1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include "internal.h" 30 31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 32 33 /* 34 * We don't actually have pdflush, but this one is exported though /proc... 35 */ 36 int nr_pdflush_threads; 37 38 /* 39 * Passed into wb_writeback(), essentially a subset of writeback_control 40 */ 41 struct wb_writeback_args { 42 long nr_pages; 43 struct super_block *sb; 44 enum writeback_sync_modes sync_mode; 45 unsigned int for_kupdate:1; 46 unsigned int range_cyclic:1; 47 unsigned int for_background:1; 48 }; 49 50 /* 51 * Work items for the bdi_writeback threads 52 */ 53 struct bdi_work { 54 struct list_head list; /* pending work list */ 55 struct rcu_head rcu_head; /* for RCU free/clear of work */ 56 57 unsigned long seen; /* threads that have seen this work */ 58 atomic_t pending; /* number of threads still to do work */ 59 60 struct wb_writeback_args args; /* writeback arguments */ 61 62 unsigned long state; /* flag bits, see WS_* */ 63 }; 64 65 enum { 66 WS_INPROGRESS = 0, 67 WS_ONSTACK, 68 }; 69 70 static inline void bdi_work_init(struct bdi_work *work, 71 struct wb_writeback_args *args) 72 { 73 INIT_RCU_HEAD(&work->rcu_head); 74 work->args = *args; 75 __set_bit(WS_INPROGRESS, &work->state); 76 } 77 78 /** 79 * writeback_in_progress - determine whether there is writeback in progress 80 * @bdi: the device's backing_dev_info structure. 81 * 82 * Determine whether there is writeback waiting to be handled against a 83 * backing device. 84 */ 85 int writeback_in_progress(struct backing_dev_info *bdi) 86 { 87 return !list_empty(&bdi->work_list); 88 } 89 90 static void bdi_work_free(struct rcu_head *head) 91 { 92 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); 93 94 clear_bit(WS_INPROGRESS, &work->state); 95 smp_mb__after_clear_bit(); 96 wake_up_bit(&work->state, WS_INPROGRESS); 97 98 if (!test_bit(WS_ONSTACK, &work->state)) 99 kfree(work); 100 } 101 102 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) 103 { 104 /* 105 * The caller has retrieved the work arguments from this work, 106 * drop our reference. If this is the last ref, delete and free it 107 */ 108 if (atomic_dec_and_test(&work->pending)) { 109 struct backing_dev_info *bdi = wb->bdi; 110 111 spin_lock(&bdi->wb_lock); 112 list_del_rcu(&work->list); 113 spin_unlock(&bdi->wb_lock); 114 115 call_rcu(&work->rcu_head, bdi_work_free); 116 } 117 } 118 119 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) 120 { 121 work->seen = bdi->wb_mask; 122 BUG_ON(!work->seen); 123 atomic_set(&work->pending, bdi->wb_cnt); 124 BUG_ON(!bdi->wb_cnt); 125 126 /* 127 * list_add_tail_rcu() contains the necessary barriers to 128 * make sure the above stores are seen before the item is 129 * noticed on the list 130 */ 131 spin_lock(&bdi->wb_lock); 132 list_add_tail_rcu(&work->list, &bdi->work_list); 133 spin_unlock(&bdi->wb_lock); 134 135 /* 136 * If the default thread isn't there, make sure we add it. When 137 * it gets created and wakes up, we'll run this work. 138 */ 139 if (unlikely(list_empty_careful(&bdi->wb_list))) 140 wake_up_process(default_backing_dev_info.wb.task); 141 else { 142 struct bdi_writeback *wb = &bdi->wb; 143 144 if (wb->task) 145 wake_up_process(wb->task); 146 } 147 } 148 149 /* 150 * Used for on-stack allocated work items. The caller needs to wait until 151 * the wb threads have acked the work before it's safe to continue. 152 */ 153 static void bdi_wait_on_work_done(struct bdi_work *work) 154 { 155 wait_on_bit(&work->state, WS_INPROGRESS, bdi_sched_wait, 156 TASK_UNINTERRUPTIBLE); 157 } 158 159 static void bdi_alloc_queue_work(struct backing_dev_info *bdi, 160 struct wb_writeback_args *args) 161 { 162 struct bdi_work *work; 163 164 /* 165 * This is WB_SYNC_NONE writeback, so if allocation fails just 166 * wakeup the thread for old dirty data writeback 167 */ 168 work = kmalloc(sizeof(*work), GFP_ATOMIC); 169 if (work) { 170 bdi_work_init(work, args); 171 bdi_queue_work(bdi, work); 172 } else { 173 struct bdi_writeback *wb = &bdi->wb; 174 175 if (wb->task) 176 wake_up_process(wb->task); 177 } 178 } 179 180 /** 181 * bdi_queue_work_onstack - start and wait for writeback 182 * @sb: write inodes from this super_block 183 * 184 * Description: 185 * This function initiates writeback and waits for the operation to 186 * complete. Callers must hold the sb s_umount semaphore for 187 * reading, to avoid having the super disappear before we are done. 188 */ 189 static void bdi_queue_work_onstack(struct wb_writeback_args *args) 190 { 191 struct bdi_work work; 192 193 bdi_work_init(&work, args); 194 __set_bit(WS_ONSTACK, &work.state); 195 196 bdi_queue_work(args->sb->s_bdi, &work); 197 bdi_wait_on_work_done(&work); 198 } 199 200 /** 201 * bdi_start_writeback - start writeback 202 * @bdi: the backing device to write from 203 * @nr_pages: the number of pages to write 204 * 205 * Description: 206 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 207 * started when this function returns, we make no guarentees on 208 * completion. Caller need not hold sb s_umount semaphore. 209 * 210 */ 211 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 212 { 213 struct wb_writeback_args args = { 214 .sync_mode = WB_SYNC_NONE, 215 .nr_pages = nr_pages, 216 .range_cyclic = 1, 217 }; 218 219 bdi_alloc_queue_work(bdi, &args); 220 } 221 222 /** 223 * bdi_start_background_writeback - start background writeback 224 * @bdi: the backing device to write from 225 * 226 * Description: 227 * This does WB_SYNC_NONE background writeback. The IO is only 228 * started when this function returns, we make no guarentees on 229 * completion. Caller need not hold sb s_umount semaphore. 230 */ 231 void bdi_start_background_writeback(struct backing_dev_info *bdi) 232 { 233 struct wb_writeback_args args = { 234 .sync_mode = WB_SYNC_NONE, 235 .nr_pages = LONG_MAX, 236 .for_background = 1, 237 .range_cyclic = 1, 238 }; 239 bdi_alloc_queue_work(bdi, &args); 240 } 241 242 /* 243 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 244 * furthest end of its superblock's dirty-inode list. 245 * 246 * Before stamping the inode's ->dirtied_when, we check to see whether it is 247 * already the most-recently-dirtied inode on the b_dirty list. If that is 248 * the case then the inode must have been redirtied while it was being written 249 * out and we don't reset its dirtied_when. 250 */ 251 static void redirty_tail(struct inode *inode) 252 { 253 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 254 255 if (!list_empty(&wb->b_dirty)) { 256 struct inode *tail; 257 258 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 259 if (time_before(inode->dirtied_when, tail->dirtied_when)) 260 inode->dirtied_when = jiffies; 261 } 262 list_move(&inode->i_list, &wb->b_dirty); 263 } 264 265 /* 266 * requeue inode for re-scanning after bdi->b_io list is exhausted. 267 */ 268 static void requeue_io(struct inode *inode) 269 { 270 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 271 272 list_move(&inode->i_list, &wb->b_more_io); 273 } 274 275 static void inode_sync_complete(struct inode *inode) 276 { 277 /* 278 * Prevent speculative execution through spin_unlock(&inode_lock); 279 */ 280 smp_mb(); 281 wake_up_bit(&inode->i_state, __I_SYNC); 282 } 283 284 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 285 { 286 bool ret = time_after(inode->dirtied_when, t); 287 #ifndef CONFIG_64BIT 288 /* 289 * For inodes being constantly redirtied, dirtied_when can get stuck. 290 * It _appears_ to be in the future, but is actually in distant past. 291 * This test is necessary to prevent such wrapped-around relative times 292 * from permanently stopping the whole bdi writeback. 293 */ 294 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 295 #endif 296 return ret; 297 } 298 299 /* 300 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 301 */ 302 static void move_expired_inodes(struct list_head *delaying_queue, 303 struct list_head *dispatch_queue, 304 unsigned long *older_than_this) 305 { 306 LIST_HEAD(tmp); 307 struct list_head *pos, *node; 308 struct super_block *sb = NULL; 309 struct inode *inode; 310 int do_sb_sort = 0; 311 312 while (!list_empty(delaying_queue)) { 313 inode = list_entry(delaying_queue->prev, struct inode, i_list); 314 if (older_than_this && 315 inode_dirtied_after(inode, *older_than_this)) 316 break; 317 if (sb && sb != inode->i_sb) 318 do_sb_sort = 1; 319 sb = inode->i_sb; 320 list_move(&inode->i_list, &tmp); 321 } 322 323 /* just one sb in list, splice to dispatch_queue and we're done */ 324 if (!do_sb_sort) { 325 list_splice(&tmp, dispatch_queue); 326 return; 327 } 328 329 /* Move inodes from one superblock together */ 330 while (!list_empty(&tmp)) { 331 inode = list_entry(tmp.prev, struct inode, i_list); 332 sb = inode->i_sb; 333 list_for_each_prev_safe(pos, node, &tmp) { 334 inode = list_entry(pos, struct inode, i_list); 335 if (inode->i_sb == sb) 336 list_move(&inode->i_list, dispatch_queue); 337 } 338 } 339 } 340 341 /* 342 * Queue all expired dirty inodes for io, eldest first. 343 */ 344 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 345 { 346 list_splice_init(&wb->b_more_io, wb->b_io.prev); 347 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 348 } 349 350 static int write_inode(struct inode *inode, struct writeback_control *wbc) 351 { 352 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 353 return inode->i_sb->s_op->write_inode(inode, wbc); 354 return 0; 355 } 356 357 /* 358 * Wait for writeback on an inode to complete. 359 */ 360 static void inode_wait_for_writeback(struct inode *inode) 361 { 362 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 363 wait_queue_head_t *wqh; 364 365 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 366 while (inode->i_state & I_SYNC) { 367 spin_unlock(&inode_lock); 368 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 369 spin_lock(&inode_lock); 370 } 371 } 372 373 /* 374 * Write out an inode's dirty pages. Called under inode_lock. Either the 375 * caller has ref on the inode (either via __iget or via syscall against an fd) 376 * or the inode has I_WILL_FREE set (via generic_forget_inode) 377 * 378 * If `wait' is set, wait on the writeout. 379 * 380 * The whole writeout design is quite complex and fragile. We want to avoid 381 * starvation of particular inodes when others are being redirtied, prevent 382 * livelocks, etc. 383 * 384 * Called under inode_lock. 385 */ 386 static int 387 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 388 { 389 struct address_space *mapping = inode->i_mapping; 390 unsigned dirty; 391 int ret; 392 393 if (!atomic_read(&inode->i_count)) 394 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 395 else 396 WARN_ON(inode->i_state & I_WILL_FREE); 397 398 if (inode->i_state & I_SYNC) { 399 /* 400 * If this inode is locked for writeback and we are not doing 401 * writeback-for-data-integrity, move it to b_more_io so that 402 * writeback can proceed with the other inodes on s_io. 403 * 404 * We'll have another go at writing back this inode when we 405 * completed a full scan of b_io. 406 */ 407 if (wbc->sync_mode != WB_SYNC_ALL) { 408 requeue_io(inode); 409 return 0; 410 } 411 412 /* 413 * It's a data-integrity sync. We must wait. 414 */ 415 inode_wait_for_writeback(inode); 416 } 417 418 BUG_ON(inode->i_state & I_SYNC); 419 420 /* Set I_SYNC, reset I_DIRTY_PAGES */ 421 inode->i_state |= I_SYNC; 422 inode->i_state &= ~I_DIRTY_PAGES; 423 spin_unlock(&inode_lock); 424 425 ret = do_writepages(mapping, wbc); 426 427 /* 428 * Make sure to wait on the data before writing out the metadata. 429 * This is important for filesystems that modify metadata on data 430 * I/O completion. 431 */ 432 if (wbc->sync_mode == WB_SYNC_ALL) { 433 int err = filemap_fdatawait(mapping); 434 if (ret == 0) 435 ret = err; 436 } 437 438 /* 439 * Some filesystems may redirty the inode during the writeback 440 * due to delalloc, clear dirty metadata flags right before 441 * write_inode() 442 */ 443 spin_lock(&inode_lock); 444 dirty = inode->i_state & I_DIRTY; 445 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 446 spin_unlock(&inode_lock); 447 /* Don't write the inode if only I_DIRTY_PAGES was set */ 448 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 449 int err = write_inode(inode, wbc); 450 if (ret == 0) 451 ret = err; 452 } 453 454 spin_lock(&inode_lock); 455 inode->i_state &= ~I_SYNC; 456 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 457 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 458 /* 459 * More pages get dirtied by a fast dirtier. 460 */ 461 goto select_queue; 462 } else if (inode->i_state & I_DIRTY) { 463 /* 464 * At least XFS will redirty the inode during the 465 * writeback (delalloc) and on io completion (isize). 466 */ 467 redirty_tail(inode); 468 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 469 /* 470 * We didn't write back all the pages. nfs_writepages() 471 * sometimes bales out without doing anything. Redirty 472 * the inode; Move it from b_io onto b_more_io/b_dirty. 473 */ 474 /* 475 * akpm: if the caller was the kupdate function we put 476 * this inode at the head of b_dirty so it gets first 477 * consideration. Otherwise, move it to the tail, for 478 * the reasons described there. I'm not really sure 479 * how much sense this makes. Presumably I had a good 480 * reasons for doing it this way, and I'd rather not 481 * muck with it at present. 482 */ 483 if (wbc->for_kupdate) { 484 /* 485 * For the kupdate function we move the inode 486 * to b_more_io so it will get more writeout as 487 * soon as the queue becomes uncongested. 488 */ 489 inode->i_state |= I_DIRTY_PAGES; 490 select_queue: 491 if (wbc->nr_to_write <= 0) { 492 /* 493 * slice used up: queue for next turn 494 */ 495 requeue_io(inode); 496 } else { 497 /* 498 * somehow blocked: retry later 499 */ 500 redirty_tail(inode); 501 } 502 } else { 503 /* 504 * Otherwise fully redirty the inode so that 505 * other inodes on this superblock will get some 506 * writeout. Otherwise heavy writing to one 507 * file would indefinitely suspend writeout of 508 * all the other files. 509 */ 510 inode->i_state |= I_DIRTY_PAGES; 511 redirty_tail(inode); 512 } 513 } else if (atomic_read(&inode->i_count)) { 514 /* 515 * The inode is clean, inuse 516 */ 517 list_move(&inode->i_list, &inode_in_use); 518 } else { 519 /* 520 * The inode is clean, unused 521 */ 522 list_move(&inode->i_list, &inode_unused); 523 } 524 } 525 inode_sync_complete(inode); 526 return ret; 527 } 528 529 /* 530 * For background writeback the caller does not have the sb pinned 531 * before calling writeback. So make sure that we do pin it, so it doesn't 532 * go away while we are writing inodes from it. 533 */ 534 static bool pin_sb_for_writeback(struct super_block *sb) 535 { 536 spin_lock(&sb_lock); 537 if (list_empty(&sb->s_instances)) { 538 spin_unlock(&sb_lock); 539 return false; 540 } 541 542 sb->s_count++; 543 spin_unlock(&sb_lock); 544 545 if (down_read_trylock(&sb->s_umount)) { 546 if (sb->s_root) 547 return true; 548 up_read(&sb->s_umount); 549 } 550 551 put_super(sb); 552 return false; 553 } 554 555 /* 556 * Write a portion of b_io inodes which belong to @sb. 557 * If @wbc->sb != NULL, then find and write all such 558 * inodes. Otherwise write only ones which go sequentially 559 * in reverse order. 560 * Return 1, if the caller writeback routine should be 561 * interrupted. Otherwise return 0. 562 */ 563 static int writeback_sb_inodes(struct super_block *sb, 564 struct bdi_writeback *wb, 565 struct writeback_control *wbc) 566 { 567 while (!list_empty(&wb->b_io)) { 568 long pages_skipped; 569 struct inode *inode = list_entry(wb->b_io.prev, 570 struct inode, i_list); 571 if (wbc->sb && sb != inode->i_sb) { 572 /* super block given and doesn't 573 match, skip this inode */ 574 redirty_tail(inode); 575 continue; 576 } 577 if (sb != inode->i_sb) 578 /* finish with this superblock */ 579 return 0; 580 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 581 requeue_io(inode); 582 continue; 583 } 584 /* 585 * Was this inode dirtied after sync_sb_inodes was called? 586 * This keeps sync from extra jobs and livelock. 587 */ 588 if (inode_dirtied_after(inode, wbc->wb_start)) 589 return 1; 590 591 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 592 __iget(inode); 593 pages_skipped = wbc->pages_skipped; 594 writeback_single_inode(inode, wbc); 595 if (wbc->pages_skipped != pages_skipped) { 596 /* 597 * writeback is not making progress due to locked 598 * buffers. Skip this inode for now. 599 */ 600 redirty_tail(inode); 601 } 602 spin_unlock(&inode_lock); 603 iput(inode); 604 cond_resched(); 605 spin_lock(&inode_lock); 606 if (wbc->nr_to_write <= 0) { 607 wbc->more_io = 1; 608 return 1; 609 } 610 if (!list_empty(&wb->b_more_io)) 611 wbc->more_io = 1; 612 } 613 /* b_io is empty */ 614 return 1; 615 } 616 617 static void writeback_inodes_wb(struct bdi_writeback *wb, 618 struct writeback_control *wbc) 619 { 620 int ret = 0; 621 622 wbc->wb_start = jiffies; /* livelock avoidance */ 623 spin_lock(&inode_lock); 624 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 625 queue_io(wb, wbc->older_than_this); 626 627 while (!list_empty(&wb->b_io)) { 628 struct inode *inode = list_entry(wb->b_io.prev, 629 struct inode, i_list); 630 struct super_block *sb = inode->i_sb; 631 632 if (wbc->sb) { 633 /* 634 * We are requested to write out inodes for a specific 635 * superblock. This means we already have s_umount 636 * taken by the caller which also waits for us to 637 * complete the writeout. 638 */ 639 if (sb != wbc->sb) { 640 redirty_tail(inode); 641 continue; 642 } 643 644 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 645 646 ret = writeback_sb_inodes(sb, wb, wbc); 647 } else { 648 if (!pin_sb_for_writeback(sb)) { 649 requeue_io(inode); 650 continue; 651 } 652 ret = writeback_sb_inodes(sb, wb, wbc); 653 drop_super(sb); 654 } 655 656 if (ret) 657 break; 658 } 659 spin_unlock(&inode_lock); 660 /* Leave any unwritten inodes on b_io */ 661 } 662 663 void writeback_inodes_wbc(struct writeback_control *wbc) 664 { 665 struct backing_dev_info *bdi = wbc->bdi; 666 667 writeback_inodes_wb(&bdi->wb, wbc); 668 } 669 670 /* 671 * The maximum number of pages to writeout in a single bdi flush/kupdate 672 * operation. We do this so we don't hold I_SYNC against an inode for 673 * enormous amounts of time, which would block a userspace task which has 674 * been forced to throttle against that inode. Also, the code reevaluates 675 * the dirty each time it has written this many pages. 676 */ 677 #define MAX_WRITEBACK_PAGES 1024 678 679 static inline bool over_bground_thresh(void) 680 { 681 unsigned long background_thresh, dirty_thresh; 682 683 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 684 685 return (global_page_state(NR_FILE_DIRTY) + 686 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 687 } 688 689 /* 690 * Explicit flushing or periodic writeback of "old" data. 691 * 692 * Define "old": the first time one of an inode's pages is dirtied, we mark the 693 * dirtying-time in the inode's address_space. So this periodic writeback code 694 * just walks the superblock inode list, writing back any inodes which are 695 * older than a specific point in time. 696 * 697 * Try to run once per dirty_writeback_interval. But if a writeback event 698 * takes longer than a dirty_writeback_interval interval, then leave a 699 * one-second gap. 700 * 701 * older_than_this takes precedence over nr_to_write. So we'll only write back 702 * all dirty pages if they are all attached to "old" mappings. 703 */ 704 static long wb_writeback(struct bdi_writeback *wb, 705 struct wb_writeback_args *args) 706 { 707 struct writeback_control wbc = { 708 .bdi = wb->bdi, 709 .sb = args->sb, 710 .sync_mode = args->sync_mode, 711 .older_than_this = NULL, 712 .for_kupdate = args->for_kupdate, 713 .for_background = args->for_background, 714 .range_cyclic = args->range_cyclic, 715 }; 716 unsigned long oldest_jif; 717 long wrote = 0; 718 struct inode *inode; 719 720 if (wbc.for_kupdate) { 721 wbc.older_than_this = &oldest_jif; 722 oldest_jif = jiffies - 723 msecs_to_jiffies(dirty_expire_interval * 10); 724 } 725 if (!wbc.range_cyclic) { 726 wbc.range_start = 0; 727 wbc.range_end = LLONG_MAX; 728 } 729 730 for (;;) { 731 /* 732 * Stop writeback when nr_pages has been consumed 733 */ 734 if (args->nr_pages <= 0) 735 break; 736 737 /* 738 * For background writeout, stop when we are below the 739 * background dirty threshold 740 */ 741 if (args->for_background && !over_bground_thresh()) 742 break; 743 744 wbc.more_io = 0; 745 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 746 wbc.pages_skipped = 0; 747 writeback_inodes_wb(wb, &wbc); 748 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 749 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 750 751 /* 752 * If we consumed everything, see if we have more 753 */ 754 if (wbc.nr_to_write <= 0) 755 continue; 756 /* 757 * Didn't write everything and we don't have more IO, bail 758 */ 759 if (!wbc.more_io) 760 break; 761 /* 762 * Did we write something? Try for more 763 */ 764 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 765 continue; 766 /* 767 * Nothing written. Wait for some inode to 768 * become available for writeback. Otherwise 769 * we'll just busyloop. 770 */ 771 spin_lock(&inode_lock); 772 if (!list_empty(&wb->b_more_io)) { 773 inode = list_entry(wb->b_more_io.prev, 774 struct inode, i_list); 775 inode_wait_for_writeback(inode); 776 } 777 spin_unlock(&inode_lock); 778 } 779 780 return wrote; 781 } 782 783 /* 784 * Return the next bdi_work struct that hasn't been processed by this 785 * wb thread yet. ->seen is initially set for each thread that exists 786 * for this device, when a thread first notices a piece of work it 787 * clears its bit. Depending on writeback type, the thread will notify 788 * completion on either receiving the work (WB_SYNC_NONE) or after 789 * it is done (WB_SYNC_ALL). 790 */ 791 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, 792 struct bdi_writeback *wb) 793 { 794 struct bdi_work *work, *ret = NULL; 795 796 rcu_read_lock(); 797 798 list_for_each_entry_rcu(work, &bdi->work_list, list) { 799 if (!test_bit(wb->nr, &work->seen)) 800 continue; 801 clear_bit(wb->nr, &work->seen); 802 803 ret = work; 804 break; 805 } 806 807 rcu_read_unlock(); 808 return ret; 809 } 810 811 static long wb_check_old_data_flush(struct bdi_writeback *wb) 812 { 813 unsigned long expired; 814 long nr_pages; 815 816 /* 817 * When set to zero, disable periodic writeback 818 */ 819 if (!dirty_writeback_interval) 820 return 0; 821 822 expired = wb->last_old_flush + 823 msecs_to_jiffies(dirty_writeback_interval * 10); 824 if (time_before(jiffies, expired)) 825 return 0; 826 827 wb->last_old_flush = jiffies; 828 nr_pages = global_page_state(NR_FILE_DIRTY) + 829 global_page_state(NR_UNSTABLE_NFS) + 830 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 831 832 if (nr_pages) { 833 struct wb_writeback_args args = { 834 .nr_pages = nr_pages, 835 .sync_mode = WB_SYNC_NONE, 836 .for_kupdate = 1, 837 .range_cyclic = 1, 838 }; 839 840 return wb_writeback(wb, &args); 841 } 842 843 return 0; 844 } 845 846 /* 847 * Retrieve work items and do the writeback they describe 848 */ 849 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 850 { 851 struct backing_dev_info *bdi = wb->bdi; 852 struct bdi_work *work; 853 long wrote = 0; 854 855 while ((work = get_next_work_item(bdi, wb)) != NULL) { 856 struct wb_writeback_args args = work->args; 857 858 /* 859 * Override sync mode, in case we must wait for completion 860 */ 861 if (force_wait) 862 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; 863 864 /* 865 * If this isn't a data integrity operation, just notify 866 * that we have seen this work and we are now starting it. 867 */ 868 if (!test_bit(WS_ONSTACK, &work->state)) 869 wb_clear_pending(wb, work); 870 871 wrote += wb_writeback(wb, &args); 872 873 /* 874 * This is a data integrity writeback, so only do the 875 * notification when we have completed the work. 876 */ 877 if (test_bit(WS_ONSTACK, &work->state)) 878 wb_clear_pending(wb, work); 879 } 880 881 /* 882 * Check for periodic writeback, kupdated() style 883 */ 884 wrote += wb_check_old_data_flush(wb); 885 886 return wrote; 887 } 888 889 /* 890 * Handle writeback of dirty data for the device backed by this bdi. Also 891 * wakes up periodically and does kupdated style flushing. 892 */ 893 int bdi_writeback_task(struct bdi_writeback *wb) 894 { 895 unsigned long last_active = jiffies; 896 unsigned long wait_jiffies = -1UL; 897 long pages_written; 898 899 while (!kthread_should_stop()) { 900 pages_written = wb_do_writeback(wb, 0); 901 902 if (pages_written) 903 last_active = jiffies; 904 else if (wait_jiffies != -1UL) { 905 unsigned long max_idle; 906 907 /* 908 * Longest period of inactivity that we tolerate. If we 909 * see dirty data again later, the task will get 910 * recreated automatically. 911 */ 912 max_idle = max(5UL * 60 * HZ, wait_jiffies); 913 if (time_after(jiffies, max_idle + last_active)) 914 break; 915 } 916 917 if (dirty_writeback_interval) { 918 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 919 schedule_timeout_interruptible(wait_jiffies); 920 } else { 921 set_current_state(TASK_INTERRUPTIBLE); 922 if (list_empty_careful(&wb->bdi->work_list) && 923 !kthread_should_stop()) 924 schedule(); 925 __set_current_state(TASK_RUNNING); 926 } 927 928 try_to_freeze(); 929 } 930 931 return 0; 932 } 933 934 /* 935 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 936 * the whole world. 937 */ 938 void wakeup_flusher_threads(long nr_pages) 939 { 940 struct backing_dev_info *bdi; 941 struct wb_writeback_args args = { 942 .sync_mode = WB_SYNC_NONE, 943 }; 944 945 if (nr_pages) { 946 args.nr_pages = nr_pages; 947 } else { 948 args.nr_pages = global_page_state(NR_FILE_DIRTY) + 949 global_page_state(NR_UNSTABLE_NFS); 950 } 951 952 rcu_read_lock(); 953 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 954 if (!bdi_has_dirty_io(bdi)) 955 continue; 956 bdi_alloc_queue_work(bdi, &args); 957 } 958 rcu_read_unlock(); 959 } 960 961 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 962 { 963 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 964 struct dentry *dentry; 965 const char *name = "?"; 966 967 dentry = d_find_alias(inode); 968 if (dentry) { 969 spin_lock(&dentry->d_lock); 970 name = (const char *) dentry->d_name.name; 971 } 972 printk(KERN_DEBUG 973 "%s(%d): dirtied inode %lu (%s) on %s\n", 974 current->comm, task_pid_nr(current), inode->i_ino, 975 name, inode->i_sb->s_id); 976 if (dentry) { 977 spin_unlock(&dentry->d_lock); 978 dput(dentry); 979 } 980 } 981 } 982 983 /** 984 * __mark_inode_dirty - internal function 985 * @inode: inode to mark 986 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 987 * Mark an inode as dirty. Callers should use mark_inode_dirty or 988 * mark_inode_dirty_sync. 989 * 990 * Put the inode on the super block's dirty list. 991 * 992 * CAREFUL! We mark it dirty unconditionally, but move it onto the 993 * dirty list only if it is hashed or if it refers to a blockdev. 994 * If it was not hashed, it will never be added to the dirty list 995 * even if it is later hashed, as it will have been marked dirty already. 996 * 997 * In short, make sure you hash any inodes _before_ you start marking 998 * them dirty. 999 * 1000 * This function *must* be atomic for the I_DIRTY_PAGES case - 1001 * set_page_dirty() is called under spinlock in several places. 1002 * 1003 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1004 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1005 * the kernel-internal blockdev inode represents the dirtying time of the 1006 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1007 * page->mapping->host, so the page-dirtying time is recorded in the internal 1008 * blockdev inode. 1009 */ 1010 void __mark_inode_dirty(struct inode *inode, int flags) 1011 { 1012 struct super_block *sb = inode->i_sb; 1013 1014 /* 1015 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1016 * dirty the inode itself 1017 */ 1018 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1019 if (sb->s_op->dirty_inode) 1020 sb->s_op->dirty_inode(inode); 1021 } 1022 1023 /* 1024 * make sure that changes are seen by all cpus before we test i_state 1025 * -- mikulas 1026 */ 1027 smp_mb(); 1028 1029 /* avoid the locking if we can */ 1030 if ((inode->i_state & flags) == flags) 1031 return; 1032 1033 if (unlikely(block_dump)) 1034 block_dump___mark_inode_dirty(inode); 1035 1036 spin_lock(&inode_lock); 1037 if ((inode->i_state & flags) != flags) { 1038 const int was_dirty = inode->i_state & I_DIRTY; 1039 1040 inode->i_state |= flags; 1041 1042 /* 1043 * If the inode is being synced, just update its dirty state. 1044 * The unlocker will place the inode on the appropriate 1045 * superblock list, based upon its state. 1046 */ 1047 if (inode->i_state & I_SYNC) 1048 goto out; 1049 1050 /* 1051 * Only add valid (hashed) inodes to the superblock's 1052 * dirty list. Add blockdev inodes as well. 1053 */ 1054 if (!S_ISBLK(inode->i_mode)) { 1055 if (hlist_unhashed(&inode->i_hash)) 1056 goto out; 1057 } 1058 if (inode->i_state & (I_FREEING|I_CLEAR)) 1059 goto out; 1060 1061 /* 1062 * If the inode was already on b_dirty/b_io/b_more_io, don't 1063 * reposition it (that would break b_dirty time-ordering). 1064 */ 1065 if (!was_dirty) { 1066 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1067 struct backing_dev_info *bdi = wb->bdi; 1068 1069 if (bdi_cap_writeback_dirty(bdi) && 1070 !test_bit(BDI_registered, &bdi->state)) { 1071 WARN_ON(1); 1072 printk(KERN_ERR "bdi-%s not registered\n", 1073 bdi->name); 1074 } 1075 1076 inode->dirtied_when = jiffies; 1077 list_move(&inode->i_list, &wb->b_dirty); 1078 } 1079 } 1080 out: 1081 spin_unlock(&inode_lock); 1082 } 1083 EXPORT_SYMBOL(__mark_inode_dirty); 1084 1085 /* 1086 * Write out a superblock's list of dirty inodes. A wait will be performed 1087 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1088 * 1089 * If older_than_this is non-NULL, then only write out inodes which 1090 * had their first dirtying at a time earlier than *older_than_this. 1091 * 1092 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1093 * This function assumes that the blockdev superblock's inodes are backed by 1094 * a variety of queues, so all inodes are searched. For other superblocks, 1095 * assume that all inodes are backed by the same queue. 1096 * 1097 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1098 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1099 * on the writer throttling path, and we get decent balancing between many 1100 * throttled threads: we don't want them all piling up on inode_sync_wait. 1101 */ 1102 static void wait_sb_inodes(struct super_block *sb) 1103 { 1104 struct inode *inode, *old_inode = NULL; 1105 1106 /* 1107 * We need to be protected against the filesystem going from 1108 * r/o to r/w or vice versa. 1109 */ 1110 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1111 1112 spin_lock(&inode_lock); 1113 1114 /* 1115 * Data integrity sync. Must wait for all pages under writeback, 1116 * because there may have been pages dirtied before our sync 1117 * call, but which had writeout started before we write it out. 1118 * In which case, the inode may not be on the dirty list, but 1119 * we still have to wait for that writeout. 1120 */ 1121 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1122 struct address_space *mapping; 1123 1124 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1125 continue; 1126 mapping = inode->i_mapping; 1127 if (mapping->nrpages == 0) 1128 continue; 1129 __iget(inode); 1130 spin_unlock(&inode_lock); 1131 /* 1132 * We hold a reference to 'inode' so it couldn't have 1133 * been removed from s_inodes list while we dropped the 1134 * inode_lock. We cannot iput the inode now as we can 1135 * be holding the last reference and we cannot iput it 1136 * under inode_lock. So we keep the reference and iput 1137 * it later. 1138 */ 1139 iput(old_inode); 1140 old_inode = inode; 1141 1142 filemap_fdatawait(mapping); 1143 1144 cond_resched(); 1145 1146 spin_lock(&inode_lock); 1147 } 1148 spin_unlock(&inode_lock); 1149 iput(old_inode); 1150 } 1151 1152 /** 1153 * writeback_inodes_sb - writeback dirty inodes from given super_block 1154 * @sb: the superblock 1155 * 1156 * Start writeback on some inodes on this super_block. No guarantees are made 1157 * on how many (if any) will be written, and this function does not wait 1158 * for IO completion of submitted IO. The number of pages submitted is 1159 * returned. 1160 */ 1161 void writeback_inodes_sb(struct super_block *sb) 1162 { 1163 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1164 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1165 struct wb_writeback_args args = { 1166 .sb = sb, 1167 .sync_mode = WB_SYNC_NONE, 1168 }; 1169 1170 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1171 1172 args.nr_pages = nr_dirty + nr_unstable + 1173 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1174 1175 bdi_queue_work_onstack(&args); 1176 } 1177 EXPORT_SYMBOL(writeback_inodes_sb); 1178 1179 /** 1180 * writeback_inodes_sb_if_idle - start writeback if none underway 1181 * @sb: the superblock 1182 * 1183 * Invoke writeback_inodes_sb if no writeback is currently underway. 1184 * Returns 1 if writeback was started, 0 if not. 1185 */ 1186 int writeback_inodes_sb_if_idle(struct super_block *sb) 1187 { 1188 if (!writeback_in_progress(sb->s_bdi)) { 1189 down_read(&sb->s_umount); 1190 writeback_inodes_sb(sb); 1191 up_read(&sb->s_umount); 1192 return 1; 1193 } else 1194 return 0; 1195 } 1196 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1197 1198 /** 1199 * sync_inodes_sb - sync sb inode pages 1200 * @sb: the superblock 1201 * 1202 * This function writes and waits on any dirty inode belonging to this 1203 * super_block. The number of pages synced is returned. 1204 */ 1205 void sync_inodes_sb(struct super_block *sb) 1206 { 1207 struct wb_writeback_args args = { 1208 .sb = sb, 1209 .sync_mode = WB_SYNC_ALL, 1210 .nr_pages = LONG_MAX, 1211 .range_cyclic = 0, 1212 }; 1213 1214 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1215 1216 bdi_queue_work_onstack(&args); 1217 wait_sb_inodes(sb); 1218 } 1219 EXPORT_SYMBOL(sync_inodes_sb); 1220 1221 /** 1222 * write_inode_now - write an inode to disk 1223 * @inode: inode to write to disk 1224 * @sync: whether the write should be synchronous or not 1225 * 1226 * This function commits an inode to disk immediately if it is dirty. This is 1227 * primarily needed by knfsd. 1228 * 1229 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1230 */ 1231 int write_inode_now(struct inode *inode, int sync) 1232 { 1233 int ret; 1234 struct writeback_control wbc = { 1235 .nr_to_write = LONG_MAX, 1236 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1237 .range_start = 0, 1238 .range_end = LLONG_MAX, 1239 }; 1240 1241 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1242 wbc.nr_to_write = 0; 1243 1244 might_sleep(); 1245 spin_lock(&inode_lock); 1246 ret = writeback_single_inode(inode, &wbc); 1247 spin_unlock(&inode_lock); 1248 if (sync) 1249 inode_sync_wait(inode); 1250 return ret; 1251 } 1252 EXPORT_SYMBOL(write_inode_now); 1253 1254 /** 1255 * sync_inode - write an inode and its pages to disk. 1256 * @inode: the inode to sync 1257 * @wbc: controls the writeback mode 1258 * 1259 * sync_inode() will write an inode and its pages to disk. It will also 1260 * correctly update the inode on its superblock's dirty inode lists and will 1261 * update inode->i_state. 1262 * 1263 * The caller must have a ref on the inode. 1264 */ 1265 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1266 { 1267 int ret; 1268 1269 spin_lock(&inode_lock); 1270 ret = writeback_single_inode(inode, wbc); 1271 spin_unlock(&inode_lock); 1272 return ret; 1273 } 1274 EXPORT_SYMBOL(sync_inode); 1275