xref: /linux/fs/fs-writeback.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160 	unsigned long timeout;
161 
162 	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 	spin_lock_irq(&wb->work_lock);
164 	if (test_bit(WB_registered, &wb->state))
165 		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 	spin_unlock_irq(&wb->work_lock);
167 }
168 
169 static void finish_writeback_work(struct bdi_writeback *wb,
170 				  struct wb_writeback_work *work)
171 {
172 	struct wb_completion *done = work->done;
173 
174 	if (work->auto_free)
175 		kfree(work);
176 	if (done) {
177 		wait_queue_head_t *waitq = done->waitq;
178 
179 		/* @done can't be accessed after the following dec */
180 		if (atomic_dec_and_test(&done->cnt))
181 			wake_up_all(waitq);
182 	}
183 }
184 
185 static void wb_queue_work(struct bdi_writeback *wb,
186 			  struct wb_writeback_work *work)
187 {
188 	trace_writeback_queue(wb, work);
189 
190 	if (work->done)
191 		atomic_inc(&work->done->cnt);
192 
193 	spin_lock_irq(&wb->work_lock);
194 
195 	if (test_bit(WB_registered, &wb->state)) {
196 		list_add_tail(&work->list, &wb->work_list);
197 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
198 	} else
199 		finish_writeback_work(wb, work);
200 
201 	spin_unlock_irq(&wb->work_lock);
202 }
203 
204 /**
205  * wb_wait_for_completion - wait for completion of bdi_writeback_works
206  * @done: target wb_completion
207  *
208  * Wait for one or more work items issued to @bdi with their ->done field
209  * set to @done, which should have been initialized with
210  * DEFINE_WB_COMPLETION().  This function returns after all such work items
211  * are completed.  Work items which are waited upon aren't freed
212  * automatically on completion.
213  */
214 void wb_wait_for_completion(struct wb_completion *done)
215 {
216 	atomic_dec(&done->cnt);		/* put down the initial count */
217 	wait_event(*done->waitq, !atomic_read(&done->cnt));
218 }
219 
220 #ifdef CONFIG_CGROUP_WRITEBACK
221 
222 /*
223  * Parameters for foreign inode detection, see wbc_detach_inode() to see
224  * how they're used.
225  *
226  * These paramters are inherently heuristical as the detection target
227  * itself is fuzzy.  All we want to do is detaching an inode from the
228  * current owner if it's being written to by some other cgroups too much.
229  *
230  * The current cgroup writeback is built on the assumption that multiple
231  * cgroups writing to the same inode concurrently is very rare and a mode
232  * of operation which isn't well supported.  As such, the goal is not
233  * taking too long when a different cgroup takes over an inode while
234  * avoiding too aggressive flip-flops from occasional foreign writes.
235  *
236  * We record, very roughly, 2s worth of IO time history and if more than
237  * half of that is foreign, trigger the switch.  The recording is quantized
238  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
239  * writes smaller than 1/8 of avg size are ignored.
240  */
241 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
242 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
243 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
244 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
245 
246 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
247 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
248 					/* each slot's duration is 2s / 16 */
249 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
250 					/* if foreign slots >= 8, switch */
251 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
252 					/* one round can affect upto 5 slots */
253 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
254 
255 /*
256  * Maximum inodes per isw.  A specific value has been chosen to make
257  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
258  */
259 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
260                                 / sizeof(struct inode *))
261 
262 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
263 static struct workqueue_struct *isw_wq;
264 
265 void __inode_attach_wb(struct inode *inode, struct folio *folio)
266 {
267 	struct backing_dev_info *bdi = inode_to_bdi(inode);
268 	struct bdi_writeback *wb = NULL;
269 
270 	if (inode_cgwb_enabled(inode)) {
271 		struct cgroup_subsys_state *memcg_css;
272 
273 		if (folio) {
274 			memcg_css = mem_cgroup_css_from_folio(folio);
275 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
276 		} else {
277 			/* must pin memcg_css, see wb_get_create() */
278 			memcg_css = task_get_css(current, memory_cgrp_id);
279 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
280 			css_put(memcg_css);
281 		}
282 	}
283 
284 	if (!wb)
285 		wb = &bdi->wb;
286 
287 	/*
288 	 * There may be multiple instances of this function racing to
289 	 * update the same inode.  Use cmpxchg() to tell the winner.
290 	 */
291 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
292 		wb_put(wb);
293 }
294 EXPORT_SYMBOL_GPL(__inode_attach_wb);
295 
296 /**
297  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
298  * @inode: inode of interest with i_lock held
299  * @wb: target bdi_writeback
300  *
301  * Remove the inode from wb's io lists and if necessarily put onto b_attached
302  * list.  Only inodes attached to cgwb's are kept on this list.
303  */
304 static void inode_cgwb_move_to_attached(struct inode *inode,
305 					struct bdi_writeback *wb)
306 {
307 	assert_spin_locked(&wb->list_lock);
308 	assert_spin_locked(&inode->i_lock);
309 	WARN_ON_ONCE(inode->i_state & I_FREEING);
310 
311 	inode->i_state &= ~I_SYNC_QUEUED;
312 	if (wb != &wb->bdi->wb)
313 		list_move(&inode->i_io_list, &wb->b_attached);
314 	else
315 		list_del_init(&inode->i_io_list);
316 	wb_io_lists_depopulated(wb);
317 }
318 
319 /**
320  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
321  * @inode: inode of interest with i_lock held
322  *
323  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
324  * held on entry and is released on return.  The returned wb is guaranteed
325  * to stay @inode's associated wb until its list_lock is released.
326  */
327 static struct bdi_writeback *
328 locked_inode_to_wb_and_lock_list(struct inode *inode)
329 	__releases(&inode->i_lock)
330 	__acquires(&wb->list_lock)
331 {
332 	while (true) {
333 		struct bdi_writeback *wb = inode_to_wb(inode);
334 
335 		/*
336 		 * inode_to_wb() association is protected by both
337 		 * @inode->i_lock and @wb->list_lock but list_lock nests
338 		 * outside i_lock.  Drop i_lock and verify that the
339 		 * association hasn't changed after acquiring list_lock.
340 		 */
341 		wb_get(wb);
342 		spin_unlock(&inode->i_lock);
343 		spin_lock(&wb->list_lock);
344 
345 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
346 		if (likely(wb == inode->i_wb)) {
347 			wb_put(wb);	/* @inode already has ref */
348 			return wb;
349 		}
350 
351 		spin_unlock(&wb->list_lock);
352 		wb_put(wb);
353 		cpu_relax();
354 		spin_lock(&inode->i_lock);
355 	}
356 }
357 
358 /**
359  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
360  * @inode: inode of interest
361  *
362  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
363  * on entry.
364  */
365 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
366 	__acquires(&wb->list_lock)
367 {
368 	spin_lock(&inode->i_lock);
369 	return locked_inode_to_wb_and_lock_list(inode);
370 }
371 
372 struct inode_switch_wbs_context {
373 	struct rcu_work		work;
374 
375 	/*
376 	 * Multiple inodes can be switched at once.  The switching procedure
377 	 * consists of two parts, separated by a RCU grace period.  To make
378 	 * sure that the second part is executed for each inode gone through
379 	 * the first part, all inode pointers are placed into a NULL-terminated
380 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
381 	 * an inode could be left in a non-consistent state.
382 	 */
383 	struct bdi_writeback	*new_wb;
384 	struct inode		*inodes[];
385 };
386 
387 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
388 {
389 	down_write(&bdi->wb_switch_rwsem);
390 }
391 
392 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
393 {
394 	up_write(&bdi->wb_switch_rwsem);
395 }
396 
397 static bool inode_do_switch_wbs(struct inode *inode,
398 				struct bdi_writeback *old_wb,
399 				struct bdi_writeback *new_wb)
400 {
401 	struct address_space *mapping = inode->i_mapping;
402 	XA_STATE(xas, &mapping->i_pages, 0);
403 	struct folio *folio;
404 	bool switched = false;
405 
406 	spin_lock(&inode->i_lock);
407 	xa_lock_irq(&mapping->i_pages);
408 
409 	/*
410 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
411 	 * path owns the inode and we shouldn't modify ->i_io_list.
412 	 */
413 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
414 		goto skip_switch;
415 
416 	trace_inode_switch_wbs(inode, old_wb, new_wb);
417 
418 	/*
419 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
420 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
421 	 * folios actually under writeback.
422 	 */
423 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
424 		if (folio_test_dirty(folio)) {
425 			long nr = folio_nr_pages(folio);
426 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
427 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
428 		}
429 	}
430 
431 	xas_set(&xas, 0);
432 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
433 		long nr = folio_nr_pages(folio);
434 		WARN_ON_ONCE(!folio_test_writeback(folio));
435 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
436 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
437 	}
438 
439 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
440 		atomic_dec(&old_wb->writeback_inodes);
441 		atomic_inc(&new_wb->writeback_inodes);
442 	}
443 
444 	wb_get(new_wb);
445 
446 	/*
447 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
448 	 * the specific list @inode was on is ignored and the @inode is put on
449 	 * ->b_dirty which is always correct including from ->b_dirty_time.
450 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
451 	 * was clean, it means it was on the b_attached list, so move it onto
452 	 * the b_attached list of @new_wb.
453 	 */
454 	if (!list_empty(&inode->i_io_list)) {
455 		inode->i_wb = new_wb;
456 
457 		if (inode->i_state & I_DIRTY_ALL) {
458 			struct inode *pos;
459 
460 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
461 				if (time_after_eq(inode->dirtied_when,
462 						  pos->dirtied_when))
463 					break;
464 			inode_io_list_move_locked(inode, new_wb,
465 						  pos->i_io_list.prev);
466 		} else {
467 			inode_cgwb_move_to_attached(inode, new_wb);
468 		}
469 	} else {
470 		inode->i_wb = new_wb;
471 	}
472 
473 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
474 	inode->i_wb_frn_winner = 0;
475 	inode->i_wb_frn_avg_time = 0;
476 	inode->i_wb_frn_history = 0;
477 	switched = true;
478 skip_switch:
479 	/*
480 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
481 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
482 	 */
483 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
484 
485 	xa_unlock_irq(&mapping->i_pages);
486 	spin_unlock(&inode->i_lock);
487 
488 	return switched;
489 }
490 
491 static void inode_switch_wbs_work_fn(struct work_struct *work)
492 {
493 	struct inode_switch_wbs_context *isw =
494 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
495 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
496 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
497 	struct bdi_writeback *new_wb = isw->new_wb;
498 	unsigned long nr_switched = 0;
499 	struct inode **inodep;
500 
501 	/*
502 	 * If @inode switches cgwb membership while sync_inodes_sb() is
503 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
504 	 */
505 	down_read(&bdi->wb_switch_rwsem);
506 
507 	/*
508 	 * By the time control reaches here, RCU grace period has passed
509 	 * since I_WB_SWITCH assertion and all wb stat update transactions
510 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
511 	 * synchronizing against the i_pages lock.
512 	 *
513 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
514 	 * gives us exclusion against all wb related operations on @inode
515 	 * including IO list manipulations and stat updates.
516 	 */
517 	if (old_wb < new_wb) {
518 		spin_lock(&old_wb->list_lock);
519 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
520 	} else {
521 		spin_lock(&new_wb->list_lock);
522 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
523 	}
524 
525 	for (inodep = isw->inodes; *inodep; inodep++) {
526 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
527 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
528 			nr_switched++;
529 	}
530 
531 	spin_unlock(&new_wb->list_lock);
532 	spin_unlock(&old_wb->list_lock);
533 
534 	up_read(&bdi->wb_switch_rwsem);
535 
536 	if (nr_switched) {
537 		wb_wakeup(new_wb);
538 		wb_put_many(old_wb, nr_switched);
539 	}
540 
541 	for (inodep = isw->inodes; *inodep; inodep++)
542 		iput(*inodep);
543 	wb_put(new_wb);
544 	kfree(isw);
545 	atomic_dec(&isw_nr_in_flight);
546 }
547 
548 static bool inode_prepare_wbs_switch(struct inode *inode,
549 				     struct bdi_writeback *new_wb)
550 {
551 	/*
552 	 * Paired with smp_mb() in cgroup_writeback_umount().
553 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
554 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
555 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
556 	 */
557 	smp_mb();
558 
559 	if (IS_DAX(inode))
560 		return false;
561 
562 	/* while holding I_WB_SWITCH, no one else can update the association */
563 	spin_lock(&inode->i_lock);
564 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
565 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
566 	    inode_to_wb(inode) == new_wb) {
567 		spin_unlock(&inode->i_lock);
568 		return false;
569 	}
570 	inode->i_state |= I_WB_SWITCH;
571 	__iget(inode);
572 	spin_unlock(&inode->i_lock);
573 
574 	return true;
575 }
576 
577 /**
578  * inode_switch_wbs - change the wb association of an inode
579  * @inode: target inode
580  * @new_wb_id: ID of the new wb
581  *
582  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
583  * switching is performed asynchronously and may fail silently.
584  */
585 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
586 {
587 	struct backing_dev_info *bdi = inode_to_bdi(inode);
588 	struct cgroup_subsys_state *memcg_css;
589 	struct inode_switch_wbs_context *isw;
590 
591 	/* noop if seems to be already in progress */
592 	if (inode->i_state & I_WB_SWITCH)
593 		return;
594 
595 	/* avoid queueing a new switch if too many are already in flight */
596 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
597 		return;
598 
599 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
600 	if (!isw)
601 		return;
602 
603 	atomic_inc(&isw_nr_in_flight);
604 
605 	/* find and pin the new wb */
606 	rcu_read_lock();
607 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
608 	if (memcg_css && !css_tryget(memcg_css))
609 		memcg_css = NULL;
610 	rcu_read_unlock();
611 	if (!memcg_css)
612 		goto out_free;
613 
614 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
615 	css_put(memcg_css);
616 	if (!isw->new_wb)
617 		goto out_free;
618 
619 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
620 		goto out_free;
621 
622 	isw->inodes[0] = inode;
623 
624 	/*
625 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
626 	 * the RCU protected stat update paths to grab the i_page
627 	 * lock so that stat transfer can synchronize against them.
628 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
629 	 */
630 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
631 	queue_rcu_work(isw_wq, &isw->work);
632 	return;
633 
634 out_free:
635 	atomic_dec(&isw_nr_in_flight);
636 	if (isw->new_wb)
637 		wb_put(isw->new_wb);
638 	kfree(isw);
639 }
640 
641 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
642 				   struct list_head *list, int *nr)
643 {
644 	struct inode *inode;
645 
646 	list_for_each_entry(inode, list, i_io_list) {
647 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648 			continue;
649 
650 		isw->inodes[*nr] = inode;
651 		(*nr)++;
652 
653 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
654 			return true;
655 	}
656 	return false;
657 }
658 
659 /**
660  * cleanup_offline_cgwb - detach associated inodes
661  * @wb: target wb
662  *
663  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
664  * to eventually release the dying @wb.  Returns %true if not all inodes were
665  * switched and the function has to be restarted.
666  */
667 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
668 {
669 	struct cgroup_subsys_state *memcg_css;
670 	struct inode_switch_wbs_context *isw;
671 	int nr;
672 	bool restart = false;
673 
674 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
675 		      GFP_KERNEL);
676 	if (!isw)
677 		return restart;
678 
679 	atomic_inc(&isw_nr_in_flight);
680 
681 	for (memcg_css = wb->memcg_css->parent; memcg_css;
682 	     memcg_css = memcg_css->parent) {
683 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
684 		if (isw->new_wb)
685 			break;
686 	}
687 	if (unlikely(!isw->new_wb))
688 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
689 
690 	nr = 0;
691 	spin_lock(&wb->list_lock);
692 	/*
693 	 * In addition to the inodes that have completed writeback, also switch
694 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
695 	 * inodes won't be written back for a long time when lazytime is
696 	 * enabled, and thus pinning the dying cgwbs. It won't break the
697 	 * bandwidth restrictions, as writeback of inode metadata is not
698 	 * accounted for.
699 	 */
700 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
701 	if (!restart)
702 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
703 	spin_unlock(&wb->list_lock);
704 
705 	/* no attached inodes? bail out */
706 	if (nr == 0) {
707 		atomic_dec(&isw_nr_in_flight);
708 		wb_put(isw->new_wb);
709 		kfree(isw);
710 		return restart;
711 	}
712 
713 	/*
714 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
715 	 * the RCU protected stat update paths to grab the i_page
716 	 * lock so that stat transfer can synchronize against them.
717 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
718 	 */
719 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
720 	queue_rcu_work(isw_wq, &isw->work);
721 
722 	return restart;
723 }
724 
725 /**
726  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
727  * @wbc: writeback_control of interest
728  * @inode: target inode
729  *
730  * @inode is locked and about to be written back under the control of @wbc.
731  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
732  * writeback completion, wbc_detach_inode() should be called.  This is used
733  * to track the cgroup writeback context.
734  */
735 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
736 				 struct inode *inode)
737 {
738 	if (!inode_cgwb_enabled(inode)) {
739 		spin_unlock(&inode->i_lock);
740 		return;
741 	}
742 
743 	wbc->wb = inode_to_wb(inode);
744 	wbc->inode = inode;
745 
746 	wbc->wb_id = wbc->wb->memcg_css->id;
747 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
748 	wbc->wb_tcand_id = 0;
749 	wbc->wb_bytes = 0;
750 	wbc->wb_lcand_bytes = 0;
751 	wbc->wb_tcand_bytes = 0;
752 
753 	wb_get(wbc->wb);
754 	spin_unlock(&inode->i_lock);
755 
756 	/*
757 	 * A dying wb indicates that either the blkcg associated with the
758 	 * memcg changed or the associated memcg is dying.  In the first
759 	 * case, a replacement wb should already be available and we should
760 	 * refresh the wb immediately.  In the second case, trying to
761 	 * refresh will keep failing.
762 	 */
763 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
764 		inode_switch_wbs(inode, wbc->wb_id);
765 }
766 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
767 
768 /**
769  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
770  * @wbc: writeback_control of the just finished writeback
771  *
772  * To be called after a writeback attempt of an inode finishes and undoes
773  * wbc_attach_and_unlock_inode().  Can be called under any context.
774  *
775  * As concurrent write sharing of an inode is expected to be very rare and
776  * memcg only tracks page ownership on first-use basis severely confining
777  * the usefulness of such sharing, cgroup writeback tracks ownership
778  * per-inode.  While the support for concurrent write sharing of an inode
779  * is deemed unnecessary, an inode being written to by different cgroups at
780  * different points in time is a lot more common, and, more importantly,
781  * charging only by first-use can too readily lead to grossly incorrect
782  * behaviors (single foreign page can lead to gigabytes of writeback to be
783  * incorrectly attributed).
784  *
785  * To resolve this issue, cgroup writeback detects the majority dirtier of
786  * an inode and transfers the ownership to it.  To avoid unnecessary
787  * oscillation, the detection mechanism keeps track of history and gives
788  * out the switch verdict only if the foreign usage pattern is stable over
789  * a certain amount of time and/or writeback attempts.
790  *
791  * On each writeback attempt, @wbc tries to detect the majority writer
792  * using Boyer-Moore majority vote algorithm.  In addition to the byte
793  * count from the majority voting, it also counts the bytes written for the
794  * current wb and the last round's winner wb (max of last round's current
795  * wb, the winner from two rounds ago, and the last round's majority
796  * candidate).  Keeping track of the historical winner helps the algorithm
797  * to semi-reliably detect the most active writer even when it's not the
798  * absolute majority.
799  *
800  * Once the winner of the round is determined, whether the winner is
801  * foreign or not and how much IO time the round consumed is recorded in
802  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
803  * over a certain threshold, the switch verdict is given.
804  */
805 void wbc_detach_inode(struct writeback_control *wbc)
806 {
807 	struct bdi_writeback *wb = wbc->wb;
808 	struct inode *inode = wbc->inode;
809 	unsigned long avg_time, max_bytes, max_time;
810 	u16 history;
811 	int max_id;
812 
813 	if (!wb)
814 		return;
815 
816 	history = inode->i_wb_frn_history;
817 	avg_time = inode->i_wb_frn_avg_time;
818 
819 	/* pick the winner of this round */
820 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
821 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
822 		max_id = wbc->wb_id;
823 		max_bytes = wbc->wb_bytes;
824 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
825 		max_id = wbc->wb_lcand_id;
826 		max_bytes = wbc->wb_lcand_bytes;
827 	} else {
828 		max_id = wbc->wb_tcand_id;
829 		max_bytes = wbc->wb_tcand_bytes;
830 	}
831 
832 	/*
833 	 * Calculate the amount of IO time the winner consumed and fold it
834 	 * into the running average kept per inode.  If the consumed IO
835 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
836 	 * deciding whether to switch or not.  This is to prevent one-off
837 	 * small dirtiers from skewing the verdict.
838 	 */
839 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
840 				wb->avg_write_bandwidth);
841 	if (avg_time)
842 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
843 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
844 	else
845 		avg_time = max_time;	/* immediate catch up on first run */
846 
847 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
848 		int slots;
849 
850 		/*
851 		 * The switch verdict is reached if foreign wb's consume
852 		 * more than a certain proportion of IO time in a
853 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
854 		 * history mask where each bit represents one sixteenth of
855 		 * the period.  Determine the number of slots to shift into
856 		 * history from @max_time.
857 		 */
858 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
859 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
860 		history <<= slots;
861 		if (wbc->wb_id != max_id)
862 			history |= (1U << slots) - 1;
863 
864 		if (history)
865 			trace_inode_foreign_history(inode, wbc, history);
866 
867 		/*
868 		 * Switch if the current wb isn't the consistent winner.
869 		 * If there are multiple closely competing dirtiers, the
870 		 * inode may switch across them repeatedly over time, which
871 		 * is okay.  The main goal is avoiding keeping an inode on
872 		 * the wrong wb for an extended period of time.
873 		 */
874 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
875 			inode_switch_wbs(inode, max_id);
876 	}
877 
878 	/*
879 	 * Multiple instances of this function may race to update the
880 	 * following fields but we don't mind occassional inaccuracies.
881 	 */
882 	inode->i_wb_frn_winner = max_id;
883 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
884 	inode->i_wb_frn_history = history;
885 
886 	wb_put(wbc->wb);
887 	wbc->wb = NULL;
888 }
889 EXPORT_SYMBOL_GPL(wbc_detach_inode);
890 
891 /**
892  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
893  * @wbc: writeback_control of the writeback in progress
894  * @page: page being written out
895  * @bytes: number of bytes being written out
896  *
897  * @bytes from @page are about to written out during the writeback
898  * controlled by @wbc.  Keep the book for foreign inode detection.  See
899  * wbc_detach_inode().
900  */
901 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
902 			      size_t bytes)
903 {
904 	struct folio *folio;
905 	struct cgroup_subsys_state *css;
906 	int id;
907 
908 	/*
909 	 * pageout() path doesn't attach @wbc to the inode being written
910 	 * out.  This is intentional as we don't want the function to block
911 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
912 	 * regular writeback instead of writing things out itself.
913 	 */
914 	if (!wbc->wb || wbc->no_cgroup_owner)
915 		return;
916 
917 	folio = page_folio(page);
918 	css = mem_cgroup_css_from_folio(folio);
919 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
920 	if (!(css->flags & CSS_ONLINE))
921 		return;
922 
923 	id = css->id;
924 
925 	if (id == wbc->wb_id) {
926 		wbc->wb_bytes += bytes;
927 		return;
928 	}
929 
930 	if (id == wbc->wb_lcand_id)
931 		wbc->wb_lcand_bytes += bytes;
932 
933 	/* Boyer-Moore majority vote algorithm */
934 	if (!wbc->wb_tcand_bytes)
935 		wbc->wb_tcand_id = id;
936 	if (id == wbc->wb_tcand_id)
937 		wbc->wb_tcand_bytes += bytes;
938 	else
939 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
940 }
941 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
942 
943 /**
944  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
945  * @wb: target bdi_writeback to split @nr_pages to
946  * @nr_pages: number of pages to write for the whole bdi
947  *
948  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
949  * relation to the total write bandwidth of all wb's w/ dirty inodes on
950  * @wb->bdi.
951  */
952 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
953 {
954 	unsigned long this_bw = wb->avg_write_bandwidth;
955 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
956 
957 	if (nr_pages == LONG_MAX)
958 		return LONG_MAX;
959 
960 	/*
961 	 * This may be called on clean wb's and proportional distribution
962 	 * may not make sense, just use the original @nr_pages in those
963 	 * cases.  In general, we wanna err on the side of writing more.
964 	 */
965 	if (!tot_bw || this_bw >= tot_bw)
966 		return nr_pages;
967 	else
968 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
969 }
970 
971 /**
972  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
973  * @bdi: target backing_dev_info
974  * @base_work: wb_writeback_work to issue
975  * @skip_if_busy: skip wb's which already have writeback in progress
976  *
977  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
978  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
979  * distributed to the busy wbs according to each wb's proportion in the
980  * total active write bandwidth of @bdi.
981  */
982 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
983 				  struct wb_writeback_work *base_work,
984 				  bool skip_if_busy)
985 {
986 	struct bdi_writeback *last_wb = NULL;
987 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
988 					      struct bdi_writeback, bdi_node);
989 
990 	might_sleep();
991 restart:
992 	rcu_read_lock();
993 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
994 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
995 		struct wb_writeback_work fallback_work;
996 		struct wb_writeback_work *work;
997 		long nr_pages;
998 
999 		if (last_wb) {
1000 			wb_put(last_wb);
1001 			last_wb = NULL;
1002 		}
1003 
1004 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1005 		if (!wb_has_dirty_io(wb) &&
1006 		    (base_work->sync_mode == WB_SYNC_NONE ||
1007 		     list_empty(&wb->b_dirty_time)))
1008 			continue;
1009 		if (skip_if_busy && writeback_in_progress(wb))
1010 			continue;
1011 
1012 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013 
1014 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1015 		if (work) {
1016 			*work = *base_work;
1017 			work->nr_pages = nr_pages;
1018 			work->auto_free = 1;
1019 			wb_queue_work(wb, work);
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1025 		 *
1026 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1027 		 * continuing iteration from @wb after dropping and
1028 		 * regrabbing rcu read lock.
1029 		 */
1030 		if (!wb_tryget(wb))
1031 			continue;
1032 
1033 		/* alloc failed, execute synchronously using on-stack fallback */
1034 		work = &fallback_work;
1035 		*work = *base_work;
1036 		work->nr_pages = nr_pages;
1037 		work->auto_free = 0;
1038 		work->done = &fallback_work_done;
1039 
1040 		wb_queue_work(wb, work);
1041 		last_wb = wb;
1042 
1043 		rcu_read_unlock();
1044 		wb_wait_for_completion(&fallback_work_done);
1045 		goto restart;
1046 	}
1047 	rcu_read_unlock();
1048 
1049 	if (last_wb)
1050 		wb_put(last_wb);
1051 }
1052 
1053 /**
1054  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1055  * @bdi_id: target bdi id
1056  * @memcg_id: target memcg css id
1057  * @reason: reason why some writeback work initiated
1058  * @done: target wb_completion
1059  *
1060  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1061  * with the specified parameters.
1062  */
1063 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1064 			   enum wb_reason reason, struct wb_completion *done)
1065 {
1066 	struct backing_dev_info *bdi;
1067 	struct cgroup_subsys_state *memcg_css;
1068 	struct bdi_writeback *wb;
1069 	struct wb_writeback_work *work;
1070 	unsigned long dirty;
1071 	int ret;
1072 
1073 	/* lookup bdi and memcg */
1074 	bdi = bdi_get_by_id(bdi_id);
1075 	if (!bdi)
1076 		return -ENOENT;
1077 
1078 	rcu_read_lock();
1079 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1080 	if (memcg_css && !css_tryget(memcg_css))
1081 		memcg_css = NULL;
1082 	rcu_read_unlock();
1083 	if (!memcg_css) {
1084 		ret = -ENOENT;
1085 		goto out_bdi_put;
1086 	}
1087 
1088 	/*
1089 	 * And find the associated wb.  If the wb isn't there already
1090 	 * there's nothing to flush, don't create one.
1091 	 */
1092 	wb = wb_get_lookup(bdi, memcg_css);
1093 	if (!wb) {
1094 		ret = -ENOENT;
1095 		goto out_css_put;
1096 	}
1097 
1098 	/*
1099 	 * The caller is attempting to write out most of
1100 	 * the currently dirty pages.  Let's take the current dirty page
1101 	 * count and inflate it by 25% which should be large enough to
1102 	 * flush out most dirty pages while avoiding getting livelocked by
1103 	 * concurrent dirtiers.
1104 	 *
1105 	 * BTW the memcg stats are flushed periodically and this is best-effort
1106 	 * estimation, so some potential error is ok.
1107 	 */
1108 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1109 	dirty = dirty * 10 / 8;
1110 
1111 	/* issue the writeback work */
1112 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1113 	if (work) {
1114 		work->nr_pages = dirty;
1115 		work->sync_mode = WB_SYNC_NONE;
1116 		work->range_cyclic = 1;
1117 		work->reason = reason;
1118 		work->done = done;
1119 		work->auto_free = 1;
1120 		wb_queue_work(wb, work);
1121 		ret = 0;
1122 	} else {
1123 		ret = -ENOMEM;
1124 	}
1125 
1126 	wb_put(wb);
1127 out_css_put:
1128 	css_put(memcg_css);
1129 out_bdi_put:
1130 	bdi_put(bdi);
1131 	return ret;
1132 }
1133 
1134 /**
1135  * cgroup_writeback_umount - flush inode wb switches for umount
1136  *
1137  * This function is called when a super_block is about to be destroyed and
1138  * flushes in-flight inode wb switches.  An inode wb switch goes through
1139  * RCU and then workqueue, so the two need to be flushed in order to ensure
1140  * that all previously scheduled switches are finished.  As wb switches are
1141  * rare occurrences and synchronize_rcu() can take a while, perform
1142  * flushing iff wb switches are in flight.
1143  */
1144 void cgroup_writeback_umount(void)
1145 {
1146 	/*
1147 	 * SB_ACTIVE should be reliably cleared before checking
1148 	 * isw_nr_in_flight, see generic_shutdown_super().
1149 	 */
1150 	smp_mb();
1151 
1152 	if (atomic_read(&isw_nr_in_flight)) {
1153 		/*
1154 		 * Use rcu_barrier() to wait for all pending callbacks to
1155 		 * ensure that all in-flight wb switches are in the workqueue.
1156 		 */
1157 		rcu_barrier();
1158 		flush_workqueue(isw_wq);
1159 	}
1160 }
1161 
1162 static int __init cgroup_writeback_init(void)
1163 {
1164 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1165 	if (!isw_wq)
1166 		return -ENOMEM;
1167 	return 0;
1168 }
1169 fs_initcall(cgroup_writeback_init);
1170 
1171 #else	/* CONFIG_CGROUP_WRITEBACK */
1172 
1173 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1174 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1175 
1176 static void inode_cgwb_move_to_attached(struct inode *inode,
1177 					struct bdi_writeback *wb)
1178 {
1179 	assert_spin_locked(&wb->list_lock);
1180 	assert_spin_locked(&inode->i_lock);
1181 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1182 
1183 	inode->i_state &= ~I_SYNC_QUEUED;
1184 	list_del_init(&inode->i_io_list);
1185 	wb_io_lists_depopulated(wb);
1186 }
1187 
1188 static struct bdi_writeback *
1189 locked_inode_to_wb_and_lock_list(struct inode *inode)
1190 	__releases(&inode->i_lock)
1191 	__acquires(&wb->list_lock)
1192 {
1193 	struct bdi_writeback *wb = inode_to_wb(inode);
1194 
1195 	spin_unlock(&inode->i_lock);
1196 	spin_lock(&wb->list_lock);
1197 	return wb;
1198 }
1199 
1200 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1201 	__acquires(&wb->list_lock)
1202 {
1203 	struct bdi_writeback *wb = inode_to_wb(inode);
1204 
1205 	spin_lock(&wb->list_lock);
1206 	return wb;
1207 }
1208 
1209 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1210 {
1211 	return nr_pages;
1212 }
1213 
1214 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1215 				  struct wb_writeback_work *base_work,
1216 				  bool skip_if_busy)
1217 {
1218 	might_sleep();
1219 
1220 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1221 		base_work->auto_free = 0;
1222 		wb_queue_work(&bdi->wb, base_work);
1223 	}
1224 }
1225 
1226 #endif	/* CONFIG_CGROUP_WRITEBACK */
1227 
1228 /*
1229  * Add in the number of potentially dirty inodes, because each inode
1230  * write can dirty pagecache in the underlying blockdev.
1231  */
1232 static unsigned long get_nr_dirty_pages(void)
1233 {
1234 	return global_node_page_state(NR_FILE_DIRTY) +
1235 		get_nr_dirty_inodes();
1236 }
1237 
1238 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1239 {
1240 	if (!wb_has_dirty_io(wb))
1241 		return;
1242 
1243 	/*
1244 	 * All callers of this function want to start writeback of all
1245 	 * dirty pages. Places like vmscan can call this at a very
1246 	 * high frequency, causing pointless allocations of tons of
1247 	 * work items and keeping the flusher threads busy retrieving
1248 	 * that work. Ensure that we only allow one of them pending and
1249 	 * inflight at the time.
1250 	 */
1251 	if (test_bit(WB_start_all, &wb->state) ||
1252 	    test_and_set_bit(WB_start_all, &wb->state))
1253 		return;
1254 
1255 	wb->start_all_reason = reason;
1256 	wb_wakeup(wb);
1257 }
1258 
1259 /**
1260  * wb_start_background_writeback - start background writeback
1261  * @wb: bdi_writback to write from
1262  *
1263  * Description:
1264  *   This makes sure WB_SYNC_NONE background writeback happens. When
1265  *   this function returns, it is only guaranteed that for given wb
1266  *   some IO is happening if we are over background dirty threshold.
1267  *   Caller need not hold sb s_umount semaphore.
1268  */
1269 void wb_start_background_writeback(struct bdi_writeback *wb)
1270 {
1271 	/*
1272 	 * We just wake up the flusher thread. It will perform background
1273 	 * writeback as soon as there is no other work to do.
1274 	 */
1275 	trace_writeback_wake_background(wb);
1276 	wb_wakeup(wb);
1277 }
1278 
1279 /*
1280  * Remove the inode from the writeback list it is on.
1281  */
1282 void inode_io_list_del(struct inode *inode)
1283 {
1284 	struct bdi_writeback *wb;
1285 
1286 	wb = inode_to_wb_and_lock_list(inode);
1287 	spin_lock(&inode->i_lock);
1288 
1289 	inode->i_state &= ~I_SYNC_QUEUED;
1290 	list_del_init(&inode->i_io_list);
1291 	wb_io_lists_depopulated(wb);
1292 
1293 	spin_unlock(&inode->i_lock);
1294 	spin_unlock(&wb->list_lock);
1295 }
1296 EXPORT_SYMBOL(inode_io_list_del);
1297 
1298 /*
1299  * mark an inode as under writeback on the sb
1300  */
1301 void sb_mark_inode_writeback(struct inode *inode)
1302 {
1303 	struct super_block *sb = inode->i_sb;
1304 	unsigned long flags;
1305 
1306 	if (list_empty(&inode->i_wb_list)) {
1307 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1308 		if (list_empty(&inode->i_wb_list)) {
1309 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1310 			trace_sb_mark_inode_writeback(inode);
1311 		}
1312 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1313 	}
1314 }
1315 
1316 /*
1317  * clear an inode as under writeback on the sb
1318  */
1319 void sb_clear_inode_writeback(struct inode *inode)
1320 {
1321 	struct super_block *sb = inode->i_sb;
1322 	unsigned long flags;
1323 
1324 	if (!list_empty(&inode->i_wb_list)) {
1325 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1326 		if (!list_empty(&inode->i_wb_list)) {
1327 			list_del_init(&inode->i_wb_list);
1328 			trace_sb_clear_inode_writeback(inode);
1329 		}
1330 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1331 	}
1332 }
1333 
1334 /*
1335  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1336  * furthest end of its superblock's dirty-inode list.
1337  *
1338  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1339  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1340  * the case then the inode must have been redirtied while it was being written
1341  * out and we don't reset its dirtied_when.
1342  */
1343 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1344 {
1345 	assert_spin_locked(&inode->i_lock);
1346 
1347 	inode->i_state &= ~I_SYNC_QUEUED;
1348 	/*
1349 	 * When the inode is being freed just don't bother with dirty list
1350 	 * tracking. Flush worker will ignore this inode anyway and it will
1351 	 * trigger assertions in inode_io_list_move_locked().
1352 	 */
1353 	if (inode->i_state & I_FREEING) {
1354 		list_del_init(&inode->i_io_list);
1355 		wb_io_lists_depopulated(wb);
1356 		return;
1357 	}
1358 	if (!list_empty(&wb->b_dirty)) {
1359 		struct inode *tail;
1360 
1361 		tail = wb_inode(wb->b_dirty.next);
1362 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1363 			inode->dirtied_when = jiffies;
1364 	}
1365 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1366 }
1367 
1368 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1369 {
1370 	spin_lock(&inode->i_lock);
1371 	redirty_tail_locked(inode, wb);
1372 	spin_unlock(&inode->i_lock);
1373 }
1374 
1375 /*
1376  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1377  */
1378 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1379 {
1380 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1381 }
1382 
1383 static void inode_sync_complete(struct inode *inode)
1384 {
1385 	inode->i_state &= ~I_SYNC;
1386 	/* If inode is clean an unused, put it into LRU now... */
1387 	inode_add_lru(inode);
1388 	/* Waiters must see I_SYNC cleared before being woken up */
1389 	smp_mb();
1390 	wake_up_bit(&inode->i_state, __I_SYNC);
1391 }
1392 
1393 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1394 {
1395 	bool ret = time_after(inode->dirtied_when, t);
1396 #ifndef CONFIG_64BIT
1397 	/*
1398 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1399 	 * It _appears_ to be in the future, but is actually in distant past.
1400 	 * This test is necessary to prevent such wrapped-around relative times
1401 	 * from permanently stopping the whole bdi writeback.
1402 	 */
1403 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1404 #endif
1405 	return ret;
1406 }
1407 
1408 /*
1409  * Move expired (dirtied before dirtied_before) dirty inodes from
1410  * @delaying_queue to @dispatch_queue.
1411  */
1412 static int move_expired_inodes(struct list_head *delaying_queue,
1413 			       struct list_head *dispatch_queue,
1414 			       unsigned long dirtied_before)
1415 {
1416 	LIST_HEAD(tmp);
1417 	struct list_head *pos, *node;
1418 	struct super_block *sb = NULL;
1419 	struct inode *inode;
1420 	int do_sb_sort = 0;
1421 	int moved = 0;
1422 
1423 	while (!list_empty(delaying_queue)) {
1424 		inode = wb_inode(delaying_queue->prev);
1425 		if (inode_dirtied_after(inode, dirtied_before))
1426 			break;
1427 		spin_lock(&inode->i_lock);
1428 		list_move(&inode->i_io_list, &tmp);
1429 		moved++;
1430 		inode->i_state |= I_SYNC_QUEUED;
1431 		spin_unlock(&inode->i_lock);
1432 		if (sb_is_blkdev_sb(inode->i_sb))
1433 			continue;
1434 		if (sb && sb != inode->i_sb)
1435 			do_sb_sort = 1;
1436 		sb = inode->i_sb;
1437 	}
1438 
1439 	/* just one sb in list, splice to dispatch_queue and we're done */
1440 	if (!do_sb_sort) {
1441 		list_splice(&tmp, dispatch_queue);
1442 		goto out;
1443 	}
1444 
1445 	/*
1446 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1447 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1448 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1449 	 * fully under our control.
1450 	 */
1451 	while (!list_empty(&tmp)) {
1452 		sb = wb_inode(tmp.prev)->i_sb;
1453 		list_for_each_prev_safe(pos, node, &tmp) {
1454 			inode = wb_inode(pos);
1455 			if (inode->i_sb == sb)
1456 				list_move(&inode->i_io_list, dispatch_queue);
1457 		}
1458 	}
1459 out:
1460 	return moved;
1461 }
1462 
1463 /*
1464  * Queue all expired dirty inodes for io, eldest first.
1465  * Before
1466  *         newly dirtied     b_dirty    b_io    b_more_io
1467  *         =============>    gf         edc     BA
1468  * After
1469  *         newly dirtied     b_dirty    b_io    b_more_io
1470  *         =============>    g          fBAedc
1471  *                                           |
1472  *                                           +--> dequeue for IO
1473  */
1474 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1475 		     unsigned long dirtied_before)
1476 {
1477 	int moved;
1478 	unsigned long time_expire_jif = dirtied_before;
1479 
1480 	assert_spin_locked(&wb->list_lock);
1481 	list_splice_init(&wb->b_more_io, &wb->b_io);
1482 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1483 	if (!work->for_sync)
1484 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1485 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1486 				     time_expire_jif);
1487 	if (moved)
1488 		wb_io_lists_populated(wb);
1489 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1490 }
1491 
1492 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1493 {
1494 	int ret;
1495 
1496 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1497 		trace_writeback_write_inode_start(inode, wbc);
1498 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1499 		trace_writeback_write_inode(inode, wbc);
1500 		return ret;
1501 	}
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Wait for writeback on an inode to complete. Called with i_lock held.
1507  * Caller must make sure inode cannot go away when we drop i_lock.
1508  */
1509 static void __inode_wait_for_writeback(struct inode *inode)
1510 	__releases(inode->i_lock)
1511 	__acquires(inode->i_lock)
1512 {
1513 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1514 	wait_queue_head_t *wqh;
1515 
1516 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1517 	while (inode->i_state & I_SYNC) {
1518 		spin_unlock(&inode->i_lock);
1519 		__wait_on_bit(wqh, &wq, bit_wait,
1520 			      TASK_UNINTERRUPTIBLE);
1521 		spin_lock(&inode->i_lock);
1522 	}
1523 }
1524 
1525 /*
1526  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1527  */
1528 void inode_wait_for_writeback(struct inode *inode)
1529 {
1530 	spin_lock(&inode->i_lock);
1531 	__inode_wait_for_writeback(inode);
1532 	spin_unlock(&inode->i_lock);
1533 }
1534 
1535 /*
1536  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1537  * held and drops it. It is aimed for callers not holding any inode reference
1538  * so once i_lock is dropped, inode can go away.
1539  */
1540 static void inode_sleep_on_writeback(struct inode *inode)
1541 	__releases(inode->i_lock)
1542 {
1543 	DEFINE_WAIT(wait);
1544 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1545 	int sleep;
1546 
1547 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1548 	sleep = inode->i_state & I_SYNC;
1549 	spin_unlock(&inode->i_lock);
1550 	if (sleep)
1551 		schedule();
1552 	finish_wait(wqh, &wait);
1553 }
1554 
1555 /*
1556  * Find proper writeback list for the inode depending on its current state and
1557  * possibly also change of its state while we were doing writeback.  Here we
1558  * handle things such as livelock prevention or fairness of writeback among
1559  * inodes. This function can be called only by flusher thread - noone else
1560  * processes all inodes in writeback lists and requeueing inodes behind flusher
1561  * thread's back can have unexpected consequences.
1562  */
1563 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1564 			  struct writeback_control *wbc)
1565 {
1566 	if (inode->i_state & I_FREEING)
1567 		return;
1568 
1569 	/*
1570 	 * Sync livelock prevention. Each inode is tagged and synced in one
1571 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1572 	 * the dirty time to prevent enqueue and sync it again.
1573 	 */
1574 	if ((inode->i_state & I_DIRTY) &&
1575 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1576 		inode->dirtied_when = jiffies;
1577 
1578 	if (wbc->pages_skipped) {
1579 		/*
1580 		 * Writeback is not making progress due to locked buffers.
1581 		 * Skip this inode for now. Although having skipped pages
1582 		 * is odd for clean inodes, it can happen for some
1583 		 * filesystems so handle that gracefully.
1584 		 */
1585 		if (inode->i_state & I_DIRTY_ALL)
1586 			redirty_tail_locked(inode, wb);
1587 		else
1588 			inode_cgwb_move_to_attached(inode, wb);
1589 		return;
1590 	}
1591 
1592 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1593 		/*
1594 		 * We didn't write back all the pages.  nfs_writepages()
1595 		 * sometimes bales out without doing anything.
1596 		 */
1597 		if (wbc->nr_to_write <= 0) {
1598 			/* Slice used up. Queue for next turn. */
1599 			requeue_io(inode, wb);
1600 		} else {
1601 			/*
1602 			 * Writeback blocked by something other than
1603 			 * congestion. Delay the inode for some time to
1604 			 * avoid spinning on the CPU (100% iowait)
1605 			 * retrying writeback of the dirty page/inode
1606 			 * that cannot be performed immediately.
1607 			 */
1608 			redirty_tail_locked(inode, wb);
1609 		}
1610 	} else if (inode->i_state & I_DIRTY) {
1611 		/*
1612 		 * Filesystems can dirty the inode during writeback operations,
1613 		 * such as delayed allocation during submission or metadata
1614 		 * updates after data IO completion.
1615 		 */
1616 		redirty_tail_locked(inode, wb);
1617 	} else if (inode->i_state & I_DIRTY_TIME) {
1618 		inode->dirtied_when = jiffies;
1619 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1620 		inode->i_state &= ~I_SYNC_QUEUED;
1621 	} else {
1622 		/* The inode is clean. Remove from writeback lists. */
1623 		inode_cgwb_move_to_attached(inode, wb);
1624 	}
1625 }
1626 
1627 /*
1628  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1629  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1630  *
1631  * This doesn't remove the inode from the writeback list it is on, except
1632  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1633  * expiration.  The caller is otherwise responsible for writeback list handling.
1634  *
1635  * The caller is also responsible for setting the I_SYNC flag beforehand and
1636  * calling inode_sync_complete() to clear it afterwards.
1637  */
1638 static int
1639 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1640 {
1641 	struct address_space *mapping = inode->i_mapping;
1642 	long nr_to_write = wbc->nr_to_write;
1643 	unsigned dirty;
1644 	int ret;
1645 
1646 	WARN_ON(!(inode->i_state & I_SYNC));
1647 
1648 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1649 
1650 	ret = do_writepages(mapping, wbc);
1651 
1652 	/*
1653 	 * Make sure to wait on the data before writing out the metadata.
1654 	 * This is important for filesystems that modify metadata on data
1655 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1656 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1657 	 * inode metadata is written back correctly.
1658 	 */
1659 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1660 		int err = filemap_fdatawait(mapping);
1661 		if (ret == 0)
1662 			ret = err;
1663 	}
1664 
1665 	/*
1666 	 * If the inode has dirty timestamps and we need to write them, call
1667 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1668 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1669 	 */
1670 	if ((inode->i_state & I_DIRTY_TIME) &&
1671 	    (wbc->sync_mode == WB_SYNC_ALL ||
1672 	     time_after(jiffies, inode->dirtied_time_when +
1673 			dirtytime_expire_interval * HZ))) {
1674 		trace_writeback_lazytime(inode);
1675 		mark_inode_dirty_sync(inode);
1676 	}
1677 
1678 	/*
1679 	 * Get and clear the dirty flags from i_state.  This needs to be done
1680 	 * after calling writepages because some filesystems may redirty the
1681 	 * inode during writepages due to delalloc.  It also needs to be done
1682 	 * after handling timestamp expiration, as that may dirty the inode too.
1683 	 */
1684 	spin_lock(&inode->i_lock);
1685 	dirty = inode->i_state & I_DIRTY;
1686 	inode->i_state &= ~dirty;
1687 
1688 	/*
1689 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1690 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1691 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1692 	 * inode.
1693 	 *
1694 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1695 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1696 	 * necessary.  This guarantees that either __mark_inode_dirty()
1697 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1698 	 */
1699 	smp_mb();
1700 
1701 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1702 		inode->i_state |= I_DIRTY_PAGES;
1703 	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1704 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1705 			inode->i_state &= ~I_PINNING_NETFS_WB;
1706 			wbc->unpinned_netfs_wb = true;
1707 			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1708 		}
1709 	}
1710 
1711 	spin_unlock(&inode->i_lock);
1712 
1713 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1714 	if (dirty & ~I_DIRTY_PAGES) {
1715 		int err = write_inode(inode, wbc);
1716 		if (ret == 0)
1717 			ret = err;
1718 	}
1719 	wbc->unpinned_netfs_wb = false;
1720 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1721 	return ret;
1722 }
1723 
1724 /*
1725  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1726  * the regular batched writeback done by the flusher threads in
1727  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1728  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1729  *
1730  * To prevent the inode from going away, either the caller must have a reference
1731  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1732  */
1733 static int writeback_single_inode(struct inode *inode,
1734 				  struct writeback_control *wbc)
1735 {
1736 	struct bdi_writeback *wb;
1737 	int ret = 0;
1738 
1739 	spin_lock(&inode->i_lock);
1740 	if (!atomic_read(&inode->i_count))
1741 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1742 	else
1743 		WARN_ON(inode->i_state & I_WILL_FREE);
1744 
1745 	if (inode->i_state & I_SYNC) {
1746 		/*
1747 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1748 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1749 		 * must wait for the existing writeback to complete, then do
1750 		 * writeback again if there's anything left.
1751 		 */
1752 		if (wbc->sync_mode != WB_SYNC_ALL)
1753 			goto out;
1754 		__inode_wait_for_writeback(inode);
1755 	}
1756 	WARN_ON(inode->i_state & I_SYNC);
1757 	/*
1758 	 * If the inode is already fully clean, then there's nothing to do.
1759 	 *
1760 	 * For data-integrity syncs we also need to check whether any pages are
1761 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1762 	 * there are any such pages, we'll need to wait for them.
1763 	 */
1764 	if (!(inode->i_state & I_DIRTY_ALL) &&
1765 	    (wbc->sync_mode != WB_SYNC_ALL ||
1766 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1767 		goto out;
1768 	inode->i_state |= I_SYNC;
1769 	wbc_attach_and_unlock_inode(wbc, inode);
1770 
1771 	ret = __writeback_single_inode(inode, wbc);
1772 
1773 	wbc_detach_inode(wbc);
1774 
1775 	wb = inode_to_wb_and_lock_list(inode);
1776 	spin_lock(&inode->i_lock);
1777 	/*
1778 	 * If the inode is freeing, its i_io_list shoudn't be updated
1779 	 * as it can be finally deleted at this moment.
1780 	 */
1781 	if (!(inode->i_state & I_FREEING)) {
1782 		/*
1783 		 * If the inode is now fully clean, then it can be safely
1784 		 * removed from its writeback list (if any). Otherwise the
1785 		 * flusher threads are responsible for the writeback lists.
1786 		 */
1787 		if (!(inode->i_state & I_DIRTY_ALL))
1788 			inode_cgwb_move_to_attached(inode, wb);
1789 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1790 			if ((inode->i_state & I_DIRTY))
1791 				redirty_tail_locked(inode, wb);
1792 			else if (inode->i_state & I_DIRTY_TIME) {
1793 				inode->dirtied_when = jiffies;
1794 				inode_io_list_move_locked(inode,
1795 							  wb,
1796 							  &wb->b_dirty_time);
1797 			}
1798 		}
1799 	}
1800 
1801 	spin_unlock(&wb->list_lock);
1802 	inode_sync_complete(inode);
1803 out:
1804 	spin_unlock(&inode->i_lock);
1805 	return ret;
1806 }
1807 
1808 static long writeback_chunk_size(struct bdi_writeback *wb,
1809 				 struct wb_writeback_work *work)
1810 {
1811 	long pages;
1812 
1813 	/*
1814 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1815 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1816 	 * here avoids calling into writeback_inodes_wb() more than once.
1817 	 *
1818 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1819 	 *
1820 	 *      wb_writeback()
1821 	 *          writeback_sb_inodes()       <== called only once
1822 	 *              write_cache_pages()     <== called once for each inode
1823 	 *                   (quickly) tag currently dirty pages
1824 	 *                   (maybe slowly) sync all tagged pages
1825 	 */
1826 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1827 		pages = LONG_MAX;
1828 	else {
1829 		pages = min(wb->avg_write_bandwidth / 2,
1830 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1831 		pages = min(pages, work->nr_pages);
1832 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1833 				   MIN_WRITEBACK_PAGES);
1834 	}
1835 
1836 	return pages;
1837 }
1838 
1839 /*
1840  * Write a portion of b_io inodes which belong to @sb.
1841  *
1842  * Return the number of pages and/or inodes written.
1843  *
1844  * NOTE! This is called with wb->list_lock held, and will
1845  * unlock and relock that for each inode it ends up doing
1846  * IO for.
1847  */
1848 static long writeback_sb_inodes(struct super_block *sb,
1849 				struct bdi_writeback *wb,
1850 				struct wb_writeback_work *work)
1851 {
1852 	struct writeback_control wbc = {
1853 		.sync_mode		= work->sync_mode,
1854 		.tagged_writepages	= work->tagged_writepages,
1855 		.for_kupdate		= work->for_kupdate,
1856 		.for_background		= work->for_background,
1857 		.for_sync		= work->for_sync,
1858 		.range_cyclic		= work->range_cyclic,
1859 		.range_start		= 0,
1860 		.range_end		= LLONG_MAX,
1861 	};
1862 	unsigned long start_time = jiffies;
1863 	long write_chunk;
1864 	long total_wrote = 0;  /* count both pages and inodes */
1865 
1866 	while (!list_empty(&wb->b_io)) {
1867 		struct inode *inode = wb_inode(wb->b_io.prev);
1868 		struct bdi_writeback *tmp_wb;
1869 		long wrote;
1870 
1871 		if (inode->i_sb != sb) {
1872 			if (work->sb) {
1873 				/*
1874 				 * We only want to write back data for this
1875 				 * superblock, move all inodes not belonging
1876 				 * to it back onto the dirty list.
1877 				 */
1878 				redirty_tail(inode, wb);
1879 				continue;
1880 			}
1881 
1882 			/*
1883 			 * The inode belongs to a different superblock.
1884 			 * Bounce back to the caller to unpin this and
1885 			 * pin the next superblock.
1886 			 */
1887 			break;
1888 		}
1889 
1890 		/*
1891 		 * Don't bother with new inodes or inodes being freed, first
1892 		 * kind does not need periodic writeout yet, and for the latter
1893 		 * kind writeout is handled by the freer.
1894 		 */
1895 		spin_lock(&inode->i_lock);
1896 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1897 			redirty_tail_locked(inode, wb);
1898 			spin_unlock(&inode->i_lock);
1899 			continue;
1900 		}
1901 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1902 			/*
1903 			 * If this inode is locked for writeback and we are not
1904 			 * doing writeback-for-data-integrity, move it to
1905 			 * b_more_io so that writeback can proceed with the
1906 			 * other inodes on s_io.
1907 			 *
1908 			 * We'll have another go at writing back this inode
1909 			 * when we completed a full scan of b_io.
1910 			 */
1911 			requeue_io(inode, wb);
1912 			spin_unlock(&inode->i_lock);
1913 			trace_writeback_sb_inodes_requeue(inode);
1914 			continue;
1915 		}
1916 		spin_unlock(&wb->list_lock);
1917 
1918 		/*
1919 		 * We already requeued the inode if it had I_SYNC set and we
1920 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1921 		 * WB_SYNC_ALL case.
1922 		 */
1923 		if (inode->i_state & I_SYNC) {
1924 			/* Wait for I_SYNC. This function drops i_lock... */
1925 			inode_sleep_on_writeback(inode);
1926 			/* Inode may be gone, start again */
1927 			spin_lock(&wb->list_lock);
1928 			continue;
1929 		}
1930 		inode->i_state |= I_SYNC;
1931 		wbc_attach_and_unlock_inode(&wbc, inode);
1932 
1933 		write_chunk = writeback_chunk_size(wb, work);
1934 		wbc.nr_to_write = write_chunk;
1935 		wbc.pages_skipped = 0;
1936 
1937 		/*
1938 		 * We use I_SYNC to pin the inode in memory. While it is set
1939 		 * evict_inode() will wait so the inode cannot be freed.
1940 		 */
1941 		__writeback_single_inode(inode, &wbc);
1942 
1943 		wbc_detach_inode(&wbc);
1944 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1945 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1946 		wrote = wrote < 0 ? 0 : wrote;
1947 		total_wrote += wrote;
1948 
1949 		if (need_resched()) {
1950 			/*
1951 			 * We're trying to balance between building up a nice
1952 			 * long list of IOs to improve our merge rate, and
1953 			 * getting those IOs out quickly for anyone throttling
1954 			 * in balance_dirty_pages().  cond_resched() doesn't
1955 			 * unplug, so get our IOs out the door before we
1956 			 * give up the CPU.
1957 			 */
1958 			blk_flush_plug(current->plug, false);
1959 			cond_resched();
1960 		}
1961 
1962 		/*
1963 		 * Requeue @inode if still dirty.  Be careful as @inode may
1964 		 * have been switched to another wb in the meantime.
1965 		 */
1966 		tmp_wb = inode_to_wb_and_lock_list(inode);
1967 		spin_lock(&inode->i_lock);
1968 		if (!(inode->i_state & I_DIRTY_ALL))
1969 			total_wrote++;
1970 		requeue_inode(inode, tmp_wb, &wbc);
1971 		inode_sync_complete(inode);
1972 		spin_unlock(&inode->i_lock);
1973 
1974 		if (unlikely(tmp_wb != wb)) {
1975 			spin_unlock(&tmp_wb->list_lock);
1976 			spin_lock(&wb->list_lock);
1977 		}
1978 
1979 		/*
1980 		 * bail out to wb_writeback() often enough to check
1981 		 * background threshold and other termination conditions.
1982 		 */
1983 		if (total_wrote) {
1984 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1985 				break;
1986 			if (work->nr_pages <= 0)
1987 				break;
1988 		}
1989 	}
1990 	return total_wrote;
1991 }
1992 
1993 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1994 				  struct wb_writeback_work *work)
1995 {
1996 	unsigned long start_time = jiffies;
1997 	long wrote = 0;
1998 
1999 	while (!list_empty(&wb->b_io)) {
2000 		struct inode *inode = wb_inode(wb->b_io.prev);
2001 		struct super_block *sb = inode->i_sb;
2002 
2003 		if (!super_trylock_shared(sb)) {
2004 			/*
2005 			 * super_trylock_shared() may fail consistently due to
2006 			 * s_umount being grabbed by someone else. Don't use
2007 			 * requeue_io() to avoid busy retrying the inode/sb.
2008 			 */
2009 			redirty_tail(inode, wb);
2010 			continue;
2011 		}
2012 		wrote += writeback_sb_inodes(sb, wb, work);
2013 		up_read(&sb->s_umount);
2014 
2015 		/* refer to the same tests at the end of writeback_sb_inodes */
2016 		if (wrote) {
2017 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2018 				break;
2019 			if (work->nr_pages <= 0)
2020 				break;
2021 		}
2022 	}
2023 	/* Leave any unwritten inodes on b_io */
2024 	return wrote;
2025 }
2026 
2027 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2028 				enum wb_reason reason)
2029 {
2030 	struct wb_writeback_work work = {
2031 		.nr_pages	= nr_pages,
2032 		.sync_mode	= WB_SYNC_NONE,
2033 		.range_cyclic	= 1,
2034 		.reason		= reason,
2035 	};
2036 	struct blk_plug plug;
2037 
2038 	blk_start_plug(&plug);
2039 	spin_lock(&wb->list_lock);
2040 	if (list_empty(&wb->b_io))
2041 		queue_io(wb, &work, jiffies);
2042 	__writeback_inodes_wb(wb, &work);
2043 	spin_unlock(&wb->list_lock);
2044 	blk_finish_plug(&plug);
2045 
2046 	return nr_pages - work.nr_pages;
2047 }
2048 
2049 /*
2050  * Explicit flushing or periodic writeback of "old" data.
2051  *
2052  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2053  * dirtying-time in the inode's address_space.  So this periodic writeback code
2054  * just walks the superblock inode list, writing back any inodes which are
2055  * older than a specific point in time.
2056  *
2057  * Try to run once per dirty_writeback_interval.  But if a writeback event
2058  * takes longer than a dirty_writeback_interval interval, then leave a
2059  * one-second gap.
2060  *
2061  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2062  * all dirty pages if they are all attached to "old" mappings.
2063  */
2064 static long wb_writeback(struct bdi_writeback *wb,
2065 			 struct wb_writeback_work *work)
2066 {
2067 	long nr_pages = work->nr_pages;
2068 	unsigned long dirtied_before = jiffies;
2069 	struct inode *inode;
2070 	long progress;
2071 	struct blk_plug plug;
2072 
2073 	blk_start_plug(&plug);
2074 	for (;;) {
2075 		/*
2076 		 * Stop writeback when nr_pages has been consumed
2077 		 */
2078 		if (work->nr_pages <= 0)
2079 			break;
2080 
2081 		/*
2082 		 * Background writeout and kupdate-style writeback may
2083 		 * run forever. Stop them if there is other work to do
2084 		 * so that e.g. sync can proceed. They'll be restarted
2085 		 * after the other works are all done.
2086 		 */
2087 		if ((work->for_background || work->for_kupdate) &&
2088 		    !list_empty(&wb->work_list))
2089 			break;
2090 
2091 		/*
2092 		 * For background writeout, stop when we are below the
2093 		 * background dirty threshold
2094 		 */
2095 		if (work->for_background && !wb_over_bg_thresh(wb))
2096 			break;
2097 
2098 
2099 		spin_lock(&wb->list_lock);
2100 
2101 		/*
2102 		 * Kupdate and background works are special and we want to
2103 		 * include all inodes that need writing. Livelock avoidance is
2104 		 * handled by these works yielding to any other work so we are
2105 		 * safe.
2106 		 */
2107 		if (work->for_kupdate) {
2108 			dirtied_before = jiffies -
2109 				msecs_to_jiffies(dirty_expire_interval * 10);
2110 		} else if (work->for_background)
2111 			dirtied_before = jiffies;
2112 
2113 		trace_writeback_start(wb, work);
2114 		if (list_empty(&wb->b_io))
2115 			queue_io(wb, work, dirtied_before);
2116 		if (work->sb)
2117 			progress = writeback_sb_inodes(work->sb, wb, work);
2118 		else
2119 			progress = __writeback_inodes_wb(wb, work);
2120 		trace_writeback_written(wb, work);
2121 
2122 		/*
2123 		 * Did we write something? Try for more
2124 		 *
2125 		 * Dirty inodes are moved to b_io for writeback in batches.
2126 		 * The completion of the current batch does not necessarily
2127 		 * mean the overall work is done. So we keep looping as long
2128 		 * as made some progress on cleaning pages or inodes.
2129 		 */
2130 		if (progress) {
2131 			spin_unlock(&wb->list_lock);
2132 			continue;
2133 		}
2134 
2135 		/*
2136 		 * No more inodes for IO, bail
2137 		 */
2138 		if (list_empty(&wb->b_more_io)) {
2139 			spin_unlock(&wb->list_lock);
2140 			break;
2141 		}
2142 
2143 		/*
2144 		 * Nothing written. Wait for some inode to
2145 		 * become available for writeback. Otherwise
2146 		 * we'll just busyloop.
2147 		 */
2148 		trace_writeback_wait(wb, work);
2149 		inode = wb_inode(wb->b_more_io.prev);
2150 		spin_lock(&inode->i_lock);
2151 		spin_unlock(&wb->list_lock);
2152 		/* This function drops i_lock... */
2153 		inode_sleep_on_writeback(inode);
2154 	}
2155 	blk_finish_plug(&plug);
2156 
2157 	return nr_pages - work->nr_pages;
2158 }
2159 
2160 /*
2161  * Return the next wb_writeback_work struct that hasn't been processed yet.
2162  */
2163 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2164 {
2165 	struct wb_writeback_work *work = NULL;
2166 
2167 	spin_lock_irq(&wb->work_lock);
2168 	if (!list_empty(&wb->work_list)) {
2169 		work = list_entry(wb->work_list.next,
2170 				  struct wb_writeback_work, list);
2171 		list_del_init(&work->list);
2172 	}
2173 	spin_unlock_irq(&wb->work_lock);
2174 	return work;
2175 }
2176 
2177 static long wb_check_background_flush(struct bdi_writeback *wb)
2178 {
2179 	if (wb_over_bg_thresh(wb)) {
2180 
2181 		struct wb_writeback_work work = {
2182 			.nr_pages	= LONG_MAX,
2183 			.sync_mode	= WB_SYNC_NONE,
2184 			.for_background	= 1,
2185 			.range_cyclic	= 1,
2186 			.reason		= WB_REASON_BACKGROUND,
2187 		};
2188 
2189 		return wb_writeback(wb, &work);
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2196 {
2197 	unsigned long expired;
2198 	long nr_pages;
2199 
2200 	/*
2201 	 * When set to zero, disable periodic writeback
2202 	 */
2203 	if (!dirty_writeback_interval)
2204 		return 0;
2205 
2206 	expired = wb->last_old_flush +
2207 			msecs_to_jiffies(dirty_writeback_interval * 10);
2208 	if (time_before(jiffies, expired))
2209 		return 0;
2210 
2211 	wb->last_old_flush = jiffies;
2212 	nr_pages = get_nr_dirty_pages();
2213 
2214 	if (nr_pages) {
2215 		struct wb_writeback_work work = {
2216 			.nr_pages	= nr_pages,
2217 			.sync_mode	= WB_SYNC_NONE,
2218 			.for_kupdate	= 1,
2219 			.range_cyclic	= 1,
2220 			.reason		= WB_REASON_PERIODIC,
2221 		};
2222 
2223 		return wb_writeback(wb, &work);
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static long wb_check_start_all(struct bdi_writeback *wb)
2230 {
2231 	long nr_pages;
2232 
2233 	if (!test_bit(WB_start_all, &wb->state))
2234 		return 0;
2235 
2236 	nr_pages = get_nr_dirty_pages();
2237 	if (nr_pages) {
2238 		struct wb_writeback_work work = {
2239 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2240 			.sync_mode	= WB_SYNC_NONE,
2241 			.range_cyclic	= 1,
2242 			.reason		= wb->start_all_reason,
2243 		};
2244 
2245 		nr_pages = wb_writeback(wb, &work);
2246 	}
2247 
2248 	clear_bit(WB_start_all, &wb->state);
2249 	return nr_pages;
2250 }
2251 
2252 
2253 /*
2254  * Retrieve work items and do the writeback they describe
2255  */
2256 static long wb_do_writeback(struct bdi_writeback *wb)
2257 {
2258 	struct wb_writeback_work *work;
2259 	long wrote = 0;
2260 
2261 	set_bit(WB_writeback_running, &wb->state);
2262 	while ((work = get_next_work_item(wb)) != NULL) {
2263 		trace_writeback_exec(wb, work);
2264 		wrote += wb_writeback(wb, work);
2265 		finish_writeback_work(wb, work);
2266 	}
2267 
2268 	/*
2269 	 * Check for a flush-everything request
2270 	 */
2271 	wrote += wb_check_start_all(wb);
2272 
2273 	/*
2274 	 * Check for periodic writeback, kupdated() style
2275 	 */
2276 	wrote += wb_check_old_data_flush(wb);
2277 	wrote += wb_check_background_flush(wb);
2278 	clear_bit(WB_writeback_running, &wb->state);
2279 
2280 	return wrote;
2281 }
2282 
2283 /*
2284  * Handle writeback of dirty data for the device backed by this bdi. Also
2285  * reschedules periodically and does kupdated style flushing.
2286  */
2287 void wb_workfn(struct work_struct *work)
2288 {
2289 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2290 						struct bdi_writeback, dwork);
2291 	long pages_written;
2292 
2293 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2294 
2295 	if (likely(!current_is_workqueue_rescuer() ||
2296 		   !test_bit(WB_registered, &wb->state))) {
2297 		/*
2298 		 * The normal path.  Keep writing back @wb until its
2299 		 * work_list is empty.  Note that this path is also taken
2300 		 * if @wb is shutting down even when we're running off the
2301 		 * rescuer as work_list needs to be drained.
2302 		 */
2303 		do {
2304 			pages_written = wb_do_writeback(wb);
2305 			trace_writeback_pages_written(pages_written);
2306 		} while (!list_empty(&wb->work_list));
2307 	} else {
2308 		/*
2309 		 * bdi_wq can't get enough workers and we're running off
2310 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2311 		 * enough for efficient IO.
2312 		 */
2313 		pages_written = writeback_inodes_wb(wb, 1024,
2314 						    WB_REASON_FORKER_THREAD);
2315 		trace_writeback_pages_written(pages_written);
2316 	}
2317 
2318 	if (!list_empty(&wb->work_list))
2319 		wb_wakeup(wb);
2320 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2321 		wb_wakeup_delayed(wb);
2322 }
2323 
2324 /*
2325  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2326  * write back the whole world.
2327  */
2328 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2329 					 enum wb_reason reason)
2330 {
2331 	struct bdi_writeback *wb;
2332 
2333 	if (!bdi_has_dirty_io(bdi))
2334 		return;
2335 
2336 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2337 		wb_start_writeback(wb, reason);
2338 }
2339 
2340 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2341 				enum wb_reason reason)
2342 {
2343 	rcu_read_lock();
2344 	__wakeup_flusher_threads_bdi(bdi, reason);
2345 	rcu_read_unlock();
2346 }
2347 
2348 /*
2349  * Wakeup the flusher threads to start writeback of all currently dirty pages
2350  */
2351 void wakeup_flusher_threads(enum wb_reason reason)
2352 {
2353 	struct backing_dev_info *bdi;
2354 
2355 	/*
2356 	 * If we are expecting writeback progress we must submit plugged IO.
2357 	 */
2358 	blk_flush_plug(current->plug, true);
2359 
2360 	rcu_read_lock();
2361 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2362 		__wakeup_flusher_threads_bdi(bdi, reason);
2363 	rcu_read_unlock();
2364 }
2365 
2366 /*
2367  * Wake up bdi's periodically to make sure dirtytime inodes gets
2368  * written back periodically.  We deliberately do *not* check the
2369  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2370  * kernel to be constantly waking up once there are any dirtytime
2371  * inodes on the system.  So instead we define a separate delayed work
2372  * function which gets called much more rarely.  (By default, only
2373  * once every 12 hours.)
2374  *
2375  * If there is any other write activity going on in the file system,
2376  * this function won't be necessary.  But if the only thing that has
2377  * happened on the file system is a dirtytime inode caused by an atime
2378  * update, we need this infrastructure below to make sure that inode
2379  * eventually gets pushed out to disk.
2380  */
2381 static void wakeup_dirtytime_writeback(struct work_struct *w);
2382 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2383 
2384 static void wakeup_dirtytime_writeback(struct work_struct *w)
2385 {
2386 	struct backing_dev_info *bdi;
2387 
2388 	rcu_read_lock();
2389 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2390 		struct bdi_writeback *wb;
2391 
2392 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2393 			if (!list_empty(&wb->b_dirty_time))
2394 				wb_wakeup(wb);
2395 	}
2396 	rcu_read_unlock();
2397 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2398 }
2399 
2400 static int __init start_dirtytime_writeback(void)
2401 {
2402 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2403 	return 0;
2404 }
2405 __initcall(start_dirtytime_writeback);
2406 
2407 int dirtytime_interval_handler(struct ctl_table *table, int write,
2408 			       void *buffer, size_t *lenp, loff_t *ppos)
2409 {
2410 	int ret;
2411 
2412 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2413 	if (ret == 0 && write)
2414 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2415 	return ret;
2416 }
2417 
2418 /**
2419  * __mark_inode_dirty -	internal function to mark an inode dirty
2420  *
2421  * @inode: inode to mark
2422  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2423  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2424  *	   with I_DIRTY_PAGES.
2425  *
2426  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2427  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2428  *
2429  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2430  * instead of calling this directly.
2431  *
2432  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2433  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2434  * even if they are later hashed, as they will have been marked dirty already.
2435  *
2436  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2437  *
2438  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2439  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2440  * the kernel-internal blockdev inode represents the dirtying time of the
2441  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2442  * page->mapping->host, so the page-dirtying time is recorded in the internal
2443  * blockdev inode.
2444  */
2445 void __mark_inode_dirty(struct inode *inode, int flags)
2446 {
2447 	struct super_block *sb = inode->i_sb;
2448 	int dirtytime = 0;
2449 	struct bdi_writeback *wb = NULL;
2450 
2451 	trace_writeback_mark_inode_dirty(inode, flags);
2452 
2453 	if (flags & I_DIRTY_INODE) {
2454 		/*
2455 		 * Inode timestamp update will piggback on this dirtying.
2456 		 * We tell ->dirty_inode callback that timestamps need to
2457 		 * be updated by setting I_DIRTY_TIME in flags.
2458 		 */
2459 		if (inode->i_state & I_DIRTY_TIME) {
2460 			spin_lock(&inode->i_lock);
2461 			if (inode->i_state & I_DIRTY_TIME) {
2462 				inode->i_state &= ~I_DIRTY_TIME;
2463 				flags |= I_DIRTY_TIME;
2464 			}
2465 			spin_unlock(&inode->i_lock);
2466 		}
2467 
2468 		/*
2469 		 * Notify the filesystem about the inode being dirtied, so that
2470 		 * (if needed) it can update on-disk fields and journal the
2471 		 * inode.  This is only needed when the inode itself is being
2472 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2473 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2474 		 */
2475 		trace_writeback_dirty_inode_start(inode, flags);
2476 		if (sb->s_op->dirty_inode)
2477 			sb->s_op->dirty_inode(inode,
2478 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2479 		trace_writeback_dirty_inode(inode, flags);
2480 
2481 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2482 		flags &= ~I_DIRTY_TIME;
2483 	} else {
2484 		/*
2485 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2486 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2487 		 * in one call to __mark_inode_dirty().)
2488 		 */
2489 		dirtytime = flags & I_DIRTY_TIME;
2490 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2491 	}
2492 
2493 	/*
2494 	 * Paired with smp_mb() in __writeback_single_inode() for the
2495 	 * following lockless i_state test.  See there for details.
2496 	 */
2497 	smp_mb();
2498 
2499 	if ((inode->i_state & flags) == flags)
2500 		return;
2501 
2502 	spin_lock(&inode->i_lock);
2503 	if ((inode->i_state & flags) != flags) {
2504 		const int was_dirty = inode->i_state & I_DIRTY;
2505 
2506 		inode_attach_wb(inode, NULL);
2507 
2508 		inode->i_state |= flags;
2509 
2510 		/*
2511 		 * Grab inode's wb early because it requires dropping i_lock and we
2512 		 * need to make sure following checks happen atomically with dirty
2513 		 * list handling so that we don't move inodes under flush worker's
2514 		 * hands.
2515 		 */
2516 		if (!was_dirty) {
2517 			wb = locked_inode_to_wb_and_lock_list(inode);
2518 			spin_lock(&inode->i_lock);
2519 		}
2520 
2521 		/*
2522 		 * If the inode is queued for writeback by flush worker, just
2523 		 * update its dirty state. Once the flush worker is done with
2524 		 * the inode it will place it on the appropriate superblock
2525 		 * list, based upon its state.
2526 		 */
2527 		if (inode->i_state & I_SYNC_QUEUED)
2528 			goto out_unlock;
2529 
2530 		/*
2531 		 * Only add valid (hashed) inodes to the superblock's
2532 		 * dirty list.  Add blockdev inodes as well.
2533 		 */
2534 		if (!S_ISBLK(inode->i_mode)) {
2535 			if (inode_unhashed(inode))
2536 				goto out_unlock;
2537 		}
2538 		if (inode->i_state & I_FREEING)
2539 			goto out_unlock;
2540 
2541 		/*
2542 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2543 		 * reposition it (that would break b_dirty time-ordering).
2544 		 */
2545 		if (!was_dirty) {
2546 			struct list_head *dirty_list;
2547 			bool wakeup_bdi = false;
2548 
2549 			inode->dirtied_when = jiffies;
2550 			if (dirtytime)
2551 				inode->dirtied_time_when = jiffies;
2552 
2553 			if (inode->i_state & I_DIRTY)
2554 				dirty_list = &wb->b_dirty;
2555 			else
2556 				dirty_list = &wb->b_dirty_time;
2557 
2558 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2559 							       dirty_list);
2560 
2561 			spin_unlock(&wb->list_lock);
2562 			spin_unlock(&inode->i_lock);
2563 			trace_writeback_dirty_inode_enqueue(inode);
2564 
2565 			/*
2566 			 * If this is the first dirty inode for this bdi,
2567 			 * we have to wake-up the corresponding bdi thread
2568 			 * to make sure background write-back happens
2569 			 * later.
2570 			 */
2571 			if (wakeup_bdi &&
2572 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2573 				wb_wakeup_delayed(wb);
2574 			return;
2575 		}
2576 	}
2577 out_unlock:
2578 	if (wb)
2579 		spin_unlock(&wb->list_lock);
2580 	spin_unlock(&inode->i_lock);
2581 }
2582 EXPORT_SYMBOL(__mark_inode_dirty);
2583 
2584 /*
2585  * The @s_sync_lock is used to serialise concurrent sync operations
2586  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2587  * Concurrent callers will block on the s_sync_lock rather than doing contending
2588  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2589  * has been issued up to the time this function is enter is guaranteed to be
2590  * completed by the time we have gained the lock and waited for all IO that is
2591  * in progress regardless of the order callers are granted the lock.
2592  */
2593 static void wait_sb_inodes(struct super_block *sb)
2594 {
2595 	LIST_HEAD(sync_list);
2596 
2597 	/*
2598 	 * We need to be protected against the filesystem going from
2599 	 * r/o to r/w or vice versa.
2600 	 */
2601 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2602 
2603 	mutex_lock(&sb->s_sync_lock);
2604 
2605 	/*
2606 	 * Splice the writeback list onto a temporary list to avoid waiting on
2607 	 * inodes that have started writeback after this point.
2608 	 *
2609 	 * Use rcu_read_lock() to keep the inodes around until we have a
2610 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2611 	 * the local list because inodes can be dropped from either by writeback
2612 	 * completion.
2613 	 */
2614 	rcu_read_lock();
2615 	spin_lock_irq(&sb->s_inode_wblist_lock);
2616 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2617 
2618 	/*
2619 	 * Data integrity sync. Must wait for all pages under writeback, because
2620 	 * there may have been pages dirtied before our sync call, but which had
2621 	 * writeout started before we write it out.  In which case, the inode
2622 	 * may not be on the dirty list, but we still have to wait for that
2623 	 * writeout.
2624 	 */
2625 	while (!list_empty(&sync_list)) {
2626 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2627 						       i_wb_list);
2628 		struct address_space *mapping = inode->i_mapping;
2629 
2630 		/*
2631 		 * Move each inode back to the wb list before we drop the lock
2632 		 * to preserve consistency between i_wb_list and the mapping
2633 		 * writeback tag. Writeback completion is responsible to remove
2634 		 * the inode from either list once the writeback tag is cleared.
2635 		 */
2636 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2637 
2638 		/*
2639 		 * The mapping can appear untagged while still on-list since we
2640 		 * do not have the mapping lock. Skip it here, wb completion
2641 		 * will remove it.
2642 		 */
2643 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2644 			continue;
2645 
2646 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2647 
2648 		spin_lock(&inode->i_lock);
2649 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2650 			spin_unlock(&inode->i_lock);
2651 
2652 			spin_lock_irq(&sb->s_inode_wblist_lock);
2653 			continue;
2654 		}
2655 		__iget(inode);
2656 		spin_unlock(&inode->i_lock);
2657 		rcu_read_unlock();
2658 
2659 		/*
2660 		 * We keep the error status of individual mapping so that
2661 		 * applications can catch the writeback error using fsync(2).
2662 		 * See filemap_fdatawait_keep_errors() for details.
2663 		 */
2664 		filemap_fdatawait_keep_errors(mapping);
2665 
2666 		cond_resched();
2667 
2668 		iput(inode);
2669 
2670 		rcu_read_lock();
2671 		spin_lock_irq(&sb->s_inode_wblist_lock);
2672 	}
2673 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2674 	rcu_read_unlock();
2675 	mutex_unlock(&sb->s_sync_lock);
2676 }
2677 
2678 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2679 				     enum wb_reason reason, bool skip_if_busy)
2680 {
2681 	struct backing_dev_info *bdi = sb->s_bdi;
2682 	DEFINE_WB_COMPLETION(done, bdi);
2683 	struct wb_writeback_work work = {
2684 		.sb			= sb,
2685 		.sync_mode		= WB_SYNC_NONE,
2686 		.tagged_writepages	= 1,
2687 		.done			= &done,
2688 		.nr_pages		= nr,
2689 		.reason			= reason,
2690 	};
2691 
2692 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2693 		return;
2694 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2695 
2696 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2697 	wb_wait_for_completion(&done);
2698 }
2699 
2700 /**
2701  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2702  * @sb: the superblock
2703  * @nr: the number of pages to write
2704  * @reason: reason why some writeback work initiated
2705  *
2706  * Start writeback on some inodes on this super_block. No guarantees are made
2707  * on how many (if any) will be written, and this function does not wait
2708  * for IO completion of submitted IO.
2709  */
2710 void writeback_inodes_sb_nr(struct super_block *sb,
2711 			    unsigned long nr,
2712 			    enum wb_reason reason)
2713 {
2714 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2715 }
2716 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2717 
2718 /**
2719  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2720  * @sb: the superblock
2721  * @reason: reason why some writeback work was initiated
2722  *
2723  * Start writeback on some inodes on this super_block. No guarantees are made
2724  * on how many (if any) will be written, and this function does not wait
2725  * for IO completion of submitted IO.
2726  */
2727 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2728 {
2729 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2730 }
2731 EXPORT_SYMBOL(writeback_inodes_sb);
2732 
2733 /**
2734  * try_to_writeback_inodes_sb - try to start writeback if none underway
2735  * @sb: the superblock
2736  * @reason: reason why some writeback work was initiated
2737  *
2738  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2739  */
2740 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2741 {
2742 	if (!down_read_trylock(&sb->s_umount))
2743 		return;
2744 
2745 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2746 	up_read(&sb->s_umount);
2747 }
2748 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2749 
2750 /**
2751  * sync_inodes_sb	-	sync sb inode pages
2752  * @sb: the superblock
2753  *
2754  * This function writes and waits on any dirty inode belonging to this
2755  * super_block.
2756  */
2757 void sync_inodes_sb(struct super_block *sb)
2758 {
2759 	struct backing_dev_info *bdi = sb->s_bdi;
2760 	DEFINE_WB_COMPLETION(done, bdi);
2761 	struct wb_writeback_work work = {
2762 		.sb		= sb,
2763 		.sync_mode	= WB_SYNC_ALL,
2764 		.nr_pages	= LONG_MAX,
2765 		.range_cyclic	= 0,
2766 		.done		= &done,
2767 		.reason		= WB_REASON_SYNC,
2768 		.for_sync	= 1,
2769 	};
2770 
2771 	/*
2772 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2773 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2774 	 * bdi_has_dirty() need to be written out too.
2775 	 */
2776 	if (bdi == &noop_backing_dev_info)
2777 		return;
2778 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2779 
2780 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2781 	bdi_down_write_wb_switch_rwsem(bdi);
2782 	bdi_split_work_to_wbs(bdi, &work, false);
2783 	wb_wait_for_completion(&done);
2784 	bdi_up_write_wb_switch_rwsem(bdi);
2785 
2786 	wait_sb_inodes(sb);
2787 }
2788 EXPORT_SYMBOL(sync_inodes_sb);
2789 
2790 /**
2791  * write_inode_now	-	write an inode to disk
2792  * @inode: inode to write to disk
2793  * @sync: whether the write should be synchronous or not
2794  *
2795  * This function commits an inode to disk immediately if it is dirty. This is
2796  * primarily needed by knfsd.
2797  *
2798  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2799  */
2800 int write_inode_now(struct inode *inode, int sync)
2801 {
2802 	struct writeback_control wbc = {
2803 		.nr_to_write = LONG_MAX,
2804 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2805 		.range_start = 0,
2806 		.range_end = LLONG_MAX,
2807 	};
2808 
2809 	if (!mapping_can_writeback(inode->i_mapping))
2810 		wbc.nr_to_write = 0;
2811 
2812 	might_sleep();
2813 	return writeback_single_inode(inode, &wbc);
2814 }
2815 EXPORT_SYMBOL(write_inode_now);
2816 
2817 /**
2818  * sync_inode_metadata - write an inode to disk
2819  * @inode: the inode to sync
2820  * @wait: wait for I/O to complete.
2821  *
2822  * Write an inode to disk and adjust its dirty state after completion.
2823  *
2824  * Note: only writes the actual inode, no associated data or other metadata.
2825  */
2826 int sync_inode_metadata(struct inode *inode, int wait)
2827 {
2828 	struct writeback_control wbc = {
2829 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2830 		.nr_to_write = 0, /* metadata-only */
2831 	};
2832 
2833 	return writeback_single_inode(inode, &wbc);
2834 }
2835 EXPORT_SYMBOL(sync_inode_metadata);
2836