Handle writeback of dirty data for the device backed by this bdi. Also
2227  * reschedules periodically and does kupdated style flushing.
2228  */
2229 void wb_workfn(struct work_struct *work)
2230 {
2231 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2232 						struct bdi_writeback, dwork);
2233 	long pages_written;
2234 
2235 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2236 
2237 	if (likely(!current_is_workqueue_rescuer() ||
2238 		   !test_bit(WB_registered, &wb->state))) {
2239 		/*
2240 		 * The normal path.  Keep writing back @wb until its
2241 		 * work_list is empty.  Note that this path is also taken
2242 		 * if @wb is shutting down even when we're running off the
2243 		 * rescuer as work_list needs to be drained.
2244 		 */
2245 		do {
2246 			pages_written = wb_do_writeback(wb);
2247 			trace_writeback_pages_written(pages_written);
2248 		} while (!list_empty(&wb->work_list));
2249 	} else {
2250 		/*
2251 		 * bdi_wq can't get enough workers and we're running off
2252 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2253 		 * enough for efficient IO.
2254 		 */
2255 		pages_written = writeback_inodes_wb(wb, 1024,
2256 						    WB_REASON_FORKER_THREAD);
2257 		trace_writeback_pages_written(pages_written);
2258 	}
2259 
2260 	if (!list_empty(&wb->work_list))
2261 		wb_wakeup(wb);
2262 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2263 		wb_wakeup_delayed(wb);
2264 }
2265 
2266 /*
2267  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2268  * write back the whole world.
2269  */
2270 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2271 					 enum wb_reason reason)
2272 {
2273 	struct bdi_writeback *wb;
2274 
2275 	if (!bdi_has_dirty_io(bdi))
2276 		return;
2277 
2278 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2279 		wb_start_writeback(wb, reason);
2280 }
2281 
2282 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2283 				enum wb_reason reason)
2284 {
2285 	rcu_read_lock();
2286 	__wakeup_flusher_threads_bdi(bdi, reason);
2287 	rcu_read_unlock();
2288 }
2289 
2290 /*
2291  * Wakeup the flusher threads to start writeback of all currently dirty pages
2292  */
2293 void wakeup_flusher_threads(enum wb_reason reason)
2294 {
2295 	struct backing_dev_info *bdi;
2296 
2297 	/*
2298 	 * If we are expecting writeback progress we must submit plugged IO.
2299 	 */
2300 	blk_flush_plug(current->plug, true);
2301 
2302 	rcu_read_lock();
2303 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2304 		__wakeup_flusher_threads_bdi(bdi, reason);
2305 	rcu_read_unlock();
2306 }
2307 
2308 /*
2309  * Wake up bdi's periodically to make sure dirtytime inodes gets
2310  * written back periodically.  We deliberately do *not* check the
2311  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2312  * kernel to be constantly waking up once there are any dirtytime
2313  * inodes on the system.  So instead we define a separate delayed work
2314  * function which gets called much more rarely.  (By default, only
2315  * once every 12 hours.)
2316  *
2317  * If there is any other write activity going on in the file system,
2318  * this function won't be necessary.  But if the only thing that has
2319  * happened on the file system is a dirtytime inode caused by an atime
2320  * update, we need this infrastructure below to make sure that inode
2321  * eventually gets pushed out to disk.
2322  */
2323 static void wakeup_dirtytime_writeback(struct work_struct *w);
2324 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2325 
2326 static void wakeup_dirtytime_writeback(struct work_struct *w)
2327 {
2328 	struct backing_dev_info *bdi;
2329 
2330 	rcu_read_lock();
2331 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2332 		struct bdi_writeback *wb;
2333 
2334 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2335 			if (!list_empty(&wb->b_dirty_time))
2336 				wb_wakeup(wb);
2337 	}
2338 	rcu_read_unlock();
2339 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2340 }
2341 
2342 static int __init start_dirtytime_writeback(void)
2343 {
2344 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2345 	return 0;
2346 }
2347 __initcall(start_dirtytime_writeback);
2348 
2349 int dirtytime_interval_handler(struct ctl_table *table, int write,
2350 			       void *buffer, size_t *lenp, loff_t *ppos)
2351 {
2352 	int ret;
2353 
2354 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2355 	if (ret == 0 && write)
2356 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2357 	return ret;
2358 }
2359 
2360 /**
2361  * __mark_inode_dirty -	internal function to mark an inode dirty
2362  *
2363  * @inode: inode to mark
2364  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2365  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2366  *	   with I_DIRTY_PAGES.
2367  *
2368  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2369  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2370  *
2371  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2372  * instead of calling this directly.
2373  *
2374  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2375  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2376  * even if they are later hashed, as they will have been marked dirty already.
2377  *
2378  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2379  *
2380  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2381  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2382  * the kernel-internal blockdev inode represents the dirtying time of the
2383  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2384  * page->mapping->host, so the page-dirtying time is recorded in the internal
2385  * blockdev inode.
2386  */
2387 void __mark_inode_dirty(struct inode *inode, int flags)
2388 {
2389 	struct super_block *sb = inode->i_sb;
2390 	int dirtytime = 0;
2391 	struct bdi_writeback *wb = NULL;
2392 
2393 	trace_writeback_mark_inode_dirty(inode, flags);
2394 
2395 	if (flags & I_DIRTY_INODE) {
2396 		/*
2397 		 * Inode timestamp update will piggback on this dirtying.
2398 		 * We tell ->dirty_inode callback that timestamps need to
2399 		 * be updated by setting I_DIRTY_TIME in flags.
2400 		 */
2401 		if (inode->i_state & I_DIRTY_TIME) {
2402 			spin_lock(&inode->i_lock);
2403 			if (inode->i_state & I_DIRTY_TIME) {
2404 				inode->i_state &= ~I_DIRTY_TIME;
2405 				flags |= I_DIRTY_TIME;
2406 			}
2407 			spin_unlock(&inode->i_lock);
2408 		}
2409 
2410 		/*
2411 		 * Notify the filesystem about the inode being dirtied, so that
2412 		 * (if needed) it can update on-disk fields and journal the
2413 		 * inode.  This is only needed when the inode itself is being
2414 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2415 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2416 		 */
2417 		trace_writeback_dirty_inode_start(inode, flags);
2418 		if (sb->s_op->dirty_inode)
2419 			sb->s_op->dirty_inode(inode,
2420 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2421 		trace_writeback_dirty_inode(inode, flags);
2422 
2423 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2424 		flags &= ~I_DIRTY_TIME;
2425 	} else {
2426 		/*
2427 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2428 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2429 		 * in one call to __mark_inode_dirty().)
2430 		 */
2431 		dirtytime = flags & I_DIRTY_TIME;
2432 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2433 	}
2434 
2435 	/*
2436 	 * Paired with smp_mb() in __writeback_single_inode() for the
2437 	 * following lockless i_state test.  See there for details.
2438 	 */
2439 	smp_mb();
2440 
2441 	if ((inode->i_state & flags) == flags)
2442 		return;
2443 
2444 	spin_lock(&inode->i_lock);
2445 	if ((inode->i_state & flags) != flags) {
2446 		const int was_dirty = inode->i_state & I_DIRTY;
2447 
2448 		inode_attach_wb(inode, NULL);
2449 
2450 		inode->i_state |= flags;
2451 
2452 		/*
2453 		 * Grab inode's wb early because it requires dropping i_lock and we
2454 		 * need to make sure following checks happen atomically with dirty
2455 		 * list handling so that we don't move inodes under flush worker's
2456 		 * hands.
2457 		 */
2458 		if (!was_dirty) {
2459 			wb = locked_inode_to_wb_and_lock_list(inode);
2460 			spin_lock(&inode->i_lock);
2461 		}
2462 
2463 		/*
2464 		 * If the inode is queued for writeback by flush worker, just
2465 		 * update its dirty state. Once the flush worker is done with
2466 		 * the inode it will place it on the appropriate superblock
2467 		 * list, based upon its state.
2468 		 */
2469 		if (inode->i_state & I_SYNC_QUEUED)
2470 			goto out_unlock;
2471 
2472 		/*
2473 		 * Only add valid (hashed) inodes to the superblock's
2474 		 * dirty list.  Add blockdev inodes as well.
2475 		 */
2476 		if (!S_ISBLK(inode->i_mode)) {
2477 			if (inode_unhashed(inode))
2478 				goto out_unlock;
2479 		}
2480 		if (inode->i_state & I_FREEING)
2481 			goto out_unlock;
2482 
2483 		/*
2484 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2485 		 * reposition it (that would break b_dirty time-ordering).
2486 		 */
2487 		if (!was_dirty) {
2488 			struct list_head *dirty_list;
2489 			bool wakeup_bdi = false;
2490 
2491 			inode->dirtied_when = jiffies;
2492 			if (dirtytime)
2493 				inode->dirtied_time_when = jiffies;
2494 
2495 			if (inode->i_state & I_DIRTY)
2496 				dirty_list = &wb->b_dirty;
2497 			else
2498 				dirty_list = &wb->b_dirty_time;
2499 
2500 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2501 							       dirty_list);
2502 
2503 			spin_unlock(&wb->list_lock);
2504 			spin_unlock(&inode->i_lock);
2505 			trace_writeback_dirty_inode_enqueue(inode);
2506 
2507 			/*
2508 			 * If this is the first dirty inode for this bdi,
2509 			 * we have to wake-up the corresponding bdi thread
2510 			 * to make sure background write-back happens
2511 			 * later.
2512 			 */
2513 			if (wakeup_bdi &&
2514 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2515 				wb_wakeup_delayed(wb);
2516 			return;
2517 		}
2518 	}
2519 out_unlock:
2520 	if (wb)
2521 		spin_unlock(&wb->list_lock);
2522 	spin_unlock(&inode->i_lock);
2523 }
2524 EXPORT_SYMBOL(__mark_inode_dirty);
2525 
2526 /*
2527  * The @s_sync_lock is used to serialise concurrent sync operations
2528  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2529  * Concurrent callers will block on the s_sync_lock rather than doing contending
2530  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2531  * has been issued up to the time this function is enter is guaranteed to be
2532  * completed by the time we have gained the lock and waited for all IO that is
2533  * in progress regardless of the order callers are granted the lock.
2534  */
2535 static void wait_sb_inodes(struct super_block *sb)
2536 {
2537 	LIST_HEAD(sync_list);
2538 
2539 	/*
2540 	 * We need to be protected against the filesystem going from
2541 	 * r/o to r/w or vice versa.
2542 	 */
2543 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2544 
2545 	mutex_lock(&sb->s_sync_lock);
2546 
2547 	/*
2548 	 * Splice the writeback list onto a temporary list to avoid waiting on
2549 	 * inodes that have started writeback after this point.
2550 	 *
2551 	 * Use rcu_read_lock() to keep the inodes around until we have a
2552 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2553 	 * the local list because inodes can be dropped from either by writeback
2554 	 * completion.
2555 	 */
2556 	rcu_read_lock();
2557 	spin_lock_irq(&sb->s_inode_wblist_lock);
2558 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2559 
2560 	/*
2561 	 * Data integrity sync. Must wait for all pages under writeback, because
2562 	 * there may have been pages dirtied before our sync call, but which had
2563 	 * writeout started before we write it out.  In which case, the inode
2564 	 * may not be on the dirty list, but we still have to wait for that
2565 	 * writeout.
2566 	 */
2567 	while (!list_empty(&sync_list)) {
2568 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2569 						       i_wb_list);
2570 		struct address_space *mapping = inode->i_mapping;
2571 
2572 		/*
2573 		 * Move each inode back to the wb list before we drop the lock
2574 		 * to preserve consistency between i_wb_list and the mapping
2575 		 * writeback tag. Writeback completion is responsible to remove
2576 		 * the inode from either list once the writeback tag is cleared.
2577 		 */
2578 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2579 
2580 		/*
2581 		 * The mapping can appear untagged while still on-list since we
2582 		 * do not have the mapping lock. Skip it here, wb completion
2583 		 * will remove it.
2584 		 */
2585 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2586 			continue;
2587 
2588 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2589 
2590 		spin_lock(&inode->i_lock);
2591 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2592 			spin_unlock(&inode->i_lock);
2593 
2594 			spin_lock_irq(&sb->s_inode_wblist_lock);
2595 			continue;
2596 		}
2597 		__iget(inode);
2598 		spin_unlock(&inode->i_lock);
2599 		rcu_read_unlock();
2600 
2601 		/*
2602 		 * We keep the error status of individual mapping so that
2603 		 * applications can catch the writeback error using fsync(2).
2604 		 * See filemap_fdatawait_keep_errors() for details.
2605 		 */
2606 		filemap_fdatawait_keep_errors(mapping);
2607 
2608 		cond_resched();
2609 
2610 		iput(inode);
2611 
2612 		rcu_read_lock();
2613 		spin_lock_irq(&sb->s_inode_wblist_lock);
2614 	}
2615 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2616 	rcu_read_unlock();
2617 	mutex_unlock(&sb->s_sync_lock);
2618 }
2619 
2620 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2621 				     enum wb_reason reason, bool skip_if_busy)
2622 {
2623 	struct backing_dev_info *bdi = sb->s_bdi;
2624 	DEFINE_WB_COMPLETION(done, bdi);
2625 	struct wb_writeback_work work = {
2626 		.sb			= sb,
2627 		.sync_mode		= WB_SYNC_NONE,
2628 		.tagged_writepages	= 1,
2629 		.done			= &done,
2630 		.nr_pages		= nr,
2631 		.reason			= reason,
2632 	};
2633 
2634 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2635 		return;
2636 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2637 
2638 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2639 	wb_wait_for_completion(&done);
2640 }
2641 
2642 /**
2643  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2644  * @sb: the superblock
2645  * @nr: the number of pages to write
2646  * @reason: reason why some writeback work initiated
2647  *
2648  * Start writeback on some inodes on this super_block. No guarantees are made
2649  * on how many (if any) will be written, and this function does not wait
2650  * for IO completion of submitted IO.
2651  */
2652 void writeback_inodes_sb_nr(struct super_block *sb,
2653 			    unsigned long nr,
2654 			    enum wb_reason reason)
2655 {
2656 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2657 }
2658 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2659 
2660 /**
2661  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2662  * @sb: the superblock
2663  * @reason: reason why some writeback work was initiated
2664  *
2665  * Start writeback on some inodes on this super_block. No guarantees are made
2666  * on how many (if any) will be written, and this function does not wait
2667  * for IO completion of submitted IO.
2668  */
2669 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2670 {
2671 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2672 }
2673 EXPORT_SYMBOL(writeback_inodes_sb);
2674 
2675 /**
2676  * try_to_writeback_inodes_sb - try to start writeback if none underway
2677  * @sb: the superblock
2678  * @reason: reason why some writeback work was initiated
2679  *
2680  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2681  */
2682 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2683 {
2684 	if (!down_read_trylock(&sb->s_umount))
2685 		return;
2686 
2687 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2688 	up_read(&sb->s_umount);
2689 }
2690 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2691 
2692 /**
2693  * sync_inodes_sb	-	sync sb inode pages
2694  * @sb: the superblock
2695  *
2696  * This function writes and waits on any dirty inode belonging to this
2697  * super_block.
2698  */
2699 void sync_inodes_sb(struct super_block *sb)
2700 {
2701 	struct backing_dev_info *bdi = sb->s_bdi;
2702 	DEFINE_WB_COMPLETION(done, bdi);
2703 	struct wb_writeback_work work = {
2704 		.sb		= sb,
2705 		.sync_mode	= WB_SYNC_ALL,
2706 		.nr_pages	= LONG_MAX,
2707 		.range_cyclic	= 0,
2708 		.done		= &done,
2709 		.reason		= WB_REASON_SYNC,
2710 		.for_sync	= 1,
2711 	};
2712 
2713 	/*
2714 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2715 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2716 	 * bdi_has_dirty() need to be written out too.
2717 	 */
2718 	if (bdi == &noop_backing_dev_info)
2719 		return;
2720 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2721 
2722 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2723 	bdi_down_write_wb_switch_rwsem(bdi);
2724 	bdi_split_work_to_wbs(bdi, &work, false);
2725 	wb_wait_for_completion(&done);
2726 	bdi_up_write_wb_switch_rwsem(bdi);
2727 
2728 	wait_sb_inodes(sb);
2729 }
2730 EXPORT_SYMBOL(sync_inodes_sb);
2731 
2732 /**
2733  * write_inode_now	-	write an inode to disk
2734  * @inode: inode to write to disk
2735  * @sync: whether the write should be synchronous or not
2736  *
2737  * This function commits an inode to disk immediately if it is dirty. This is
2738  * primarily needed by knfsd.
2739  *
2740  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2741  */
2742 int write_inode_now(struct inode *inode, int sync)
2743 {
2744 	struct writeback_control wbc = {
2745 		.nr_to_write = LONG_MAX,
2746 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2747 		.range_start = 0,
2748 		.range_end = LLONG_MAX,
2749 	};
2750 
2751 	if (!mapping_can_writeback(inode->i_mapping))
2752 		wbc.nr_to_write = 0;
2753 
2754 	might_sleep();
2755 	return writeback_single_inode(inode, &wbc);
2756 }
2757 EXPORT_SYMBOL(write_inode_now);
2758 
2759 /**
2760  * sync_inode_metadata - write an inode to disk
2761  * @inode: the inode to sync
2762  * @wait: wait for I/O to complete.
2763  *
2764  * Write an inode to disk and adjust its dirty state after completion.
2765  *
2766  * Note: only writes the actual inode, no associated data or other metadata.
2767  */
2768 int sync_inode_metadata(struct inode *inode, int wait)
2769 {
2770 	struct writeback_control wbc = {
2771 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2772 		.nr_to_write = 0, /* metadata-only */
2773 	};
2774 
2775 	return writeback_single_inode(inode, &wbc);
2776 }
2777 EXPORT_SYMBOL(sync_inode_metadata);
2778