xref: /linux/fs/fs-writeback.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	/*
44 	 * Write only inodes dirtied before this time. Don't forget to set
45 	 * older_than_this_is_set when you set this.
46 	 */
47 	unsigned long older_than_this;
48 	enum writeback_sync_modes sync_mode;
49 	unsigned int tagged_writepages:1;
50 	unsigned int for_kupdate:1;
51 	unsigned int range_cyclic:1;
52 	unsigned int for_background:1;
53 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
54 	unsigned int older_than_this_is_set:1;
55 	enum wb_reason reason;		/* why was writeback initiated? */
56 
57 	struct list_head list;		/* pending work list */
58 	struct completion *done;	/* set if the caller waits */
59 };
60 
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70 	return test_bit(BDI_writeback_running, &bdi->state);
71 }
72 EXPORT_SYMBOL(writeback_in_progress);
73 
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 	struct super_block *sb = inode->i_sb;
77 
78 	if (sb_is_blkdev_sb(sb))
79 		return inode->i_mapping->backing_dev_info;
80 
81 	return sb->s_bdi;
82 }
83 
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 	return list_entry(head, struct inode, i_wb_list);
87 }
88 
89 /*
90  * Include the creation of the trace points after defining the
91  * wb_writeback_work structure and inline functions so that the definition
92  * remains local to this file.
93  */
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/writeback.h>
96 
97 static void bdi_queue_work(struct backing_dev_info *bdi,
98 			   struct wb_writeback_work *work)
99 {
100 	trace_writeback_queue(bdi, work);
101 
102 	spin_lock_bh(&bdi->wb_lock);
103 	list_add_tail(&work->list, &bdi->work_list);
104 	spin_unlock_bh(&bdi->wb_lock);
105 
106 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
107 }
108 
109 static void
110 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
111 		      bool range_cyclic, enum wb_reason reason)
112 {
113 	struct wb_writeback_work *work;
114 
115 	/*
116 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
117 	 * wakeup the thread for old dirty data writeback
118 	 */
119 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
120 	if (!work) {
121 		trace_writeback_nowork(bdi);
122 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
123 		return;
124 	}
125 
126 	work->sync_mode	= WB_SYNC_NONE;
127 	work->nr_pages	= nr_pages;
128 	work->range_cyclic = range_cyclic;
129 	work->reason	= reason;
130 
131 	bdi_queue_work(bdi, work);
132 }
133 
134 /**
135  * bdi_start_writeback - start writeback
136  * @bdi: the backing device to write from
137  * @nr_pages: the number of pages to write
138  * @reason: reason why some writeback work was initiated
139  *
140  * Description:
141  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
142  *   started when this function returns, we make no guarantees on
143  *   completion. Caller need not hold sb s_umount semaphore.
144  *
145  */
146 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
147 			enum wb_reason reason)
148 {
149 	__bdi_start_writeback(bdi, nr_pages, true, reason);
150 }
151 
152 /**
153  * bdi_start_background_writeback - start background writeback
154  * @bdi: the backing device to write from
155  *
156  * Description:
157  *   This makes sure WB_SYNC_NONE background writeback happens. When
158  *   this function returns, it is only guaranteed that for given BDI
159  *   some IO is happening if we are over background dirty threshold.
160  *   Caller need not hold sb s_umount semaphore.
161  */
162 void bdi_start_background_writeback(struct backing_dev_info *bdi)
163 {
164 	/*
165 	 * We just wake up the flusher thread. It will perform background
166 	 * writeback as soon as there is no other work to do.
167 	 */
168 	trace_writeback_wake_background(bdi);
169 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
170 }
171 
172 /*
173  * Remove the inode from the writeback list it is on.
174  */
175 void inode_wb_list_del(struct inode *inode)
176 {
177 	struct backing_dev_info *bdi = inode_to_bdi(inode);
178 
179 	spin_lock(&bdi->wb.list_lock);
180 	list_del_init(&inode->i_wb_list);
181 	spin_unlock(&bdi->wb.list_lock);
182 }
183 
184 /*
185  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
186  * furthest end of its superblock's dirty-inode list.
187  *
188  * Before stamping the inode's ->dirtied_when, we check to see whether it is
189  * already the most-recently-dirtied inode on the b_dirty list.  If that is
190  * the case then the inode must have been redirtied while it was being written
191  * out and we don't reset its dirtied_when.
192  */
193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
194 {
195 	assert_spin_locked(&wb->list_lock);
196 	if (!list_empty(&wb->b_dirty)) {
197 		struct inode *tail;
198 
199 		tail = wb_inode(wb->b_dirty.next);
200 		if (time_before(inode->dirtied_when, tail->dirtied_when))
201 			inode->dirtied_when = jiffies;
202 	}
203 	list_move(&inode->i_wb_list, &wb->b_dirty);
204 }
205 
206 /*
207  * requeue inode for re-scanning after bdi->b_io list is exhausted.
208  */
209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
210 {
211 	assert_spin_locked(&wb->list_lock);
212 	list_move(&inode->i_wb_list, &wb->b_more_io);
213 }
214 
215 static void inode_sync_complete(struct inode *inode)
216 {
217 	inode->i_state &= ~I_SYNC;
218 	/* If inode is clean an unused, put it into LRU now... */
219 	inode_add_lru(inode);
220 	/* Waiters must see I_SYNC cleared before being woken up */
221 	smp_mb();
222 	wake_up_bit(&inode->i_state, __I_SYNC);
223 }
224 
225 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
226 {
227 	bool ret = time_after(inode->dirtied_when, t);
228 #ifndef CONFIG_64BIT
229 	/*
230 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
231 	 * It _appears_ to be in the future, but is actually in distant past.
232 	 * This test is necessary to prevent such wrapped-around relative times
233 	 * from permanently stopping the whole bdi writeback.
234 	 */
235 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
236 #endif
237 	return ret;
238 }
239 
240 /*
241  * Move expired (dirtied before work->older_than_this) dirty inodes from
242  * @delaying_queue to @dispatch_queue.
243  */
244 static int move_expired_inodes(struct list_head *delaying_queue,
245 			       struct list_head *dispatch_queue,
246 			       struct wb_writeback_work *work)
247 {
248 	LIST_HEAD(tmp);
249 	struct list_head *pos, *node;
250 	struct super_block *sb = NULL;
251 	struct inode *inode;
252 	int do_sb_sort = 0;
253 	int moved = 0;
254 
255 	WARN_ON_ONCE(!work->older_than_this_is_set);
256 	while (!list_empty(delaying_queue)) {
257 		inode = wb_inode(delaying_queue->prev);
258 		if (inode_dirtied_after(inode, work->older_than_this))
259 			break;
260 		list_move(&inode->i_wb_list, &tmp);
261 		moved++;
262 		if (sb_is_blkdev_sb(inode->i_sb))
263 			continue;
264 		if (sb && sb != inode->i_sb)
265 			do_sb_sort = 1;
266 		sb = inode->i_sb;
267 	}
268 
269 	/* just one sb in list, splice to dispatch_queue and we're done */
270 	if (!do_sb_sort) {
271 		list_splice(&tmp, dispatch_queue);
272 		goto out;
273 	}
274 
275 	/* Move inodes from one superblock together */
276 	while (!list_empty(&tmp)) {
277 		sb = wb_inode(tmp.prev)->i_sb;
278 		list_for_each_prev_safe(pos, node, &tmp) {
279 			inode = wb_inode(pos);
280 			if (inode->i_sb == sb)
281 				list_move(&inode->i_wb_list, dispatch_queue);
282 		}
283 	}
284 out:
285 	return moved;
286 }
287 
288 /*
289  * Queue all expired dirty inodes for io, eldest first.
290  * Before
291  *         newly dirtied     b_dirty    b_io    b_more_io
292  *         =============>    gf         edc     BA
293  * After
294  *         newly dirtied     b_dirty    b_io    b_more_io
295  *         =============>    g          fBAedc
296  *                                           |
297  *                                           +--> dequeue for IO
298  */
299 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
300 {
301 	int moved;
302 	assert_spin_locked(&wb->list_lock);
303 	list_splice_init(&wb->b_more_io, &wb->b_io);
304 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
305 	trace_writeback_queue_io(wb, work, moved);
306 }
307 
308 static int write_inode(struct inode *inode, struct writeback_control *wbc)
309 {
310 	int ret;
311 
312 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
313 		trace_writeback_write_inode_start(inode, wbc);
314 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
315 		trace_writeback_write_inode(inode, wbc);
316 		return ret;
317 	}
318 	return 0;
319 }
320 
321 /*
322  * Wait for writeback on an inode to complete. Called with i_lock held.
323  * Caller must make sure inode cannot go away when we drop i_lock.
324  */
325 static void __inode_wait_for_writeback(struct inode *inode)
326 	__releases(inode->i_lock)
327 	__acquires(inode->i_lock)
328 {
329 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
330 	wait_queue_head_t *wqh;
331 
332 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
333 	while (inode->i_state & I_SYNC) {
334 		spin_unlock(&inode->i_lock);
335 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
336 		spin_lock(&inode->i_lock);
337 	}
338 }
339 
340 /*
341  * Wait for writeback on an inode to complete. Caller must have inode pinned.
342  */
343 void inode_wait_for_writeback(struct inode *inode)
344 {
345 	spin_lock(&inode->i_lock);
346 	__inode_wait_for_writeback(inode);
347 	spin_unlock(&inode->i_lock);
348 }
349 
350 /*
351  * Sleep until I_SYNC is cleared. This function must be called with i_lock
352  * held and drops it. It is aimed for callers not holding any inode reference
353  * so once i_lock is dropped, inode can go away.
354  */
355 static void inode_sleep_on_writeback(struct inode *inode)
356 	__releases(inode->i_lock)
357 {
358 	DEFINE_WAIT(wait);
359 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
360 	int sleep;
361 
362 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
363 	sleep = inode->i_state & I_SYNC;
364 	spin_unlock(&inode->i_lock);
365 	if (sleep)
366 		schedule();
367 	finish_wait(wqh, &wait);
368 }
369 
370 /*
371  * Find proper writeback list for the inode depending on its current state and
372  * possibly also change of its state while we were doing writeback.  Here we
373  * handle things such as livelock prevention or fairness of writeback among
374  * inodes. This function can be called only by flusher thread - noone else
375  * processes all inodes in writeback lists and requeueing inodes behind flusher
376  * thread's back can have unexpected consequences.
377  */
378 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
379 			  struct writeback_control *wbc)
380 {
381 	if (inode->i_state & I_FREEING)
382 		return;
383 
384 	/*
385 	 * Sync livelock prevention. Each inode is tagged and synced in one
386 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
387 	 * the dirty time to prevent enqueue and sync it again.
388 	 */
389 	if ((inode->i_state & I_DIRTY) &&
390 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
391 		inode->dirtied_when = jiffies;
392 
393 	if (wbc->pages_skipped) {
394 		/*
395 		 * writeback is not making progress due to locked
396 		 * buffers. Skip this inode for now.
397 		 */
398 		redirty_tail(inode, wb);
399 		return;
400 	}
401 
402 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
403 		/*
404 		 * We didn't write back all the pages.  nfs_writepages()
405 		 * sometimes bales out without doing anything.
406 		 */
407 		if (wbc->nr_to_write <= 0) {
408 			/* Slice used up. Queue for next turn. */
409 			requeue_io(inode, wb);
410 		} else {
411 			/*
412 			 * Writeback blocked by something other than
413 			 * congestion. Delay the inode for some time to
414 			 * avoid spinning on the CPU (100% iowait)
415 			 * retrying writeback of the dirty page/inode
416 			 * that cannot be performed immediately.
417 			 */
418 			redirty_tail(inode, wb);
419 		}
420 	} else if (inode->i_state & I_DIRTY) {
421 		/*
422 		 * Filesystems can dirty the inode during writeback operations,
423 		 * such as delayed allocation during submission or metadata
424 		 * updates after data IO completion.
425 		 */
426 		redirty_tail(inode, wb);
427 	} else {
428 		/* The inode is clean. Remove from writeback lists. */
429 		list_del_init(&inode->i_wb_list);
430 	}
431 }
432 
433 /*
434  * Write out an inode and its dirty pages. Do not update the writeback list
435  * linkage. That is left to the caller. The caller is also responsible for
436  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
437  */
438 static int
439 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
440 {
441 	struct address_space *mapping = inode->i_mapping;
442 	long nr_to_write = wbc->nr_to_write;
443 	unsigned dirty;
444 	int ret;
445 
446 	WARN_ON(!(inode->i_state & I_SYNC));
447 
448 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
449 
450 	ret = do_writepages(mapping, wbc);
451 
452 	/*
453 	 * Make sure to wait on the data before writing out the metadata.
454 	 * This is important for filesystems that modify metadata on data
455 	 * I/O completion. We don't do it for sync(2) writeback because it has a
456 	 * separate, external IO completion path and ->sync_fs for guaranteeing
457 	 * inode metadata is written back correctly.
458 	 */
459 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
460 		int err = filemap_fdatawait(mapping);
461 		if (ret == 0)
462 			ret = err;
463 	}
464 
465 	/*
466 	 * Some filesystems may redirty the inode during the writeback
467 	 * due to delalloc, clear dirty metadata flags right before
468 	 * write_inode()
469 	 */
470 	spin_lock(&inode->i_lock);
471 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
472 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
473 		inode->i_state &= ~I_DIRTY_PAGES;
474 	dirty = inode->i_state & I_DIRTY;
475 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
476 	spin_unlock(&inode->i_lock);
477 	/* Don't write the inode if only I_DIRTY_PAGES was set */
478 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
479 		int err = write_inode(inode, wbc);
480 		if (ret == 0)
481 			ret = err;
482 	}
483 	trace_writeback_single_inode(inode, wbc, nr_to_write);
484 	return ret;
485 }
486 
487 /*
488  * Write out an inode's dirty pages. Either the caller has an active reference
489  * on the inode or the inode has I_WILL_FREE set.
490  *
491  * This function is designed to be called for writing back one inode which
492  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
493  * and does more profound writeback list handling in writeback_sb_inodes().
494  */
495 static int
496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
497 		       struct writeback_control *wbc)
498 {
499 	int ret = 0;
500 
501 	spin_lock(&inode->i_lock);
502 	if (!atomic_read(&inode->i_count))
503 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
504 	else
505 		WARN_ON(inode->i_state & I_WILL_FREE);
506 
507 	if (inode->i_state & I_SYNC) {
508 		if (wbc->sync_mode != WB_SYNC_ALL)
509 			goto out;
510 		/*
511 		 * It's a data-integrity sync. We must wait. Since callers hold
512 		 * inode reference or inode has I_WILL_FREE set, it cannot go
513 		 * away under us.
514 		 */
515 		__inode_wait_for_writeback(inode);
516 	}
517 	WARN_ON(inode->i_state & I_SYNC);
518 	/*
519 	 * Skip inode if it is clean and we have no outstanding writeback in
520 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
521 	 * function since flusher thread may be doing for example sync in
522 	 * parallel and if we move the inode, it could get skipped. So here we
523 	 * make sure inode is on some writeback list and leave it there unless
524 	 * we have completely cleaned the inode.
525 	 */
526 	if (!(inode->i_state & I_DIRTY) &&
527 	    (wbc->sync_mode != WB_SYNC_ALL ||
528 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
529 		goto out;
530 	inode->i_state |= I_SYNC;
531 	spin_unlock(&inode->i_lock);
532 
533 	ret = __writeback_single_inode(inode, wbc);
534 
535 	spin_lock(&wb->list_lock);
536 	spin_lock(&inode->i_lock);
537 	/*
538 	 * If inode is clean, remove it from writeback lists. Otherwise don't
539 	 * touch it. See comment above for explanation.
540 	 */
541 	if (!(inode->i_state & I_DIRTY))
542 		list_del_init(&inode->i_wb_list);
543 	spin_unlock(&wb->list_lock);
544 	inode_sync_complete(inode);
545 out:
546 	spin_unlock(&inode->i_lock);
547 	return ret;
548 }
549 
550 static long writeback_chunk_size(struct backing_dev_info *bdi,
551 				 struct wb_writeback_work *work)
552 {
553 	long pages;
554 
555 	/*
556 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
557 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
558 	 * here avoids calling into writeback_inodes_wb() more than once.
559 	 *
560 	 * The intended call sequence for WB_SYNC_ALL writeback is:
561 	 *
562 	 *      wb_writeback()
563 	 *          writeback_sb_inodes()       <== called only once
564 	 *              write_cache_pages()     <== called once for each inode
565 	 *                   (quickly) tag currently dirty pages
566 	 *                   (maybe slowly) sync all tagged pages
567 	 */
568 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
569 		pages = LONG_MAX;
570 	else {
571 		pages = min(bdi->avg_write_bandwidth / 2,
572 			    global_dirty_limit / DIRTY_SCOPE);
573 		pages = min(pages, work->nr_pages);
574 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
575 				   MIN_WRITEBACK_PAGES);
576 	}
577 
578 	return pages;
579 }
580 
581 /*
582  * Write a portion of b_io inodes which belong to @sb.
583  *
584  * Return the number of pages and/or inodes written.
585  */
586 static long writeback_sb_inodes(struct super_block *sb,
587 				struct bdi_writeback *wb,
588 				struct wb_writeback_work *work)
589 {
590 	struct writeback_control wbc = {
591 		.sync_mode		= work->sync_mode,
592 		.tagged_writepages	= work->tagged_writepages,
593 		.for_kupdate		= work->for_kupdate,
594 		.for_background		= work->for_background,
595 		.for_sync		= work->for_sync,
596 		.range_cyclic		= work->range_cyclic,
597 		.range_start		= 0,
598 		.range_end		= LLONG_MAX,
599 	};
600 	unsigned long start_time = jiffies;
601 	long write_chunk;
602 	long wrote = 0;  /* count both pages and inodes */
603 
604 	while (!list_empty(&wb->b_io)) {
605 		struct inode *inode = wb_inode(wb->b_io.prev);
606 
607 		if (inode->i_sb != sb) {
608 			if (work->sb) {
609 				/*
610 				 * We only want to write back data for this
611 				 * superblock, move all inodes not belonging
612 				 * to it back onto the dirty list.
613 				 */
614 				redirty_tail(inode, wb);
615 				continue;
616 			}
617 
618 			/*
619 			 * The inode belongs to a different superblock.
620 			 * Bounce back to the caller to unpin this and
621 			 * pin the next superblock.
622 			 */
623 			break;
624 		}
625 
626 		/*
627 		 * Don't bother with new inodes or inodes being freed, first
628 		 * kind does not need periodic writeout yet, and for the latter
629 		 * kind writeout is handled by the freer.
630 		 */
631 		spin_lock(&inode->i_lock);
632 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
633 			spin_unlock(&inode->i_lock);
634 			redirty_tail(inode, wb);
635 			continue;
636 		}
637 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
638 			/*
639 			 * If this inode is locked for writeback and we are not
640 			 * doing writeback-for-data-integrity, move it to
641 			 * b_more_io so that writeback can proceed with the
642 			 * other inodes on s_io.
643 			 *
644 			 * We'll have another go at writing back this inode
645 			 * when we completed a full scan of b_io.
646 			 */
647 			spin_unlock(&inode->i_lock);
648 			requeue_io(inode, wb);
649 			trace_writeback_sb_inodes_requeue(inode);
650 			continue;
651 		}
652 		spin_unlock(&wb->list_lock);
653 
654 		/*
655 		 * We already requeued the inode if it had I_SYNC set and we
656 		 * are doing WB_SYNC_NONE writeback. So this catches only the
657 		 * WB_SYNC_ALL case.
658 		 */
659 		if (inode->i_state & I_SYNC) {
660 			/* Wait for I_SYNC. This function drops i_lock... */
661 			inode_sleep_on_writeback(inode);
662 			/* Inode may be gone, start again */
663 			spin_lock(&wb->list_lock);
664 			continue;
665 		}
666 		inode->i_state |= I_SYNC;
667 		spin_unlock(&inode->i_lock);
668 
669 		write_chunk = writeback_chunk_size(wb->bdi, work);
670 		wbc.nr_to_write = write_chunk;
671 		wbc.pages_skipped = 0;
672 
673 		/*
674 		 * We use I_SYNC to pin the inode in memory. While it is set
675 		 * evict_inode() will wait so the inode cannot be freed.
676 		 */
677 		__writeback_single_inode(inode, &wbc);
678 
679 		work->nr_pages -= write_chunk - wbc.nr_to_write;
680 		wrote += write_chunk - wbc.nr_to_write;
681 		spin_lock(&wb->list_lock);
682 		spin_lock(&inode->i_lock);
683 		if (!(inode->i_state & I_DIRTY))
684 			wrote++;
685 		requeue_inode(inode, wb, &wbc);
686 		inode_sync_complete(inode);
687 		spin_unlock(&inode->i_lock);
688 		cond_resched_lock(&wb->list_lock);
689 		/*
690 		 * bail out to wb_writeback() often enough to check
691 		 * background threshold and other termination conditions.
692 		 */
693 		if (wrote) {
694 			if (time_is_before_jiffies(start_time + HZ / 10UL))
695 				break;
696 			if (work->nr_pages <= 0)
697 				break;
698 		}
699 	}
700 	return wrote;
701 }
702 
703 static long __writeback_inodes_wb(struct bdi_writeback *wb,
704 				  struct wb_writeback_work *work)
705 {
706 	unsigned long start_time = jiffies;
707 	long wrote = 0;
708 
709 	while (!list_empty(&wb->b_io)) {
710 		struct inode *inode = wb_inode(wb->b_io.prev);
711 		struct super_block *sb = inode->i_sb;
712 
713 		if (!grab_super_passive(sb)) {
714 			/*
715 			 * grab_super_passive() may fail consistently due to
716 			 * s_umount being grabbed by someone else. Don't use
717 			 * requeue_io() to avoid busy retrying the inode/sb.
718 			 */
719 			redirty_tail(inode, wb);
720 			continue;
721 		}
722 		wrote += writeback_sb_inodes(sb, wb, work);
723 		drop_super(sb);
724 
725 		/* refer to the same tests at the end of writeback_sb_inodes */
726 		if (wrote) {
727 			if (time_is_before_jiffies(start_time + HZ / 10UL))
728 				break;
729 			if (work->nr_pages <= 0)
730 				break;
731 		}
732 	}
733 	/* Leave any unwritten inodes on b_io */
734 	return wrote;
735 }
736 
737 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
738 				enum wb_reason reason)
739 {
740 	struct wb_writeback_work work = {
741 		.nr_pages	= nr_pages,
742 		.sync_mode	= WB_SYNC_NONE,
743 		.range_cyclic	= 1,
744 		.reason		= reason,
745 		.older_than_this = jiffies,
746 		.older_than_this_is_set = 1,
747 	};
748 
749 	spin_lock(&wb->list_lock);
750 	if (list_empty(&wb->b_io))
751 		queue_io(wb, &work);
752 	__writeback_inodes_wb(wb, &work);
753 	spin_unlock(&wb->list_lock);
754 
755 	return nr_pages - work.nr_pages;
756 }
757 
758 static bool over_bground_thresh(struct backing_dev_info *bdi)
759 {
760 	unsigned long background_thresh, dirty_thresh;
761 
762 	global_dirty_limits(&background_thresh, &dirty_thresh);
763 
764 	if (global_page_state(NR_FILE_DIRTY) +
765 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
766 		return true;
767 
768 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
769 				bdi_dirty_limit(bdi, background_thresh))
770 		return true;
771 
772 	return false;
773 }
774 
775 /*
776  * Called under wb->list_lock. If there are multiple wb per bdi,
777  * only the flusher working on the first wb should do it.
778  */
779 static void wb_update_bandwidth(struct bdi_writeback *wb,
780 				unsigned long start_time)
781 {
782 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
783 }
784 
785 /*
786  * Explicit flushing or periodic writeback of "old" data.
787  *
788  * Define "old": the first time one of an inode's pages is dirtied, we mark the
789  * dirtying-time in the inode's address_space.  So this periodic writeback code
790  * just walks the superblock inode list, writing back any inodes which are
791  * older than a specific point in time.
792  *
793  * Try to run once per dirty_writeback_interval.  But if a writeback event
794  * takes longer than a dirty_writeback_interval interval, then leave a
795  * one-second gap.
796  *
797  * older_than_this takes precedence over nr_to_write.  So we'll only write back
798  * all dirty pages if they are all attached to "old" mappings.
799  */
800 static long wb_writeback(struct bdi_writeback *wb,
801 			 struct wb_writeback_work *work)
802 {
803 	unsigned long wb_start = jiffies;
804 	long nr_pages = work->nr_pages;
805 	struct inode *inode;
806 	long progress;
807 
808 	if (!work->older_than_this_is_set) {
809 		work->older_than_this = jiffies;
810 		work->older_than_this_is_set = 1;
811 	}
812 
813 	spin_lock(&wb->list_lock);
814 	for (;;) {
815 		/*
816 		 * Stop writeback when nr_pages has been consumed
817 		 */
818 		if (work->nr_pages <= 0)
819 			break;
820 
821 		/*
822 		 * Background writeout and kupdate-style writeback may
823 		 * run forever. Stop them if there is other work to do
824 		 * so that e.g. sync can proceed. They'll be restarted
825 		 * after the other works are all done.
826 		 */
827 		if ((work->for_background || work->for_kupdate) &&
828 		    !list_empty(&wb->bdi->work_list))
829 			break;
830 
831 		/*
832 		 * For background writeout, stop when we are below the
833 		 * background dirty threshold
834 		 */
835 		if (work->for_background && !over_bground_thresh(wb->bdi))
836 			break;
837 
838 		/*
839 		 * Kupdate and background works are special and we want to
840 		 * include all inodes that need writing. Livelock avoidance is
841 		 * handled by these works yielding to any other work so we are
842 		 * safe.
843 		 */
844 		if (work->for_kupdate) {
845 			work->older_than_this = jiffies -
846 				msecs_to_jiffies(dirty_expire_interval * 10);
847 		} else if (work->for_background)
848 			work->older_than_this = jiffies;
849 
850 		trace_writeback_start(wb->bdi, work);
851 		if (list_empty(&wb->b_io))
852 			queue_io(wb, work);
853 		if (work->sb)
854 			progress = writeback_sb_inodes(work->sb, wb, work);
855 		else
856 			progress = __writeback_inodes_wb(wb, work);
857 		trace_writeback_written(wb->bdi, work);
858 
859 		wb_update_bandwidth(wb, wb_start);
860 
861 		/*
862 		 * Did we write something? Try for more
863 		 *
864 		 * Dirty inodes are moved to b_io for writeback in batches.
865 		 * The completion of the current batch does not necessarily
866 		 * mean the overall work is done. So we keep looping as long
867 		 * as made some progress on cleaning pages or inodes.
868 		 */
869 		if (progress)
870 			continue;
871 		/*
872 		 * No more inodes for IO, bail
873 		 */
874 		if (list_empty(&wb->b_more_io))
875 			break;
876 		/*
877 		 * Nothing written. Wait for some inode to
878 		 * become available for writeback. Otherwise
879 		 * we'll just busyloop.
880 		 */
881 		if (!list_empty(&wb->b_more_io))  {
882 			trace_writeback_wait(wb->bdi, work);
883 			inode = wb_inode(wb->b_more_io.prev);
884 			spin_lock(&inode->i_lock);
885 			spin_unlock(&wb->list_lock);
886 			/* This function drops i_lock... */
887 			inode_sleep_on_writeback(inode);
888 			spin_lock(&wb->list_lock);
889 		}
890 	}
891 	spin_unlock(&wb->list_lock);
892 
893 	return nr_pages - work->nr_pages;
894 }
895 
896 /*
897  * Return the next wb_writeback_work struct that hasn't been processed yet.
898  */
899 static struct wb_writeback_work *
900 get_next_work_item(struct backing_dev_info *bdi)
901 {
902 	struct wb_writeback_work *work = NULL;
903 
904 	spin_lock_bh(&bdi->wb_lock);
905 	if (!list_empty(&bdi->work_list)) {
906 		work = list_entry(bdi->work_list.next,
907 				  struct wb_writeback_work, list);
908 		list_del_init(&work->list);
909 	}
910 	spin_unlock_bh(&bdi->wb_lock);
911 	return work;
912 }
913 
914 /*
915  * Add in the number of potentially dirty inodes, because each inode
916  * write can dirty pagecache in the underlying blockdev.
917  */
918 static unsigned long get_nr_dirty_pages(void)
919 {
920 	return global_page_state(NR_FILE_DIRTY) +
921 		global_page_state(NR_UNSTABLE_NFS) +
922 		get_nr_dirty_inodes();
923 }
924 
925 static long wb_check_background_flush(struct bdi_writeback *wb)
926 {
927 	if (over_bground_thresh(wb->bdi)) {
928 
929 		struct wb_writeback_work work = {
930 			.nr_pages	= LONG_MAX,
931 			.sync_mode	= WB_SYNC_NONE,
932 			.for_background	= 1,
933 			.range_cyclic	= 1,
934 			.reason		= WB_REASON_BACKGROUND,
935 		};
936 
937 		return wb_writeback(wb, &work);
938 	}
939 
940 	return 0;
941 }
942 
943 static long wb_check_old_data_flush(struct bdi_writeback *wb)
944 {
945 	unsigned long expired;
946 	long nr_pages;
947 
948 	/*
949 	 * When set to zero, disable periodic writeback
950 	 */
951 	if (!dirty_writeback_interval)
952 		return 0;
953 
954 	expired = wb->last_old_flush +
955 			msecs_to_jiffies(dirty_writeback_interval * 10);
956 	if (time_before(jiffies, expired))
957 		return 0;
958 
959 	wb->last_old_flush = jiffies;
960 	nr_pages = get_nr_dirty_pages();
961 
962 	if (nr_pages) {
963 		struct wb_writeback_work work = {
964 			.nr_pages	= nr_pages,
965 			.sync_mode	= WB_SYNC_NONE,
966 			.for_kupdate	= 1,
967 			.range_cyclic	= 1,
968 			.reason		= WB_REASON_PERIODIC,
969 		};
970 
971 		return wb_writeback(wb, &work);
972 	}
973 
974 	return 0;
975 }
976 
977 /*
978  * Retrieve work items and do the writeback they describe
979  */
980 static long wb_do_writeback(struct bdi_writeback *wb)
981 {
982 	struct backing_dev_info *bdi = wb->bdi;
983 	struct wb_writeback_work *work;
984 	long wrote = 0;
985 
986 	set_bit(BDI_writeback_running, &wb->bdi->state);
987 	while ((work = get_next_work_item(bdi)) != NULL) {
988 
989 		trace_writeback_exec(bdi, work);
990 
991 		wrote += wb_writeback(wb, work);
992 
993 		/*
994 		 * Notify the caller of completion if this is a synchronous
995 		 * work item, otherwise just free it.
996 		 */
997 		if (work->done)
998 			complete(work->done);
999 		else
1000 			kfree(work);
1001 	}
1002 
1003 	/*
1004 	 * Check for periodic writeback, kupdated() style
1005 	 */
1006 	wrote += wb_check_old_data_flush(wb);
1007 	wrote += wb_check_background_flush(wb);
1008 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1009 
1010 	return wrote;
1011 }
1012 
1013 /*
1014  * Handle writeback of dirty data for the device backed by this bdi. Also
1015  * reschedules periodically and does kupdated style flushing.
1016  */
1017 void bdi_writeback_workfn(struct work_struct *work)
1018 {
1019 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1020 						struct bdi_writeback, dwork);
1021 	struct backing_dev_info *bdi = wb->bdi;
1022 	long pages_written;
1023 
1024 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1025 	current->flags |= PF_SWAPWRITE;
1026 
1027 	if (likely(!current_is_workqueue_rescuer() ||
1028 		   list_empty(&bdi->bdi_list))) {
1029 		/*
1030 		 * The normal path.  Keep writing back @bdi until its
1031 		 * work_list is empty.  Note that this path is also taken
1032 		 * if @bdi is shutting down even when we're running off the
1033 		 * rescuer as work_list needs to be drained.
1034 		 */
1035 		do {
1036 			pages_written = wb_do_writeback(wb);
1037 			trace_writeback_pages_written(pages_written);
1038 		} while (!list_empty(&bdi->work_list));
1039 	} else {
1040 		/*
1041 		 * bdi_wq can't get enough workers and we're running off
1042 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1043 		 * enough for efficient IO.
1044 		 */
1045 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1046 						    WB_REASON_FORKER_THREAD);
1047 		trace_writeback_pages_written(pages_written);
1048 	}
1049 
1050 	if (!list_empty(&bdi->work_list) ||
1051 	    (wb_has_dirty_io(wb) && dirty_writeback_interval))
1052 		queue_delayed_work(bdi_wq, &wb->dwork,
1053 			msecs_to_jiffies(dirty_writeback_interval * 10));
1054 
1055 	current->flags &= ~PF_SWAPWRITE;
1056 }
1057 
1058 /*
1059  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1060  * the whole world.
1061  */
1062 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1063 {
1064 	struct backing_dev_info *bdi;
1065 
1066 	if (!nr_pages)
1067 		nr_pages = get_nr_dirty_pages();
1068 
1069 	rcu_read_lock();
1070 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1071 		if (!bdi_has_dirty_io(bdi))
1072 			continue;
1073 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1074 	}
1075 	rcu_read_unlock();
1076 }
1077 
1078 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1079 {
1080 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1081 		struct dentry *dentry;
1082 		const char *name = "?";
1083 
1084 		dentry = d_find_alias(inode);
1085 		if (dentry) {
1086 			spin_lock(&dentry->d_lock);
1087 			name = (const char *) dentry->d_name.name;
1088 		}
1089 		printk(KERN_DEBUG
1090 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1091 		       current->comm, task_pid_nr(current), inode->i_ino,
1092 		       name, inode->i_sb->s_id);
1093 		if (dentry) {
1094 			spin_unlock(&dentry->d_lock);
1095 			dput(dentry);
1096 		}
1097 	}
1098 }
1099 
1100 /**
1101  *	__mark_inode_dirty -	internal function
1102  *	@inode: inode to mark
1103  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1104  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1105  *  	mark_inode_dirty_sync.
1106  *
1107  * Put the inode on the super block's dirty list.
1108  *
1109  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1110  * dirty list only if it is hashed or if it refers to a blockdev.
1111  * If it was not hashed, it will never be added to the dirty list
1112  * even if it is later hashed, as it will have been marked dirty already.
1113  *
1114  * In short, make sure you hash any inodes _before_ you start marking
1115  * them dirty.
1116  *
1117  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1118  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1119  * the kernel-internal blockdev inode represents the dirtying time of the
1120  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1121  * page->mapping->host, so the page-dirtying time is recorded in the internal
1122  * blockdev inode.
1123  */
1124 void __mark_inode_dirty(struct inode *inode, int flags)
1125 {
1126 	struct super_block *sb = inode->i_sb;
1127 	struct backing_dev_info *bdi = NULL;
1128 
1129 	/*
1130 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1131 	 * dirty the inode itself
1132 	 */
1133 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1134 		trace_writeback_dirty_inode_start(inode, flags);
1135 
1136 		if (sb->s_op->dirty_inode)
1137 			sb->s_op->dirty_inode(inode, flags);
1138 
1139 		trace_writeback_dirty_inode(inode, flags);
1140 	}
1141 
1142 	/*
1143 	 * make sure that changes are seen by all cpus before we test i_state
1144 	 * -- mikulas
1145 	 */
1146 	smp_mb();
1147 
1148 	/* avoid the locking if we can */
1149 	if ((inode->i_state & flags) == flags)
1150 		return;
1151 
1152 	if (unlikely(block_dump))
1153 		block_dump___mark_inode_dirty(inode);
1154 
1155 	spin_lock(&inode->i_lock);
1156 	if ((inode->i_state & flags) != flags) {
1157 		const int was_dirty = inode->i_state & I_DIRTY;
1158 
1159 		inode->i_state |= flags;
1160 
1161 		/*
1162 		 * If the inode is being synced, just update its dirty state.
1163 		 * The unlocker will place the inode on the appropriate
1164 		 * superblock list, based upon its state.
1165 		 */
1166 		if (inode->i_state & I_SYNC)
1167 			goto out_unlock_inode;
1168 
1169 		/*
1170 		 * Only add valid (hashed) inodes to the superblock's
1171 		 * dirty list.  Add blockdev inodes as well.
1172 		 */
1173 		if (!S_ISBLK(inode->i_mode)) {
1174 			if (inode_unhashed(inode))
1175 				goto out_unlock_inode;
1176 		}
1177 		if (inode->i_state & I_FREEING)
1178 			goto out_unlock_inode;
1179 
1180 		/*
1181 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1182 		 * reposition it (that would break b_dirty time-ordering).
1183 		 */
1184 		if (!was_dirty) {
1185 			bool wakeup_bdi = false;
1186 			bdi = inode_to_bdi(inode);
1187 
1188 			spin_unlock(&inode->i_lock);
1189 			spin_lock(&bdi->wb.list_lock);
1190 			if (bdi_cap_writeback_dirty(bdi)) {
1191 				WARN(!test_bit(BDI_registered, &bdi->state),
1192 				     "bdi-%s not registered\n", bdi->name);
1193 
1194 				/*
1195 				 * If this is the first dirty inode for this
1196 				 * bdi, we have to wake-up the corresponding
1197 				 * bdi thread to make sure background
1198 				 * write-back happens later.
1199 				 */
1200 				if (!wb_has_dirty_io(&bdi->wb))
1201 					wakeup_bdi = true;
1202 			}
1203 
1204 			inode->dirtied_when = jiffies;
1205 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1206 			spin_unlock(&bdi->wb.list_lock);
1207 
1208 			if (wakeup_bdi)
1209 				bdi_wakeup_thread_delayed(bdi);
1210 			return;
1211 		}
1212 	}
1213 out_unlock_inode:
1214 	spin_unlock(&inode->i_lock);
1215 
1216 }
1217 EXPORT_SYMBOL(__mark_inode_dirty);
1218 
1219 static void wait_sb_inodes(struct super_block *sb)
1220 {
1221 	struct inode *inode, *old_inode = NULL;
1222 
1223 	/*
1224 	 * We need to be protected against the filesystem going from
1225 	 * r/o to r/w or vice versa.
1226 	 */
1227 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1228 
1229 	spin_lock(&inode_sb_list_lock);
1230 
1231 	/*
1232 	 * Data integrity sync. Must wait for all pages under writeback,
1233 	 * because there may have been pages dirtied before our sync
1234 	 * call, but which had writeout started before we write it out.
1235 	 * In which case, the inode may not be on the dirty list, but
1236 	 * we still have to wait for that writeout.
1237 	 */
1238 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1239 		struct address_space *mapping = inode->i_mapping;
1240 
1241 		spin_lock(&inode->i_lock);
1242 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1243 		    (mapping->nrpages == 0)) {
1244 			spin_unlock(&inode->i_lock);
1245 			continue;
1246 		}
1247 		__iget(inode);
1248 		spin_unlock(&inode->i_lock);
1249 		spin_unlock(&inode_sb_list_lock);
1250 
1251 		/*
1252 		 * We hold a reference to 'inode' so it couldn't have been
1253 		 * removed from s_inodes list while we dropped the
1254 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1255 		 * be holding the last reference and we cannot iput it under
1256 		 * inode_sb_list_lock. So we keep the reference and iput it
1257 		 * later.
1258 		 */
1259 		iput(old_inode);
1260 		old_inode = inode;
1261 
1262 		filemap_fdatawait(mapping);
1263 
1264 		cond_resched();
1265 
1266 		spin_lock(&inode_sb_list_lock);
1267 	}
1268 	spin_unlock(&inode_sb_list_lock);
1269 	iput(old_inode);
1270 }
1271 
1272 /**
1273  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1274  * @sb: the superblock
1275  * @nr: the number of pages to write
1276  * @reason: reason why some writeback work initiated
1277  *
1278  * Start writeback on some inodes on this super_block. No guarantees are made
1279  * on how many (if any) will be written, and this function does not wait
1280  * for IO completion of submitted IO.
1281  */
1282 void writeback_inodes_sb_nr(struct super_block *sb,
1283 			    unsigned long nr,
1284 			    enum wb_reason reason)
1285 {
1286 	DECLARE_COMPLETION_ONSTACK(done);
1287 	struct wb_writeback_work work = {
1288 		.sb			= sb,
1289 		.sync_mode		= WB_SYNC_NONE,
1290 		.tagged_writepages	= 1,
1291 		.done			= &done,
1292 		.nr_pages		= nr,
1293 		.reason			= reason,
1294 	};
1295 
1296 	if (sb->s_bdi == &noop_backing_dev_info)
1297 		return;
1298 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1299 	bdi_queue_work(sb->s_bdi, &work);
1300 	wait_for_completion(&done);
1301 }
1302 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1303 
1304 /**
1305  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1306  * @sb: the superblock
1307  * @reason: reason why some writeback work was initiated
1308  *
1309  * Start writeback on some inodes on this super_block. No guarantees are made
1310  * on how many (if any) will be written, and this function does not wait
1311  * for IO completion of submitted IO.
1312  */
1313 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1314 {
1315 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1316 }
1317 EXPORT_SYMBOL(writeback_inodes_sb);
1318 
1319 /**
1320  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1321  * @sb: the superblock
1322  * @nr: the number of pages to write
1323  * @reason: the reason of writeback
1324  *
1325  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1326  * Returns 1 if writeback was started, 0 if not.
1327  */
1328 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1329 				  unsigned long nr,
1330 				  enum wb_reason reason)
1331 {
1332 	if (writeback_in_progress(sb->s_bdi))
1333 		return 1;
1334 
1335 	if (!down_read_trylock(&sb->s_umount))
1336 		return 0;
1337 
1338 	writeback_inodes_sb_nr(sb, nr, reason);
1339 	up_read(&sb->s_umount);
1340 	return 1;
1341 }
1342 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1343 
1344 /**
1345  * try_to_writeback_inodes_sb - try to start writeback if none underway
1346  * @sb: the superblock
1347  * @reason: reason why some writeback work was initiated
1348  *
1349  * Implement by try_to_writeback_inodes_sb_nr()
1350  * Returns 1 if writeback was started, 0 if not.
1351  */
1352 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1353 {
1354 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1355 }
1356 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1357 
1358 /**
1359  * sync_inodes_sb	-	sync sb inode pages
1360  * @sb:			the superblock
1361  * @older_than_this:	timestamp
1362  *
1363  * This function writes and waits on any dirty inode belonging to this
1364  * superblock that has been dirtied before given timestamp.
1365  */
1366 void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this)
1367 {
1368 	DECLARE_COMPLETION_ONSTACK(done);
1369 	struct wb_writeback_work work = {
1370 		.sb		= sb,
1371 		.sync_mode	= WB_SYNC_ALL,
1372 		.nr_pages	= LONG_MAX,
1373 		.older_than_this = older_than_this,
1374 		.older_than_this_is_set = 1,
1375 		.range_cyclic	= 0,
1376 		.done		= &done,
1377 		.reason		= WB_REASON_SYNC,
1378 		.for_sync	= 1,
1379 	};
1380 
1381 	/* Nothing to do? */
1382 	if (sb->s_bdi == &noop_backing_dev_info)
1383 		return;
1384 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1385 
1386 	bdi_queue_work(sb->s_bdi, &work);
1387 	wait_for_completion(&done);
1388 
1389 	wait_sb_inodes(sb);
1390 }
1391 EXPORT_SYMBOL(sync_inodes_sb);
1392 
1393 /**
1394  * write_inode_now	-	write an inode to disk
1395  * @inode: inode to write to disk
1396  * @sync: whether the write should be synchronous or not
1397  *
1398  * This function commits an inode to disk immediately if it is dirty. This is
1399  * primarily needed by knfsd.
1400  *
1401  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1402  */
1403 int write_inode_now(struct inode *inode, int sync)
1404 {
1405 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1406 	struct writeback_control wbc = {
1407 		.nr_to_write = LONG_MAX,
1408 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1409 		.range_start = 0,
1410 		.range_end = LLONG_MAX,
1411 	};
1412 
1413 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1414 		wbc.nr_to_write = 0;
1415 
1416 	might_sleep();
1417 	return writeback_single_inode(inode, wb, &wbc);
1418 }
1419 EXPORT_SYMBOL(write_inode_now);
1420 
1421 /**
1422  * sync_inode - write an inode and its pages to disk.
1423  * @inode: the inode to sync
1424  * @wbc: controls the writeback mode
1425  *
1426  * sync_inode() will write an inode and its pages to disk.  It will also
1427  * correctly update the inode on its superblock's dirty inode lists and will
1428  * update inode->i_state.
1429  *
1430  * The caller must have a ref on the inode.
1431  */
1432 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1433 {
1434 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1435 }
1436 EXPORT_SYMBOL(sync_inode);
1437 
1438 /**
1439  * sync_inode_metadata - write an inode to disk
1440  * @inode: the inode to sync
1441  * @wait: wait for I/O to complete.
1442  *
1443  * Write an inode to disk and adjust its dirty state after completion.
1444  *
1445  * Note: only writes the actual inode, no associated data or other metadata.
1446  */
1447 int sync_inode_metadata(struct inode *inode, int wait)
1448 {
1449 	struct writeback_control wbc = {
1450 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1451 		.nr_to_write = 0, /* metadata-only */
1452 	};
1453 
1454 	return sync_inode(inode, &wbc);
1455 }
1456 EXPORT_SYMBOL(sync_inode_metadata);
1457