1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 unsigned long *older_than_this; 39 enum writeback_sync_modes sync_mode; 40 unsigned int tagged_writepages:1; 41 unsigned int for_kupdate:1; 42 unsigned int range_cyclic:1; 43 unsigned int for_background:1; 44 45 struct list_head list; /* pending work list */ 46 struct completion *done; /* set if the caller waits */ 47 }; 48 49 /* 50 * Include the creation of the trace points after defining the 51 * wb_writeback_work structure so that the definition remains local to this 52 * file. 53 */ 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/writeback.h> 56 57 /* 58 * We don't actually have pdflush, but this one is exported though /proc... 59 */ 60 int nr_pdflush_threads; 61 62 /** 63 * writeback_in_progress - determine whether there is writeback in progress 64 * @bdi: the device's backing_dev_info structure. 65 * 66 * Determine whether there is writeback waiting to be handled against a 67 * backing device. 68 */ 69 int writeback_in_progress(struct backing_dev_info *bdi) 70 { 71 return test_bit(BDI_writeback_running, &bdi->state); 72 } 73 74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 75 { 76 struct super_block *sb = inode->i_sb; 77 78 if (strcmp(sb->s_type->name, "bdev") == 0) 79 return inode->i_mapping->backing_dev_info; 80 81 return sb->s_bdi; 82 } 83 84 static inline struct inode *wb_inode(struct list_head *head) 85 { 86 return list_entry(head, struct inode, i_wb_list); 87 } 88 89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 91 { 92 if (bdi->wb.task) { 93 wake_up_process(bdi->wb.task); 94 } else { 95 /* 96 * The bdi thread isn't there, wake up the forker thread which 97 * will create and run it. 98 */ 99 wake_up_process(default_backing_dev_info.wb.task); 100 } 101 } 102 103 static void bdi_queue_work(struct backing_dev_info *bdi, 104 struct wb_writeback_work *work) 105 { 106 trace_writeback_queue(bdi, work); 107 108 spin_lock_bh(&bdi->wb_lock); 109 list_add_tail(&work->list, &bdi->work_list); 110 if (!bdi->wb.task) 111 trace_writeback_nothread(bdi, work); 112 bdi_wakeup_flusher(bdi); 113 spin_unlock_bh(&bdi->wb_lock); 114 } 115 116 static void 117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 118 bool range_cyclic) 119 { 120 struct wb_writeback_work *work; 121 122 /* 123 * This is WB_SYNC_NONE writeback, so if allocation fails just 124 * wakeup the thread for old dirty data writeback 125 */ 126 work = kzalloc(sizeof(*work), GFP_ATOMIC); 127 if (!work) { 128 if (bdi->wb.task) { 129 trace_writeback_nowork(bdi); 130 wake_up_process(bdi->wb.task); 131 } 132 return; 133 } 134 135 work->sync_mode = WB_SYNC_NONE; 136 work->nr_pages = nr_pages; 137 work->range_cyclic = range_cyclic; 138 139 bdi_queue_work(bdi, work); 140 } 141 142 /** 143 * bdi_start_writeback - start writeback 144 * @bdi: the backing device to write from 145 * @nr_pages: the number of pages to write 146 * 147 * Description: 148 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 149 * started when this function returns, we make no guarantees on 150 * completion. Caller need not hold sb s_umount semaphore. 151 * 152 */ 153 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 154 { 155 __bdi_start_writeback(bdi, nr_pages, true); 156 } 157 158 /** 159 * bdi_start_background_writeback - start background writeback 160 * @bdi: the backing device to write from 161 * 162 * Description: 163 * This makes sure WB_SYNC_NONE background writeback happens. When 164 * this function returns, it is only guaranteed that for given BDI 165 * some IO is happening if we are over background dirty threshold. 166 * Caller need not hold sb s_umount semaphore. 167 */ 168 void bdi_start_background_writeback(struct backing_dev_info *bdi) 169 { 170 /* 171 * We just wake up the flusher thread. It will perform background 172 * writeback as soon as there is no other work to do. 173 */ 174 trace_writeback_wake_background(bdi); 175 spin_lock_bh(&bdi->wb_lock); 176 bdi_wakeup_flusher(bdi); 177 spin_unlock_bh(&bdi->wb_lock); 178 } 179 180 /* 181 * Remove the inode from the writeback list it is on. 182 */ 183 void inode_wb_list_del(struct inode *inode) 184 { 185 struct backing_dev_info *bdi = inode_to_bdi(inode); 186 187 spin_lock(&bdi->wb.list_lock); 188 list_del_init(&inode->i_wb_list); 189 spin_unlock(&bdi->wb.list_lock); 190 } 191 192 /* 193 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 194 * furthest end of its superblock's dirty-inode list. 195 * 196 * Before stamping the inode's ->dirtied_when, we check to see whether it is 197 * already the most-recently-dirtied inode on the b_dirty list. If that is 198 * the case then the inode must have been redirtied while it was being written 199 * out and we don't reset its dirtied_when. 200 */ 201 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 202 { 203 assert_spin_locked(&wb->list_lock); 204 if (!list_empty(&wb->b_dirty)) { 205 struct inode *tail; 206 207 tail = wb_inode(wb->b_dirty.next); 208 if (time_before(inode->dirtied_when, tail->dirtied_when)) 209 inode->dirtied_when = jiffies; 210 } 211 list_move(&inode->i_wb_list, &wb->b_dirty); 212 } 213 214 /* 215 * requeue inode for re-scanning after bdi->b_io list is exhausted. 216 */ 217 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 218 { 219 assert_spin_locked(&wb->list_lock); 220 list_move(&inode->i_wb_list, &wb->b_more_io); 221 } 222 223 static void inode_sync_complete(struct inode *inode) 224 { 225 /* 226 * Prevent speculative execution through 227 * spin_unlock(&wb->list_lock); 228 */ 229 230 smp_mb(); 231 wake_up_bit(&inode->i_state, __I_SYNC); 232 } 233 234 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 235 { 236 bool ret = time_after(inode->dirtied_when, t); 237 #ifndef CONFIG_64BIT 238 /* 239 * For inodes being constantly redirtied, dirtied_when can get stuck. 240 * It _appears_ to be in the future, but is actually in distant past. 241 * This test is necessary to prevent such wrapped-around relative times 242 * from permanently stopping the whole bdi writeback. 243 */ 244 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 245 #endif 246 return ret; 247 } 248 249 /* 250 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 251 */ 252 static int move_expired_inodes(struct list_head *delaying_queue, 253 struct list_head *dispatch_queue, 254 unsigned long *older_than_this) 255 { 256 LIST_HEAD(tmp); 257 struct list_head *pos, *node; 258 struct super_block *sb = NULL; 259 struct inode *inode; 260 int do_sb_sort = 0; 261 int moved = 0; 262 263 while (!list_empty(delaying_queue)) { 264 inode = wb_inode(delaying_queue->prev); 265 if (older_than_this && 266 inode_dirtied_after(inode, *older_than_this)) 267 break; 268 if (sb && sb != inode->i_sb) 269 do_sb_sort = 1; 270 sb = inode->i_sb; 271 list_move(&inode->i_wb_list, &tmp); 272 moved++; 273 } 274 275 /* just one sb in list, splice to dispatch_queue and we're done */ 276 if (!do_sb_sort) { 277 list_splice(&tmp, dispatch_queue); 278 goto out; 279 } 280 281 /* Move inodes from one superblock together */ 282 while (!list_empty(&tmp)) { 283 sb = wb_inode(tmp.prev)->i_sb; 284 list_for_each_prev_safe(pos, node, &tmp) { 285 inode = wb_inode(pos); 286 if (inode->i_sb == sb) 287 list_move(&inode->i_wb_list, dispatch_queue); 288 } 289 } 290 out: 291 return moved; 292 } 293 294 /* 295 * Queue all expired dirty inodes for io, eldest first. 296 * Before 297 * newly dirtied b_dirty b_io b_more_io 298 * =============> gf edc BA 299 * After 300 * newly dirtied b_dirty b_io b_more_io 301 * =============> g fBAedc 302 * | 303 * +--> dequeue for IO 304 */ 305 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 306 { 307 int moved; 308 assert_spin_locked(&wb->list_lock); 309 list_splice_init(&wb->b_more_io, &wb->b_io); 310 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 311 trace_writeback_queue_io(wb, older_than_this, moved); 312 } 313 314 static int write_inode(struct inode *inode, struct writeback_control *wbc) 315 { 316 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 317 return inode->i_sb->s_op->write_inode(inode, wbc); 318 return 0; 319 } 320 321 /* 322 * Wait for writeback on an inode to complete. 323 */ 324 static void inode_wait_for_writeback(struct inode *inode, 325 struct bdi_writeback *wb) 326 { 327 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 328 wait_queue_head_t *wqh; 329 330 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 331 while (inode->i_state & I_SYNC) { 332 spin_unlock(&inode->i_lock); 333 spin_unlock(&wb->list_lock); 334 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 335 spin_lock(&wb->list_lock); 336 spin_lock(&inode->i_lock); 337 } 338 } 339 340 /* 341 * Write out an inode's dirty pages. Called under wb->list_lock and 342 * inode->i_lock. Either the caller has an active reference on the inode or 343 * the inode has I_WILL_FREE set. 344 * 345 * If `wait' is set, wait on the writeout. 346 * 347 * The whole writeout design is quite complex and fragile. We want to avoid 348 * starvation of particular inodes when others are being redirtied, prevent 349 * livelocks, etc. 350 */ 351 static int 352 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 353 struct writeback_control *wbc) 354 { 355 struct address_space *mapping = inode->i_mapping; 356 long nr_to_write = wbc->nr_to_write; 357 unsigned dirty; 358 int ret; 359 360 assert_spin_locked(&wb->list_lock); 361 assert_spin_locked(&inode->i_lock); 362 363 if (!atomic_read(&inode->i_count)) 364 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 365 else 366 WARN_ON(inode->i_state & I_WILL_FREE); 367 368 if (inode->i_state & I_SYNC) { 369 /* 370 * If this inode is locked for writeback and we are not doing 371 * writeback-for-data-integrity, move it to b_more_io so that 372 * writeback can proceed with the other inodes on s_io. 373 * 374 * We'll have another go at writing back this inode when we 375 * completed a full scan of b_io. 376 */ 377 if (wbc->sync_mode != WB_SYNC_ALL) { 378 requeue_io(inode, wb); 379 trace_writeback_single_inode_requeue(inode, wbc, 380 nr_to_write); 381 return 0; 382 } 383 384 /* 385 * It's a data-integrity sync. We must wait. 386 */ 387 inode_wait_for_writeback(inode, wb); 388 } 389 390 BUG_ON(inode->i_state & I_SYNC); 391 392 /* Set I_SYNC, reset I_DIRTY_PAGES */ 393 inode->i_state |= I_SYNC; 394 inode->i_state &= ~I_DIRTY_PAGES; 395 spin_unlock(&inode->i_lock); 396 spin_unlock(&wb->list_lock); 397 398 ret = do_writepages(mapping, wbc); 399 400 /* 401 * Make sure to wait on the data before writing out the metadata. 402 * This is important for filesystems that modify metadata on data 403 * I/O completion. 404 */ 405 if (wbc->sync_mode == WB_SYNC_ALL) { 406 int err = filemap_fdatawait(mapping); 407 if (ret == 0) 408 ret = err; 409 } 410 411 /* 412 * Some filesystems may redirty the inode during the writeback 413 * due to delalloc, clear dirty metadata flags right before 414 * write_inode() 415 */ 416 spin_lock(&inode->i_lock); 417 dirty = inode->i_state & I_DIRTY; 418 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 419 spin_unlock(&inode->i_lock); 420 /* Don't write the inode if only I_DIRTY_PAGES was set */ 421 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 422 int err = write_inode(inode, wbc); 423 if (ret == 0) 424 ret = err; 425 } 426 427 spin_lock(&wb->list_lock); 428 spin_lock(&inode->i_lock); 429 inode->i_state &= ~I_SYNC; 430 if (!(inode->i_state & I_FREEING)) { 431 /* 432 * Sync livelock prevention. Each inode is tagged and synced in 433 * one shot. If still dirty, it will be redirty_tail()'ed below. 434 * Update the dirty time to prevent enqueue and sync it again. 435 */ 436 if ((inode->i_state & I_DIRTY) && 437 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 438 inode->dirtied_when = jiffies; 439 440 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 441 /* 442 * We didn't write back all the pages. nfs_writepages() 443 * sometimes bales out without doing anything. 444 */ 445 inode->i_state |= I_DIRTY_PAGES; 446 if (wbc->nr_to_write <= 0) { 447 /* 448 * slice used up: queue for next turn 449 */ 450 requeue_io(inode, wb); 451 } else { 452 /* 453 * Writeback blocked by something other than 454 * congestion. Delay the inode for some time to 455 * avoid spinning on the CPU (100% iowait) 456 * retrying writeback of the dirty page/inode 457 * that cannot be performed immediately. 458 */ 459 redirty_tail(inode, wb); 460 } 461 } else if (inode->i_state & I_DIRTY) { 462 /* 463 * Filesystems can dirty the inode during writeback 464 * operations, such as delayed allocation during 465 * submission or metadata updates after data IO 466 * completion. 467 */ 468 redirty_tail(inode, wb); 469 } else { 470 /* 471 * The inode is clean. At this point we either have 472 * a reference to the inode or it's on it's way out. 473 * No need to add it back to the LRU. 474 */ 475 list_del_init(&inode->i_wb_list); 476 } 477 } 478 inode_sync_complete(inode); 479 trace_writeback_single_inode(inode, wbc, nr_to_write); 480 return ret; 481 } 482 483 static long writeback_chunk_size(struct backing_dev_info *bdi, 484 struct wb_writeback_work *work) 485 { 486 long pages; 487 488 /* 489 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 490 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 491 * here avoids calling into writeback_inodes_wb() more than once. 492 * 493 * The intended call sequence for WB_SYNC_ALL writeback is: 494 * 495 * wb_writeback() 496 * writeback_sb_inodes() <== called only once 497 * write_cache_pages() <== called once for each inode 498 * (quickly) tag currently dirty pages 499 * (maybe slowly) sync all tagged pages 500 */ 501 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 502 pages = LONG_MAX; 503 else { 504 pages = min(bdi->avg_write_bandwidth / 2, 505 global_dirty_limit / DIRTY_SCOPE); 506 pages = min(pages, work->nr_pages); 507 pages = round_down(pages + MIN_WRITEBACK_PAGES, 508 MIN_WRITEBACK_PAGES); 509 } 510 511 return pages; 512 } 513 514 /* 515 * Write a portion of b_io inodes which belong to @sb. 516 * 517 * If @only_this_sb is true, then find and write all such 518 * inodes. Otherwise write only ones which go sequentially 519 * in reverse order. 520 * 521 * Return the number of pages and/or inodes written. 522 */ 523 static long writeback_sb_inodes(struct super_block *sb, 524 struct bdi_writeback *wb, 525 struct wb_writeback_work *work) 526 { 527 struct writeback_control wbc = { 528 .sync_mode = work->sync_mode, 529 .tagged_writepages = work->tagged_writepages, 530 .for_kupdate = work->for_kupdate, 531 .for_background = work->for_background, 532 .range_cyclic = work->range_cyclic, 533 .range_start = 0, 534 .range_end = LLONG_MAX, 535 }; 536 unsigned long start_time = jiffies; 537 long write_chunk; 538 long wrote = 0; /* count both pages and inodes */ 539 540 while (!list_empty(&wb->b_io)) { 541 struct inode *inode = wb_inode(wb->b_io.prev); 542 543 if (inode->i_sb != sb) { 544 if (work->sb) { 545 /* 546 * We only want to write back data for this 547 * superblock, move all inodes not belonging 548 * to it back onto the dirty list. 549 */ 550 redirty_tail(inode, wb); 551 continue; 552 } 553 554 /* 555 * The inode belongs to a different superblock. 556 * Bounce back to the caller to unpin this and 557 * pin the next superblock. 558 */ 559 break; 560 } 561 562 /* 563 * Don't bother with new inodes or inodes beeing freed, first 564 * kind does not need peridic writeout yet, and for the latter 565 * kind writeout is handled by the freer. 566 */ 567 spin_lock(&inode->i_lock); 568 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 569 spin_unlock(&inode->i_lock); 570 redirty_tail(inode, wb); 571 continue; 572 } 573 __iget(inode); 574 write_chunk = writeback_chunk_size(wb->bdi, work); 575 wbc.nr_to_write = write_chunk; 576 wbc.pages_skipped = 0; 577 578 writeback_single_inode(inode, wb, &wbc); 579 580 work->nr_pages -= write_chunk - wbc.nr_to_write; 581 wrote += write_chunk - wbc.nr_to_write; 582 if (!(inode->i_state & I_DIRTY)) 583 wrote++; 584 if (wbc.pages_skipped) { 585 /* 586 * writeback is not making progress due to locked 587 * buffers. Skip this inode for now. 588 */ 589 redirty_tail(inode, wb); 590 } 591 spin_unlock(&inode->i_lock); 592 spin_unlock(&wb->list_lock); 593 iput(inode); 594 cond_resched(); 595 spin_lock(&wb->list_lock); 596 /* 597 * bail out to wb_writeback() often enough to check 598 * background threshold and other termination conditions. 599 */ 600 if (wrote) { 601 if (time_is_before_jiffies(start_time + HZ / 10UL)) 602 break; 603 if (work->nr_pages <= 0) 604 break; 605 } 606 } 607 return wrote; 608 } 609 610 static long __writeback_inodes_wb(struct bdi_writeback *wb, 611 struct wb_writeback_work *work) 612 { 613 unsigned long start_time = jiffies; 614 long wrote = 0; 615 616 while (!list_empty(&wb->b_io)) { 617 struct inode *inode = wb_inode(wb->b_io.prev); 618 struct super_block *sb = inode->i_sb; 619 620 if (!grab_super_passive(sb)) { 621 /* 622 * grab_super_passive() may fail consistently due to 623 * s_umount being grabbed by someone else. Don't use 624 * requeue_io() to avoid busy retrying the inode/sb. 625 */ 626 redirty_tail(inode, wb); 627 continue; 628 } 629 wrote += writeback_sb_inodes(sb, wb, work); 630 drop_super(sb); 631 632 /* refer to the same tests at the end of writeback_sb_inodes */ 633 if (wrote) { 634 if (time_is_before_jiffies(start_time + HZ / 10UL)) 635 break; 636 if (work->nr_pages <= 0) 637 break; 638 } 639 } 640 /* Leave any unwritten inodes on b_io */ 641 return wrote; 642 } 643 644 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages) 645 { 646 struct wb_writeback_work work = { 647 .nr_pages = nr_pages, 648 .sync_mode = WB_SYNC_NONE, 649 .range_cyclic = 1, 650 }; 651 652 spin_lock(&wb->list_lock); 653 if (list_empty(&wb->b_io)) 654 queue_io(wb, NULL); 655 __writeback_inodes_wb(wb, &work); 656 spin_unlock(&wb->list_lock); 657 658 return nr_pages - work.nr_pages; 659 } 660 661 static inline bool over_bground_thresh(void) 662 { 663 unsigned long background_thresh, dirty_thresh; 664 665 global_dirty_limits(&background_thresh, &dirty_thresh); 666 667 return (global_page_state(NR_FILE_DIRTY) + 668 global_page_state(NR_UNSTABLE_NFS) > background_thresh); 669 } 670 671 /* 672 * Called under wb->list_lock. If there are multiple wb per bdi, 673 * only the flusher working on the first wb should do it. 674 */ 675 static void wb_update_bandwidth(struct bdi_writeback *wb, 676 unsigned long start_time) 677 { 678 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, start_time); 679 } 680 681 /* 682 * Explicit flushing or periodic writeback of "old" data. 683 * 684 * Define "old": the first time one of an inode's pages is dirtied, we mark the 685 * dirtying-time in the inode's address_space. So this periodic writeback code 686 * just walks the superblock inode list, writing back any inodes which are 687 * older than a specific point in time. 688 * 689 * Try to run once per dirty_writeback_interval. But if a writeback event 690 * takes longer than a dirty_writeback_interval interval, then leave a 691 * one-second gap. 692 * 693 * older_than_this takes precedence over nr_to_write. So we'll only write back 694 * all dirty pages if they are all attached to "old" mappings. 695 */ 696 static long wb_writeback(struct bdi_writeback *wb, 697 struct wb_writeback_work *work) 698 { 699 unsigned long wb_start = jiffies; 700 long nr_pages = work->nr_pages; 701 unsigned long oldest_jif; 702 struct inode *inode; 703 long progress; 704 705 oldest_jif = jiffies; 706 work->older_than_this = &oldest_jif; 707 708 spin_lock(&wb->list_lock); 709 for (;;) { 710 /* 711 * Stop writeback when nr_pages has been consumed 712 */ 713 if (work->nr_pages <= 0) 714 break; 715 716 /* 717 * Background writeout and kupdate-style writeback may 718 * run forever. Stop them if there is other work to do 719 * so that e.g. sync can proceed. They'll be restarted 720 * after the other works are all done. 721 */ 722 if ((work->for_background || work->for_kupdate) && 723 !list_empty(&wb->bdi->work_list)) 724 break; 725 726 /* 727 * For background writeout, stop when we are below the 728 * background dirty threshold 729 */ 730 if (work->for_background && !over_bground_thresh()) 731 break; 732 733 if (work->for_kupdate) { 734 oldest_jif = jiffies - 735 msecs_to_jiffies(dirty_expire_interval * 10); 736 work->older_than_this = &oldest_jif; 737 } 738 739 trace_writeback_start(wb->bdi, work); 740 if (list_empty(&wb->b_io)) 741 queue_io(wb, work->older_than_this); 742 if (work->sb) 743 progress = writeback_sb_inodes(work->sb, wb, work); 744 else 745 progress = __writeback_inodes_wb(wb, work); 746 trace_writeback_written(wb->bdi, work); 747 748 wb_update_bandwidth(wb, wb_start); 749 750 /* 751 * Did we write something? Try for more 752 * 753 * Dirty inodes are moved to b_io for writeback in batches. 754 * The completion of the current batch does not necessarily 755 * mean the overall work is done. So we keep looping as long 756 * as made some progress on cleaning pages or inodes. 757 */ 758 if (progress) 759 continue; 760 /* 761 * No more inodes for IO, bail 762 */ 763 if (list_empty(&wb->b_more_io)) 764 break; 765 /* 766 * Nothing written. Wait for some inode to 767 * become available for writeback. Otherwise 768 * we'll just busyloop. 769 */ 770 if (!list_empty(&wb->b_more_io)) { 771 trace_writeback_wait(wb->bdi, work); 772 inode = wb_inode(wb->b_more_io.prev); 773 spin_lock(&inode->i_lock); 774 inode_wait_for_writeback(inode, wb); 775 spin_unlock(&inode->i_lock); 776 } 777 } 778 spin_unlock(&wb->list_lock); 779 780 return nr_pages - work->nr_pages; 781 } 782 783 /* 784 * Return the next wb_writeback_work struct that hasn't been processed yet. 785 */ 786 static struct wb_writeback_work * 787 get_next_work_item(struct backing_dev_info *bdi) 788 { 789 struct wb_writeback_work *work = NULL; 790 791 spin_lock_bh(&bdi->wb_lock); 792 if (!list_empty(&bdi->work_list)) { 793 work = list_entry(bdi->work_list.next, 794 struct wb_writeback_work, list); 795 list_del_init(&work->list); 796 } 797 spin_unlock_bh(&bdi->wb_lock); 798 return work; 799 } 800 801 /* 802 * Add in the number of potentially dirty inodes, because each inode 803 * write can dirty pagecache in the underlying blockdev. 804 */ 805 static unsigned long get_nr_dirty_pages(void) 806 { 807 return global_page_state(NR_FILE_DIRTY) + 808 global_page_state(NR_UNSTABLE_NFS) + 809 get_nr_dirty_inodes(); 810 } 811 812 static long wb_check_background_flush(struct bdi_writeback *wb) 813 { 814 if (over_bground_thresh()) { 815 816 struct wb_writeback_work work = { 817 .nr_pages = LONG_MAX, 818 .sync_mode = WB_SYNC_NONE, 819 .for_background = 1, 820 .range_cyclic = 1, 821 }; 822 823 return wb_writeback(wb, &work); 824 } 825 826 return 0; 827 } 828 829 static long wb_check_old_data_flush(struct bdi_writeback *wb) 830 { 831 unsigned long expired; 832 long nr_pages; 833 834 /* 835 * When set to zero, disable periodic writeback 836 */ 837 if (!dirty_writeback_interval) 838 return 0; 839 840 expired = wb->last_old_flush + 841 msecs_to_jiffies(dirty_writeback_interval * 10); 842 if (time_before(jiffies, expired)) 843 return 0; 844 845 wb->last_old_flush = jiffies; 846 nr_pages = get_nr_dirty_pages(); 847 848 if (nr_pages) { 849 struct wb_writeback_work work = { 850 .nr_pages = nr_pages, 851 .sync_mode = WB_SYNC_NONE, 852 .for_kupdate = 1, 853 .range_cyclic = 1, 854 }; 855 856 return wb_writeback(wb, &work); 857 } 858 859 return 0; 860 } 861 862 /* 863 * Retrieve work items and do the writeback they describe 864 */ 865 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 866 { 867 struct backing_dev_info *bdi = wb->bdi; 868 struct wb_writeback_work *work; 869 long wrote = 0; 870 871 set_bit(BDI_writeback_running, &wb->bdi->state); 872 while ((work = get_next_work_item(bdi)) != NULL) { 873 /* 874 * Override sync mode, in case we must wait for completion 875 * because this thread is exiting now. 876 */ 877 if (force_wait) 878 work->sync_mode = WB_SYNC_ALL; 879 880 trace_writeback_exec(bdi, work); 881 882 wrote += wb_writeback(wb, work); 883 884 /* 885 * Notify the caller of completion if this is a synchronous 886 * work item, otherwise just free it. 887 */ 888 if (work->done) 889 complete(work->done); 890 else 891 kfree(work); 892 } 893 894 /* 895 * Check for periodic writeback, kupdated() style 896 */ 897 wrote += wb_check_old_data_flush(wb); 898 wrote += wb_check_background_flush(wb); 899 clear_bit(BDI_writeback_running, &wb->bdi->state); 900 901 return wrote; 902 } 903 904 /* 905 * Handle writeback of dirty data for the device backed by this bdi. Also 906 * wakes up periodically and does kupdated style flushing. 907 */ 908 int bdi_writeback_thread(void *data) 909 { 910 struct bdi_writeback *wb = data; 911 struct backing_dev_info *bdi = wb->bdi; 912 long pages_written; 913 914 current->flags |= PF_SWAPWRITE; 915 set_freezable(); 916 wb->last_active = jiffies; 917 918 /* 919 * Our parent may run at a different priority, just set us to normal 920 */ 921 set_user_nice(current, 0); 922 923 trace_writeback_thread_start(bdi); 924 925 while (!kthread_should_stop()) { 926 /* 927 * Remove own delayed wake-up timer, since we are already awake 928 * and we'll take care of the preriodic write-back. 929 */ 930 del_timer(&wb->wakeup_timer); 931 932 pages_written = wb_do_writeback(wb, 0); 933 934 trace_writeback_pages_written(pages_written); 935 936 if (pages_written) 937 wb->last_active = jiffies; 938 939 set_current_state(TASK_INTERRUPTIBLE); 940 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 941 __set_current_state(TASK_RUNNING); 942 continue; 943 } 944 945 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 946 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 947 else { 948 /* 949 * We have nothing to do, so can go sleep without any 950 * timeout and save power. When a work is queued or 951 * something is made dirty - we will be woken up. 952 */ 953 schedule(); 954 } 955 956 try_to_freeze(); 957 } 958 959 /* Flush any work that raced with us exiting */ 960 if (!list_empty(&bdi->work_list)) 961 wb_do_writeback(wb, 1); 962 963 trace_writeback_thread_stop(bdi); 964 return 0; 965 } 966 967 968 /* 969 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 970 * the whole world. 971 */ 972 void wakeup_flusher_threads(long nr_pages) 973 { 974 struct backing_dev_info *bdi; 975 976 if (!nr_pages) { 977 nr_pages = global_page_state(NR_FILE_DIRTY) + 978 global_page_state(NR_UNSTABLE_NFS); 979 } 980 981 rcu_read_lock(); 982 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 983 if (!bdi_has_dirty_io(bdi)) 984 continue; 985 __bdi_start_writeback(bdi, nr_pages, false); 986 } 987 rcu_read_unlock(); 988 } 989 990 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 991 { 992 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 993 struct dentry *dentry; 994 const char *name = "?"; 995 996 dentry = d_find_alias(inode); 997 if (dentry) { 998 spin_lock(&dentry->d_lock); 999 name = (const char *) dentry->d_name.name; 1000 } 1001 printk(KERN_DEBUG 1002 "%s(%d): dirtied inode %lu (%s) on %s\n", 1003 current->comm, task_pid_nr(current), inode->i_ino, 1004 name, inode->i_sb->s_id); 1005 if (dentry) { 1006 spin_unlock(&dentry->d_lock); 1007 dput(dentry); 1008 } 1009 } 1010 } 1011 1012 /** 1013 * __mark_inode_dirty - internal function 1014 * @inode: inode to mark 1015 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1016 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1017 * mark_inode_dirty_sync. 1018 * 1019 * Put the inode on the super block's dirty list. 1020 * 1021 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1022 * dirty list only if it is hashed or if it refers to a blockdev. 1023 * If it was not hashed, it will never be added to the dirty list 1024 * even if it is later hashed, as it will have been marked dirty already. 1025 * 1026 * In short, make sure you hash any inodes _before_ you start marking 1027 * them dirty. 1028 * 1029 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1030 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1031 * the kernel-internal blockdev inode represents the dirtying time of the 1032 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1033 * page->mapping->host, so the page-dirtying time is recorded in the internal 1034 * blockdev inode. 1035 */ 1036 void __mark_inode_dirty(struct inode *inode, int flags) 1037 { 1038 struct super_block *sb = inode->i_sb; 1039 struct backing_dev_info *bdi = NULL; 1040 1041 /* 1042 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1043 * dirty the inode itself 1044 */ 1045 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1046 if (sb->s_op->dirty_inode) 1047 sb->s_op->dirty_inode(inode, flags); 1048 } 1049 1050 /* 1051 * make sure that changes are seen by all cpus before we test i_state 1052 * -- mikulas 1053 */ 1054 smp_mb(); 1055 1056 /* avoid the locking if we can */ 1057 if ((inode->i_state & flags) == flags) 1058 return; 1059 1060 if (unlikely(block_dump)) 1061 block_dump___mark_inode_dirty(inode); 1062 1063 spin_lock(&inode->i_lock); 1064 if ((inode->i_state & flags) != flags) { 1065 const int was_dirty = inode->i_state & I_DIRTY; 1066 1067 inode->i_state |= flags; 1068 1069 /* 1070 * If the inode is being synced, just update its dirty state. 1071 * The unlocker will place the inode on the appropriate 1072 * superblock list, based upon its state. 1073 */ 1074 if (inode->i_state & I_SYNC) 1075 goto out_unlock_inode; 1076 1077 /* 1078 * Only add valid (hashed) inodes to the superblock's 1079 * dirty list. Add blockdev inodes as well. 1080 */ 1081 if (!S_ISBLK(inode->i_mode)) { 1082 if (inode_unhashed(inode)) 1083 goto out_unlock_inode; 1084 } 1085 if (inode->i_state & I_FREEING) 1086 goto out_unlock_inode; 1087 1088 /* 1089 * If the inode was already on b_dirty/b_io/b_more_io, don't 1090 * reposition it (that would break b_dirty time-ordering). 1091 */ 1092 if (!was_dirty) { 1093 bool wakeup_bdi = false; 1094 bdi = inode_to_bdi(inode); 1095 1096 if (bdi_cap_writeback_dirty(bdi)) { 1097 WARN(!test_bit(BDI_registered, &bdi->state), 1098 "bdi-%s not registered\n", bdi->name); 1099 1100 /* 1101 * If this is the first dirty inode for this 1102 * bdi, we have to wake-up the corresponding 1103 * bdi thread to make sure background 1104 * write-back happens later. 1105 */ 1106 if (!wb_has_dirty_io(&bdi->wb)) 1107 wakeup_bdi = true; 1108 } 1109 1110 spin_unlock(&inode->i_lock); 1111 spin_lock(&bdi->wb.list_lock); 1112 inode->dirtied_when = jiffies; 1113 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1114 spin_unlock(&bdi->wb.list_lock); 1115 1116 if (wakeup_bdi) 1117 bdi_wakeup_thread_delayed(bdi); 1118 return; 1119 } 1120 } 1121 out_unlock_inode: 1122 spin_unlock(&inode->i_lock); 1123 1124 } 1125 EXPORT_SYMBOL(__mark_inode_dirty); 1126 1127 /* 1128 * Write out a superblock's list of dirty inodes. A wait will be performed 1129 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1130 * 1131 * If older_than_this is non-NULL, then only write out inodes which 1132 * had their first dirtying at a time earlier than *older_than_this. 1133 * 1134 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1135 * This function assumes that the blockdev superblock's inodes are backed by 1136 * a variety of queues, so all inodes are searched. For other superblocks, 1137 * assume that all inodes are backed by the same queue. 1138 * 1139 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1140 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1141 * on the writer throttling path, and we get decent balancing between many 1142 * throttled threads: we don't want them all piling up on inode_sync_wait. 1143 */ 1144 static void wait_sb_inodes(struct super_block *sb) 1145 { 1146 struct inode *inode, *old_inode = NULL; 1147 1148 /* 1149 * We need to be protected against the filesystem going from 1150 * r/o to r/w or vice versa. 1151 */ 1152 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1153 1154 spin_lock(&inode_sb_list_lock); 1155 1156 /* 1157 * Data integrity sync. Must wait for all pages under writeback, 1158 * because there may have been pages dirtied before our sync 1159 * call, but which had writeout started before we write it out. 1160 * In which case, the inode may not be on the dirty list, but 1161 * we still have to wait for that writeout. 1162 */ 1163 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1164 struct address_space *mapping = inode->i_mapping; 1165 1166 spin_lock(&inode->i_lock); 1167 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1168 (mapping->nrpages == 0)) { 1169 spin_unlock(&inode->i_lock); 1170 continue; 1171 } 1172 __iget(inode); 1173 spin_unlock(&inode->i_lock); 1174 spin_unlock(&inode_sb_list_lock); 1175 1176 /* 1177 * We hold a reference to 'inode' so it couldn't have been 1178 * removed from s_inodes list while we dropped the 1179 * inode_sb_list_lock. We cannot iput the inode now as we can 1180 * be holding the last reference and we cannot iput it under 1181 * inode_sb_list_lock. So we keep the reference and iput it 1182 * later. 1183 */ 1184 iput(old_inode); 1185 old_inode = inode; 1186 1187 filemap_fdatawait(mapping); 1188 1189 cond_resched(); 1190 1191 spin_lock(&inode_sb_list_lock); 1192 } 1193 spin_unlock(&inode_sb_list_lock); 1194 iput(old_inode); 1195 } 1196 1197 /** 1198 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1199 * @sb: the superblock 1200 * @nr: the number of pages to write 1201 * 1202 * Start writeback on some inodes on this super_block. No guarantees are made 1203 * on how many (if any) will be written, and this function does not wait 1204 * for IO completion of submitted IO. 1205 */ 1206 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr) 1207 { 1208 DECLARE_COMPLETION_ONSTACK(done); 1209 struct wb_writeback_work work = { 1210 .sb = sb, 1211 .sync_mode = WB_SYNC_NONE, 1212 .tagged_writepages = 1, 1213 .done = &done, 1214 .nr_pages = nr, 1215 }; 1216 1217 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1218 bdi_queue_work(sb->s_bdi, &work); 1219 wait_for_completion(&done); 1220 } 1221 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1222 1223 /** 1224 * writeback_inodes_sb - writeback dirty inodes from given super_block 1225 * @sb: the superblock 1226 * 1227 * Start writeback on some inodes on this super_block. No guarantees are made 1228 * on how many (if any) will be written, and this function does not wait 1229 * for IO completion of submitted IO. 1230 */ 1231 void writeback_inodes_sb(struct super_block *sb) 1232 { 1233 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages()); 1234 } 1235 EXPORT_SYMBOL(writeback_inodes_sb); 1236 1237 /** 1238 * writeback_inodes_sb_if_idle - start writeback if none underway 1239 * @sb: the superblock 1240 * 1241 * Invoke writeback_inodes_sb if no writeback is currently underway. 1242 * Returns 1 if writeback was started, 0 if not. 1243 */ 1244 int writeback_inodes_sb_if_idle(struct super_block *sb) 1245 { 1246 if (!writeback_in_progress(sb->s_bdi)) { 1247 down_read(&sb->s_umount); 1248 writeback_inodes_sb(sb); 1249 up_read(&sb->s_umount); 1250 return 1; 1251 } else 1252 return 0; 1253 } 1254 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1255 1256 /** 1257 * writeback_inodes_sb_if_idle - start writeback if none underway 1258 * @sb: the superblock 1259 * @nr: the number of pages to write 1260 * 1261 * Invoke writeback_inodes_sb if no writeback is currently underway. 1262 * Returns 1 if writeback was started, 0 if not. 1263 */ 1264 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1265 unsigned long nr) 1266 { 1267 if (!writeback_in_progress(sb->s_bdi)) { 1268 down_read(&sb->s_umount); 1269 writeback_inodes_sb_nr(sb, nr); 1270 up_read(&sb->s_umount); 1271 return 1; 1272 } else 1273 return 0; 1274 } 1275 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1276 1277 /** 1278 * sync_inodes_sb - sync sb inode pages 1279 * @sb: the superblock 1280 * 1281 * This function writes and waits on any dirty inode belonging to this 1282 * super_block. 1283 */ 1284 void sync_inodes_sb(struct super_block *sb) 1285 { 1286 DECLARE_COMPLETION_ONSTACK(done); 1287 struct wb_writeback_work work = { 1288 .sb = sb, 1289 .sync_mode = WB_SYNC_ALL, 1290 .nr_pages = LONG_MAX, 1291 .range_cyclic = 0, 1292 .done = &done, 1293 }; 1294 1295 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1296 1297 bdi_queue_work(sb->s_bdi, &work); 1298 wait_for_completion(&done); 1299 1300 wait_sb_inodes(sb); 1301 } 1302 EXPORT_SYMBOL(sync_inodes_sb); 1303 1304 /** 1305 * write_inode_now - write an inode to disk 1306 * @inode: inode to write to disk 1307 * @sync: whether the write should be synchronous or not 1308 * 1309 * This function commits an inode to disk immediately if it is dirty. This is 1310 * primarily needed by knfsd. 1311 * 1312 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1313 */ 1314 int write_inode_now(struct inode *inode, int sync) 1315 { 1316 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1317 int ret; 1318 struct writeback_control wbc = { 1319 .nr_to_write = LONG_MAX, 1320 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1321 .range_start = 0, 1322 .range_end = LLONG_MAX, 1323 }; 1324 1325 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1326 wbc.nr_to_write = 0; 1327 1328 might_sleep(); 1329 spin_lock(&wb->list_lock); 1330 spin_lock(&inode->i_lock); 1331 ret = writeback_single_inode(inode, wb, &wbc); 1332 spin_unlock(&inode->i_lock); 1333 spin_unlock(&wb->list_lock); 1334 if (sync) 1335 inode_sync_wait(inode); 1336 return ret; 1337 } 1338 EXPORT_SYMBOL(write_inode_now); 1339 1340 /** 1341 * sync_inode - write an inode and its pages to disk. 1342 * @inode: the inode to sync 1343 * @wbc: controls the writeback mode 1344 * 1345 * sync_inode() will write an inode and its pages to disk. It will also 1346 * correctly update the inode on its superblock's dirty inode lists and will 1347 * update inode->i_state. 1348 * 1349 * The caller must have a ref on the inode. 1350 */ 1351 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1352 { 1353 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1354 int ret; 1355 1356 spin_lock(&wb->list_lock); 1357 spin_lock(&inode->i_lock); 1358 ret = writeback_single_inode(inode, wb, wbc); 1359 spin_unlock(&inode->i_lock); 1360 spin_unlock(&wb->list_lock); 1361 return ret; 1362 } 1363 EXPORT_SYMBOL(sync_inode); 1364 1365 /** 1366 * sync_inode_metadata - write an inode to disk 1367 * @inode: the inode to sync 1368 * @wait: wait for I/O to complete. 1369 * 1370 * Write an inode to disk and adjust its dirty state after completion. 1371 * 1372 * Note: only writes the actual inode, no associated data or other metadata. 1373 */ 1374 int sync_inode_metadata(struct inode *inode, int wait) 1375 { 1376 struct writeback_control wbc = { 1377 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1378 .nr_to_write = 0, /* metadata-only */ 1379 }; 1380 1381 return sync_inode(inode, &wbc); 1382 } 1383 EXPORT_SYMBOL(sync_inode_metadata); 1384