1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 /* 44 * Write only inodes dirtied before this time. Don't forget to set 45 * older_than_this_is_set when you set this. 46 */ 47 unsigned long older_than_this; 48 enum writeback_sync_modes sync_mode; 49 unsigned int tagged_writepages:1; 50 unsigned int for_kupdate:1; 51 unsigned int range_cyclic:1; 52 unsigned int for_background:1; 53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 54 unsigned int older_than_this_is_set:1; 55 enum wb_reason reason; /* why was writeback initiated? */ 56 57 struct list_head list; /* pending work list */ 58 struct completion *done; /* set if the caller waits */ 59 }; 60 61 /** 62 * writeback_in_progress - determine whether there is writeback in progress 63 * @bdi: the device's backing_dev_info structure. 64 * 65 * Determine whether there is writeback waiting to be handled against a 66 * backing device. 67 */ 68 int writeback_in_progress(struct backing_dev_info *bdi) 69 { 70 return test_bit(BDI_writeback_running, &bdi->state); 71 } 72 EXPORT_SYMBOL(writeback_in_progress); 73 74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 75 { 76 struct super_block *sb = inode->i_sb; 77 78 if (sb_is_blkdev_sb(sb)) 79 return inode->i_mapping->backing_dev_info; 80 81 return sb->s_bdi; 82 } 83 84 static inline struct inode *wb_inode(struct list_head *head) 85 { 86 return list_entry(head, struct inode, i_wb_list); 87 } 88 89 /* 90 * Include the creation of the trace points after defining the 91 * wb_writeback_work structure and inline functions so that the definition 92 * remains local to this file. 93 */ 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/writeback.h> 96 97 static void bdi_queue_work(struct backing_dev_info *bdi, 98 struct wb_writeback_work *work) 99 { 100 trace_writeback_queue(bdi, work); 101 102 spin_lock_bh(&bdi->wb_lock); 103 list_add_tail(&work->list, &bdi->work_list); 104 spin_unlock_bh(&bdi->wb_lock); 105 106 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 107 } 108 109 static void 110 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 111 bool range_cyclic, enum wb_reason reason) 112 { 113 struct wb_writeback_work *work; 114 115 /* 116 * This is WB_SYNC_NONE writeback, so if allocation fails just 117 * wakeup the thread for old dirty data writeback 118 */ 119 work = kzalloc(sizeof(*work), GFP_ATOMIC); 120 if (!work) { 121 trace_writeback_nowork(bdi); 122 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 123 return; 124 } 125 126 work->sync_mode = WB_SYNC_NONE; 127 work->nr_pages = nr_pages; 128 work->range_cyclic = range_cyclic; 129 work->reason = reason; 130 131 bdi_queue_work(bdi, work); 132 } 133 134 /** 135 * bdi_start_writeback - start writeback 136 * @bdi: the backing device to write from 137 * @nr_pages: the number of pages to write 138 * @reason: reason why some writeback work was initiated 139 * 140 * Description: 141 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 142 * started when this function returns, we make no guarantees on 143 * completion. Caller need not hold sb s_umount semaphore. 144 * 145 */ 146 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 147 enum wb_reason reason) 148 { 149 __bdi_start_writeback(bdi, nr_pages, true, reason); 150 } 151 152 /** 153 * bdi_start_background_writeback - start background writeback 154 * @bdi: the backing device to write from 155 * 156 * Description: 157 * This makes sure WB_SYNC_NONE background writeback happens. When 158 * this function returns, it is only guaranteed that for given BDI 159 * some IO is happening if we are over background dirty threshold. 160 * Caller need not hold sb s_umount semaphore. 161 */ 162 void bdi_start_background_writeback(struct backing_dev_info *bdi) 163 { 164 /* 165 * We just wake up the flusher thread. It will perform background 166 * writeback as soon as there is no other work to do. 167 */ 168 trace_writeback_wake_background(bdi); 169 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 170 } 171 172 /* 173 * Remove the inode from the writeback list it is on. 174 */ 175 void inode_wb_list_del(struct inode *inode) 176 { 177 struct backing_dev_info *bdi = inode_to_bdi(inode); 178 179 spin_lock(&bdi->wb.list_lock); 180 list_del_init(&inode->i_wb_list); 181 spin_unlock(&bdi->wb.list_lock); 182 } 183 184 /* 185 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 186 * furthest end of its superblock's dirty-inode list. 187 * 188 * Before stamping the inode's ->dirtied_when, we check to see whether it is 189 * already the most-recently-dirtied inode on the b_dirty list. If that is 190 * the case then the inode must have been redirtied while it was being written 191 * out and we don't reset its dirtied_when. 192 */ 193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 194 { 195 assert_spin_locked(&wb->list_lock); 196 if (!list_empty(&wb->b_dirty)) { 197 struct inode *tail; 198 199 tail = wb_inode(wb->b_dirty.next); 200 if (time_before(inode->dirtied_when, tail->dirtied_when)) 201 inode->dirtied_when = jiffies; 202 } 203 list_move(&inode->i_wb_list, &wb->b_dirty); 204 } 205 206 /* 207 * requeue inode for re-scanning after bdi->b_io list is exhausted. 208 */ 209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 210 { 211 assert_spin_locked(&wb->list_lock); 212 list_move(&inode->i_wb_list, &wb->b_more_io); 213 } 214 215 static void inode_sync_complete(struct inode *inode) 216 { 217 inode->i_state &= ~I_SYNC; 218 /* If inode is clean an unused, put it into LRU now... */ 219 inode_add_lru(inode); 220 /* Waiters must see I_SYNC cleared before being woken up */ 221 smp_mb(); 222 wake_up_bit(&inode->i_state, __I_SYNC); 223 } 224 225 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 226 { 227 bool ret = time_after(inode->dirtied_when, t); 228 #ifndef CONFIG_64BIT 229 /* 230 * For inodes being constantly redirtied, dirtied_when can get stuck. 231 * It _appears_ to be in the future, but is actually in distant past. 232 * This test is necessary to prevent such wrapped-around relative times 233 * from permanently stopping the whole bdi writeback. 234 */ 235 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 236 #endif 237 return ret; 238 } 239 240 /* 241 * Move expired (dirtied before work->older_than_this) dirty inodes from 242 * @delaying_queue to @dispatch_queue. 243 */ 244 static int move_expired_inodes(struct list_head *delaying_queue, 245 struct list_head *dispatch_queue, 246 struct wb_writeback_work *work) 247 { 248 LIST_HEAD(tmp); 249 struct list_head *pos, *node; 250 struct super_block *sb = NULL; 251 struct inode *inode; 252 int do_sb_sort = 0; 253 int moved = 0; 254 255 WARN_ON_ONCE(!work->older_than_this_is_set); 256 while (!list_empty(delaying_queue)) { 257 inode = wb_inode(delaying_queue->prev); 258 if (inode_dirtied_after(inode, work->older_than_this)) 259 break; 260 list_move(&inode->i_wb_list, &tmp); 261 moved++; 262 if (sb_is_blkdev_sb(inode->i_sb)) 263 continue; 264 if (sb && sb != inode->i_sb) 265 do_sb_sort = 1; 266 sb = inode->i_sb; 267 } 268 269 /* just one sb in list, splice to dispatch_queue and we're done */ 270 if (!do_sb_sort) { 271 list_splice(&tmp, dispatch_queue); 272 goto out; 273 } 274 275 /* Move inodes from one superblock together */ 276 while (!list_empty(&tmp)) { 277 sb = wb_inode(tmp.prev)->i_sb; 278 list_for_each_prev_safe(pos, node, &tmp) { 279 inode = wb_inode(pos); 280 if (inode->i_sb == sb) 281 list_move(&inode->i_wb_list, dispatch_queue); 282 } 283 } 284 out: 285 return moved; 286 } 287 288 /* 289 * Queue all expired dirty inodes for io, eldest first. 290 * Before 291 * newly dirtied b_dirty b_io b_more_io 292 * =============> gf edc BA 293 * After 294 * newly dirtied b_dirty b_io b_more_io 295 * =============> g fBAedc 296 * | 297 * +--> dequeue for IO 298 */ 299 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 300 { 301 int moved; 302 assert_spin_locked(&wb->list_lock); 303 list_splice_init(&wb->b_more_io, &wb->b_io); 304 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 305 trace_writeback_queue_io(wb, work, moved); 306 } 307 308 static int write_inode(struct inode *inode, struct writeback_control *wbc) 309 { 310 int ret; 311 312 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 313 trace_writeback_write_inode_start(inode, wbc); 314 ret = inode->i_sb->s_op->write_inode(inode, wbc); 315 trace_writeback_write_inode(inode, wbc); 316 return ret; 317 } 318 return 0; 319 } 320 321 /* 322 * Wait for writeback on an inode to complete. Called with i_lock held. 323 * Caller must make sure inode cannot go away when we drop i_lock. 324 */ 325 static void __inode_wait_for_writeback(struct inode *inode) 326 __releases(inode->i_lock) 327 __acquires(inode->i_lock) 328 { 329 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 330 wait_queue_head_t *wqh; 331 332 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 333 while (inode->i_state & I_SYNC) { 334 spin_unlock(&inode->i_lock); 335 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 336 spin_lock(&inode->i_lock); 337 } 338 } 339 340 /* 341 * Wait for writeback on an inode to complete. Caller must have inode pinned. 342 */ 343 void inode_wait_for_writeback(struct inode *inode) 344 { 345 spin_lock(&inode->i_lock); 346 __inode_wait_for_writeback(inode); 347 spin_unlock(&inode->i_lock); 348 } 349 350 /* 351 * Sleep until I_SYNC is cleared. This function must be called with i_lock 352 * held and drops it. It is aimed for callers not holding any inode reference 353 * so once i_lock is dropped, inode can go away. 354 */ 355 static void inode_sleep_on_writeback(struct inode *inode) 356 __releases(inode->i_lock) 357 { 358 DEFINE_WAIT(wait); 359 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 360 int sleep; 361 362 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 363 sleep = inode->i_state & I_SYNC; 364 spin_unlock(&inode->i_lock); 365 if (sleep) 366 schedule(); 367 finish_wait(wqh, &wait); 368 } 369 370 /* 371 * Find proper writeback list for the inode depending on its current state and 372 * possibly also change of its state while we were doing writeback. Here we 373 * handle things such as livelock prevention or fairness of writeback among 374 * inodes. This function can be called only by flusher thread - noone else 375 * processes all inodes in writeback lists and requeueing inodes behind flusher 376 * thread's back can have unexpected consequences. 377 */ 378 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 379 struct writeback_control *wbc) 380 { 381 if (inode->i_state & I_FREEING) 382 return; 383 384 /* 385 * Sync livelock prevention. Each inode is tagged and synced in one 386 * shot. If still dirty, it will be redirty_tail()'ed below. Update 387 * the dirty time to prevent enqueue and sync it again. 388 */ 389 if ((inode->i_state & I_DIRTY) && 390 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 391 inode->dirtied_when = jiffies; 392 393 if (wbc->pages_skipped) { 394 /* 395 * writeback is not making progress due to locked 396 * buffers. Skip this inode for now. 397 */ 398 redirty_tail(inode, wb); 399 return; 400 } 401 402 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 403 /* 404 * We didn't write back all the pages. nfs_writepages() 405 * sometimes bales out without doing anything. 406 */ 407 if (wbc->nr_to_write <= 0) { 408 /* Slice used up. Queue for next turn. */ 409 requeue_io(inode, wb); 410 } else { 411 /* 412 * Writeback blocked by something other than 413 * congestion. Delay the inode for some time to 414 * avoid spinning on the CPU (100% iowait) 415 * retrying writeback of the dirty page/inode 416 * that cannot be performed immediately. 417 */ 418 redirty_tail(inode, wb); 419 } 420 } else if (inode->i_state & I_DIRTY) { 421 /* 422 * Filesystems can dirty the inode during writeback operations, 423 * such as delayed allocation during submission or metadata 424 * updates after data IO completion. 425 */ 426 redirty_tail(inode, wb); 427 } else { 428 /* The inode is clean. Remove from writeback lists. */ 429 list_del_init(&inode->i_wb_list); 430 } 431 } 432 433 /* 434 * Write out an inode and its dirty pages. Do not update the writeback list 435 * linkage. That is left to the caller. The caller is also responsible for 436 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 437 */ 438 static int 439 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 440 { 441 struct address_space *mapping = inode->i_mapping; 442 long nr_to_write = wbc->nr_to_write; 443 unsigned dirty; 444 int ret; 445 446 WARN_ON(!(inode->i_state & I_SYNC)); 447 448 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 449 450 ret = do_writepages(mapping, wbc); 451 452 /* 453 * Make sure to wait on the data before writing out the metadata. 454 * This is important for filesystems that modify metadata on data 455 * I/O completion. We don't do it for sync(2) writeback because it has a 456 * separate, external IO completion path and ->sync_fs for guaranteeing 457 * inode metadata is written back correctly. 458 */ 459 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 460 int err = filemap_fdatawait(mapping); 461 if (ret == 0) 462 ret = err; 463 } 464 465 /* 466 * Some filesystems may redirty the inode during the writeback 467 * due to delalloc, clear dirty metadata flags right before 468 * write_inode() 469 */ 470 spin_lock(&inode->i_lock); 471 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 472 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 473 inode->i_state &= ~I_DIRTY_PAGES; 474 dirty = inode->i_state & I_DIRTY; 475 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 476 spin_unlock(&inode->i_lock); 477 /* Don't write the inode if only I_DIRTY_PAGES was set */ 478 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 479 int err = write_inode(inode, wbc); 480 if (ret == 0) 481 ret = err; 482 } 483 trace_writeback_single_inode(inode, wbc, nr_to_write); 484 return ret; 485 } 486 487 /* 488 * Write out an inode's dirty pages. Either the caller has an active reference 489 * on the inode or the inode has I_WILL_FREE set. 490 * 491 * This function is designed to be called for writing back one inode which 492 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 493 * and does more profound writeback list handling in writeback_sb_inodes(). 494 */ 495 static int 496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 497 struct writeback_control *wbc) 498 { 499 int ret = 0; 500 501 spin_lock(&inode->i_lock); 502 if (!atomic_read(&inode->i_count)) 503 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 504 else 505 WARN_ON(inode->i_state & I_WILL_FREE); 506 507 if (inode->i_state & I_SYNC) { 508 if (wbc->sync_mode != WB_SYNC_ALL) 509 goto out; 510 /* 511 * It's a data-integrity sync. We must wait. Since callers hold 512 * inode reference or inode has I_WILL_FREE set, it cannot go 513 * away under us. 514 */ 515 __inode_wait_for_writeback(inode); 516 } 517 WARN_ON(inode->i_state & I_SYNC); 518 /* 519 * Skip inode if it is clean and we have no outstanding writeback in 520 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 521 * function since flusher thread may be doing for example sync in 522 * parallel and if we move the inode, it could get skipped. So here we 523 * make sure inode is on some writeback list and leave it there unless 524 * we have completely cleaned the inode. 525 */ 526 if (!(inode->i_state & I_DIRTY) && 527 (wbc->sync_mode != WB_SYNC_ALL || 528 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 529 goto out; 530 inode->i_state |= I_SYNC; 531 spin_unlock(&inode->i_lock); 532 533 ret = __writeback_single_inode(inode, wbc); 534 535 spin_lock(&wb->list_lock); 536 spin_lock(&inode->i_lock); 537 /* 538 * If inode is clean, remove it from writeback lists. Otherwise don't 539 * touch it. See comment above for explanation. 540 */ 541 if (!(inode->i_state & I_DIRTY)) 542 list_del_init(&inode->i_wb_list); 543 spin_unlock(&wb->list_lock); 544 inode_sync_complete(inode); 545 out: 546 spin_unlock(&inode->i_lock); 547 return ret; 548 } 549 550 static long writeback_chunk_size(struct backing_dev_info *bdi, 551 struct wb_writeback_work *work) 552 { 553 long pages; 554 555 /* 556 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 557 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 558 * here avoids calling into writeback_inodes_wb() more than once. 559 * 560 * The intended call sequence for WB_SYNC_ALL writeback is: 561 * 562 * wb_writeback() 563 * writeback_sb_inodes() <== called only once 564 * write_cache_pages() <== called once for each inode 565 * (quickly) tag currently dirty pages 566 * (maybe slowly) sync all tagged pages 567 */ 568 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 569 pages = LONG_MAX; 570 else { 571 pages = min(bdi->avg_write_bandwidth / 2, 572 global_dirty_limit / DIRTY_SCOPE); 573 pages = min(pages, work->nr_pages); 574 pages = round_down(pages + MIN_WRITEBACK_PAGES, 575 MIN_WRITEBACK_PAGES); 576 } 577 578 return pages; 579 } 580 581 /* 582 * Write a portion of b_io inodes which belong to @sb. 583 * 584 * Return the number of pages and/or inodes written. 585 */ 586 static long writeback_sb_inodes(struct super_block *sb, 587 struct bdi_writeback *wb, 588 struct wb_writeback_work *work) 589 { 590 struct writeback_control wbc = { 591 .sync_mode = work->sync_mode, 592 .tagged_writepages = work->tagged_writepages, 593 .for_kupdate = work->for_kupdate, 594 .for_background = work->for_background, 595 .for_sync = work->for_sync, 596 .range_cyclic = work->range_cyclic, 597 .range_start = 0, 598 .range_end = LLONG_MAX, 599 }; 600 unsigned long start_time = jiffies; 601 long write_chunk; 602 long wrote = 0; /* count both pages and inodes */ 603 604 while (!list_empty(&wb->b_io)) { 605 struct inode *inode = wb_inode(wb->b_io.prev); 606 607 if (inode->i_sb != sb) { 608 if (work->sb) { 609 /* 610 * We only want to write back data for this 611 * superblock, move all inodes not belonging 612 * to it back onto the dirty list. 613 */ 614 redirty_tail(inode, wb); 615 continue; 616 } 617 618 /* 619 * The inode belongs to a different superblock. 620 * Bounce back to the caller to unpin this and 621 * pin the next superblock. 622 */ 623 break; 624 } 625 626 /* 627 * Don't bother with new inodes or inodes being freed, first 628 * kind does not need periodic writeout yet, and for the latter 629 * kind writeout is handled by the freer. 630 */ 631 spin_lock(&inode->i_lock); 632 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 633 spin_unlock(&inode->i_lock); 634 redirty_tail(inode, wb); 635 continue; 636 } 637 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 638 /* 639 * If this inode is locked for writeback and we are not 640 * doing writeback-for-data-integrity, move it to 641 * b_more_io so that writeback can proceed with the 642 * other inodes on s_io. 643 * 644 * We'll have another go at writing back this inode 645 * when we completed a full scan of b_io. 646 */ 647 spin_unlock(&inode->i_lock); 648 requeue_io(inode, wb); 649 trace_writeback_sb_inodes_requeue(inode); 650 continue; 651 } 652 spin_unlock(&wb->list_lock); 653 654 /* 655 * We already requeued the inode if it had I_SYNC set and we 656 * are doing WB_SYNC_NONE writeback. So this catches only the 657 * WB_SYNC_ALL case. 658 */ 659 if (inode->i_state & I_SYNC) { 660 /* Wait for I_SYNC. This function drops i_lock... */ 661 inode_sleep_on_writeback(inode); 662 /* Inode may be gone, start again */ 663 spin_lock(&wb->list_lock); 664 continue; 665 } 666 inode->i_state |= I_SYNC; 667 spin_unlock(&inode->i_lock); 668 669 write_chunk = writeback_chunk_size(wb->bdi, work); 670 wbc.nr_to_write = write_chunk; 671 wbc.pages_skipped = 0; 672 673 /* 674 * We use I_SYNC to pin the inode in memory. While it is set 675 * evict_inode() will wait so the inode cannot be freed. 676 */ 677 __writeback_single_inode(inode, &wbc); 678 679 work->nr_pages -= write_chunk - wbc.nr_to_write; 680 wrote += write_chunk - wbc.nr_to_write; 681 spin_lock(&wb->list_lock); 682 spin_lock(&inode->i_lock); 683 if (!(inode->i_state & I_DIRTY)) 684 wrote++; 685 requeue_inode(inode, wb, &wbc); 686 inode_sync_complete(inode); 687 spin_unlock(&inode->i_lock); 688 cond_resched_lock(&wb->list_lock); 689 /* 690 * bail out to wb_writeback() often enough to check 691 * background threshold and other termination conditions. 692 */ 693 if (wrote) { 694 if (time_is_before_jiffies(start_time + HZ / 10UL)) 695 break; 696 if (work->nr_pages <= 0) 697 break; 698 } 699 } 700 return wrote; 701 } 702 703 static long __writeback_inodes_wb(struct bdi_writeback *wb, 704 struct wb_writeback_work *work) 705 { 706 unsigned long start_time = jiffies; 707 long wrote = 0; 708 709 while (!list_empty(&wb->b_io)) { 710 struct inode *inode = wb_inode(wb->b_io.prev); 711 struct super_block *sb = inode->i_sb; 712 713 if (!grab_super_passive(sb)) { 714 /* 715 * grab_super_passive() may fail consistently due to 716 * s_umount being grabbed by someone else. Don't use 717 * requeue_io() to avoid busy retrying the inode/sb. 718 */ 719 redirty_tail(inode, wb); 720 continue; 721 } 722 wrote += writeback_sb_inodes(sb, wb, work); 723 drop_super(sb); 724 725 /* refer to the same tests at the end of writeback_sb_inodes */ 726 if (wrote) { 727 if (time_is_before_jiffies(start_time + HZ / 10UL)) 728 break; 729 if (work->nr_pages <= 0) 730 break; 731 } 732 } 733 /* Leave any unwritten inodes on b_io */ 734 return wrote; 735 } 736 737 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 738 enum wb_reason reason) 739 { 740 struct wb_writeback_work work = { 741 .nr_pages = nr_pages, 742 .sync_mode = WB_SYNC_NONE, 743 .range_cyclic = 1, 744 .reason = reason, 745 .older_than_this = jiffies, 746 .older_than_this_is_set = 1, 747 }; 748 749 spin_lock(&wb->list_lock); 750 if (list_empty(&wb->b_io)) 751 queue_io(wb, &work); 752 __writeback_inodes_wb(wb, &work); 753 spin_unlock(&wb->list_lock); 754 755 return nr_pages - work.nr_pages; 756 } 757 758 static bool over_bground_thresh(struct backing_dev_info *bdi) 759 { 760 unsigned long background_thresh, dirty_thresh; 761 762 global_dirty_limits(&background_thresh, &dirty_thresh); 763 764 if (global_page_state(NR_FILE_DIRTY) + 765 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 766 return true; 767 768 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 769 bdi_dirty_limit(bdi, background_thresh)) 770 return true; 771 772 return false; 773 } 774 775 /* 776 * Called under wb->list_lock. If there are multiple wb per bdi, 777 * only the flusher working on the first wb should do it. 778 */ 779 static void wb_update_bandwidth(struct bdi_writeback *wb, 780 unsigned long start_time) 781 { 782 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 783 } 784 785 /* 786 * Explicit flushing or periodic writeback of "old" data. 787 * 788 * Define "old": the first time one of an inode's pages is dirtied, we mark the 789 * dirtying-time in the inode's address_space. So this periodic writeback code 790 * just walks the superblock inode list, writing back any inodes which are 791 * older than a specific point in time. 792 * 793 * Try to run once per dirty_writeback_interval. But if a writeback event 794 * takes longer than a dirty_writeback_interval interval, then leave a 795 * one-second gap. 796 * 797 * older_than_this takes precedence over nr_to_write. So we'll only write back 798 * all dirty pages if they are all attached to "old" mappings. 799 */ 800 static long wb_writeback(struct bdi_writeback *wb, 801 struct wb_writeback_work *work) 802 { 803 unsigned long wb_start = jiffies; 804 long nr_pages = work->nr_pages; 805 struct inode *inode; 806 long progress; 807 808 if (!work->older_than_this_is_set) { 809 work->older_than_this = jiffies; 810 work->older_than_this_is_set = 1; 811 } 812 813 spin_lock(&wb->list_lock); 814 for (;;) { 815 /* 816 * Stop writeback when nr_pages has been consumed 817 */ 818 if (work->nr_pages <= 0) 819 break; 820 821 /* 822 * Background writeout and kupdate-style writeback may 823 * run forever. Stop them if there is other work to do 824 * so that e.g. sync can proceed. They'll be restarted 825 * after the other works are all done. 826 */ 827 if ((work->for_background || work->for_kupdate) && 828 !list_empty(&wb->bdi->work_list)) 829 break; 830 831 /* 832 * For background writeout, stop when we are below the 833 * background dirty threshold 834 */ 835 if (work->for_background && !over_bground_thresh(wb->bdi)) 836 break; 837 838 /* 839 * Kupdate and background works are special and we want to 840 * include all inodes that need writing. Livelock avoidance is 841 * handled by these works yielding to any other work so we are 842 * safe. 843 */ 844 if (work->for_kupdate) { 845 work->older_than_this = jiffies - 846 msecs_to_jiffies(dirty_expire_interval * 10); 847 } else if (work->for_background) 848 work->older_than_this = jiffies; 849 850 trace_writeback_start(wb->bdi, work); 851 if (list_empty(&wb->b_io)) 852 queue_io(wb, work); 853 if (work->sb) 854 progress = writeback_sb_inodes(work->sb, wb, work); 855 else 856 progress = __writeback_inodes_wb(wb, work); 857 trace_writeback_written(wb->bdi, work); 858 859 wb_update_bandwidth(wb, wb_start); 860 861 /* 862 * Did we write something? Try for more 863 * 864 * Dirty inodes are moved to b_io for writeback in batches. 865 * The completion of the current batch does not necessarily 866 * mean the overall work is done. So we keep looping as long 867 * as made some progress on cleaning pages or inodes. 868 */ 869 if (progress) 870 continue; 871 /* 872 * No more inodes for IO, bail 873 */ 874 if (list_empty(&wb->b_more_io)) 875 break; 876 /* 877 * Nothing written. Wait for some inode to 878 * become available for writeback. Otherwise 879 * we'll just busyloop. 880 */ 881 if (!list_empty(&wb->b_more_io)) { 882 trace_writeback_wait(wb->bdi, work); 883 inode = wb_inode(wb->b_more_io.prev); 884 spin_lock(&inode->i_lock); 885 spin_unlock(&wb->list_lock); 886 /* This function drops i_lock... */ 887 inode_sleep_on_writeback(inode); 888 spin_lock(&wb->list_lock); 889 } 890 } 891 spin_unlock(&wb->list_lock); 892 893 return nr_pages - work->nr_pages; 894 } 895 896 /* 897 * Return the next wb_writeback_work struct that hasn't been processed yet. 898 */ 899 static struct wb_writeback_work * 900 get_next_work_item(struct backing_dev_info *bdi) 901 { 902 struct wb_writeback_work *work = NULL; 903 904 spin_lock_bh(&bdi->wb_lock); 905 if (!list_empty(&bdi->work_list)) { 906 work = list_entry(bdi->work_list.next, 907 struct wb_writeback_work, list); 908 list_del_init(&work->list); 909 } 910 spin_unlock_bh(&bdi->wb_lock); 911 return work; 912 } 913 914 /* 915 * Add in the number of potentially dirty inodes, because each inode 916 * write can dirty pagecache in the underlying blockdev. 917 */ 918 static unsigned long get_nr_dirty_pages(void) 919 { 920 return global_page_state(NR_FILE_DIRTY) + 921 global_page_state(NR_UNSTABLE_NFS) + 922 get_nr_dirty_inodes(); 923 } 924 925 static long wb_check_background_flush(struct bdi_writeback *wb) 926 { 927 if (over_bground_thresh(wb->bdi)) { 928 929 struct wb_writeback_work work = { 930 .nr_pages = LONG_MAX, 931 .sync_mode = WB_SYNC_NONE, 932 .for_background = 1, 933 .range_cyclic = 1, 934 .reason = WB_REASON_BACKGROUND, 935 }; 936 937 return wb_writeback(wb, &work); 938 } 939 940 return 0; 941 } 942 943 static long wb_check_old_data_flush(struct bdi_writeback *wb) 944 { 945 unsigned long expired; 946 long nr_pages; 947 948 /* 949 * When set to zero, disable periodic writeback 950 */ 951 if (!dirty_writeback_interval) 952 return 0; 953 954 expired = wb->last_old_flush + 955 msecs_to_jiffies(dirty_writeback_interval * 10); 956 if (time_before(jiffies, expired)) 957 return 0; 958 959 wb->last_old_flush = jiffies; 960 nr_pages = get_nr_dirty_pages(); 961 962 if (nr_pages) { 963 struct wb_writeback_work work = { 964 .nr_pages = nr_pages, 965 .sync_mode = WB_SYNC_NONE, 966 .for_kupdate = 1, 967 .range_cyclic = 1, 968 .reason = WB_REASON_PERIODIC, 969 }; 970 971 return wb_writeback(wb, &work); 972 } 973 974 return 0; 975 } 976 977 /* 978 * Retrieve work items and do the writeback they describe 979 */ 980 static long wb_do_writeback(struct bdi_writeback *wb) 981 { 982 struct backing_dev_info *bdi = wb->bdi; 983 struct wb_writeback_work *work; 984 long wrote = 0; 985 986 set_bit(BDI_writeback_running, &wb->bdi->state); 987 while ((work = get_next_work_item(bdi)) != NULL) { 988 989 trace_writeback_exec(bdi, work); 990 991 wrote += wb_writeback(wb, work); 992 993 /* 994 * Notify the caller of completion if this is a synchronous 995 * work item, otherwise just free it. 996 */ 997 if (work->done) 998 complete(work->done); 999 else 1000 kfree(work); 1001 } 1002 1003 /* 1004 * Check for periodic writeback, kupdated() style 1005 */ 1006 wrote += wb_check_old_data_flush(wb); 1007 wrote += wb_check_background_flush(wb); 1008 clear_bit(BDI_writeback_running, &wb->bdi->state); 1009 1010 return wrote; 1011 } 1012 1013 /* 1014 * Handle writeback of dirty data for the device backed by this bdi. Also 1015 * reschedules periodically and does kupdated style flushing. 1016 */ 1017 void bdi_writeback_workfn(struct work_struct *work) 1018 { 1019 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1020 struct bdi_writeback, dwork); 1021 struct backing_dev_info *bdi = wb->bdi; 1022 long pages_written; 1023 1024 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1025 current->flags |= PF_SWAPWRITE; 1026 1027 if (likely(!current_is_workqueue_rescuer() || 1028 list_empty(&bdi->bdi_list))) { 1029 /* 1030 * The normal path. Keep writing back @bdi until its 1031 * work_list is empty. Note that this path is also taken 1032 * if @bdi is shutting down even when we're running off the 1033 * rescuer as work_list needs to be drained. 1034 */ 1035 do { 1036 pages_written = wb_do_writeback(wb); 1037 trace_writeback_pages_written(pages_written); 1038 } while (!list_empty(&bdi->work_list)); 1039 } else { 1040 /* 1041 * bdi_wq can't get enough workers and we're running off 1042 * the emergency worker. Don't hog it. Hopefully, 1024 is 1043 * enough for efficient IO. 1044 */ 1045 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1046 WB_REASON_FORKER_THREAD); 1047 trace_writeback_pages_written(pages_written); 1048 } 1049 1050 if (!list_empty(&bdi->work_list) || 1051 (wb_has_dirty_io(wb) && dirty_writeback_interval)) 1052 queue_delayed_work(bdi_wq, &wb->dwork, 1053 msecs_to_jiffies(dirty_writeback_interval * 10)); 1054 1055 current->flags &= ~PF_SWAPWRITE; 1056 } 1057 1058 /* 1059 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1060 * the whole world. 1061 */ 1062 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1063 { 1064 struct backing_dev_info *bdi; 1065 1066 if (!nr_pages) 1067 nr_pages = get_nr_dirty_pages(); 1068 1069 rcu_read_lock(); 1070 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1071 if (!bdi_has_dirty_io(bdi)) 1072 continue; 1073 __bdi_start_writeback(bdi, nr_pages, false, reason); 1074 } 1075 rcu_read_unlock(); 1076 } 1077 1078 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1079 { 1080 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1081 struct dentry *dentry; 1082 const char *name = "?"; 1083 1084 dentry = d_find_alias(inode); 1085 if (dentry) { 1086 spin_lock(&dentry->d_lock); 1087 name = (const char *) dentry->d_name.name; 1088 } 1089 printk(KERN_DEBUG 1090 "%s(%d): dirtied inode %lu (%s) on %s\n", 1091 current->comm, task_pid_nr(current), inode->i_ino, 1092 name, inode->i_sb->s_id); 1093 if (dentry) { 1094 spin_unlock(&dentry->d_lock); 1095 dput(dentry); 1096 } 1097 } 1098 } 1099 1100 /** 1101 * __mark_inode_dirty - internal function 1102 * @inode: inode to mark 1103 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1104 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1105 * mark_inode_dirty_sync. 1106 * 1107 * Put the inode on the super block's dirty list. 1108 * 1109 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1110 * dirty list only if it is hashed or if it refers to a blockdev. 1111 * If it was not hashed, it will never be added to the dirty list 1112 * even if it is later hashed, as it will have been marked dirty already. 1113 * 1114 * In short, make sure you hash any inodes _before_ you start marking 1115 * them dirty. 1116 * 1117 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1118 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1119 * the kernel-internal blockdev inode represents the dirtying time of the 1120 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1121 * page->mapping->host, so the page-dirtying time is recorded in the internal 1122 * blockdev inode. 1123 */ 1124 void __mark_inode_dirty(struct inode *inode, int flags) 1125 { 1126 struct super_block *sb = inode->i_sb; 1127 struct backing_dev_info *bdi = NULL; 1128 1129 /* 1130 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1131 * dirty the inode itself 1132 */ 1133 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1134 trace_writeback_dirty_inode_start(inode, flags); 1135 1136 if (sb->s_op->dirty_inode) 1137 sb->s_op->dirty_inode(inode, flags); 1138 1139 trace_writeback_dirty_inode(inode, flags); 1140 } 1141 1142 /* 1143 * make sure that changes are seen by all cpus before we test i_state 1144 * -- mikulas 1145 */ 1146 smp_mb(); 1147 1148 /* avoid the locking if we can */ 1149 if ((inode->i_state & flags) == flags) 1150 return; 1151 1152 if (unlikely(block_dump)) 1153 block_dump___mark_inode_dirty(inode); 1154 1155 spin_lock(&inode->i_lock); 1156 if ((inode->i_state & flags) != flags) { 1157 const int was_dirty = inode->i_state & I_DIRTY; 1158 1159 inode->i_state |= flags; 1160 1161 /* 1162 * If the inode is being synced, just update its dirty state. 1163 * The unlocker will place the inode on the appropriate 1164 * superblock list, based upon its state. 1165 */ 1166 if (inode->i_state & I_SYNC) 1167 goto out_unlock_inode; 1168 1169 /* 1170 * Only add valid (hashed) inodes to the superblock's 1171 * dirty list. Add blockdev inodes as well. 1172 */ 1173 if (!S_ISBLK(inode->i_mode)) { 1174 if (inode_unhashed(inode)) 1175 goto out_unlock_inode; 1176 } 1177 if (inode->i_state & I_FREEING) 1178 goto out_unlock_inode; 1179 1180 /* 1181 * If the inode was already on b_dirty/b_io/b_more_io, don't 1182 * reposition it (that would break b_dirty time-ordering). 1183 */ 1184 if (!was_dirty) { 1185 bool wakeup_bdi = false; 1186 bdi = inode_to_bdi(inode); 1187 1188 spin_unlock(&inode->i_lock); 1189 spin_lock(&bdi->wb.list_lock); 1190 if (bdi_cap_writeback_dirty(bdi)) { 1191 WARN(!test_bit(BDI_registered, &bdi->state), 1192 "bdi-%s not registered\n", bdi->name); 1193 1194 /* 1195 * If this is the first dirty inode for this 1196 * bdi, we have to wake-up the corresponding 1197 * bdi thread to make sure background 1198 * write-back happens later. 1199 */ 1200 if (!wb_has_dirty_io(&bdi->wb)) 1201 wakeup_bdi = true; 1202 } 1203 1204 inode->dirtied_when = jiffies; 1205 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1206 spin_unlock(&bdi->wb.list_lock); 1207 1208 if (wakeup_bdi) 1209 bdi_wakeup_thread_delayed(bdi); 1210 return; 1211 } 1212 } 1213 out_unlock_inode: 1214 spin_unlock(&inode->i_lock); 1215 1216 } 1217 EXPORT_SYMBOL(__mark_inode_dirty); 1218 1219 static void wait_sb_inodes(struct super_block *sb) 1220 { 1221 struct inode *inode, *old_inode = NULL; 1222 1223 /* 1224 * We need to be protected against the filesystem going from 1225 * r/o to r/w or vice versa. 1226 */ 1227 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1228 1229 spin_lock(&inode_sb_list_lock); 1230 1231 /* 1232 * Data integrity sync. Must wait for all pages under writeback, 1233 * because there may have been pages dirtied before our sync 1234 * call, but which had writeout started before we write it out. 1235 * In which case, the inode may not be on the dirty list, but 1236 * we still have to wait for that writeout. 1237 */ 1238 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1239 struct address_space *mapping = inode->i_mapping; 1240 1241 spin_lock(&inode->i_lock); 1242 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1243 (mapping->nrpages == 0)) { 1244 spin_unlock(&inode->i_lock); 1245 continue; 1246 } 1247 __iget(inode); 1248 spin_unlock(&inode->i_lock); 1249 spin_unlock(&inode_sb_list_lock); 1250 1251 /* 1252 * We hold a reference to 'inode' so it couldn't have been 1253 * removed from s_inodes list while we dropped the 1254 * inode_sb_list_lock. We cannot iput the inode now as we can 1255 * be holding the last reference and we cannot iput it under 1256 * inode_sb_list_lock. So we keep the reference and iput it 1257 * later. 1258 */ 1259 iput(old_inode); 1260 old_inode = inode; 1261 1262 filemap_fdatawait(mapping); 1263 1264 cond_resched(); 1265 1266 spin_lock(&inode_sb_list_lock); 1267 } 1268 spin_unlock(&inode_sb_list_lock); 1269 iput(old_inode); 1270 } 1271 1272 /** 1273 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1274 * @sb: the superblock 1275 * @nr: the number of pages to write 1276 * @reason: reason why some writeback work initiated 1277 * 1278 * Start writeback on some inodes on this super_block. No guarantees are made 1279 * on how many (if any) will be written, and this function does not wait 1280 * for IO completion of submitted IO. 1281 */ 1282 void writeback_inodes_sb_nr(struct super_block *sb, 1283 unsigned long nr, 1284 enum wb_reason reason) 1285 { 1286 DECLARE_COMPLETION_ONSTACK(done); 1287 struct wb_writeback_work work = { 1288 .sb = sb, 1289 .sync_mode = WB_SYNC_NONE, 1290 .tagged_writepages = 1, 1291 .done = &done, 1292 .nr_pages = nr, 1293 .reason = reason, 1294 }; 1295 1296 if (sb->s_bdi == &noop_backing_dev_info) 1297 return; 1298 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1299 bdi_queue_work(sb->s_bdi, &work); 1300 wait_for_completion(&done); 1301 } 1302 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1303 1304 /** 1305 * writeback_inodes_sb - writeback dirty inodes from given super_block 1306 * @sb: the superblock 1307 * @reason: reason why some writeback work was initiated 1308 * 1309 * Start writeback on some inodes on this super_block. No guarantees are made 1310 * on how many (if any) will be written, and this function does not wait 1311 * for IO completion of submitted IO. 1312 */ 1313 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1314 { 1315 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1316 } 1317 EXPORT_SYMBOL(writeback_inodes_sb); 1318 1319 /** 1320 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1321 * @sb: the superblock 1322 * @nr: the number of pages to write 1323 * @reason: the reason of writeback 1324 * 1325 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1326 * Returns 1 if writeback was started, 0 if not. 1327 */ 1328 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1329 unsigned long nr, 1330 enum wb_reason reason) 1331 { 1332 if (writeback_in_progress(sb->s_bdi)) 1333 return 1; 1334 1335 if (!down_read_trylock(&sb->s_umount)) 1336 return 0; 1337 1338 writeback_inodes_sb_nr(sb, nr, reason); 1339 up_read(&sb->s_umount); 1340 return 1; 1341 } 1342 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1343 1344 /** 1345 * try_to_writeback_inodes_sb - try to start writeback if none underway 1346 * @sb: the superblock 1347 * @reason: reason why some writeback work was initiated 1348 * 1349 * Implement by try_to_writeback_inodes_sb_nr() 1350 * Returns 1 if writeback was started, 0 if not. 1351 */ 1352 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1353 { 1354 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1355 } 1356 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1357 1358 /** 1359 * sync_inodes_sb - sync sb inode pages 1360 * @sb: the superblock 1361 * @older_than_this: timestamp 1362 * 1363 * This function writes and waits on any dirty inode belonging to this 1364 * superblock that has been dirtied before given timestamp. 1365 */ 1366 void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this) 1367 { 1368 DECLARE_COMPLETION_ONSTACK(done); 1369 struct wb_writeback_work work = { 1370 .sb = sb, 1371 .sync_mode = WB_SYNC_ALL, 1372 .nr_pages = LONG_MAX, 1373 .older_than_this = older_than_this, 1374 .older_than_this_is_set = 1, 1375 .range_cyclic = 0, 1376 .done = &done, 1377 .reason = WB_REASON_SYNC, 1378 .for_sync = 1, 1379 }; 1380 1381 /* Nothing to do? */ 1382 if (sb->s_bdi == &noop_backing_dev_info) 1383 return; 1384 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1385 1386 bdi_queue_work(sb->s_bdi, &work); 1387 wait_for_completion(&done); 1388 1389 wait_sb_inodes(sb); 1390 } 1391 EXPORT_SYMBOL(sync_inodes_sb); 1392 1393 /** 1394 * write_inode_now - write an inode to disk 1395 * @inode: inode to write to disk 1396 * @sync: whether the write should be synchronous or not 1397 * 1398 * This function commits an inode to disk immediately if it is dirty. This is 1399 * primarily needed by knfsd. 1400 * 1401 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1402 */ 1403 int write_inode_now(struct inode *inode, int sync) 1404 { 1405 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1406 struct writeback_control wbc = { 1407 .nr_to_write = LONG_MAX, 1408 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1409 .range_start = 0, 1410 .range_end = LLONG_MAX, 1411 }; 1412 1413 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1414 wbc.nr_to_write = 0; 1415 1416 might_sleep(); 1417 return writeback_single_inode(inode, wb, &wbc); 1418 } 1419 EXPORT_SYMBOL(write_inode_now); 1420 1421 /** 1422 * sync_inode - write an inode and its pages to disk. 1423 * @inode: the inode to sync 1424 * @wbc: controls the writeback mode 1425 * 1426 * sync_inode() will write an inode and its pages to disk. It will also 1427 * correctly update the inode on its superblock's dirty inode lists and will 1428 * update inode->i_state. 1429 * 1430 * The caller must have a ref on the inode. 1431 */ 1432 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1433 { 1434 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1435 } 1436 EXPORT_SYMBOL(sync_inode); 1437 1438 /** 1439 * sync_inode_metadata - write an inode to disk 1440 * @inode: the inode to sync 1441 * @wait: wait for I/O to complete. 1442 * 1443 * Write an inode to disk and adjust its dirty state after completion. 1444 * 1445 * Note: only writes the actual inode, no associated data or other metadata. 1446 */ 1447 int sync_inode_metadata(struct inode *inode, int wait) 1448 { 1449 struct writeback_control wbc = { 1450 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1451 .nr_to_write = 0, /* metadata-only */ 1452 }; 1453 1454 return sync_inode(inode, &wbc); 1455 } 1456 EXPORT_SYMBOL(sync_inode_metadata); 1457