1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 static void finish_writeback_work(struct bdi_writeback *wb, 145 struct wb_writeback_work *work) 146 { 147 struct wb_completion *done = work->done; 148 149 if (work->auto_free) 150 kfree(work); 151 if (done) { 152 wait_queue_head_t *waitq = done->waitq; 153 154 /* @done can't be accessed after the following dec */ 155 if (atomic_dec_and_test(&done->cnt)) 156 wake_up_all(waitq); 157 } 158 } 159 160 static void wb_queue_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 trace_writeback_queue(wb, work); 164 165 if (work->done) 166 atomic_inc(&work->done->cnt); 167 168 spin_lock_irq(&wb->work_lock); 169 170 if (test_bit(WB_registered, &wb->state)) { 171 list_add_tail(&work->list, &wb->work_list); 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 } else 174 finish_writeback_work(wb, work); 175 176 spin_unlock_irq(&wb->work_lock); 177 } 178 179 /** 180 * wb_wait_for_completion - wait for completion of bdi_writeback_works 181 * @done: target wb_completion 182 * 183 * Wait for one or more work items issued to @bdi with their ->done field 184 * set to @done, which should have been initialized with 185 * DEFINE_WB_COMPLETION(). This function returns after all such work items 186 * are completed. Work items which are waited upon aren't freed 187 * automatically on completion. 188 */ 189 void wb_wait_for_completion(struct wb_completion *done) 190 { 191 atomic_dec(&done->cnt); /* put down the initial count */ 192 wait_event(*done->waitq, !atomic_read(&done->cnt)); 193 } 194 195 #ifdef CONFIG_CGROUP_WRITEBACK 196 197 /* 198 * Parameters for foreign inode detection, see wbc_detach_inode() to see 199 * how they're used. 200 * 201 * These paramters are inherently heuristical as the detection target 202 * itself is fuzzy. All we want to do is detaching an inode from the 203 * current owner if it's being written to by some other cgroups too much. 204 * 205 * The current cgroup writeback is built on the assumption that multiple 206 * cgroups writing to the same inode concurrently is very rare and a mode 207 * of operation which isn't well supported. As such, the goal is not 208 * taking too long when a different cgroup takes over an inode while 209 * avoiding too aggressive flip-flops from occasional foreign writes. 210 * 211 * We record, very roughly, 2s worth of IO time history and if more than 212 * half of that is foreign, trigger the switch. The recording is quantized 213 * to 16 slots. To avoid tiny writes from swinging the decision too much, 214 * writes smaller than 1/8 of avg size are ignored. 215 */ 216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 220 221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 223 /* each slot's duration is 2s / 16 */ 224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 225 /* if foreign slots >= 8, switch */ 226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 227 /* one round can affect upto 5 slots */ 228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 229 230 /* 231 * Maximum inodes per isw. A specific value has been chosen to make 232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 233 */ 234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 235 / sizeof(struct inode *)) 236 237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 238 static struct workqueue_struct *isw_wq; 239 240 void __inode_attach_wb(struct inode *inode, struct page *page) 241 { 242 struct backing_dev_info *bdi = inode_to_bdi(inode); 243 struct bdi_writeback *wb = NULL; 244 245 if (inode_cgwb_enabled(inode)) { 246 struct cgroup_subsys_state *memcg_css; 247 248 if (page) { 249 memcg_css = mem_cgroup_css_from_page(page); 250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 251 } else { 252 /* must pin memcg_css, see wb_get_create() */ 253 memcg_css = task_get_css(current, memory_cgrp_id); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 css_put(memcg_css); 256 } 257 } 258 259 if (!wb) 260 wb = &bdi->wb; 261 262 /* 263 * There may be multiple instances of this function racing to 264 * update the same inode. Use cmpxchg() to tell the winner. 265 */ 266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 267 wb_put(wb); 268 } 269 EXPORT_SYMBOL_GPL(__inode_attach_wb); 270 271 /** 272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 273 * @inode: inode of interest with i_lock held 274 * @wb: target bdi_writeback 275 * 276 * Remove the inode from wb's io lists and if necessarily put onto b_attached 277 * list. Only inodes attached to cgwb's are kept on this list. 278 */ 279 static void inode_cgwb_move_to_attached(struct inode *inode, 280 struct bdi_writeback *wb) 281 { 282 assert_spin_locked(&wb->list_lock); 283 assert_spin_locked(&inode->i_lock); 284 WARN_ON_ONCE(inode->i_state & I_FREEING); 285 286 inode->i_state &= ~I_SYNC_QUEUED; 287 if (wb != &wb->bdi->wb) 288 list_move(&inode->i_io_list, &wb->b_attached); 289 else 290 list_del_init(&inode->i_io_list); 291 wb_io_lists_depopulated(wb); 292 } 293 294 /** 295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 296 * @inode: inode of interest with i_lock held 297 * 298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 299 * held on entry and is released on return. The returned wb is guaranteed 300 * to stay @inode's associated wb until its list_lock is released. 301 */ 302 static struct bdi_writeback * 303 locked_inode_to_wb_and_lock_list(struct inode *inode) 304 __releases(&inode->i_lock) 305 __acquires(&wb->list_lock) 306 { 307 while (true) { 308 struct bdi_writeback *wb = inode_to_wb(inode); 309 310 /* 311 * inode_to_wb() association is protected by both 312 * @inode->i_lock and @wb->list_lock but list_lock nests 313 * outside i_lock. Drop i_lock and verify that the 314 * association hasn't changed after acquiring list_lock. 315 */ 316 wb_get(wb); 317 spin_unlock(&inode->i_lock); 318 spin_lock(&wb->list_lock); 319 320 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 321 if (likely(wb == inode->i_wb)) { 322 wb_put(wb); /* @inode already has ref */ 323 return wb; 324 } 325 326 spin_unlock(&wb->list_lock); 327 wb_put(wb); 328 cpu_relax(); 329 spin_lock(&inode->i_lock); 330 } 331 } 332 333 /** 334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 335 * @inode: inode of interest 336 * 337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 338 * on entry. 339 */ 340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 341 __acquires(&wb->list_lock) 342 { 343 spin_lock(&inode->i_lock); 344 return locked_inode_to_wb_and_lock_list(inode); 345 } 346 347 struct inode_switch_wbs_context { 348 struct rcu_work work; 349 350 /* 351 * Multiple inodes can be switched at once. The switching procedure 352 * consists of two parts, separated by a RCU grace period. To make 353 * sure that the second part is executed for each inode gone through 354 * the first part, all inode pointers are placed into a NULL-terminated 355 * array embedded into struct inode_switch_wbs_context. Otherwise 356 * an inode could be left in a non-consistent state. 357 */ 358 struct bdi_writeback *new_wb; 359 struct inode *inodes[]; 360 }; 361 362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 363 { 364 down_write(&bdi->wb_switch_rwsem); 365 } 366 367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 368 { 369 up_write(&bdi->wb_switch_rwsem); 370 } 371 372 static bool inode_do_switch_wbs(struct inode *inode, 373 struct bdi_writeback *old_wb, 374 struct bdi_writeback *new_wb) 375 { 376 struct address_space *mapping = inode->i_mapping; 377 XA_STATE(xas, &mapping->i_pages, 0); 378 struct folio *folio; 379 bool switched = false; 380 381 spin_lock(&inode->i_lock); 382 xa_lock_irq(&mapping->i_pages); 383 384 /* 385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 386 * path owns the inode and we shouldn't modify ->i_io_list. 387 */ 388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 389 goto skip_switch; 390 391 trace_inode_switch_wbs(inode, old_wb, new_wb); 392 393 /* 394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 396 * folios actually under writeback. 397 */ 398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 399 if (folio_test_dirty(folio)) { 400 long nr = folio_nr_pages(folio); 401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 403 } 404 } 405 406 xas_set(&xas, 0); 407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 408 long nr = folio_nr_pages(folio); 409 WARN_ON_ONCE(!folio_test_writeback(folio)); 410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 411 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 412 } 413 414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 415 atomic_dec(&old_wb->writeback_inodes); 416 atomic_inc(&new_wb->writeback_inodes); 417 } 418 419 wb_get(new_wb); 420 421 /* 422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 423 * the specific list @inode was on is ignored and the @inode is put on 424 * ->b_dirty which is always correct including from ->b_dirty_time. 425 * The transfer preserves @inode->dirtied_when ordering. If the @inode 426 * was clean, it means it was on the b_attached list, so move it onto 427 * the b_attached list of @new_wb. 428 */ 429 if (!list_empty(&inode->i_io_list)) { 430 inode->i_wb = new_wb; 431 432 if (inode->i_state & I_DIRTY_ALL) { 433 struct inode *pos; 434 435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 436 if (time_after_eq(inode->dirtied_when, 437 pos->dirtied_when)) 438 break; 439 inode_io_list_move_locked(inode, new_wb, 440 pos->i_io_list.prev); 441 } else { 442 inode_cgwb_move_to_attached(inode, new_wb); 443 } 444 } else { 445 inode->i_wb = new_wb; 446 } 447 448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 449 inode->i_wb_frn_winner = 0; 450 inode->i_wb_frn_avg_time = 0; 451 inode->i_wb_frn_history = 0; 452 switched = true; 453 skip_switch: 454 /* 455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 456 * ensures that the new wb is visible if they see !I_WB_SWITCH. 457 */ 458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 459 460 xa_unlock_irq(&mapping->i_pages); 461 spin_unlock(&inode->i_lock); 462 463 return switched; 464 } 465 466 static void inode_switch_wbs_work_fn(struct work_struct *work) 467 { 468 struct inode_switch_wbs_context *isw = 469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 472 struct bdi_writeback *new_wb = isw->new_wb; 473 unsigned long nr_switched = 0; 474 struct inode **inodep; 475 476 /* 477 * If @inode switches cgwb membership while sync_inodes_sb() is 478 * being issued, sync_inodes_sb() might miss it. Synchronize. 479 */ 480 down_read(&bdi->wb_switch_rwsem); 481 482 /* 483 * By the time control reaches here, RCU grace period has passed 484 * since I_WB_SWITCH assertion and all wb stat update transactions 485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 486 * synchronizing against the i_pages lock. 487 * 488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 489 * gives us exclusion against all wb related operations on @inode 490 * including IO list manipulations and stat updates. 491 */ 492 if (old_wb < new_wb) { 493 spin_lock(&old_wb->list_lock); 494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 495 } else { 496 spin_lock(&new_wb->list_lock); 497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 498 } 499 500 for (inodep = isw->inodes; *inodep; inodep++) { 501 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 503 nr_switched++; 504 } 505 506 spin_unlock(&new_wb->list_lock); 507 spin_unlock(&old_wb->list_lock); 508 509 up_read(&bdi->wb_switch_rwsem); 510 511 if (nr_switched) { 512 wb_wakeup(new_wb); 513 wb_put_many(old_wb, nr_switched); 514 } 515 516 for (inodep = isw->inodes; *inodep; inodep++) 517 iput(*inodep); 518 wb_put(new_wb); 519 kfree(isw); 520 atomic_dec(&isw_nr_in_flight); 521 } 522 523 static bool inode_prepare_wbs_switch(struct inode *inode, 524 struct bdi_writeback *new_wb) 525 { 526 /* 527 * Paired with smp_mb() in cgroup_writeback_umount(). 528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 530 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 531 */ 532 smp_mb(); 533 534 if (IS_DAX(inode)) 535 return false; 536 537 /* while holding I_WB_SWITCH, no one else can update the association */ 538 spin_lock(&inode->i_lock); 539 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 541 inode_to_wb(inode) == new_wb) { 542 spin_unlock(&inode->i_lock); 543 return false; 544 } 545 inode->i_state |= I_WB_SWITCH; 546 __iget(inode); 547 spin_unlock(&inode->i_lock); 548 549 return true; 550 } 551 552 /** 553 * inode_switch_wbs - change the wb association of an inode 554 * @inode: target inode 555 * @new_wb_id: ID of the new wb 556 * 557 * Switch @inode's wb association to the wb identified by @new_wb_id. The 558 * switching is performed asynchronously and may fail silently. 559 */ 560 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 561 { 562 struct backing_dev_info *bdi = inode_to_bdi(inode); 563 struct cgroup_subsys_state *memcg_css; 564 struct inode_switch_wbs_context *isw; 565 566 /* noop if seems to be already in progress */ 567 if (inode->i_state & I_WB_SWITCH) 568 return; 569 570 /* avoid queueing a new switch if too many are already in flight */ 571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 572 return; 573 574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 575 if (!isw) 576 return; 577 578 atomic_inc(&isw_nr_in_flight); 579 580 /* find and pin the new wb */ 581 rcu_read_lock(); 582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 583 if (memcg_css && !css_tryget(memcg_css)) 584 memcg_css = NULL; 585 rcu_read_unlock(); 586 if (!memcg_css) 587 goto out_free; 588 589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 590 css_put(memcg_css); 591 if (!isw->new_wb) 592 goto out_free; 593 594 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 595 goto out_free; 596 597 isw->inodes[0] = inode; 598 599 /* 600 * In addition to synchronizing among switchers, I_WB_SWITCH tells 601 * the RCU protected stat update paths to grab the i_page 602 * lock so that stat transfer can synchronize against them. 603 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 604 */ 605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 606 queue_rcu_work(isw_wq, &isw->work); 607 return; 608 609 out_free: 610 atomic_dec(&isw_nr_in_flight); 611 if (isw->new_wb) 612 wb_put(isw->new_wb); 613 kfree(isw); 614 } 615 616 /** 617 * cleanup_offline_cgwb - detach associated inodes 618 * @wb: target wb 619 * 620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 621 * to eventually release the dying @wb. Returns %true if not all inodes were 622 * switched and the function has to be restarted. 623 */ 624 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 625 { 626 struct cgroup_subsys_state *memcg_css; 627 struct inode_switch_wbs_context *isw; 628 struct inode *inode; 629 int nr; 630 bool restart = false; 631 632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 633 GFP_KERNEL); 634 if (!isw) 635 return restart; 636 637 atomic_inc(&isw_nr_in_flight); 638 639 for (memcg_css = wb->memcg_css->parent; memcg_css; 640 memcg_css = memcg_css->parent) { 641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 642 if (isw->new_wb) 643 break; 644 } 645 if (unlikely(!isw->new_wb)) 646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 647 648 nr = 0; 649 spin_lock(&wb->list_lock); 650 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 651 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 652 continue; 653 654 isw->inodes[nr++] = inode; 655 656 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 657 restart = true; 658 break; 659 } 660 } 661 spin_unlock(&wb->list_lock); 662 663 /* no attached inodes? bail out */ 664 if (nr == 0) { 665 atomic_dec(&isw_nr_in_flight); 666 wb_put(isw->new_wb); 667 kfree(isw); 668 return restart; 669 } 670 671 /* 672 * In addition to synchronizing among switchers, I_WB_SWITCH tells 673 * the RCU protected stat update paths to grab the i_page 674 * lock so that stat transfer can synchronize against them. 675 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 676 */ 677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 678 queue_rcu_work(isw_wq, &isw->work); 679 680 return restart; 681 } 682 683 /** 684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 685 * @wbc: writeback_control of interest 686 * @inode: target inode 687 * 688 * @inode is locked and about to be written back under the control of @wbc. 689 * Record @inode's writeback context into @wbc and unlock the i_lock. On 690 * writeback completion, wbc_detach_inode() should be called. This is used 691 * to track the cgroup writeback context. 692 */ 693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 694 struct inode *inode) 695 { 696 if (!inode_cgwb_enabled(inode)) { 697 spin_unlock(&inode->i_lock); 698 return; 699 } 700 701 wbc->wb = inode_to_wb(inode); 702 wbc->inode = inode; 703 704 wbc->wb_id = wbc->wb->memcg_css->id; 705 wbc->wb_lcand_id = inode->i_wb_frn_winner; 706 wbc->wb_tcand_id = 0; 707 wbc->wb_bytes = 0; 708 wbc->wb_lcand_bytes = 0; 709 wbc->wb_tcand_bytes = 0; 710 711 wb_get(wbc->wb); 712 spin_unlock(&inode->i_lock); 713 714 /* 715 * A dying wb indicates that either the blkcg associated with the 716 * memcg changed or the associated memcg is dying. In the first 717 * case, a replacement wb should already be available and we should 718 * refresh the wb immediately. In the second case, trying to 719 * refresh will keep failing. 720 */ 721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 722 inode_switch_wbs(inode, wbc->wb_id); 723 } 724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 725 726 /** 727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 728 * @wbc: writeback_control of the just finished writeback 729 * 730 * To be called after a writeback attempt of an inode finishes and undoes 731 * wbc_attach_and_unlock_inode(). Can be called under any context. 732 * 733 * As concurrent write sharing of an inode is expected to be very rare and 734 * memcg only tracks page ownership on first-use basis severely confining 735 * the usefulness of such sharing, cgroup writeback tracks ownership 736 * per-inode. While the support for concurrent write sharing of an inode 737 * is deemed unnecessary, an inode being written to by different cgroups at 738 * different points in time is a lot more common, and, more importantly, 739 * charging only by first-use can too readily lead to grossly incorrect 740 * behaviors (single foreign page can lead to gigabytes of writeback to be 741 * incorrectly attributed). 742 * 743 * To resolve this issue, cgroup writeback detects the majority dirtier of 744 * an inode and transfers the ownership to it. To avoid unnecessary 745 * oscillation, the detection mechanism keeps track of history and gives 746 * out the switch verdict only if the foreign usage pattern is stable over 747 * a certain amount of time and/or writeback attempts. 748 * 749 * On each writeback attempt, @wbc tries to detect the majority writer 750 * using Boyer-Moore majority vote algorithm. In addition to the byte 751 * count from the majority voting, it also counts the bytes written for the 752 * current wb and the last round's winner wb (max of last round's current 753 * wb, the winner from two rounds ago, and the last round's majority 754 * candidate). Keeping track of the historical winner helps the algorithm 755 * to semi-reliably detect the most active writer even when it's not the 756 * absolute majority. 757 * 758 * Once the winner of the round is determined, whether the winner is 759 * foreign or not and how much IO time the round consumed is recorded in 760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 761 * over a certain threshold, the switch verdict is given. 762 */ 763 void wbc_detach_inode(struct writeback_control *wbc) 764 { 765 struct bdi_writeback *wb = wbc->wb; 766 struct inode *inode = wbc->inode; 767 unsigned long avg_time, max_bytes, max_time; 768 u16 history; 769 int max_id; 770 771 if (!wb) 772 return; 773 774 history = inode->i_wb_frn_history; 775 avg_time = inode->i_wb_frn_avg_time; 776 777 /* pick the winner of this round */ 778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 779 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 780 max_id = wbc->wb_id; 781 max_bytes = wbc->wb_bytes; 782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 783 max_id = wbc->wb_lcand_id; 784 max_bytes = wbc->wb_lcand_bytes; 785 } else { 786 max_id = wbc->wb_tcand_id; 787 max_bytes = wbc->wb_tcand_bytes; 788 } 789 790 /* 791 * Calculate the amount of IO time the winner consumed and fold it 792 * into the running average kept per inode. If the consumed IO 793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 794 * deciding whether to switch or not. This is to prevent one-off 795 * small dirtiers from skewing the verdict. 796 */ 797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 798 wb->avg_write_bandwidth); 799 if (avg_time) 800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 801 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 802 else 803 avg_time = max_time; /* immediate catch up on first run */ 804 805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 806 int slots; 807 808 /* 809 * The switch verdict is reached if foreign wb's consume 810 * more than a certain proportion of IO time in a 811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 812 * history mask where each bit represents one sixteenth of 813 * the period. Determine the number of slots to shift into 814 * history from @max_time. 815 */ 816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 817 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 818 history <<= slots; 819 if (wbc->wb_id != max_id) 820 history |= (1U << slots) - 1; 821 822 if (history) 823 trace_inode_foreign_history(inode, wbc, history); 824 825 /* 826 * Switch if the current wb isn't the consistent winner. 827 * If there are multiple closely competing dirtiers, the 828 * inode may switch across them repeatedly over time, which 829 * is okay. The main goal is avoiding keeping an inode on 830 * the wrong wb for an extended period of time. 831 */ 832 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 833 inode_switch_wbs(inode, max_id); 834 } 835 836 /* 837 * Multiple instances of this function may race to update the 838 * following fields but we don't mind occassional inaccuracies. 839 */ 840 inode->i_wb_frn_winner = max_id; 841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 842 inode->i_wb_frn_history = history; 843 844 wb_put(wbc->wb); 845 wbc->wb = NULL; 846 } 847 EXPORT_SYMBOL_GPL(wbc_detach_inode); 848 849 /** 850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 851 * @wbc: writeback_control of the writeback in progress 852 * @page: page being written out 853 * @bytes: number of bytes being written out 854 * 855 * @bytes from @page are about to written out during the writeback 856 * controlled by @wbc. Keep the book for foreign inode detection. See 857 * wbc_detach_inode(). 858 */ 859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 860 size_t bytes) 861 { 862 struct cgroup_subsys_state *css; 863 int id; 864 865 /* 866 * pageout() path doesn't attach @wbc to the inode being written 867 * out. This is intentional as we don't want the function to block 868 * behind a slow cgroup. Ultimately, we want pageout() to kick off 869 * regular writeback instead of writing things out itself. 870 */ 871 if (!wbc->wb || wbc->no_cgroup_owner) 872 return; 873 874 css = mem_cgroup_css_from_page(page); 875 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 876 if (!(css->flags & CSS_ONLINE)) 877 return; 878 879 id = css->id; 880 881 if (id == wbc->wb_id) { 882 wbc->wb_bytes += bytes; 883 return; 884 } 885 886 if (id == wbc->wb_lcand_id) 887 wbc->wb_lcand_bytes += bytes; 888 889 /* Boyer-Moore majority vote algorithm */ 890 if (!wbc->wb_tcand_bytes) 891 wbc->wb_tcand_id = id; 892 if (id == wbc->wb_tcand_id) 893 wbc->wb_tcand_bytes += bytes; 894 else 895 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 896 } 897 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 898 899 /** 900 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 901 * @wb: target bdi_writeback to split @nr_pages to 902 * @nr_pages: number of pages to write for the whole bdi 903 * 904 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 905 * relation to the total write bandwidth of all wb's w/ dirty inodes on 906 * @wb->bdi. 907 */ 908 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 909 { 910 unsigned long this_bw = wb->avg_write_bandwidth; 911 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 912 913 if (nr_pages == LONG_MAX) 914 return LONG_MAX; 915 916 /* 917 * This may be called on clean wb's and proportional distribution 918 * may not make sense, just use the original @nr_pages in those 919 * cases. In general, we wanna err on the side of writing more. 920 */ 921 if (!tot_bw || this_bw >= tot_bw) 922 return nr_pages; 923 else 924 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 925 } 926 927 /** 928 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 929 * @bdi: target backing_dev_info 930 * @base_work: wb_writeback_work to issue 931 * @skip_if_busy: skip wb's which already have writeback in progress 932 * 933 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 934 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 935 * distributed to the busy wbs according to each wb's proportion in the 936 * total active write bandwidth of @bdi. 937 */ 938 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 939 struct wb_writeback_work *base_work, 940 bool skip_if_busy) 941 { 942 struct bdi_writeback *last_wb = NULL; 943 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 944 struct bdi_writeback, bdi_node); 945 946 might_sleep(); 947 restart: 948 rcu_read_lock(); 949 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 950 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 951 struct wb_writeback_work fallback_work; 952 struct wb_writeback_work *work; 953 long nr_pages; 954 955 if (last_wb) { 956 wb_put(last_wb); 957 last_wb = NULL; 958 } 959 960 /* SYNC_ALL writes out I_DIRTY_TIME too */ 961 if (!wb_has_dirty_io(wb) && 962 (base_work->sync_mode == WB_SYNC_NONE || 963 list_empty(&wb->b_dirty_time))) 964 continue; 965 if (skip_if_busy && writeback_in_progress(wb)) 966 continue; 967 968 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 969 970 work = kmalloc(sizeof(*work), GFP_ATOMIC); 971 if (work) { 972 *work = *base_work; 973 work->nr_pages = nr_pages; 974 work->auto_free = 1; 975 wb_queue_work(wb, work); 976 continue; 977 } 978 979 /* alloc failed, execute synchronously using on-stack fallback */ 980 work = &fallback_work; 981 *work = *base_work; 982 work->nr_pages = nr_pages; 983 work->auto_free = 0; 984 work->done = &fallback_work_done; 985 986 wb_queue_work(wb, work); 987 988 /* 989 * Pin @wb so that it stays on @bdi->wb_list. This allows 990 * continuing iteration from @wb after dropping and 991 * regrabbing rcu read lock. 992 */ 993 wb_get(wb); 994 last_wb = wb; 995 996 rcu_read_unlock(); 997 wb_wait_for_completion(&fallback_work_done); 998 goto restart; 999 } 1000 rcu_read_unlock(); 1001 1002 if (last_wb) 1003 wb_put(last_wb); 1004 } 1005 1006 /** 1007 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1008 * @bdi_id: target bdi id 1009 * @memcg_id: target memcg css id 1010 * @reason: reason why some writeback work initiated 1011 * @done: target wb_completion 1012 * 1013 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1014 * with the specified parameters. 1015 */ 1016 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1017 enum wb_reason reason, struct wb_completion *done) 1018 { 1019 struct backing_dev_info *bdi; 1020 struct cgroup_subsys_state *memcg_css; 1021 struct bdi_writeback *wb; 1022 struct wb_writeback_work *work; 1023 unsigned long dirty; 1024 int ret; 1025 1026 /* lookup bdi and memcg */ 1027 bdi = bdi_get_by_id(bdi_id); 1028 if (!bdi) 1029 return -ENOENT; 1030 1031 rcu_read_lock(); 1032 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1033 if (memcg_css && !css_tryget(memcg_css)) 1034 memcg_css = NULL; 1035 rcu_read_unlock(); 1036 if (!memcg_css) { 1037 ret = -ENOENT; 1038 goto out_bdi_put; 1039 } 1040 1041 /* 1042 * And find the associated wb. If the wb isn't there already 1043 * there's nothing to flush, don't create one. 1044 */ 1045 wb = wb_get_lookup(bdi, memcg_css); 1046 if (!wb) { 1047 ret = -ENOENT; 1048 goto out_css_put; 1049 } 1050 1051 /* 1052 * The caller is attempting to write out most of 1053 * the currently dirty pages. Let's take the current dirty page 1054 * count and inflate it by 25% which should be large enough to 1055 * flush out most dirty pages while avoiding getting livelocked by 1056 * concurrent dirtiers. 1057 * 1058 * BTW the memcg stats are flushed periodically and this is best-effort 1059 * estimation, so some potential error is ok. 1060 */ 1061 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1062 dirty = dirty * 10 / 8; 1063 1064 /* issue the writeback work */ 1065 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1066 if (work) { 1067 work->nr_pages = dirty; 1068 work->sync_mode = WB_SYNC_NONE; 1069 work->range_cyclic = 1; 1070 work->reason = reason; 1071 work->done = done; 1072 work->auto_free = 1; 1073 wb_queue_work(wb, work); 1074 ret = 0; 1075 } else { 1076 ret = -ENOMEM; 1077 } 1078 1079 wb_put(wb); 1080 out_css_put: 1081 css_put(memcg_css); 1082 out_bdi_put: 1083 bdi_put(bdi); 1084 return ret; 1085 } 1086 1087 /** 1088 * cgroup_writeback_umount - flush inode wb switches for umount 1089 * 1090 * This function is called when a super_block is about to be destroyed and 1091 * flushes in-flight inode wb switches. An inode wb switch goes through 1092 * RCU and then workqueue, so the two need to be flushed in order to ensure 1093 * that all previously scheduled switches are finished. As wb switches are 1094 * rare occurrences and synchronize_rcu() can take a while, perform 1095 * flushing iff wb switches are in flight. 1096 */ 1097 void cgroup_writeback_umount(void) 1098 { 1099 /* 1100 * SB_ACTIVE should be reliably cleared before checking 1101 * isw_nr_in_flight, see generic_shutdown_super(). 1102 */ 1103 smp_mb(); 1104 1105 if (atomic_read(&isw_nr_in_flight)) { 1106 /* 1107 * Use rcu_barrier() to wait for all pending callbacks to 1108 * ensure that all in-flight wb switches are in the workqueue. 1109 */ 1110 rcu_barrier(); 1111 flush_workqueue(isw_wq); 1112 } 1113 } 1114 1115 static int __init cgroup_writeback_init(void) 1116 { 1117 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1118 if (!isw_wq) 1119 return -ENOMEM; 1120 return 0; 1121 } 1122 fs_initcall(cgroup_writeback_init); 1123 1124 #else /* CONFIG_CGROUP_WRITEBACK */ 1125 1126 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1127 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1128 1129 static void inode_cgwb_move_to_attached(struct inode *inode, 1130 struct bdi_writeback *wb) 1131 { 1132 assert_spin_locked(&wb->list_lock); 1133 assert_spin_locked(&inode->i_lock); 1134 WARN_ON_ONCE(inode->i_state & I_FREEING); 1135 1136 inode->i_state &= ~I_SYNC_QUEUED; 1137 list_del_init(&inode->i_io_list); 1138 wb_io_lists_depopulated(wb); 1139 } 1140 1141 static struct bdi_writeback * 1142 locked_inode_to_wb_and_lock_list(struct inode *inode) 1143 __releases(&inode->i_lock) 1144 __acquires(&wb->list_lock) 1145 { 1146 struct bdi_writeback *wb = inode_to_wb(inode); 1147 1148 spin_unlock(&inode->i_lock); 1149 spin_lock(&wb->list_lock); 1150 return wb; 1151 } 1152 1153 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1154 __acquires(&wb->list_lock) 1155 { 1156 struct bdi_writeback *wb = inode_to_wb(inode); 1157 1158 spin_lock(&wb->list_lock); 1159 return wb; 1160 } 1161 1162 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1163 { 1164 return nr_pages; 1165 } 1166 1167 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1168 struct wb_writeback_work *base_work, 1169 bool skip_if_busy) 1170 { 1171 might_sleep(); 1172 1173 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1174 base_work->auto_free = 0; 1175 wb_queue_work(&bdi->wb, base_work); 1176 } 1177 } 1178 1179 #endif /* CONFIG_CGROUP_WRITEBACK */ 1180 1181 /* 1182 * Add in the number of potentially dirty inodes, because each inode 1183 * write can dirty pagecache in the underlying blockdev. 1184 */ 1185 static unsigned long get_nr_dirty_pages(void) 1186 { 1187 return global_node_page_state(NR_FILE_DIRTY) + 1188 get_nr_dirty_inodes(); 1189 } 1190 1191 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1192 { 1193 if (!wb_has_dirty_io(wb)) 1194 return; 1195 1196 /* 1197 * All callers of this function want to start writeback of all 1198 * dirty pages. Places like vmscan can call this at a very 1199 * high frequency, causing pointless allocations of tons of 1200 * work items and keeping the flusher threads busy retrieving 1201 * that work. Ensure that we only allow one of them pending and 1202 * inflight at the time. 1203 */ 1204 if (test_bit(WB_start_all, &wb->state) || 1205 test_and_set_bit(WB_start_all, &wb->state)) 1206 return; 1207 1208 wb->start_all_reason = reason; 1209 wb_wakeup(wb); 1210 } 1211 1212 /** 1213 * wb_start_background_writeback - start background writeback 1214 * @wb: bdi_writback to write from 1215 * 1216 * Description: 1217 * This makes sure WB_SYNC_NONE background writeback happens. When 1218 * this function returns, it is only guaranteed that for given wb 1219 * some IO is happening if we are over background dirty threshold. 1220 * Caller need not hold sb s_umount semaphore. 1221 */ 1222 void wb_start_background_writeback(struct bdi_writeback *wb) 1223 { 1224 /* 1225 * We just wake up the flusher thread. It will perform background 1226 * writeback as soon as there is no other work to do. 1227 */ 1228 trace_writeback_wake_background(wb); 1229 wb_wakeup(wb); 1230 } 1231 1232 /* 1233 * Remove the inode from the writeback list it is on. 1234 */ 1235 void inode_io_list_del(struct inode *inode) 1236 { 1237 struct bdi_writeback *wb; 1238 1239 wb = inode_to_wb_and_lock_list(inode); 1240 spin_lock(&inode->i_lock); 1241 1242 inode->i_state &= ~I_SYNC_QUEUED; 1243 list_del_init(&inode->i_io_list); 1244 wb_io_lists_depopulated(wb); 1245 1246 spin_unlock(&inode->i_lock); 1247 spin_unlock(&wb->list_lock); 1248 } 1249 EXPORT_SYMBOL(inode_io_list_del); 1250 1251 /* 1252 * mark an inode as under writeback on the sb 1253 */ 1254 void sb_mark_inode_writeback(struct inode *inode) 1255 { 1256 struct super_block *sb = inode->i_sb; 1257 unsigned long flags; 1258 1259 if (list_empty(&inode->i_wb_list)) { 1260 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1261 if (list_empty(&inode->i_wb_list)) { 1262 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1263 trace_sb_mark_inode_writeback(inode); 1264 } 1265 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1266 } 1267 } 1268 1269 /* 1270 * clear an inode as under writeback on the sb 1271 */ 1272 void sb_clear_inode_writeback(struct inode *inode) 1273 { 1274 struct super_block *sb = inode->i_sb; 1275 unsigned long flags; 1276 1277 if (!list_empty(&inode->i_wb_list)) { 1278 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1279 if (!list_empty(&inode->i_wb_list)) { 1280 list_del_init(&inode->i_wb_list); 1281 trace_sb_clear_inode_writeback(inode); 1282 } 1283 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1284 } 1285 } 1286 1287 /* 1288 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1289 * furthest end of its superblock's dirty-inode list. 1290 * 1291 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1292 * already the most-recently-dirtied inode on the b_dirty list. If that is 1293 * the case then the inode must have been redirtied while it was being written 1294 * out and we don't reset its dirtied_when. 1295 */ 1296 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1297 { 1298 assert_spin_locked(&inode->i_lock); 1299 1300 inode->i_state &= ~I_SYNC_QUEUED; 1301 /* 1302 * When the inode is being freed just don't bother with dirty list 1303 * tracking. Flush worker will ignore this inode anyway and it will 1304 * trigger assertions in inode_io_list_move_locked(). 1305 */ 1306 if (inode->i_state & I_FREEING) { 1307 list_del_init(&inode->i_io_list); 1308 wb_io_lists_depopulated(wb); 1309 return; 1310 } 1311 if (!list_empty(&wb->b_dirty)) { 1312 struct inode *tail; 1313 1314 tail = wb_inode(wb->b_dirty.next); 1315 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1316 inode->dirtied_when = jiffies; 1317 } 1318 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1319 } 1320 1321 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1322 { 1323 spin_lock(&inode->i_lock); 1324 redirty_tail_locked(inode, wb); 1325 spin_unlock(&inode->i_lock); 1326 } 1327 1328 /* 1329 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1330 */ 1331 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1332 { 1333 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1334 } 1335 1336 static void inode_sync_complete(struct inode *inode) 1337 { 1338 inode->i_state &= ~I_SYNC; 1339 /* If inode is clean an unused, put it into LRU now... */ 1340 inode_add_lru(inode); 1341 /* Waiters must see I_SYNC cleared before being woken up */ 1342 smp_mb(); 1343 wake_up_bit(&inode->i_state, __I_SYNC); 1344 } 1345 1346 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1347 { 1348 bool ret = time_after(inode->dirtied_when, t); 1349 #ifndef CONFIG_64BIT 1350 /* 1351 * For inodes being constantly redirtied, dirtied_when can get stuck. 1352 * It _appears_ to be in the future, but is actually in distant past. 1353 * This test is necessary to prevent such wrapped-around relative times 1354 * from permanently stopping the whole bdi writeback. 1355 */ 1356 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1357 #endif 1358 return ret; 1359 } 1360 1361 /* 1362 * Move expired (dirtied before dirtied_before) dirty inodes from 1363 * @delaying_queue to @dispatch_queue. 1364 */ 1365 static int move_expired_inodes(struct list_head *delaying_queue, 1366 struct list_head *dispatch_queue, 1367 unsigned long dirtied_before) 1368 { 1369 LIST_HEAD(tmp); 1370 struct list_head *pos, *node; 1371 struct super_block *sb = NULL; 1372 struct inode *inode; 1373 int do_sb_sort = 0; 1374 int moved = 0; 1375 1376 while (!list_empty(delaying_queue)) { 1377 inode = wb_inode(delaying_queue->prev); 1378 if (inode_dirtied_after(inode, dirtied_before)) 1379 break; 1380 spin_lock(&inode->i_lock); 1381 list_move(&inode->i_io_list, &tmp); 1382 moved++; 1383 inode->i_state |= I_SYNC_QUEUED; 1384 spin_unlock(&inode->i_lock); 1385 if (sb_is_blkdev_sb(inode->i_sb)) 1386 continue; 1387 if (sb && sb != inode->i_sb) 1388 do_sb_sort = 1; 1389 sb = inode->i_sb; 1390 } 1391 1392 /* just one sb in list, splice to dispatch_queue and we're done */ 1393 if (!do_sb_sort) { 1394 list_splice(&tmp, dispatch_queue); 1395 goto out; 1396 } 1397 1398 /* 1399 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1400 * we don't take inode->i_lock here because it is just a pointless overhead. 1401 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1402 * fully under our control. 1403 */ 1404 while (!list_empty(&tmp)) { 1405 sb = wb_inode(tmp.prev)->i_sb; 1406 list_for_each_prev_safe(pos, node, &tmp) { 1407 inode = wb_inode(pos); 1408 if (inode->i_sb == sb) 1409 list_move(&inode->i_io_list, dispatch_queue); 1410 } 1411 } 1412 out: 1413 return moved; 1414 } 1415 1416 /* 1417 * Queue all expired dirty inodes for io, eldest first. 1418 * Before 1419 * newly dirtied b_dirty b_io b_more_io 1420 * =============> gf edc BA 1421 * After 1422 * newly dirtied b_dirty b_io b_more_io 1423 * =============> g fBAedc 1424 * | 1425 * +--> dequeue for IO 1426 */ 1427 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1428 unsigned long dirtied_before) 1429 { 1430 int moved; 1431 unsigned long time_expire_jif = dirtied_before; 1432 1433 assert_spin_locked(&wb->list_lock); 1434 list_splice_init(&wb->b_more_io, &wb->b_io); 1435 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1436 if (!work->for_sync) 1437 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1438 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1439 time_expire_jif); 1440 if (moved) 1441 wb_io_lists_populated(wb); 1442 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1443 } 1444 1445 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1446 { 1447 int ret; 1448 1449 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1450 trace_writeback_write_inode_start(inode, wbc); 1451 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1452 trace_writeback_write_inode(inode, wbc); 1453 return ret; 1454 } 1455 return 0; 1456 } 1457 1458 /* 1459 * Wait for writeback on an inode to complete. Called with i_lock held. 1460 * Caller must make sure inode cannot go away when we drop i_lock. 1461 */ 1462 static void __inode_wait_for_writeback(struct inode *inode) 1463 __releases(inode->i_lock) 1464 __acquires(inode->i_lock) 1465 { 1466 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1467 wait_queue_head_t *wqh; 1468 1469 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1470 while (inode->i_state & I_SYNC) { 1471 spin_unlock(&inode->i_lock); 1472 __wait_on_bit(wqh, &wq, bit_wait, 1473 TASK_UNINTERRUPTIBLE); 1474 spin_lock(&inode->i_lock); 1475 } 1476 } 1477 1478 /* 1479 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1480 */ 1481 void inode_wait_for_writeback(struct inode *inode) 1482 { 1483 spin_lock(&inode->i_lock); 1484 __inode_wait_for_writeback(inode); 1485 spin_unlock(&inode->i_lock); 1486 } 1487 1488 /* 1489 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1490 * held and drops it. It is aimed for callers not holding any inode reference 1491 * so once i_lock is dropped, inode can go away. 1492 */ 1493 static void inode_sleep_on_writeback(struct inode *inode) 1494 __releases(inode->i_lock) 1495 { 1496 DEFINE_WAIT(wait); 1497 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1498 int sleep; 1499 1500 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1501 sleep = inode->i_state & I_SYNC; 1502 spin_unlock(&inode->i_lock); 1503 if (sleep) 1504 schedule(); 1505 finish_wait(wqh, &wait); 1506 } 1507 1508 /* 1509 * Find proper writeback list for the inode depending on its current state and 1510 * possibly also change of its state while we were doing writeback. Here we 1511 * handle things such as livelock prevention or fairness of writeback among 1512 * inodes. This function can be called only by flusher thread - noone else 1513 * processes all inodes in writeback lists and requeueing inodes behind flusher 1514 * thread's back can have unexpected consequences. 1515 */ 1516 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1517 struct writeback_control *wbc) 1518 { 1519 if (inode->i_state & I_FREEING) 1520 return; 1521 1522 /* 1523 * Sync livelock prevention. Each inode is tagged and synced in one 1524 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1525 * the dirty time to prevent enqueue and sync it again. 1526 */ 1527 if ((inode->i_state & I_DIRTY) && 1528 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1529 inode->dirtied_when = jiffies; 1530 1531 if (wbc->pages_skipped) { 1532 /* 1533 * writeback is not making progress due to locked 1534 * buffers. Skip this inode for now. 1535 */ 1536 redirty_tail_locked(inode, wb); 1537 return; 1538 } 1539 1540 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1541 /* 1542 * We didn't write back all the pages. nfs_writepages() 1543 * sometimes bales out without doing anything. 1544 */ 1545 if (wbc->nr_to_write <= 0) { 1546 /* Slice used up. Queue for next turn. */ 1547 requeue_io(inode, wb); 1548 } else { 1549 /* 1550 * Writeback blocked by something other than 1551 * congestion. Delay the inode for some time to 1552 * avoid spinning on the CPU (100% iowait) 1553 * retrying writeback of the dirty page/inode 1554 * that cannot be performed immediately. 1555 */ 1556 redirty_tail_locked(inode, wb); 1557 } 1558 } else if (inode->i_state & I_DIRTY) { 1559 /* 1560 * Filesystems can dirty the inode during writeback operations, 1561 * such as delayed allocation during submission or metadata 1562 * updates after data IO completion. 1563 */ 1564 redirty_tail_locked(inode, wb); 1565 } else if (inode->i_state & I_DIRTY_TIME) { 1566 inode->dirtied_when = jiffies; 1567 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1568 inode->i_state &= ~I_SYNC_QUEUED; 1569 } else { 1570 /* The inode is clean. Remove from writeback lists. */ 1571 inode_cgwb_move_to_attached(inode, wb); 1572 } 1573 } 1574 1575 /* 1576 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1577 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1578 * 1579 * This doesn't remove the inode from the writeback list it is on, except 1580 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1581 * expiration. The caller is otherwise responsible for writeback list handling. 1582 * 1583 * The caller is also responsible for setting the I_SYNC flag beforehand and 1584 * calling inode_sync_complete() to clear it afterwards. 1585 */ 1586 static int 1587 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1588 { 1589 struct address_space *mapping = inode->i_mapping; 1590 long nr_to_write = wbc->nr_to_write; 1591 unsigned dirty; 1592 int ret; 1593 1594 WARN_ON(!(inode->i_state & I_SYNC)); 1595 1596 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1597 1598 ret = do_writepages(mapping, wbc); 1599 1600 /* 1601 * Make sure to wait on the data before writing out the metadata. 1602 * This is important for filesystems that modify metadata on data 1603 * I/O completion. We don't do it for sync(2) writeback because it has a 1604 * separate, external IO completion path and ->sync_fs for guaranteeing 1605 * inode metadata is written back correctly. 1606 */ 1607 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1608 int err = filemap_fdatawait(mapping); 1609 if (ret == 0) 1610 ret = err; 1611 } 1612 1613 /* 1614 * If the inode has dirty timestamps and we need to write them, call 1615 * mark_inode_dirty_sync() to notify the filesystem about it and to 1616 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1617 */ 1618 if ((inode->i_state & I_DIRTY_TIME) && 1619 (wbc->sync_mode == WB_SYNC_ALL || 1620 time_after(jiffies, inode->dirtied_time_when + 1621 dirtytime_expire_interval * HZ))) { 1622 trace_writeback_lazytime(inode); 1623 mark_inode_dirty_sync(inode); 1624 } 1625 1626 /* 1627 * Get and clear the dirty flags from i_state. This needs to be done 1628 * after calling writepages because some filesystems may redirty the 1629 * inode during writepages due to delalloc. It also needs to be done 1630 * after handling timestamp expiration, as that may dirty the inode too. 1631 */ 1632 spin_lock(&inode->i_lock); 1633 dirty = inode->i_state & I_DIRTY; 1634 inode->i_state &= ~dirty; 1635 1636 /* 1637 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1638 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1639 * either they see the I_DIRTY bits cleared or we see the dirtied 1640 * inode. 1641 * 1642 * I_DIRTY_PAGES is always cleared together above even if @mapping 1643 * still has dirty pages. The flag is reinstated after smp_mb() if 1644 * necessary. This guarantees that either __mark_inode_dirty() 1645 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1646 */ 1647 smp_mb(); 1648 1649 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1650 inode->i_state |= I_DIRTY_PAGES; 1651 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1652 if (!(inode->i_state & I_DIRTY_PAGES)) { 1653 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1654 wbc->unpinned_fscache_wb = true; 1655 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1656 } 1657 } 1658 1659 spin_unlock(&inode->i_lock); 1660 1661 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1662 if (dirty & ~I_DIRTY_PAGES) { 1663 int err = write_inode(inode, wbc); 1664 if (ret == 0) 1665 ret = err; 1666 } 1667 wbc->unpinned_fscache_wb = false; 1668 trace_writeback_single_inode(inode, wbc, nr_to_write); 1669 return ret; 1670 } 1671 1672 /* 1673 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1674 * the regular batched writeback done by the flusher threads in 1675 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1676 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1677 * 1678 * To prevent the inode from going away, either the caller must have a reference 1679 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1680 */ 1681 static int writeback_single_inode(struct inode *inode, 1682 struct writeback_control *wbc) 1683 { 1684 struct bdi_writeback *wb; 1685 int ret = 0; 1686 1687 spin_lock(&inode->i_lock); 1688 if (!atomic_read(&inode->i_count)) 1689 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1690 else 1691 WARN_ON(inode->i_state & I_WILL_FREE); 1692 1693 if (inode->i_state & I_SYNC) { 1694 /* 1695 * Writeback is already running on the inode. For WB_SYNC_NONE, 1696 * that's enough and we can just return. For WB_SYNC_ALL, we 1697 * must wait for the existing writeback to complete, then do 1698 * writeback again if there's anything left. 1699 */ 1700 if (wbc->sync_mode != WB_SYNC_ALL) 1701 goto out; 1702 __inode_wait_for_writeback(inode); 1703 } 1704 WARN_ON(inode->i_state & I_SYNC); 1705 /* 1706 * If the inode is already fully clean, then there's nothing to do. 1707 * 1708 * For data-integrity syncs we also need to check whether any pages are 1709 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1710 * there are any such pages, we'll need to wait for them. 1711 */ 1712 if (!(inode->i_state & I_DIRTY_ALL) && 1713 (wbc->sync_mode != WB_SYNC_ALL || 1714 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1715 goto out; 1716 inode->i_state |= I_SYNC; 1717 wbc_attach_and_unlock_inode(wbc, inode); 1718 1719 ret = __writeback_single_inode(inode, wbc); 1720 1721 wbc_detach_inode(wbc); 1722 1723 wb = inode_to_wb_and_lock_list(inode); 1724 spin_lock(&inode->i_lock); 1725 /* 1726 * If the inode is freeing, its i_io_list shoudn't be updated 1727 * as it can be finally deleted at this moment. 1728 */ 1729 if (!(inode->i_state & I_FREEING)) { 1730 /* 1731 * If the inode is now fully clean, then it can be safely 1732 * removed from its writeback list (if any). Otherwise the 1733 * flusher threads are responsible for the writeback lists. 1734 */ 1735 if (!(inode->i_state & I_DIRTY_ALL)) 1736 inode_cgwb_move_to_attached(inode, wb); 1737 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1738 if ((inode->i_state & I_DIRTY)) 1739 redirty_tail_locked(inode, wb); 1740 else if (inode->i_state & I_DIRTY_TIME) { 1741 inode->dirtied_when = jiffies; 1742 inode_io_list_move_locked(inode, 1743 wb, 1744 &wb->b_dirty_time); 1745 } 1746 } 1747 } 1748 1749 spin_unlock(&wb->list_lock); 1750 inode_sync_complete(inode); 1751 out: 1752 spin_unlock(&inode->i_lock); 1753 return ret; 1754 } 1755 1756 static long writeback_chunk_size(struct bdi_writeback *wb, 1757 struct wb_writeback_work *work) 1758 { 1759 long pages; 1760 1761 /* 1762 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1763 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1764 * here avoids calling into writeback_inodes_wb() more than once. 1765 * 1766 * The intended call sequence for WB_SYNC_ALL writeback is: 1767 * 1768 * wb_writeback() 1769 * writeback_sb_inodes() <== called only once 1770 * write_cache_pages() <== called once for each inode 1771 * (quickly) tag currently dirty pages 1772 * (maybe slowly) sync all tagged pages 1773 */ 1774 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1775 pages = LONG_MAX; 1776 else { 1777 pages = min(wb->avg_write_bandwidth / 2, 1778 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1779 pages = min(pages, work->nr_pages); 1780 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1781 MIN_WRITEBACK_PAGES); 1782 } 1783 1784 return pages; 1785 } 1786 1787 /* 1788 * Write a portion of b_io inodes which belong to @sb. 1789 * 1790 * Return the number of pages and/or inodes written. 1791 * 1792 * NOTE! This is called with wb->list_lock held, and will 1793 * unlock and relock that for each inode it ends up doing 1794 * IO for. 1795 */ 1796 static long writeback_sb_inodes(struct super_block *sb, 1797 struct bdi_writeback *wb, 1798 struct wb_writeback_work *work) 1799 { 1800 struct writeback_control wbc = { 1801 .sync_mode = work->sync_mode, 1802 .tagged_writepages = work->tagged_writepages, 1803 .for_kupdate = work->for_kupdate, 1804 .for_background = work->for_background, 1805 .for_sync = work->for_sync, 1806 .range_cyclic = work->range_cyclic, 1807 .range_start = 0, 1808 .range_end = LLONG_MAX, 1809 }; 1810 unsigned long start_time = jiffies; 1811 long write_chunk; 1812 long total_wrote = 0; /* count both pages and inodes */ 1813 1814 while (!list_empty(&wb->b_io)) { 1815 struct inode *inode = wb_inode(wb->b_io.prev); 1816 struct bdi_writeback *tmp_wb; 1817 long wrote; 1818 1819 if (inode->i_sb != sb) { 1820 if (work->sb) { 1821 /* 1822 * We only want to write back data for this 1823 * superblock, move all inodes not belonging 1824 * to it back onto the dirty list. 1825 */ 1826 redirty_tail(inode, wb); 1827 continue; 1828 } 1829 1830 /* 1831 * The inode belongs to a different superblock. 1832 * Bounce back to the caller to unpin this and 1833 * pin the next superblock. 1834 */ 1835 break; 1836 } 1837 1838 /* 1839 * Don't bother with new inodes or inodes being freed, first 1840 * kind does not need periodic writeout yet, and for the latter 1841 * kind writeout is handled by the freer. 1842 */ 1843 spin_lock(&inode->i_lock); 1844 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1845 redirty_tail_locked(inode, wb); 1846 spin_unlock(&inode->i_lock); 1847 continue; 1848 } 1849 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1850 /* 1851 * If this inode is locked for writeback and we are not 1852 * doing writeback-for-data-integrity, move it to 1853 * b_more_io so that writeback can proceed with the 1854 * other inodes on s_io. 1855 * 1856 * We'll have another go at writing back this inode 1857 * when we completed a full scan of b_io. 1858 */ 1859 requeue_io(inode, wb); 1860 spin_unlock(&inode->i_lock); 1861 trace_writeback_sb_inodes_requeue(inode); 1862 continue; 1863 } 1864 spin_unlock(&wb->list_lock); 1865 1866 /* 1867 * We already requeued the inode if it had I_SYNC set and we 1868 * are doing WB_SYNC_NONE writeback. So this catches only the 1869 * WB_SYNC_ALL case. 1870 */ 1871 if (inode->i_state & I_SYNC) { 1872 /* Wait for I_SYNC. This function drops i_lock... */ 1873 inode_sleep_on_writeback(inode); 1874 /* Inode may be gone, start again */ 1875 spin_lock(&wb->list_lock); 1876 continue; 1877 } 1878 inode->i_state |= I_SYNC; 1879 wbc_attach_and_unlock_inode(&wbc, inode); 1880 1881 write_chunk = writeback_chunk_size(wb, work); 1882 wbc.nr_to_write = write_chunk; 1883 wbc.pages_skipped = 0; 1884 1885 /* 1886 * We use I_SYNC to pin the inode in memory. While it is set 1887 * evict_inode() will wait so the inode cannot be freed. 1888 */ 1889 __writeback_single_inode(inode, &wbc); 1890 1891 wbc_detach_inode(&wbc); 1892 work->nr_pages -= write_chunk - wbc.nr_to_write; 1893 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1894 wrote = wrote < 0 ? 0 : wrote; 1895 total_wrote += wrote; 1896 1897 if (need_resched()) { 1898 /* 1899 * We're trying to balance between building up a nice 1900 * long list of IOs to improve our merge rate, and 1901 * getting those IOs out quickly for anyone throttling 1902 * in balance_dirty_pages(). cond_resched() doesn't 1903 * unplug, so get our IOs out the door before we 1904 * give up the CPU. 1905 */ 1906 blk_flush_plug(current->plug, false); 1907 cond_resched(); 1908 } 1909 1910 /* 1911 * Requeue @inode if still dirty. Be careful as @inode may 1912 * have been switched to another wb in the meantime. 1913 */ 1914 tmp_wb = inode_to_wb_and_lock_list(inode); 1915 spin_lock(&inode->i_lock); 1916 if (!(inode->i_state & I_DIRTY_ALL)) 1917 total_wrote++; 1918 requeue_inode(inode, tmp_wb, &wbc); 1919 inode_sync_complete(inode); 1920 spin_unlock(&inode->i_lock); 1921 1922 if (unlikely(tmp_wb != wb)) { 1923 spin_unlock(&tmp_wb->list_lock); 1924 spin_lock(&wb->list_lock); 1925 } 1926 1927 /* 1928 * bail out to wb_writeback() often enough to check 1929 * background threshold and other termination conditions. 1930 */ 1931 if (total_wrote) { 1932 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1933 break; 1934 if (work->nr_pages <= 0) 1935 break; 1936 } 1937 } 1938 return total_wrote; 1939 } 1940 1941 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1942 struct wb_writeback_work *work) 1943 { 1944 unsigned long start_time = jiffies; 1945 long wrote = 0; 1946 1947 while (!list_empty(&wb->b_io)) { 1948 struct inode *inode = wb_inode(wb->b_io.prev); 1949 struct super_block *sb = inode->i_sb; 1950 1951 if (!trylock_super(sb)) { 1952 /* 1953 * trylock_super() may fail consistently due to 1954 * s_umount being grabbed by someone else. Don't use 1955 * requeue_io() to avoid busy retrying the inode/sb. 1956 */ 1957 redirty_tail(inode, wb); 1958 continue; 1959 } 1960 wrote += writeback_sb_inodes(sb, wb, work); 1961 up_read(&sb->s_umount); 1962 1963 /* refer to the same tests at the end of writeback_sb_inodes */ 1964 if (wrote) { 1965 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1966 break; 1967 if (work->nr_pages <= 0) 1968 break; 1969 } 1970 } 1971 /* Leave any unwritten inodes on b_io */ 1972 return wrote; 1973 } 1974 1975 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1976 enum wb_reason reason) 1977 { 1978 struct wb_writeback_work work = { 1979 .nr_pages = nr_pages, 1980 .sync_mode = WB_SYNC_NONE, 1981 .range_cyclic = 1, 1982 .reason = reason, 1983 }; 1984 struct blk_plug plug; 1985 1986 blk_start_plug(&plug); 1987 spin_lock(&wb->list_lock); 1988 if (list_empty(&wb->b_io)) 1989 queue_io(wb, &work, jiffies); 1990 __writeback_inodes_wb(wb, &work); 1991 spin_unlock(&wb->list_lock); 1992 blk_finish_plug(&plug); 1993 1994 return nr_pages - work.nr_pages; 1995 } 1996 1997 /* 1998 * Explicit flushing or periodic writeback of "old" data. 1999 * 2000 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2001 * dirtying-time in the inode's address_space. So this periodic writeback code 2002 * just walks the superblock inode list, writing back any inodes which are 2003 * older than a specific point in time. 2004 * 2005 * Try to run once per dirty_writeback_interval. But if a writeback event 2006 * takes longer than a dirty_writeback_interval interval, then leave a 2007 * one-second gap. 2008 * 2009 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2010 * all dirty pages if they are all attached to "old" mappings. 2011 */ 2012 static long wb_writeback(struct bdi_writeback *wb, 2013 struct wb_writeback_work *work) 2014 { 2015 long nr_pages = work->nr_pages; 2016 unsigned long dirtied_before = jiffies; 2017 struct inode *inode; 2018 long progress; 2019 struct blk_plug plug; 2020 2021 blk_start_plug(&plug); 2022 spin_lock(&wb->list_lock); 2023 for (;;) { 2024 /* 2025 * Stop writeback when nr_pages has been consumed 2026 */ 2027 if (work->nr_pages <= 0) 2028 break; 2029 2030 /* 2031 * Background writeout and kupdate-style writeback may 2032 * run forever. Stop them if there is other work to do 2033 * so that e.g. sync can proceed. They'll be restarted 2034 * after the other works are all done. 2035 */ 2036 if ((work->for_background || work->for_kupdate) && 2037 !list_empty(&wb->work_list)) 2038 break; 2039 2040 /* 2041 * For background writeout, stop when we are below the 2042 * background dirty threshold 2043 */ 2044 if (work->for_background && !wb_over_bg_thresh(wb)) 2045 break; 2046 2047 /* 2048 * Kupdate and background works are special and we want to 2049 * include all inodes that need writing. Livelock avoidance is 2050 * handled by these works yielding to any other work so we are 2051 * safe. 2052 */ 2053 if (work->for_kupdate) { 2054 dirtied_before = jiffies - 2055 msecs_to_jiffies(dirty_expire_interval * 10); 2056 } else if (work->for_background) 2057 dirtied_before = jiffies; 2058 2059 trace_writeback_start(wb, work); 2060 if (list_empty(&wb->b_io)) 2061 queue_io(wb, work, dirtied_before); 2062 if (work->sb) 2063 progress = writeback_sb_inodes(work->sb, wb, work); 2064 else 2065 progress = __writeback_inodes_wb(wb, work); 2066 trace_writeback_written(wb, work); 2067 2068 /* 2069 * Did we write something? Try for more 2070 * 2071 * Dirty inodes are moved to b_io for writeback in batches. 2072 * The completion of the current batch does not necessarily 2073 * mean the overall work is done. So we keep looping as long 2074 * as made some progress on cleaning pages or inodes. 2075 */ 2076 if (progress) 2077 continue; 2078 /* 2079 * No more inodes for IO, bail 2080 */ 2081 if (list_empty(&wb->b_more_io)) 2082 break; 2083 /* 2084 * Nothing written. Wait for some inode to 2085 * become available for writeback. Otherwise 2086 * we'll just busyloop. 2087 */ 2088 trace_writeback_wait(wb, work); 2089 inode = wb_inode(wb->b_more_io.prev); 2090 spin_lock(&inode->i_lock); 2091 spin_unlock(&wb->list_lock); 2092 /* This function drops i_lock... */ 2093 inode_sleep_on_writeback(inode); 2094 spin_lock(&wb->list_lock); 2095 } 2096 spin_unlock(&wb->list_lock); 2097 blk_finish_plug(&plug); 2098 2099 return nr_pages - work->nr_pages; 2100 } 2101 2102 /* 2103 * Return the next wb_writeback_work struct that hasn't been processed yet. 2104 */ 2105 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2106 { 2107 struct wb_writeback_work *work = NULL; 2108 2109 spin_lock_irq(&wb->work_lock); 2110 if (!list_empty(&wb->work_list)) { 2111 work = list_entry(wb->work_list.next, 2112 struct wb_writeback_work, list); 2113 list_del_init(&work->list); 2114 } 2115 spin_unlock_irq(&wb->work_lock); 2116 return work; 2117 } 2118 2119 static long wb_check_background_flush(struct bdi_writeback *wb) 2120 { 2121 if (wb_over_bg_thresh(wb)) { 2122 2123 struct wb_writeback_work work = { 2124 .nr_pages = LONG_MAX, 2125 .sync_mode = WB_SYNC_NONE, 2126 .for_background = 1, 2127 .range_cyclic = 1, 2128 .reason = WB_REASON_BACKGROUND, 2129 }; 2130 2131 return wb_writeback(wb, &work); 2132 } 2133 2134 return 0; 2135 } 2136 2137 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2138 { 2139 unsigned long expired; 2140 long nr_pages; 2141 2142 /* 2143 * When set to zero, disable periodic writeback 2144 */ 2145 if (!dirty_writeback_interval) 2146 return 0; 2147 2148 expired = wb->last_old_flush + 2149 msecs_to_jiffies(dirty_writeback_interval * 10); 2150 if (time_before(jiffies, expired)) 2151 return 0; 2152 2153 wb->last_old_flush = jiffies; 2154 nr_pages = get_nr_dirty_pages(); 2155 2156 if (nr_pages) { 2157 struct wb_writeback_work work = { 2158 .nr_pages = nr_pages, 2159 .sync_mode = WB_SYNC_NONE, 2160 .for_kupdate = 1, 2161 .range_cyclic = 1, 2162 .reason = WB_REASON_PERIODIC, 2163 }; 2164 2165 return wb_writeback(wb, &work); 2166 } 2167 2168 return 0; 2169 } 2170 2171 static long wb_check_start_all(struct bdi_writeback *wb) 2172 { 2173 long nr_pages; 2174 2175 if (!test_bit(WB_start_all, &wb->state)) 2176 return 0; 2177 2178 nr_pages = get_nr_dirty_pages(); 2179 if (nr_pages) { 2180 struct wb_writeback_work work = { 2181 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2182 .sync_mode = WB_SYNC_NONE, 2183 .range_cyclic = 1, 2184 .reason = wb->start_all_reason, 2185 }; 2186 2187 nr_pages = wb_writeback(wb, &work); 2188 } 2189 2190 clear_bit(WB_start_all, &wb->state); 2191 return nr_pages; 2192 } 2193 2194 2195 /* 2196 * Retrieve work items and do the writeback they describe 2197 */ 2198 static long wb_do_writeback(struct bdi_writeback *wb) 2199 { 2200 struct wb_writeback_work *work; 2201 long wrote = 0; 2202 2203 set_bit(WB_writeback_running, &wb->state); 2204 while ((work = get_next_work_item(wb)) != NULL) { 2205 trace_writeback_exec(wb, work); 2206 wrote += wb_writeback(wb, work); 2207 finish_writeback_work(wb, work); 2208 } 2209 2210 /* 2211 * Check for a flush-everything request 2212 */ 2213 wrote += wb_check_start_all(wb); 2214 2215 /* 2216 * Check for periodic writeback, kupdated() style 2217 */ 2218 wrote += wb_check_old_data_flush(wb); 2219 wrote += wb_check_background_flush(wb); 2220 clear_bit(WB_writeback_running, &wb->state); 2221 2222 return wrote; 2223 } 2224 2225 /* 2226 * Handle writeback of dirty data for the device backed by this bdi. Also 2227 * reschedules periodically and does kupdated style flushing. 2228 */ 2229 void wb_workfn(struct work_struct *work) 2230 { 2231 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2232 struct bdi_writeback, dwork); 2233 long pages_written; 2234 2235 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2236 2237 if (likely(!current_is_workqueue_rescuer() || 2238 !test_bit(WB_registered, &wb->state))) { 2239 /* 2240 * The normal path. Keep writing back @wb until its 2241 * work_list is empty. Note that this path is also taken 2242 * if @wb is shutting down even when we're running off the 2243 * rescuer as work_list needs to be drained. 2244 */ 2245 do { 2246 pages_written = wb_do_writeback(wb); 2247 trace_writeback_pages_written(pages_written); 2248 } while (!list_empty(&wb->work_list)); 2249 } else { 2250 /* 2251 * bdi_wq can't get enough workers and we're running off 2252 * the emergency worker. Don't hog it. Hopefully, 1024 is 2253 * enough for efficient IO. 2254 */ 2255 pages_written = writeback_inodes_wb(wb, 1024, 2256 WB_REASON_FORKER_THREAD); 2257 trace_writeback_pages_written(pages_written); 2258 } 2259 2260 if (!list_empty(&wb->work_list)) 2261 wb_wakeup(wb); 2262 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2263 wb_wakeup_delayed(wb); 2264 } 2265 2266 /* 2267 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2268 * write back the whole world. 2269 */ 2270 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2271 enum wb_reason reason) 2272 { 2273 struct bdi_writeback *wb; 2274 2275 if (!bdi_has_dirty_io(bdi)) 2276 return; 2277 2278 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2279 wb_start_writeback(wb, reason); 2280 } 2281 2282 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2283 enum wb_reason reason) 2284 { 2285 rcu_read_lock(); 2286 __wakeup_flusher_threads_bdi(bdi, reason); 2287 rcu_read_unlock(); 2288 } 2289 2290 /* 2291 * Wakeup the flusher threads to start writeback of all currently dirty pages 2292 */ 2293 void wakeup_flusher_threads(enum wb_reason reason) 2294 { 2295 struct backing_dev_info *bdi; 2296 2297 /* 2298 * If we are expecting writeback progress we must submit plugged IO. 2299 */ 2300 blk_flush_plug(current->plug, true); 2301 2302 rcu_read_lock(); 2303 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2304 __wakeup_flusher_threads_bdi(bdi, reason); 2305 rcu_read_unlock(); 2306 } 2307 2308 /* 2309 * Wake up bdi's periodically to make sure dirtytime inodes gets 2310 * written back periodically. We deliberately do *not* check the 2311 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2312 * kernel to be constantly waking up once there are any dirtytime 2313 * inodes on the system. So instead we define a separate delayed work 2314 * function which gets called much more rarely. (By default, only 2315 * once every 12 hours.) 2316 * 2317 * If there is any other write activity going on in the file system, 2318 * this function won't be necessary. But if the only thing that has 2319 * happened on the file system is a dirtytime inode caused by an atime 2320 * update, we need this infrastructure below to make sure that inode 2321 * eventually gets pushed out to disk. 2322 */ 2323 static void wakeup_dirtytime_writeback(struct work_struct *w); 2324 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2325 2326 static void wakeup_dirtytime_writeback(struct work_struct *w) 2327 { 2328 struct backing_dev_info *bdi; 2329 2330 rcu_read_lock(); 2331 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2332 struct bdi_writeback *wb; 2333 2334 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2335 if (!list_empty(&wb->b_dirty_time)) 2336 wb_wakeup(wb); 2337 } 2338 rcu_read_unlock(); 2339 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2340 } 2341 2342 static int __init start_dirtytime_writeback(void) 2343 { 2344 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2345 return 0; 2346 } 2347 __initcall(start_dirtytime_writeback); 2348 2349 int dirtytime_interval_handler(struct ctl_table *table, int write, 2350 void *buffer, size_t *lenp, loff_t *ppos) 2351 { 2352 int ret; 2353 2354 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2355 if (ret == 0 && write) 2356 mod_delayed_work(system_wq, &dirtytime_work, 0); 2357 return ret; 2358 } 2359 2360 /** 2361 * __mark_inode_dirty - internal function to mark an inode dirty 2362 * 2363 * @inode: inode to mark 2364 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2365 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2366 * with I_DIRTY_PAGES. 2367 * 2368 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2369 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2370 * 2371 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2372 * instead of calling this directly. 2373 * 2374 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2375 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2376 * even if they are later hashed, as they will have been marked dirty already. 2377 * 2378 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2379 * 2380 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2381 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2382 * the kernel-internal blockdev inode represents the dirtying time of the 2383 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2384 * page->mapping->host, so the page-dirtying time is recorded in the internal 2385 * blockdev inode. 2386 */ 2387 void __mark_inode_dirty(struct inode *inode, int flags) 2388 { 2389 struct super_block *sb = inode->i_sb; 2390 int dirtytime = 0; 2391 struct bdi_writeback *wb = NULL; 2392 2393 trace_writeback_mark_inode_dirty(inode, flags); 2394 2395 if (flags & I_DIRTY_INODE) { 2396 /* 2397 * Inode timestamp update will piggback on this dirtying. 2398 * We tell ->dirty_inode callback that timestamps need to 2399 * be updated by setting I_DIRTY_TIME in flags. 2400 */ 2401 if (inode->i_state & I_DIRTY_TIME) { 2402 spin_lock(&inode->i_lock); 2403 if (inode->i_state & I_DIRTY_TIME) { 2404 inode->i_state &= ~I_DIRTY_TIME; 2405 flags |= I_DIRTY_TIME; 2406 } 2407 spin_unlock(&inode->i_lock); 2408 } 2409 2410 /* 2411 * Notify the filesystem about the inode being dirtied, so that 2412 * (if needed) it can update on-disk fields and journal the 2413 * inode. This is only needed when the inode itself is being 2414 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2415 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2416 */ 2417 trace_writeback_dirty_inode_start(inode, flags); 2418 if (sb->s_op->dirty_inode) 2419 sb->s_op->dirty_inode(inode, 2420 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2421 trace_writeback_dirty_inode(inode, flags); 2422 2423 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2424 flags &= ~I_DIRTY_TIME; 2425 } else { 2426 /* 2427 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2428 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2429 * in one call to __mark_inode_dirty().) 2430 */ 2431 dirtytime = flags & I_DIRTY_TIME; 2432 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2433 } 2434 2435 /* 2436 * Paired with smp_mb() in __writeback_single_inode() for the 2437 * following lockless i_state test. See there for details. 2438 */ 2439 smp_mb(); 2440 2441 if ((inode->i_state & flags) == flags) 2442 return; 2443 2444 spin_lock(&inode->i_lock); 2445 if ((inode->i_state & flags) != flags) { 2446 const int was_dirty = inode->i_state & I_DIRTY; 2447 2448 inode_attach_wb(inode, NULL); 2449 2450 inode->i_state |= flags; 2451 2452 /* 2453 * Grab inode's wb early because it requires dropping i_lock and we 2454 * need to make sure following checks happen atomically with dirty 2455 * list handling so that we don't move inodes under flush worker's 2456 * hands. 2457 */ 2458 if (!was_dirty) { 2459 wb = locked_inode_to_wb_and_lock_list(inode); 2460 spin_lock(&inode->i_lock); 2461 } 2462 2463 /* 2464 * If the inode is queued for writeback by flush worker, just 2465 * update its dirty state. Once the flush worker is done with 2466 * the inode it will place it on the appropriate superblock 2467 * list, based upon its state. 2468 */ 2469 if (inode->i_state & I_SYNC_QUEUED) 2470 goto out_unlock; 2471 2472 /* 2473 * Only add valid (hashed) inodes to the superblock's 2474 * dirty list. Add blockdev inodes as well. 2475 */ 2476 if (!S_ISBLK(inode->i_mode)) { 2477 if (inode_unhashed(inode)) 2478 goto out_unlock; 2479 } 2480 if (inode->i_state & I_FREEING) 2481 goto out_unlock; 2482 2483 /* 2484 * If the inode was already on b_dirty/b_io/b_more_io, don't 2485 * reposition it (that would break b_dirty time-ordering). 2486 */ 2487 if (!was_dirty) { 2488 struct list_head *dirty_list; 2489 bool wakeup_bdi = false; 2490 2491 inode->dirtied_when = jiffies; 2492 if (dirtytime) 2493 inode->dirtied_time_when = jiffies; 2494 2495 if (inode->i_state & I_DIRTY) 2496 dirty_list = &wb->b_dirty; 2497 else 2498 dirty_list = &wb->b_dirty_time; 2499 2500 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2501 dirty_list); 2502 2503 spin_unlock(&wb->list_lock); 2504 spin_unlock(&inode->i_lock); 2505 trace_writeback_dirty_inode_enqueue(inode); 2506 2507 /* 2508 * If this is the first dirty inode for this bdi, 2509 * we have to wake-up the corresponding bdi thread 2510 * to make sure background write-back happens 2511 * later. 2512 */ 2513 if (wakeup_bdi && 2514 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2515 wb_wakeup_delayed(wb); 2516 return; 2517 } 2518 } 2519 out_unlock: 2520 if (wb) 2521 spin_unlock(&wb->list_lock); 2522 spin_unlock(&inode->i_lock); 2523 } 2524 EXPORT_SYMBOL(__mark_inode_dirty); 2525 2526 /* 2527 * The @s_sync_lock is used to serialise concurrent sync operations 2528 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2529 * Concurrent callers will block on the s_sync_lock rather than doing contending 2530 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2531 * has been issued up to the time this function is enter is guaranteed to be 2532 * completed by the time we have gained the lock and waited for all IO that is 2533 * in progress regardless of the order callers are granted the lock. 2534 */ 2535 static void wait_sb_inodes(struct super_block *sb) 2536 { 2537 LIST_HEAD(sync_list); 2538 2539 /* 2540 * We need to be protected against the filesystem going from 2541 * r/o to r/w or vice versa. 2542 */ 2543 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2544 2545 mutex_lock(&sb->s_sync_lock); 2546 2547 /* 2548 * Splice the writeback list onto a temporary list to avoid waiting on 2549 * inodes that have started writeback after this point. 2550 * 2551 * Use rcu_read_lock() to keep the inodes around until we have a 2552 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2553 * the local list because inodes can be dropped from either by writeback 2554 * completion. 2555 */ 2556 rcu_read_lock(); 2557 spin_lock_irq(&sb->s_inode_wblist_lock); 2558 list_splice_init(&sb->s_inodes_wb, &sync_list); 2559 2560 /* 2561 * Data integrity sync. Must wait for all pages under writeback, because 2562 * there may have been pages dirtied before our sync call, but which had 2563 * writeout started before we write it out. In which case, the inode 2564 * may not be on the dirty list, but we still have to wait for that 2565 * writeout. 2566 */ 2567 while (!list_empty(&sync_list)) { 2568 struct inode *inode = list_first_entry(&sync_list, struct inode, 2569 i_wb_list); 2570 struct address_space *mapping = inode->i_mapping; 2571 2572 /* 2573 * Move each inode back to the wb list before we drop the lock 2574 * to preserve consistency between i_wb_list and the mapping 2575 * writeback tag. Writeback completion is responsible to remove 2576 * the inode from either list once the writeback tag is cleared. 2577 */ 2578 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2579 2580 /* 2581 * The mapping can appear untagged while still on-list since we 2582 * do not have the mapping lock. Skip it here, wb completion 2583 * will remove it. 2584 */ 2585 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2586 continue; 2587 2588 spin_unlock_irq(&sb->s_inode_wblist_lock); 2589 2590 spin_lock(&inode->i_lock); 2591 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2592 spin_unlock(&inode->i_lock); 2593 2594 spin_lock_irq(&sb->s_inode_wblist_lock); 2595 continue; 2596 } 2597 __iget(inode); 2598 spin_unlock(&inode->i_lock); 2599 rcu_read_unlock(); 2600 2601 /* 2602 * We keep the error status of individual mapping so that 2603 * applications can catch the writeback error using fsync(2). 2604 * See filemap_fdatawait_keep_errors() for details. 2605 */ 2606 filemap_fdatawait_keep_errors(mapping); 2607 2608 cond_resched(); 2609 2610 iput(inode); 2611 2612 rcu_read_lock(); 2613 spin_lock_irq(&sb->s_inode_wblist_lock); 2614 } 2615 spin_unlock_irq(&sb->s_inode_wblist_lock); 2616 rcu_read_unlock(); 2617 mutex_unlock(&sb->s_sync_lock); 2618 } 2619 2620 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2621 enum wb_reason reason, bool skip_if_busy) 2622 { 2623 struct backing_dev_info *bdi = sb->s_bdi; 2624 DEFINE_WB_COMPLETION(done, bdi); 2625 struct wb_writeback_work work = { 2626 .sb = sb, 2627 .sync_mode = WB_SYNC_NONE, 2628 .tagged_writepages = 1, 2629 .done = &done, 2630 .nr_pages = nr, 2631 .reason = reason, 2632 }; 2633 2634 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2635 return; 2636 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2637 2638 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2639 wb_wait_for_completion(&done); 2640 } 2641 2642 /** 2643 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2644 * @sb: the superblock 2645 * @nr: the number of pages to write 2646 * @reason: reason why some writeback work initiated 2647 * 2648 * Start writeback on some inodes on this super_block. No guarantees are made 2649 * on how many (if any) will be written, and this function does not wait 2650 * for IO completion of submitted IO. 2651 */ 2652 void writeback_inodes_sb_nr(struct super_block *sb, 2653 unsigned long nr, 2654 enum wb_reason reason) 2655 { 2656 __writeback_inodes_sb_nr(sb, nr, reason, false); 2657 } 2658 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2659 2660 /** 2661 * writeback_inodes_sb - writeback dirty inodes from given super_block 2662 * @sb: the superblock 2663 * @reason: reason why some writeback work was initiated 2664 * 2665 * Start writeback on some inodes on this super_block. No guarantees are made 2666 * on how many (if any) will be written, and this function does not wait 2667 * for IO completion of submitted IO. 2668 */ 2669 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2670 { 2671 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2672 } 2673 EXPORT_SYMBOL(writeback_inodes_sb); 2674 2675 /** 2676 * try_to_writeback_inodes_sb - try to start writeback if none underway 2677 * @sb: the superblock 2678 * @reason: reason why some writeback work was initiated 2679 * 2680 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2681 */ 2682 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2683 { 2684 if (!down_read_trylock(&sb->s_umount)) 2685 return; 2686 2687 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2688 up_read(&sb->s_umount); 2689 } 2690 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2691 2692 /** 2693 * sync_inodes_sb - sync sb inode pages 2694 * @sb: the superblock 2695 * 2696 * This function writes and waits on any dirty inode belonging to this 2697 * super_block. 2698 */ 2699 void sync_inodes_sb(struct super_block *sb) 2700 { 2701 struct backing_dev_info *bdi = sb->s_bdi; 2702 DEFINE_WB_COMPLETION(done, bdi); 2703 struct wb_writeback_work work = { 2704 .sb = sb, 2705 .sync_mode = WB_SYNC_ALL, 2706 .nr_pages = LONG_MAX, 2707 .range_cyclic = 0, 2708 .done = &done, 2709 .reason = WB_REASON_SYNC, 2710 .for_sync = 1, 2711 }; 2712 2713 /* 2714 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2715 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2716 * bdi_has_dirty() need to be written out too. 2717 */ 2718 if (bdi == &noop_backing_dev_info) 2719 return; 2720 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2721 2722 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2723 bdi_down_write_wb_switch_rwsem(bdi); 2724 bdi_split_work_to_wbs(bdi, &work, false); 2725 wb_wait_for_completion(&done); 2726 bdi_up_write_wb_switch_rwsem(bdi); 2727 2728 wait_sb_inodes(sb); 2729 } 2730 EXPORT_SYMBOL(sync_inodes_sb); 2731 2732 /** 2733 * write_inode_now - write an inode to disk 2734 * @inode: inode to write to disk 2735 * @sync: whether the write should be synchronous or not 2736 * 2737 * This function commits an inode to disk immediately if it is dirty. This is 2738 * primarily needed by knfsd. 2739 * 2740 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2741 */ 2742 int write_inode_now(struct inode *inode, int sync) 2743 { 2744 struct writeback_control wbc = { 2745 .nr_to_write = LONG_MAX, 2746 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2747 .range_start = 0, 2748 .range_end = LLONG_MAX, 2749 }; 2750 2751 if (!mapping_can_writeback(inode->i_mapping)) 2752 wbc.nr_to_write = 0; 2753 2754 might_sleep(); 2755 return writeback_single_inode(inode, &wbc); 2756 } 2757 EXPORT_SYMBOL(write_inode_now); 2758 2759 /** 2760 * sync_inode_metadata - write an inode to disk 2761 * @inode: the inode to sync 2762 * @wait: wait for I/O to complete. 2763 * 2764 * Write an inode to disk and adjust its dirty state after completion. 2765 * 2766 * Note: only writes the actual inode, no associated data or other metadata. 2767 */ 2768 int sync_inode_metadata(struct inode *inode, int wait) 2769 { 2770 struct writeback_control wbc = { 2771 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2772 .nr_to_write = 0, /* metadata-only */ 2773 }; 2774 2775 return writeback_single_inode(inode, &wbc); 2776 } 2777 EXPORT_SYMBOL(sync_inode_metadata); 2778