xref: /linux/fs/fs-writeback.c (revision db4e83957f961f9053282409c5062c6baef857a4)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	unsigned long *older_than_this;
39 	enum writeback_sync_modes sync_mode;
40 	unsigned int tagged_writepages:1;
41 	unsigned int for_kupdate:1;
42 	unsigned int range_cyclic:1;
43 	unsigned int for_background:1;
44 
45 	struct list_head list;		/* pending work list */
46 	struct completion *done;	/* set if the caller waits */
47 };
48 
49 /*
50  * Include the creation of the trace points after defining the
51  * wb_writeback_work structure so that the definition remains local to this
52  * file.
53  */
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/writeback.h>
56 
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61 
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 	return test_bit(BDI_writeback_running, &bdi->state);
72 }
73 
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 	struct super_block *sb = inode->i_sb;
77 
78 	if (strcmp(sb->s_type->name, "bdev") == 0)
79 		return inode->i_mapping->backing_dev_info;
80 
81 	return sb->s_bdi;
82 }
83 
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 	return list_entry(head, struct inode, i_wb_list);
87 }
88 
89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
91 {
92 	if (bdi->wb.task) {
93 		wake_up_process(bdi->wb.task);
94 	} else {
95 		/*
96 		 * The bdi thread isn't there, wake up the forker thread which
97 		 * will create and run it.
98 		 */
99 		wake_up_process(default_backing_dev_info.wb.task);
100 	}
101 }
102 
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104 			   struct wb_writeback_work *work)
105 {
106 	trace_writeback_queue(bdi, work);
107 
108 	spin_lock_bh(&bdi->wb_lock);
109 	list_add_tail(&work->list, &bdi->work_list);
110 	if (!bdi->wb.task)
111 		trace_writeback_nothread(bdi, work);
112 	bdi_wakeup_flusher(bdi);
113 	spin_unlock_bh(&bdi->wb_lock);
114 }
115 
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118 		      bool range_cyclic)
119 {
120 	struct wb_writeback_work *work;
121 
122 	/*
123 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
124 	 * wakeup the thread for old dirty data writeback
125 	 */
126 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
127 	if (!work) {
128 		if (bdi->wb.task) {
129 			trace_writeback_nowork(bdi);
130 			wake_up_process(bdi->wb.task);
131 		}
132 		return;
133 	}
134 
135 	work->sync_mode	= WB_SYNC_NONE;
136 	work->nr_pages	= nr_pages;
137 	work->range_cyclic = range_cyclic;
138 
139 	bdi_queue_work(bdi, work);
140 }
141 
142 /**
143  * bdi_start_writeback - start writeback
144  * @bdi: the backing device to write from
145  * @nr_pages: the number of pages to write
146  *
147  * Description:
148  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
149  *   started when this function returns, we make no guarantees on
150  *   completion. Caller need not hold sb s_umount semaphore.
151  *
152  */
153 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
154 {
155 	__bdi_start_writeback(bdi, nr_pages, true);
156 }
157 
158 /**
159  * bdi_start_background_writeback - start background writeback
160  * @bdi: the backing device to write from
161  *
162  * Description:
163  *   This makes sure WB_SYNC_NONE background writeback happens. When
164  *   this function returns, it is only guaranteed that for given BDI
165  *   some IO is happening if we are over background dirty threshold.
166  *   Caller need not hold sb s_umount semaphore.
167  */
168 void bdi_start_background_writeback(struct backing_dev_info *bdi)
169 {
170 	/*
171 	 * We just wake up the flusher thread. It will perform background
172 	 * writeback as soon as there is no other work to do.
173 	 */
174 	trace_writeback_wake_background(bdi);
175 	spin_lock_bh(&bdi->wb_lock);
176 	bdi_wakeup_flusher(bdi);
177 	spin_unlock_bh(&bdi->wb_lock);
178 }
179 
180 /*
181  * Remove the inode from the writeback list it is on.
182  */
183 void inode_wb_list_del(struct inode *inode)
184 {
185 	struct backing_dev_info *bdi = inode_to_bdi(inode);
186 
187 	spin_lock(&bdi->wb.list_lock);
188 	list_del_init(&inode->i_wb_list);
189 	spin_unlock(&bdi->wb.list_lock);
190 }
191 
192 /*
193  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
194  * furthest end of its superblock's dirty-inode list.
195  *
196  * Before stamping the inode's ->dirtied_when, we check to see whether it is
197  * already the most-recently-dirtied inode on the b_dirty list.  If that is
198  * the case then the inode must have been redirtied while it was being written
199  * out and we don't reset its dirtied_when.
200  */
201 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
202 {
203 	assert_spin_locked(&wb->list_lock);
204 	if (!list_empty(&wb->b_dirty)) {
205 		struct inode *tail;
206 
207 		tail = wb_inode(wb->b_dirty.next);
208 		if (time_before(inode->dirtied_when, tail->dirtied_when))
209 			inode->dirtied_when = jiffies;
210 	}
211 	list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213 
214 /*
215  * requeue inode for re-scanning after bdi->b_io list is exhausted.
216  */
217 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
218 {
219 	assert_spin_locked(&wb->list_lock);
220 	list_move(&inode->i_wb_list, &wb->b_more_io);
221 }
222 
223 static void inode_sync_complete(struct inode *inode)
224 {
225 	/*
226 	 * Prevent speculative execution through
227 	 * spin_unlock(&wb->list_lock);
228 	 */
229 
230 	smp_mb();
231 	wake_up_bit(&inode->i_state, __I_SYNC);
232 }
233 
234 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
235 {
236 	bool ret = time_after(inode->dirtied_when, t);
237 #ifndef CONFIG_64BIT
238 	/*
239 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
240 	 * It _appears_ to be in the future, but is actually in distant past.
241 	 * This test is necessary to prevent such wrapped-around relative times
242 	 * from permanently stopping the whole bdi writeback.
243 	 */
244 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
245 #endif
246 	return ret;
247 }
248 
249 /*
250  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
251  */
252 static int move_expired_inodes(struct list_head *delaying_queue,
253 			       struct list_head *dispatch_queue,
254 			       unsigned long *older_than_this)
255 {
256 	LIST_HEAD(tmp);
257 	struct list_head *pos, *node;
258 	struct super_block *sb = NULL;
259 	struct inode *inode;
260 	int do_sb_sort = 0;
261 	int moved = 0;
262 
263 	while (!list_empty(delaying_queue)) {
264 		inode = wb_inode(delaying_queue->prev);
265 		if (older_than_this &&
266 		    inode_dirtied_after(inode, *older_than_this))
267 			break;
268 		if (sb && sb != inode->i_sb)
269 			do_sb_sort = 1;
270 		sb = inode->i_sb;
271 		list_move(&inode->i_wb_list, &tmp);
272 		moved++;
273 	}
274 
275 	/* just one sb in list, splice to dispatch_queue and we're done */
276 	if (!do_sb_sort) {
277 		list_splice(&tmp, dispatch_queue);
278 		goto out;
279 	}
280 
281 	/* Move inodes from one superblock together */
282 	while (!list_empty(&tmp)) {
283 		sb = wb_inode(tmp.prev)->i_sb;
284 		list_for_each_prev_safe(pos, node, &tmp) {
285 			inode = wb_inode(pos);
286 			if (inode->i_sb == sb)
287 				list_move(&inode->i_wb_list, dispatch_queue);
288 		}
289 	}
290 out:
291 	return moved;
292 }
293 
294 /*
295  * Queue all expired dirty inodes for io, eldest first.
296  * Before
297  *         newly dirtied     b_dirty    b_io    b_more_io
298  *         =============>    gf         edc     BA
299  * After
300  *         newly dirtied     b_dirty    b_io    b_more_io
301  *         =============>    g          fBAedc
302  *                                           |
303  *                                           +--> dequeue for IO
304  */
305 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
306 {
307 	int moved;
308 	assert_spin_locked(&wb->list_lock);
309 	list_splice_init(&wb->b_more_io, &wb->b_io);
310 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
311 	trace_writeback_queue_io(wb, older_than_this, moved);
312 }
313 
314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
315 {
316 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
317 		return inode->i_sb->s_op->write_inode(inode, wbc);
318 	return 0;
319 }
320 
321 /*
322  * Wait for writeback on an inode to complete.
323  */
324 static void inode_wait_for_writeback(struct inode *inode,
325 				     struct bdi_writeback *wb)
326 {
327 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
328 	wait_queue_head_t *wqh;
329 
330 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
331 	while (inode->i_state & I_SYNC) {
332 		spin_unlock(&inode->i_lock);
333 		spin_unlock(&wb->list_lock);
334 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
335 		spin_lock(&wb->list_lock);
336 		spin_lock(&inode->i_lock);
337 	}
338 }
339 
340 /*
341  * Write out an inode's dirty pages.  Called under wb->list_lock and
342  * inode->i_lock.  Either the caller has an active reference on the inode or
343  * the inode has I_WILL_FREE set.
344  *
345  * If `wait' is set, wait on the writeout.
346  *
347  * The whole writeout design is quite complex and fragile.  We want to avoid
348  * starvation of particular inodes when others are being redirtied, prevent
349  * livelocks, etc.
350  */
351 static int
352 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
353 		       struct writeback_control *wbc)
354 {
355 	struct address_space *mapping = inode->i_mapping;
356 	long nr_to_write = wbc->nr_to_write;
357 	unsigned dirty;
358 	int ret;
359 
360 	assert_spin_locked(&wb->list_lock);
361 	assert_spin_locked(&inode->i_lock);
362 
363 	if (!atomic_read(&inode->i_count))
364 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
365 	else
366 		WARN_ON(inode->i_state & I_WILL_FREE);
367 
368 	if (inode->i_state & I_SYNC) {
369 		/*
370 		 * If this inode is locked for writeback and we are not doing
371 		 * writeback-for-data-integrity, move it to b_more_io so that
372 		 * writeback can proceed with the other inodes on s_io.
373 		 *
374 		 * We'll have another go at writing back this inode when we
375 		 * completed a full scan of b_io.
376 		 */
377 		if (wbc->sync_mode != WB_SYNC_ALL) {
378 			requeue_io(inode, wb);
379 			trace_writeback_single_inode_requeue(inode, wbc,
380 							     nr_to_write);
381 			return 0;
382 		}
383 
384 		/*
385 		 * It's a data-integrity sync.  We must wait.
386 		 */
387 		inode_wait_for_writeback(inode, wb);
388 	}
389 
390 	BUG_ON(inode->i_state & I_SYNC);
391 
392 	/* Set I_SYNC, reset I_DIRTY_PAGES */
393 	inode->i_state |= I_SYNC;
394 	inode->i_state &= ~I_DIRTY_PAGES;
395 	spin_unlock(&inode->i_lock);
396 	spin_unlock(&wb->list_lock);
397 
398 	ret = do_writepages(mapping, wbc);
399 
400 	/*
401 	 * Make sure to wait on the data before writing out the metadata.
402 	 * This is important for filesystems that modify metadata on data
403 	 * I/O completion.
404 	 */
405 	if (wbc->sync_mode == WB_SYNC_ALL) {
406 		int err = filemap_fdatawait(mapping);
407 		if (ret == 0)
408 			ret = err;
409 	}
410 
411 	/*
412 	 * Some filesystems may redirty the inode during the writeback
413 	 * due to delalloc, clear dirty metadata flags right before
414 	 * write_inode()
415 	 */
416 	spin_lock(&inode->i_lock);
417 	dirty = inode->i_state & I_DIRTY;
418 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
419 	spin_unlock(&inode->i_lock);
420 	/* Don't write the inode if only I_DIRTY_PAGES was set */
421 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
422 		int err = write_inode(inode, wbc);
423 		if (ret == 0)
424 			ret = err;
425 	}
426 
427 	spin_lock(&wb->list_lock);
428 	spin_lock(&inode->i_lock);
429 	inode->i_state &= ~I_SYNC;
430 	if (!(inode->i_state & I_FREEING)) {
431 		/*
432 		 * Sync livelock prevention. Each inode is tagged and synced in
433 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
434 		 * Update the dirty time to prevent enqueue and sync it again.
435 		 */
436 		if ((inode->i_state & I_DIRTY) &&
437 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
438 			inode->dirtied_when = jiffies;
439 
440 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
441 			/*
442 			 * We didn't write back all the pages.  nfs_writepages()
443 			 * sometimes bales out without doing anything.
444 			 */
445 			inode->i_state |= I_DIRTY_PAGES;
446 			if (wbc->nr_to_write <= 0) {
447 				/*
448 				 * slice used up: queue for next turn
449 				 */
450 				requeue_io(inode, wb);
451 			} else {
452 				/*
453 				 * Writeback blocked by something other than
454 				 * congestion. Delay the inode for some time to
455 				 * avoid spinning on the CPU (100% iowait)
456 				 * retrying writeback of the dirty page/inode
457 				 * that cannot be performed immediately.
458 				 */
459 				redirty_tail(inode, wb);
460 			}
461 		} else if (inode->i_state & I_DIRTY) {
462 			/*
463 			 * Filesystems can dirty the inode during writeback
464 			 * operations, such as delayed allocation during
465 			 * submission or metadata updates after data IO
466 			 * completion.
467 			 */
468 			redirty_tail(inode, wb);
469 		} else {
470 			/*
471 			 * The inode is clean.  At this point we either have
472 			 * a reference to the inode or it's on it's way out.
473 			 * No need to add it back to the LRU.
474 			 */
475 			list_del_init(&inode->i_wb_list);
476 		}
477 	}
478 	inode_sync_complete(inode);
479 	trace_writeback_single_inode(inode, wbc, nr_to_write);
480 	return ret;
481 }
482 
483 static long writeback_chunk_size(struct backing_dev_info *bdi,
484 				 struct wb_writeback_work *work)
485 {
486 	long pages;
487 
488 	/*
489 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
490 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
491 	 * here avoids calling into writeback_inodes_wb() more than once.
492 	 *
493 	 * The intended call sequence for WB_SYNC_ALL writeback is:
494 	 *
495 	 *      wb_writeback()
496 	 *          writeback_sb_inodes()       <== called only once
497 	 *              write_cache_pages()     <== called once for each inode
498 	 *                   (quickly) tag currently dirty pages
499 	 *                   (maybe slowly) sync all tagged pages
500 	 */
501 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
502 		pages = LONG_MAX;
503 	else {
504 		pages = min(bdi->avg_write_bandwidth / 2,
505 			    global_dirty_limit / DIRTY_SCOPE);
506 		pages = min(pages, work->nr_pages);
507 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
508 				   MIN_WRITEBACK_PAGES);
509 	}
510 
511 	return pages;
512 }
513 
514 /*
515  * Write a portion of b_io inodes which belong to @sb.
516  *
517  * If @only_this_sb is true, then find and write all such
518  * inodes. Otherwise write only ones which go sequentially
519  * in reverse order.
520  *
521  * Return the number of pages and/or inodes written.
522  */
523 static long writeback_sb_inodes(struct super_block *sb,
524 				struct bdi_writeback *wb,
525 				struct wb_writeback_work *work)
526 {
527 	struct writeback_control wbc = {
528 		.sync_mode		= work->sync_mode,
529 		.tagged_writepages	= work->tagged_writepages,
530 		.for_kupdate		= work->for_kupdate,
531 		.for_background		= work->for_background,
532 		.range_cyclic		= work->range_cyclic,
533 		.range_start		= 0,
534 		.range_end		= LLONG_MAX,
535 	};
536 	unsigned long start_time = jiffies;
537 	long write_chunk;
538 	long wrote = 0;  /* count both pages and inodes */
539 
540 	while (!list_empty(&wb->b_io)) {
541 		struct inode *inode = wb_inode(wb->b_io.prev);
542 
543 		if (inode->i_sb != sb) {
544 			if (work->sb) {
545 				/*
546 				 * We only want to write back data for this
547 				 * superblock, move all inodes not belonging
548 				 * to it back onto the dirty list.
549 				 */
550 				redirty_tail(inode, wb);
551 				continue;
552 			}
553 
554 			/*
555 			 * The inode belongs to a different superblock.
556 			 * Bounce back to the caller to unpin this and
557 			 * pin the next superblock.
558 			 */
559 			break;
560 		}
561 
562 		/*
563 		 * Don't bother with new inodes or inodes beeing freed, first
564 		 * kind does not need peridic writeout yet, and for the latter
565 		 * kind writeout is handled by the freer.
566 		 */
567 		spin_lock(&inode->i_lock);
568 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
569 			spin_unlock(&inode->i_lock);
570 			redirty_tail(inode, wb);
571 			continue;
572 		}
573 		__iget(inode);
574 		write_chunk = writeback_chunk_size(wb->bdi, work);
575 		wbc.nr_to_write = write_chunk;
576 		wbc.pages_skipped = 0;
577 
578 		writeback_single_inode(inode, wb, &wbc);
579 
580 		work->nr_pages -= write_chunk - wbc.nr_to_write;
581 		wrote += write_chunk - wbc.nr_to_write;
582 		if (!(inode->i_state & I_DIRTY))
583 			wrote++;
584 		if (wbc.pages_skipped) {
585 			/*
586 			 * writeback is not making progress due to locked
587 			 * buffers.  Skip this inode for now.
588 			 */
589 			redirty_tail(inode, wb);
590 		}
591 		spin_unlock(&inode->i_lock);
592 		spin_unlock(&wb->list_lock);
593 		iput(inode);
594 		cond_resched();
595 		spin_lock(&wb->list_lock);
596 		/*
597 		 * bail out to wb_writeback() often enough to check
598 		 * background threshold and other termination conditions.
599 		 */
600 		if (wrote) {
601 			if (time_is_before_jiffies(start_time + HZ / 10UL))
602 				break;
603 			if (work->nr_pages <= 0)
604 				break;
605 		}
606 	}
607 	return wrote;
608 }
609 
610 static long __writeback_inodes_wb(struct bdi_writeback *wb,
611 				  struct wb_writeback_work *work)
612 {
613 	unsigned long start_time = jiffies;
614 	long wrote = 0;
615 
616 	while (!list_empty(&wb->b_io)) {
617 		struct inode *inode = wb_inode(wb->b_io.prev);
618 		struct super_block *sb = inode->i_sb;
619 
620 		if (!grab_super_passive(sb)) {
621 			/*
622 			 * grab_super_passive() may fail consistently due to
623 			 * s_umount being grabbed by someone else. Don't use
624 			 * requeue_io() to avoid busy retrying the inode/sb.
625 			 */
626 			redirty_tail(inode, wb);
627 			continue;
628 		}
629 		wrote += writeback_sb_inodes(sb, wb, work);
630 		drop_super(sb);
631 
632 		/* refer to the same tests at the end of writeback_sb_inodes */
633 		if (wrote) {
634 			if (time_is_before_jiffies(start_time + HZ / 10UL))
635 				break;
636 			if (work->nr_pages <= 0)
637 				break;
638 		}
639 	}
640 	/* Leave any unwritten inodes on b_io */
641 	return wrote;
642 }
643 
644 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages)
645 {
646 	struct wb_writeback_work work = {
647 		.nr_pages	= nr_pages,
648 		.sync_mode	= WB_SYNC_NONE,
649 		.range_cyclic	= 1,
650 	};
651 
652 	spin_lock(&wb->list_lock);
653 	if (list_empty(&wb->b_io))
654 		queue_io(wb, NULL);
655 	__writeback_inodes_wb(wb, &work);
656 	spin_unlock(&wb->list_lock);
657 
658 	return nr_pages - work.nr_pages;
659 }
660 
661 static inline bool over_bground_thresh(void)
662 {
663 	unsigned long background_thresh, dirty_thresh;
664 
665 	global_dirty_limits(&background_thresh, &dirty_thresh);
666 
667 	return (global_page_state(NR_FILE_DIRTY) +
668 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
669 }
670 
671 /*
672  * Called under wb->list_lock. If there are multiple wb per bdi,
673  * only the flusher working on the first wb should do it.
674  */
675 static void wb_update_bandwidth(struct bdi_writeback *wb,
676 				unsigned long start_time)
677 {
678 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, start_time);
679 }
680 
681 /*
682  * Explicit flushing or periodic writeback of "old" data.
683  *
684  * Define "old": the first time one of an inode's pages is dirtied, we mark the
685  * dirtying-time in the inode's address_space.  So this periodic writeback code
686  * just walks the superblock inode list, writing back any inodes which are
687  * older than a specific point in time.
688  *
689  * Try to run once per dirty_writeback_interval.  But if a writeback event
690  * takes longer than a dirty_writeback_interval interval, then leave a
691  * one-second gap.
692  *
693  * older_than_this takes precedence over nr_to_write.  So we'll only write back
694  * all dirty pages if they are all attached to "old" mappings.
695  */
696 static long wb_writeback(struct bdi_writeback *wb,
697 			 struct wb_writeback_work *work)
698 {
699 	unsigned long wb_start = jiffies;
700 	long nr_pages = work->nr_pages;
701 	unsigned long oldest_jif;
702 	struct inode *inode;
703 	long progress;
704 
705 	oldest_jif = jiffies;
706 	work->older_than_this = &oldest_jif;
707 
708 	spin_lock(&wb->list_lock);
709 	for (;;) {
710 		/*
711 		 * Stop writeback when nr_pages has been consumed
712 		 */
713 		if (work->nr_pages <= 0)
714 			break;
715 
716 		/*
717 		 * Background writeout and kupdate-style writeback may
718 		 * run forever. Stop them if there is other work to do
719 		 * so that e.g. sync can proceed. They'll be restarted
720 		 * after the other works are all done.
721 		 */
722 		if ((work->for_background || work->for_kupdate) &&
723 		    !list_empty(&wb->bdi->work_list))
724 			break;
725 
726 		/*
727 		 * For background writeout, stop when we are below the
728 		 * background dirty threshold
729 		 */
730 		if (work->for_background && !over_bground_thresh())
731 			break;
732 
733 		if (work->for_kupdate) {
734 			oldest_jif = jiffies -
735 				msecs_to_jiffies(dirty_expire_interval * 10);
736 			work->older_than_this = &oldest_jif;
737 		}
738 
739 		trace_writeback_start(wb->bdi, work);
740 		if (list_empty(&wb->b_io))
741 			queue_io(wb, work->older_than_this);
742 		if (work->sb)
743 			progress = writeback_sb_inodes(work->sb, wb, work);
744 		else
745 			progress = __writeback_inodes_wb(wb, work);
746 		trace_writeback_written(wb->bdi, work);
747 
748 		wb_update_bandwidth(wb, wb_start);
749 
750 		/*
751 		 * Did we write something? Try for more
752 		 *
753 		 * Dirty inodes are moved to b_io for writeback in batches.
754 		 * The completion of the current batch does not necessarily
755 		 * mean the overall work is done. So we keep looping as long
756 		 * as made some progress on cleaning pages or inodes.
757 		 */
758 		if (progress)
759 			continue;
760 		/*
761 		 * No more inodes for IO, bail
762 		 */
763 		if (list_empty(&wb->b_more_io))
764 			break;
765 		/*
766 		 * Nothing written. Wait for some inode to
767 		 * become available for writeback. Otherwise
768 		 * we'll just busyloop.
769 		 */
770 		if (!list_empty(&wb->b_more_io))  {
771 			trace_writeback_wait(wb->bdi, work);
772 			inode = wb_inode(wb->b_more_io.prev);
773 			spin_lock(&inode->i_lock);
774 			inode_wait_for_writeback(inode, wb);
775 			spin_unlock(&inode->i_lock);
776 		}
777 	}
778 	spin_unlock(&wb->list_lock);
779 
780 	return nr_pages - work->nr_pages;
781 }
782 
783 /*
784  * Return the next wb_writeback_work struct that hasn't been processed yet.
785  */
786 static struct wb_writeback_work *
787 get_next_work_item(struct backing_dev_info *bdi)
788 {
789 	struct wb_writeback_work *work = NULL;
790 
791 	spin_lock_bh(&bdi->wb_lock);
792 	if (!list_empty(&bdi->work_list)) {
793 		work = list_entry(bdi->work_list.next,
794 				  struct wb_writeback_work, list);
795 		list_del_init(&work->list);
796 	}
797 	spin_unlock_bh(&bdi->wb_lock);
798 	return work;
799 }
800 
801 /*
802  * Add in the number of potentially dirty inodes, because each inode
803  * write can dirty pagecache in the underlying blockdev.
804  */
805 static unsigned long get_nr_dirty_pages(void)
806 {
807 	return global_page_state(NR_FILE_DIRTY) +
808 		global_page_state(NR_UNSTABLE_NFS) +
809 		get_nr_dirty_inodes();
810 }
811 
812 static long wb_check_background_flush(struct bdi_writeback *wb)
813 {
814 	if (over_bground_thresh()) {
815 
816 		struct wb_writeback_work work = {
817 			.nr_pages	= LONG_MAX,
818 			.sync_mode	= WB_SYNC_NONE,
819 			.for_background	= 1,
820 			.range_cyclic	= 1,
821 		};
822 
823 		return wb_writeback(wb, &work);
824 	}
825 
826 	return 0;
827 }
828 
829 static long wb_check_old_data_flush(struct bdi_writeback *wb)
830 {
831 	unsigned long expired;
832 	long nr_pages;
833 
834 	/*
835 	 * When set to zero, disable periodic writeback
836 	 */
837 	if (!dirty_writeback_interval)
838 		return 0;
839 
840 	expired = wb->last_old_flush +
841 			msecs_to_jiffies(dirty_writeback_interval * 10);
842 	if (time_before(jiffies, expired))
843 		return 0;
844 
845 	wb->last_old_flush = jiffies;
846 	nr_pages = get_nr_dirty_pages();
847 
848 	if (nr_pages) {
849 		struct wb_writeback_work work = {
850 			.nr_pages	= nr_pages,
851 			.sync_mode	= WB_SYNC_NONE,
852 			.for_kupdate	= 1,
853 			.range_cyclic	= 1,
854 		};
855 
856 		return wb_writeback(wb, &work);
857 	}
858 
859 	return 0;
860 }
861 
862 /*
863  * Retrieve work items and do the writeback they describe
864  */
865 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
866 {
867 	struct backing_dev_info *bdi = wb->bdi;
868 	struct wb_writeback_work *work;
869 	long wrote = 0;
870 
871 	set_bit(BDI_writeback_running, &wb->bdi->state);
872 	while ((work = get_next_work_item(bdi)) != NULL) {
873 		/*
874 		 * Override sync mode, in case we must wait for completion
875 		 * because this thread is exiting now.
876 		 */
877 		if (force_wait)
878 			work->sync_mode = WB_SYNC_ALL;
879 
880 		trace_writeback_exec(bdi, work);
881 
882 		wrote += wb_writeback(wb, work);
883 
884 		/*
885 		 * Notify the caller of completion if this is a synchronous
886 		 * work item, otherwise just free it.
887 		 */
888 		if (work->done)
889 			complete(work->done);
890 		else
891 			kfree(work);
892 	}
893 
894 	/*
895 	 * Check for periodic writeback, kupdated() style
896 	 */
897 	wrote += wb_check_old_data_flush(wb);
898 	wrote += wb_check_background_flush(wb);
899 	clear_bit(BDI_writeback_running, &wb->bdi->state);
900 
901 	return wrote;
902 }
903 
904 /*
905  * Handle writeback of dirty data for the device backed by this bdi. Also
906  * wakes up periodically and does kupdated style flushing.
907  */
908 int bdi_writeback_thread(void *data)
909 {
910 	struct bdi_writeback *wb = data;
911 	struct backing_dev_info *bdi = wb->bdi;
912 	long pages_written;
913 
914 	current->flags |= PF_SWAPWRITE;
915 	set_freezable();
916 	wb->last_active = jiffies;
917 
918 	/*
919 	 * Our parent may run at a different priority, just set us to normal
920 	 */
921 	set_user_nice(current, 0);
922 
923 	trace_writeback_thread_start(bdi);
924 
925 	while (!kthread_should_stop()) {
926 		/*
927 		 * Remove own delayed wake-up timer, since we are already awake
928 		 * and we'll take care of the preriodic write-back.
929 		 */
930 		del_timer(&wb->wakeup_timer);
931 
932 		pages_written = wb_do_writeback(wb, 0);
933 
934 		trace_writeback_pages_written(pages_written);
935 
936 		if (pages_written)
937 			wb->last_active = jiffies;
938 
939 		set_current_state(TASK_INTERRUPTIBLE);
940 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
941 			__set_current_state(TASK_RUNNING);
942 			continue;
943 		}
944 
945 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
946 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
947 		else {
948 			/*
949 			 * We have nothing to do, so can go sleep without any
950 			 * timeout and save power. When a work is queued or
951 			 * something is made dirty - we will be woken up.
952 			 */
953 			schedule();
954 		}
955 
956 		try_to_freeze();
957 	}
958 
959 	/* Flush any work that raced with us exiting */
960 	if (!list_empty(&bdi->work_list))
961 		wb_do_writeback(wb, 1);
962 
963 	trace_writeback_thread_stop(bdi);
964 	return 0;
965 }
966 
967 
968 /*
969  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
970  * the whole world.
971  */
972 void wakeup_flusher_threads(long nr_pages)
973 {
974 	struct backing_dev_info *bdi;
975 
976 	if (!nr_pages) {
977 		nr_pages = global_page_state(NR_FILE_DIRTY) +
978 				global_page_state(NR_UNSTABLE_NFS);
979 	}
980 
981 	rcu_read_lock();
982 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
983 		if (!bdi_has_dirty_io(bdi))
984 			continue;
985 		__bdi_start_writeback(bdi, nr_pages, false);
986 	}
987 	rcu_read_unlock();
988 }
989 
990 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
991 {
992 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
993 		struct dentry *dentry;
994 		const char *name = "?";
995 
996 		dentry = d_find_alias(inode);
997 		if (dentry) {
998 			spin_lock(&dentry->d_lock);
999 			name = (const char *) dentry->d_name.name;
1000 		}
1001 		printk(KERN_DEBUG
1002 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1003 		       current->comm, task_pid_nr(current), inode->i_ino,
1004 		       name, inode->i_sb->s_id);
1005 		if (dentry) {
1006 			spin_unlock(&dentry->d_lock);
1007 			dput(dentry);
1008 		}
1009 	}
1010 }
1011 
1012 /**
1013  *	__mark_inode_dirty -	internal function
1014  *	@inode: inode to mark
1015  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1016  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1017  *  	mark_inode_dirty_sync.
1018  *
1019  * Put the inode on the super block's dirty list.
1020  *
1021  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1022  * dirty list only if it is hashed or if it refers to a blockdev.
1023  * If it was not hashed, it will never be added to the dirty list
1024  * even if it is later hashed, as it will have been marked dirty already.
1025  *
1026  * In short, make sure you hash any inodes _before_ you start marking
1027  * them dirty.
1028  *
1029  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1030  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1031  * the kernel-internal blockdev inode represents the dirtying time of the
1032  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1033  * page->mapping->host, so the page-dirtying time is recorded in the internal
1034  * blockdev inode.
1035  */
1036 void __mark_inode_dirty(struct inode *inode, int flags)
1037 {
1038 	struct super_block *sb = inode->i_sb;
1039 	struct backing_dev_info *bdi = NULL;
1040 
1041 	/*
1042 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1043 	 * dirty the inode itself
1044 	 */
1045 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1046 		if (sb->s_op->dirty_inode)
1047 			sb->s_op->dirty_inode(inode, flags);
1048 	}
1049 
1050 	/*
1051 	 * make sure that changes are seen by all cpus before we test i_state
1052 	 * -- mikulas
1053 	 */
1054 	smp_mb();
1055 
1056 	/* avoid the locking if we can */
1057 	if ((inode->i_state & flags) == flags)
1058 		return;
1059 
1060 	if (unlikely(block_dump))
1061 		block_dump___mark_inode_dirty(inode);
1062 
1063 	spin_lock(&inode->i_lock);
1064 	if ((inode->i_state & flags) != flags) {
1065 		const int was_dirty = inode->i_state & I_DIRTY;
1066 
1067 		inode->i_state |= flags;
1068 
1069 		/*
1070 		 * If the inode is being synced, just update its dirty state.
1071 		 * The unlocker will place the inode on the appropriate
1072 		 * superblock list, based upon its state.
1073 		 */
1074 		if (inode->i_state & I_SYNC)
1075 			goto out_unlock_inode;
1076 
1077 		/*
1078 		 * Only add valid (hashed) inodes to the superblock's
1079 		 * dirty list.  Add blockdev inodes as well.
1080 		 */
1081 		if (!S_ISBLK(inode->i_mode)) {
1082 			if (inode_unhashed(inode))
1083 				goto out_unlock_inode;
1084 		}
1085 		if (inode->i_state & I_FREEING)
1086 			goto out_unlock_inode;
1087 
1088 		/*
1089 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1090 		 * reposition it (that would break b_dirty time-ordering).
1091 		 */
1092 		if (!was_dirty) {
1093 			bool wakeup_bdi = false;
1094 			bdi = inode_to_bdi(inode);
1095 
1096 			if (bdi_cap_writeback_dirty(bdi)) {
1097 				WARN(!test_bit(BDI_registered, &bdi->state),
1098 				     "bdi-%s not registered\n", bdi->name);
1099 
1100 				/*
1101 				 * If this is the first dirty inode for this
1102 				 * bdi, we have to wake-up the corresponding
1103 				 * bdi thread to make sure background
1104 				 * write-back happens later.
1105 				 */
1106 				if (!wb_has_dirty_io(&bdi->wb))
1107 					wakeup_bdi = true;
1108 			}
1109 
1110 			spin_unlock(&inode->i_lock);
1111 			spin_lock(&bdi->wb.list_lock);
1112 			inode->dirtied_when = jiffies;
1113 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1114 			spin_unlock(&bdi->wb.list_lock);
1115 
1116 			if (wakeup_bdi)
1117 				bdi_wakeup_thread_delayed(bdi);
1118 			return;
1119 		}
1120 	}
1121 out_unlock_inode:
1122 	spin_unlock(&inode->i_lock);
1123 
1124 }
1125 EXPORT_SYMBOL(__mark_inode_dirty);
1126 
1127 /*
1128  * Write out a superblock's list of dirty inodes.  A wait will be performed
1129  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1130  *
1131  * If older_than_this is non-NULL, then only write out inodes which
1132  * had their first dirtying at a time earlier than *older_than_this.
1133  *
1134  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1135  * This function assumes that the blockdev superblock's inodes are backed by
1136  * a variety of queues, so all inodes are searched.  For other superblocks,
1137  * assume that all inodes are backed by the same queue.
1138  *
1139  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1140  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1141  * on the writer throttling path, and we get decent balancing between many
1142  * throttled threads: we don't want them all piling up on inode_sync_wait.
1143  */
1144 static void wait_sb_inodes(struct super_block *sb)
1145 {
1146 	struct inode *inode, *old_inode = NULL;
1147 
1148 	/*
1149 	 * We need to be protected against the filesystem going from
1150 	 * r/o to r/w or vice versa.
1151 	 */
1152 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1153 
1154 	spin_lock(&inode_sb_list_lock);
1155 
1156 	/*
1157 	 * Data integrity sync. Must wait for all pages under writeback,
1158 	 * because there may have been pages dirtied before our sync
1159 	 * call, but which had writeout started before we write it out.
1160 	 * In which case, the inode may not be on the dirty list, but
1161 	 * we still have to wait for that writeout.
1162 	 */
1163 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1164 		struct address_space *mapping = inode->i_mapping;
1165 
1166 		spin_lock(&inode->i_lock);
1167 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1168 		    (mapping->nrpages == 0)) {
1169 			spin_unlock(&inode->i_lock);
1170 			continue;
1171 		}
1172 		__iget(inode);
1173 		spin_unlock(&inode->i_lock);
1174 		spin_unlock(&inode_sb_list_lock);
1175 
1176 		/*
1177 		 * We hold a reference to 'inode' so it couldn't have been
1178 		 * removed from s_inodes list while we dropped the
1179 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1180 		 * be holding the last reference and we cannot iput it under
1181 		 * inode_sb_list_lock. So we keep the reference and iput it
1182 		 * later.
1183 		 */
1184 		iput(old_inode);
1185 		old_inode = inode;
1186 
1187 		filemap_fdatawait(mapping);
1188 
1189 		cond_resched();
1190 
1191 		spin_lock(&inode_sb_list_lock);
1192 	}
1193 	spin_unlock(&inode_sb_list_lock);
1194 	iput(old_inode);
1195 }
1196 
1197 /**
1198  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1199  * @sb: the superblock
1200  * @nr: the number of pages to write
1201  *
1202  * Start writeback on some inodes on this super_block. No guarantees are made
1203  * on how many (if any) will be written, and this function does not wait
1204  * for IO completion of submitted IO.
1205  */
1206 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1207 {
1208 	DECLARE_COMPLETION_ONSTACK(done);
1209 	struct wb_writeback_work work = {
1210 		.sb			= sb,
1211 		.sync_mode		= WB_SYNC_NONE,
1212 		.tagged_writepages	= 1,
1213 		.done			= &done,
1214 		.nr_pages		= nr,
1215 	};
1216 
1217 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1218 	bdi_queue_work(sb->s_bdi, &work);
1219 	wait_for_completion(&done);
1220 }
1221 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1222 
1223 /**
1224  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1225  * @sb: the superblock
1226  *
1227  * Start writeback on some inodes on this super_block. No guarantees are made
1228  * on how many (if any) will be written, and this function does not wait
1229  * for IO completion of submitted IO.
1230  */
1231 void writeback_inodes_sb(struct super_block *sb)
1232 {
1233 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1234 }
1235 EXPORT_SYMBOL(writeback_inodes_sb);
1236 
1237 /**
1238  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1239  * @sb: the superblock
1240  *
1241  * Invoke writeback_inodes_sb if no writeback is currently underway.
1242  * Returns 1 if writeback was started, 0 if not.
1243  */
1244 int writeback_inodes_sb_if_idle(struct super_block *sb)
1245 {
1246 	if (!writeback_in_progress(sb->s_bdi)) {
1247 		down_read(&sb->s_umount);
1248 		writeback_inodes_sb(sb);
1249 		up_read(&sb->s_umount);
1250 		return 1;
1251 	} else
1252 		return 0;
1253 }
1254 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1255 
1256 /**
1257  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1258  * @sb: the superblock
1259  * @nr: the number of pages to write
1260  *
1261  * Invoke writeback_inodes_sb if no writeback is currently underway.
1262  * Returns 1 if writeback was started, 0 if not.
1263  */
1264 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1265 				   unsigned long nr)
1266 {
1267 	if (!writeback_in_progress(sb->s_bdi)) {
1268 		down_read(&sb->s_umount);
1269 		writeback_inodes_sb_nr(sb, nr);
1270 		up_read(&sb->s_umount);
1271 		return 1;
1272 	} else
1273 		return 0;
1274 }
1275 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1276 
1277 /**
1278  * sync_inodes_sb	-	sync sb inode pages
1279  * @sb: the superblock
1280  *
1281  * This function writes and waits on any dirty inode belonging to this
1282  * super_block.
1283  */
1284 void sync_inodes_sb(struct super_block *sb)
1285 {
1286 	DECLARE_COMPLETION_ONSTACK(done);
1287 	struct wb_writeback_work work = {
1288 		.sb		= sb,
1289 		.sync_mode	= WB_SYNC_ALL,
1290 		.nr_pages	= LONG_MAX,
1291 		.range_cyclic	= 0,
1292 		.done		= &done,
1293 	};
1294 
1295 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1296 
1297 	bdi_queue_work(sb->s_bdi, &work);
1298 	wait_for_completion(&done);
1299 
1300 	wait_sb_inodes(sb);
1301 }
1302 EXPORT_SYMBOL(sync_inodes_sb);
1303 
1304 /**
1305  * write_inode_now	-	write an inode to disk
1306  * @inode: inode to write to disk
1307  * @sync: whether the write should be synchronous or not
1308  *
1309  * This function commits an inode to disk immediately if it is dirty. This is
1310  * primarily needed by knfsd.
1311  *
1312  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1313  */
1314 int write_inode_now(struct inode *inode, int sync)
1315 {
1316 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1317 	int ret;
1318 	struct writeback_control wbc = {
1319 		.nr_to_write = LONG_MAX,
1320 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1321 		.range_start = 0,
1322 		.range_end = LLONG_MAX,
1323 	};
1324 
1325 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1326 		wbc.nr_to_write = 0;
1327 
1328 	might_sleep();
1329 	spin_lock(&wb->list_lock);
1330 	spin_lock(&inode->i_lock);
1331 	ret = writeback_single_inode(inode, wb, &wbc);
1332 	spin_unlock(&inode->i_lock);
1333 	spin_unlock(&wb->list_lock);
1334 	if (sync)
1335 		inode_sync_wait(inode);
1336 	return ret;
1337 }
1338 EXPORT_SYMBOL(write_inode_now);
1339 
1340 /**
1341  * sync_inode - write an inode and its pages to disk.
1342  * @inode: the inode to sync
1343  * @wbc: controls the writeback mode
1344  *
1345  * sync_inode() will write an inode and its pages to disk.  It will also
1346  * correctly update the inode on its superblock's dirty inode lists and will
1347  * update inode->i_state.
1348  *
1349  * The caller must have a ref on the inode.
1350  */
1351 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1352 {
1353 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1354 	int ret;
1355 
1356 	spin_lock(&wb->list_lock);
1357 	spin_lock(&inode->i_lock);
1358 	ret = writeback_single_inode(inode, wb, wbc);
1359 	spin_unlock(&inode->i_lock);
1360 	spin_unlock(&wb->list_lock);
1361 	return ret;
1362 }
1363 EXPORT_SYMBOL(sync_inode);
1364 
1365 /**
1366  * sync_inode_metadata - write an inode to disk
1367  * @inode: the inode to sync
1368  * @wait: wait for I/O to complete.
1369  *
1370  * Write an inode to disk and adjust its dirty state after completion.
1371  *
1372  * Note: only writes the actual inode, no associated data or other metadata.
1373  */
1374 int sync_inode_metadata(struct inode *inode, int wait)
1375 {
1376 	struct writeback_control wbc = {
1377 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1378 		.nr_to_write = 0, /* metadata-only */
1379 	};
1380 
1381 	return sync_inode(inode, &wbc);
1382 }
1383 EXPORT_SYMBOL(sync_inode_metadata);
1384