xref: /linux/fs/fs-writeback.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
56 
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61 
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 	return test_bit(BDI_writeback_running, &bdi->state);
72 }
73 
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75 		struct wb_writeback_work *work)
76 {
77 	trace_writeback_queue(bdi, work);
78 
79 	spin_lock_bh(&bdi->wb_lock);
80 	list_add_tail(&work->list, &bdi->work_list);
81 	if (bdi->wb.task) {
82 		wake_up_process(bdi->wb.task);
83 	} else {
84 		/*
85 		 * The bdi thread isn't there, wake up the forker thread which
86 		 * will create and run it.
87 		 */
88 		trace_writeback_nothread(bdi, work);
89 		wake_up_process(default_backing_dev_info.wb.task);
90 	}
91 	spin_unlock_bh(&bdi->wb_lock);
92 }
93 
94 static void
95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
96 		bool range_cyclic, bool for_background)
97 {
98 	struct wb_writeback_work *work;
99 
100 	/*
101 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
102 	 * wakeup the thread for old dirty data writeback
103 	 */
104 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
105 	if (!work) {
106 		if (bdi->wb.task) {
107 			trace_writeback_nowork(bdi);
108 			wake_up_process(bdi->wb.task);
109 		}
110 		return;
111 	}
112 
113 	work->sync_mode	= WB_SYNC_NONE;
114 	work->nr_pages	= nr_pages;
115 	work->range_cyclic = range_cyclic;
116 	work->for_background = for_background;
117 
118 	bdi_queue_work(bdi, work);
119 }
120 
121 /**
122  * bdi_start_writeback - start writeback
123  * @bdi: the backing device to write from
124  * @nr_pages: the number of pages to write
125  *
126  * Description:
127  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
128  *   started when this function returns, we make no guarentees on
129  *   completion. Caller need not hold sb s_umount semaphore.
130  *
131  */
132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
133 {
134 	__bdi_start_writeback(bdi, nr_pages, true, false);
135 }
136 
137 /**
138  * bdi_start_background_writeback - start background writeback
139  * @bdi: the backing device to write from
140  *
141  * Description:
142  *   This does WB_SYNC_NONE background writeback. The IO is only
143  *   started when this function returns, we make no guarentees on
144  *   completion. Caller need not hold sb s_umount semaphore.
145  */
146 void bdi_start_background_writeback(struct backing_dev_info *bdi)
147 {
148 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
149 }
150 
151 /*
152  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
153  * furthest end of its superblock's dirty-inode list.
154  *
155  * Before stamping the inode's ->dirtied_when, we check to see whether it is
156  * already the most-recently-dirtied inode on the b_dirty list.  If that is
157  * the case then the inode must have been redirtied while it was being written
158  * out and we don't reset its dirtied_when.
159  */
160 static void redirty_tail(struct inode *inode)
161 {
162 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
163 
164 	if (!list_empty(&wb->b_dirty)) {
165 		struct inode *tail;
166 
167 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
168 		if (time_before(inode->dirtied_when, tail->dirtied_when))
169 			inode->dirtied_when = jiffies;
170 	}
171 	list_move(&inode->i_list, &wb->b_dirty);
172 }
173 
174 /*
175  * requeue inode for re-scanning after bdi->b_io list is exhausted.
176  */
177 static void requeue_io(struct inode *inode)
178 {
179 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
180 
181 	list_move(&inode->i_list, &wb->b_more_io);
182 }
183 
184 static void inode_sync_complete(struct inode *inode)
185 {
186 	/*
187 	 * Prevent speculative execution through spin_unlock(&inode_lock);
188 	 */
189 	smp_mb();
190 	wake_up_bit(&inode->i_state, __I_SYNC);
191 }
192 
193 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
194 {
195 	bool ret = time_after(inode->dirtied_when, t);
196 #ifndef CONFIG_64BIT
197 	/*
198 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
199 	 * It _appears_ to be in the future, but is actually in distant past.
200 	 * This test is necessary to prevent such wrapped-around relative times
201 	 * from permanently stopping the whole bdi writeback.
202 	 */
203 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
204 #endif
205 	return ret;
206 }
207 
208 /*
209  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
210  */
211 static void move_expired_inodes(struct list_head *delaying_queue,
212 			       struct list_head *dispatch_queue,
213 				unsigned long *older_than_this)
214 {
215 	LIST_HEAD(tmp);
216 	struct list_head *pos, *node;
217 	struct super_block *sb = NULL;
218 	struct inode *inode;
219 	int do_sb_sort = 0;
220 
221 	while (!list_empty(delaying_queue)) {
222 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
223 		if (older_than_this &&
224 		    inode_dirtied_after(inode, *older_than_this))
225 			break;
226 		if (sb && sb != inode->i_sb)
227 			do_sb_sort = 1;
228 		sb = inode->i_sb;
229 		list_move(&inode->i_list, &tmp);
230 	}
231 
232 	/* just one sb in list, splice to dispatch_queue and we're done */
233 	if (!do_sb_sort) {
234 		list_splice(&tmp, dispatch_queue);
235 		return;
236 	}
237 
238 	/* Move inodes from one superblock together */
239 	while (!list_empty(&tmp)) {
240 		inode = list_entry(tmp.prev, struct inode, i_list);
241 		sb = inode->i_sb;
242 		list_for_each_prev_safe(pos, node, &tmp) {
243 			inode = list_entry(pos, struct inode, i_list);
244 			if (inode->i_sb == sb)
245 				list_move(&inode->i_list, dispatch_queue);
246 		}
247 	}
248 }
249 
250 /*
251  * Queue all expired dirty inodes for io, eldest first.
252  * Before
253  *         newly dirtied     b_dirty    b_io    b_more_io
254  *         =============>    gf         edc     BA
255  * After
256  *         newly dirtied     b_dirty    b_io    b_more_io
257  *         =============>    g          fBAedc
258  *                                           |
259  *                                           +--> dequeue for IO
260  */
261 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
262 {
263 	list_splice_init(&wb->b_more_io, &wb->b_io);
264 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
265 }
266 
267 static int write_inode(struct inode *inode, struct writeback_control *wbc)
268 {
269 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
270 		return inode->i_sb->s_op->write_inode(inode, wbc);
271 	return 0;
272 }
273 
274 /*
275  * Wait for writeback on an inode to complete.
276  */
277 static void inode_wait_for_writeback(struct inode *inode)
278 {
279 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
280 	wait_queue_head_t *wqh;
281 
282 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
283 	 while (inode->i_state & I_SYNC) {
284 		spin_unlock(&inode_lock);
285 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
286 		spin_lock(&inode_lock);
287 	}
288 }
289 
290 /*
291  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
292  * caller has ref on the inode (either via __iget or via syscall against an fd)
293  * or the inode has I_WILL_FREE set (via generic_forget_inode)
294  *
295  * If `wait' is set, wait on the writeout.
296  *
297  * The whole writeout design is quite complex and fragile.  We want to avoid
298  * starvation of particular inodes when others are being redirtied, prevent
299  * livelocks, etc.
300  *
301  * Called under inode_lock.
302  */
303 static int
304 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
305 {
306 	struct address_space *mapping = inode->i_mapping;
307 	unsigned dirty;
308 	int ret;
309 
310 	if (!atomic_read(&inode->i_count))
311 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
312 	else
313 		WARN_ON(inode->i_state & I_WILL_FREE);
314 
315 	if (inode->i_state & I_SYNC) {
316 		/*
317 		 * If this inode is locked for writeback and we are not doing
318 		 * writeback-for-data-integrity, move it to b_more_io so that
319 		 * writeback can proceed with the other inodes on s_io.
320 		 *
321 		 * We'll have another go at writing back this inode when we
322 		 * completed a full scan of b_io.
323 		 */
324 		if (wbc->sync_mode != WB_SYNC_ALL) {
325 			requeue_io(inode);
326 			return 0;
327 		}
328 
329 		/*
330 		 * It's a data-integrity sync.  We must wait.
331 		 */
332 		inode_wait_for_writeback(inode);
333 	}
334 
335 	BUG_ON(inode->i_state & I_SYNC);
336 
337 	/* Set I_SYNC, reset I_DIRTY_PAGES */
338 	inode->i_state |= I_SYNC;
339 	inode->i_state &= ~I_DIRTY_PAGES;
340 	spin_unlock(&inode_lock);
341 
342 	ret = do_writepages(mapping, wbc);
343 
344 	/*
345 	 * Make sure to wait on the data before writing out the metadata.
346 	 * This is important for filesystems that modify metadata on data
347 	 * I/O completion.
348 	 */
349 	if (wbc->sync_mode == WB_SYNC_ALL) {
350 		int err = filemap_fdatawait(mapping);
351 		if (ret == 0)
352 			ret = err;
353 	}
354 
355 	/*
356 	 * Some filesystems may redirty the inode during the writeback
357 	 * due to delalloc, clear dirty metadata flags right before
358 	 * write_inode()
359 	 */
360 	spin_lock(&inode_lock);
361 	dirty = inode->i_state & I_DIRTY;
362 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
363 	spin_unlock(&inode_lock);
364 	/* Don't write the inode if only I_DIRTY_PAGES was set */
365 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
366 		int err = write_inode(inode, wbc);
367 		if (ret == 0)
368 			ret = err;
369 	}
370 
371 	spin_lock(&inode_lock);
372 	inode->i_state &= ~I_SYNC;
373 	if (!(inode->i_state & I_FREEING)) {
374 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
375 			/*
376 			 * We didn't write back all the pages.  nfs_writepages()
377 			 * sometimes bales out without doing anything.
378 			 */
379 			inode->i_state |= I_DIRTY_PAGES;
380 			if (wbc->nr_to_write <= 0) {
381 				/*
382 				 * slice used up: queue for next turn
383 				 */
384 				requeue_io(inode);
385 			} else {
386 				/*
387 				 * Writeback blocked by something other than
388 				 * congestion. Delay the inode for some time to
389 				 * avoid spinning on the CPU (100% iowait)
390 				 * retrying writeback of the dirty page/inode
391 				 * that cannot be performed immediately.
392 				 */
393 				redirty_tail(inode);
394 			}
395 		} else if (inode->i_state & I_DIRTY) {
396 			/*
397 			 * Filesystems can dirty the inode during writeback
398 			 * operations, such as delayed allocation during
399 			 * submission or metadata updates after data IO
400 			 * completion.
401 			 */
402 			redirty_tail(inode);
403 		} else if (atomic_read(&inode->i_count)) {
404 			/*
405 			 * The inode is clean, inuse
406 			 */
407 			list_move(&inode->i_list, &inode_in_use);
408 		} else {
409 			/*
410 			 * The inode is clean, unused
411 			 */
412 			list_move(&inode->i_list, &inode_unused);
413 		}
414 	}
415 	inode_sync_complete(inode);
416 	return ret;
417 }
418 
419 /*
420  * For background writeback the caller does not have the sb pinned
421  * before calling writeback. So make sure that we do pin it, so it doesn't
422  * go away while we are writing inodes from it.
423  */
424 static bool pin_sb_for_writeback(struct super_block *sb)
425 {
426 	spin_lock(&sb_lock);
427 	if (list_empty(&sb->s_instances)) {
428 		spin_unlock(&sb_lock);
429 		return false;
430 	}
431 
432 	sb->s_count++;
433 	spin_unlock(&sb_lock);
434 
435 	if (down_read_trylock(&sb->s_umount)) {
436 		if (sb->s_root)
437 			return true;
438 		up_read(&sb->s_umount);
439 	}
440 
441 	put_super(sb);
442 	return false;
443 }
444 
445 /*
446  * Write a portion of b_io inodes which belong to @sb.
447  *
448  * If @only_this_sb is true, then find and write all such
449  * inodes. Otherwise write only ones which go sequentially
450  * in reverse order.
451  *
452  * Return 1, if the caller writeback routine should be
453  * interrupted. Otherwise return 0.
454  */
455 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
456 		struct writeback_control *wbc, bool only_this_sb)
457 {
458 	while (!list_empty(&wb->b_io)) {
459 		long pages_skipped;
460 		struct inode *inode = list_entry(wb->b_io.prev,
461 						 struct inode, i_list);
462 
463 		if (inode->i_sb != sb) {
464 			if (only_this_sb) {
465 				/*
466 				 * We only want to write back data for this
467 				 * superblock, move all inodes not belonging
468 				 * to it back onto the dirty list.
469 				 */
470 				redirty_tail(inode);
471 				continue;
472 			}
473 
474 			/*
475 			 * The inode belongs to a different superblock.
476 			 * Bounce back to the caller to unpin this and
477 			 * pin the next superblock.
478 			 */
479 			return 0;
480 		}
481 
482 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
483 			requeue_io(inode);
484 			continue;
485 		}
486 		/*
487 		 * Was this inode dirtied after sync_sb_inodes was called?
488 		 * This keeps sync from extra jobs and livelock.
489 		 */
490 		if (inode_dirtied_after(inode, wbc->wb_start))
491 			return 1;
492 
493 		BUG_ON(inode->i_state & I_FREEING);
494 		__iget(inode);
495 		pages_skipped = wbc->pages_skipped;
496 		writeback_single_inode(inode, wbc);
497 		if (wbc->pages_skipped != pages_skipped) {
498 			/*
499 			 * writeback is not making progress due to locked
500 			 * buffers.  Skip this inode for now.
501 			 */
502 			redirty_tail(inode);
503 		}
504 		spin_unlock(&inode_lock);
505 		iput(inode);
506 		cond_resched();
507 		spin_lock(&inode_lock);
508 		if (wbc->nr_to_write <= 0) {
509 			wbc->more_io = 1;
510 			return 1;
511 		}
512 		if (!list_empty(&wb->b_more_io))
513 			wbc->more_io = 1;
514 	}
515 	/* b_io is empty */
516 	return 1;
517 }
518 
519 void writeback_inodes_wb(struct bdi_writeback *wb,
520 		struct writeback_control *wbc)
521 {
522 	int ret = 0;
523 
524 	if (!wbc->wb_start)
525 		wbc->wb_start = jiffies; /* livelock avoidance */
526 	spin_lock(&inode_lock);
527 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
528 		queue_io(wb, wbc->older_than_this);
529 
530 	while (!list_empty(&wb->b_io)) {
531 		struct inode *inode = list_entry(wb->b_io.prev,
532 						 struct inode, i_list);
533 		struct super_block *sb = inode->i_sb;
534 
535 		if (!pin_sb_for_writeback(sb)) {
536 			requeue_io(inode);
537 			continue;
538 		}
539 		ret = writeback_sb_inodes(sb, wb, wbc, false);
540 		drop_super(sb);
541 
542 		if (ret)
543 			break;
544 	}
545 	spin_unlock(&inode_lock);
546 	/* Leave any unwritten inodes on b_io */
547 }
548 
549 static void __writeback_inodes_sb(struct super_block *sb,
550 		struct bdi_writeback *wb, struct writeback_control *wbc)
551 {
552 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
553 
554 	spin_lock(&inode_lock);
555 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
556 		queue_io(wb, wbc->older_than_this);
557 	writeback_sb_inodes(sb, wb, wbc, true);
558 	spin_unlock(&inode_lock);
559 }
560 
561 /*
562  * The maximum number of pages to writeout in a single bdi flush/kupdate
563  * operation.  We do this so we don't hold I_SYNC against an inode for
564  * enormous amounts of time, which would block a userspace task which has
565  * been forced to throttle against that inode.  Also, the code reevaluates
566  * the dirty each time it has written this many pages.
567  */
568 #define MAX_WRITEBACK_PAGES     1024
569 
570 static inline bool over_bground_thresh(void)
571 {
572 	unsigned long background_thresh, dirty_thresh;
573 
574 	global_dirty_limits(&background_thresh, &dirty_thresh);
575 
576 	return (global_page_state(NR_FILE_DIRTY) +
577 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
578 }
579 
580 /*
581  * Explicit flushing or periodic writeback of "old" data.
582  *
583  * Define "old": the first time one of an inode's pages is dirtied, we mark the
584  * dirtying-time in the inode's address_space.  So this periodic writeback code
585  * just walks the superblock inode list, writing back any inodes which are
586  * older than a specific point in time.
587  *
588  * Try to run once per dirty_writeback_interval.  But if a writeback event
589  * takes longer than a dirty_writeback_interval interval, then leave a
590  * one-second gap.
591  *
592  * older_than_this takes precedence over nr_to_write.  So we'll only write back
593  * all dirty pages if they are all attached to "old" mappings.
594  */
595 static long wb_writeback(struct bdi_writeback *wb,
596 			 struct wb_writeback_work *work)
597 {
598 	struct writeback_control wbc = {
599 		.sync_mode		= work->sync_mode,
600 		.older_than_this	= NULL,
601 		.for_kupdate		= work->for_kupdate,
602 		.for_background		= work->for_background,
603 		.range_cyclic		= work->range_cyclic,
604 	};
605 	unsigned long oldest_jif;
606 	long wrote = 0;
607 	struct inode *inode;
608 
609 	if (wbc.for_kupdate) {
610 		wbc.older_than_this = &oldest_jif;
611 		oldest_jif = jiffies -
612 				msecs_to_jiffies(dirty_expire_interval * 10);
613 	}
614 	if (!wbc.range_cyclic) {
615 		wbc.range_start = 0;
616 		wbc.range_end = LLONG_MAX;
617 	}
618 
619 	wbc.wb_start = jiffies; /* livelock avoidance */
620 	for (;;) {
621 		/*
622 		 * Stop writeback when nr_pages has been consumed
623 		 */
624 		if (work->nr_pages <= 0)
625 			break;
626 
627 		/*
628 		 * For background writeout, stop when we are below the
629 		 * background dirty threshold
630 		 */
631 		if (work->for_background && !over_bground_thresh())
632 			break;
633 
634 		wbc.more_io = 0;
635 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
636 		wbc.pages_skipped = 0;
637 
638 		trace_wbc_writeback_start(&wbc, wb->bdi);
639 		if (work->sb)
640 			__writeback_inodes_sb(work->sb, wb, &wbc);
641 		else
642 			writeback_inodes_wb(wb, &wbc);
643 		trace_wbc_writeback_written(&wbc, wb->bdi);
644 
645 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
646 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
647 
648 		/*
649 		 * If we consumed everything, see if we have more
650 		 */
651 		if (wbc.nr_to_write <= 0)
652 			continue;
653 		/*
654 		 * Didn't write everything and we don't have more IO, bail
655 		 */
656 		if (!wbc.more_io)
657 			break;
658 		/*
659 		 * Did we write something? Try for more
660 		 */
661 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
662 			continue;
663 		/*
664 		 * Nothing written. Wait for some inode to
665 		 * become available for writeback. Otherwise
666 		 * we'll just busyloop.
667 		 */
668 		spin_lock(&inode_lock);
669 		if (!list_empty(&wb->b_more_io))  {
670 			inode = list_entry(wb->b_more_io.prev,
671 						struct inode, i_list);
672 			trace_wbc_writeback_wait(&wbc, wb->bdi);
673 			inode_wait_for_writeback(inode);
674 		}
675 		spin_unlock(&inode_lock);
676 	}
677 
678 	return wrote;
679 }
680 
681 /*
682  * Return the next wb_writeback_work struct that hasn't been processed yet.
683  */
684 static struct wb_writeback_work *
685 get_next_work_item(struct backing_dev_info *bdi)
686 {
687 	struct wb_writeback_work *work = NULL;
688 
689 	spin_lock_bh(&bdi->wb_lock);
690 	if (!list_empty(&bdi->work_list)) {
691 		work = list_entry(bdi->work_list.next,
692 				  struct wb_writeback_work, list);
693 		list_del_init(&work->list);
694 	}
695 	spin_unlock_bh(&bdi->wb_lock);
696 	return work;
697 }
698 
699 static long wb_check_old_data_flush(struct bdi_writeback *wb)
700 {
701 	unsigned long expired;
702 	long nr_pages;
703 
704 	/*
705 	 * When set to zero, disable periodic writeback
706 	 */
707 	if (!dirty_writeback_interval)
708 		return 0;
709 
710 	expired = wb->last_old_flush +
711 			msecs_to_jiffies(dirty_writeback_interval * 10);
712 	if (time_before(jiffies, expired))
713 		return 0;
714 
715 	wb->last_old_flush = jiffies;
716 	nr_pages = global_page_state(NR_FILE_DIRTY) +
717 			global_page_state(NR_UNSTABLE_NFS) +
718 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
719 
720 	if (nr_pages) {
721 		struct wb_writeback_work work = {
722 			.nr_pages	= nr_pages,
723 			.sync_mode	= WB_SYNC_NONE,
724 			.for_kupdate	= 1,
725 			.range_cyclic	= 1,
726 		};
727 
728 		return wb_writeback(wb, &work);
729 	}
730 
731 	return 0;
732 }
733 
734 /*
735  * Retrieve work items and do the writeback they describe
736  */
737 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
738 {
739 	struct backing_dev_info *bdi = wb->bdi;
740 	struct wb_writeback_work *work;
741 	long wrote = 0;
742 
743 	set_bit(BDI_writeback_running, &wb->bdi->state);
744 	while ((work = get_next_work_item(bdi)) != NULL) {
745 		/*
746 		 * Override sync mode, in case we must wait for completion
747 		 * because this thread is exiting now.
748 		 */
749 		if (force_wait)
750 			work->sync_mode = WB_SYNC_ALL;
751 
752 		trace_writeback_exec(bdi, work);
753 
754 		wrote += wb_writeback(wb, work);
755 
756 		/*
757 		 * Notify the caller of completion if this is a synchronous
758 		 * work item, otherwise just free it.
759 		 */
760 		if (work->done)
761 			complete(work->done);
762 		else
763 			kfree(work);
764 	}
765 
766 	/*
767 	 * Check for periodic writeback, kupdated() style
768 	 */
769 	wrote += wb_check_old_data_flush(wb);
770 	clear_bit(BDI_writeback_running, &wb->bdi->state);
771 
772 	return wrote;
773 }
774 
775 /*
776  * Handle writeback of dirty data for the device backed by this bdi. Also
777  * wakes up periodically and does kupdated style flushing.
778  */
779 int bdi_writeback_thread(void *data)
780 {
781 	struct bdi_writeback *wb = data;
782 	struct backing_dev_info *bdi = wb->bdi;
783 	long pages_written;
784 
785 	current->flags |= PF_FLUSHER | PF_SWAPWRITE;
786 	set_freezable();
787 	wb->last_active = jiffies;
788 
789 	/*
790 	 * Our parent may run at a different priority, just set us to normal
791 	 */
792 	set_user_nice(current, 0);
793 
794 	trace_writeback_thread_start(bdi);
795 
796 	while (!kthread_should_stop()) {
797 		/*
798 		 * Remove own delayed wake-up timer, since we are already awake
799 		 * and we'll take care of the preriodic write-back.
800 		 */
801 		del_timer(&wb->wakeup_timer);
802 
803 		pages_written = wb_do_writeback(wb, 0);
804 
805 		trace_writeback_pages_written(pages_written);
806 
807 		if (pages_written)
808 			wb->last_active = jiffies;
809 
810 		set_current_state(TASK_INTERRUPTIBLE);
811 		if (!list_empty(&bdi->work_list)) {
812 			__set_current_state(TASK_RUNNING);
813 			continue;
814 		}
815 
816 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
817 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
818 		else {
819 			/*
820 			 * We have nothing to do, so can go sleep without any
821 			 * timeout and save power. When a work is queued or
822 			 * something is made dirty - we will be woken up.
823 			 */
824 			schedule();
825 		}
826 
827 		try_to_freeze();
828 	}
829 
830 	/* Flush any work that raced with us exiting */
831 	if (!list_empty(&bdi->work_list))
832 		wb_do_writeback(wb, 1);
833 
834 	trace_writeback_thread_stop(bdi);
835 	return 0;
836 }
837 
838 
839 /*
840  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
841  * the whole world.
842  */
843 void wakeup_flusher_threads(long nr_pages)
844 {
845 	struct backing_dev_info *bdi;
846 
847 	if (!nr_pages) {
848 		nr_pages = global_page_state(NR_FILE_DIRTY) +
849 				global_page_state(NR_UNSTABLE_NFS);
850 	}
851 
852 	rcu_read_lock();
853 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
854 		if (!bdi_has_dirty_io(bdi))
855 			continue;
856 		__bdi_start_writeback(bdi, nr_pages, false, false);
857 	}
858 	rcu_read_unlock();
859 }
860 
861 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
862 {
863 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
864 		struct dentry *dentry;
865 		const char *name = "?";
866 
867 		dentry = d_find_alias(inode);
868 		if (dentry) {
869 			spin_lock(&dentry->d_lock);
870 			name = (const char *) dentry->d_name.name;
871 		}
872 		printk(KERN_DEBUG
873 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
874 		       current->comm, task_pid_nr(current), inode->i_ino,
875 		       name, inode->i_sb->s_id);
876 		if (dentry) {
877 			spin_unlock(&dentry->d_lock);
878 			dput(dentry);
879 		}
880 	}
881 }
882 
883 /**
884  *	__mark_inode_dirty -	internal function
885  *	@inode: inode to mark
886  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
887  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
888  *  	mark_inode_dirty_sync.
889  *
890  * Put the inode on the super block's dirty list.
891  *
892  * CAREFUL! We mark it dirty unconditionally, but move it onto the
893  * dirty list only if it is hashed or if it refers to a blockdev.
894  * If it was not hashed, it will never be added to the dirty list
895  * even if it is later hashed, as it will have been marked dirty already.
896  *
897  * In short, make sure you hash any inodes _before_ you start marking
898  * them dirty.
899  *
900  * This function *must* be atomic for the I_DIRTY_PAGES case -
901  * set_page_dirty() is called under spinlock in several places.
902  *
903  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
904  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
905  * the kernel-internal blockdev inode represents the dirtying time of the
906  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
907  * page->mapping->host, so the page-dirtying time is recorded in the internal
908  * blockdev inode.
909  */
910 void __mark_inode_dirty(struct inode *inode, int flags)
911 {
912 	struct super_block *sb = inode->i_sb;
913 	struct backing_dev_info *bdi = NULL;
914 	bool wakeup_bdi = false;
915 
916 	/*
917 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
918 	 * dirty the inode itself
919 	 */
920 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
921 		if (sb->s_op->dirty_inode)
922 			sb->s_op->dirty_inode(inode);
923 	}
924 
925 	/*
926 	 * make sure that changes are seen by all cpus before we test i_state
927 	 * -- mikulas
928 	 */
929 	smp_mb();
930 
931 	/* avoid the locking if we can */
932 	if ((inode->i_state & flags) == flags)
933 		return;
934 
935 	if (unlikely(block_dump))
936 		block_dump___mark_inode_dirty(inode);
937 
938 	spin_lock(&inode_lock);
939 	if ((inode->i_state & flags) != flags) {
940 		const int was_dirty = inode->i_state & I_DIRTY;
941 
942 		inode->i_state |= flags;
943 
944 		/*
945 		 * If the inode is being synced, just update its dirty state.
946 		 * The unlocker will place the inode on the appropriate
947 		 * superblock list, based upon its state.
948 		 */
949 		if (inode->i_state & I_SYNC)
950 			goto out;
951 
952 		/*
953 		 * Only add valid (hashed) inodes to the superblock's
954 		 * dirty list.  Add blockdev inodes as well.
955 		 */
956 		if (!S_ISBLK(inode->i_mode)) {
957 			if (hlist_unhashed(&inode->i_hash))
958 				goto out;
959 		}
960 		if (inode->i_state & I_FREEING)
961 			goto out;
962 
963 		/*
964 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
965 		 * reposition it (that would break b_dirty time-ordering).
966 		 */
967 		if (!was_dirty) {
968 			bdi = inode_to_bdi(inode);
969 
970 			if (bdi_cap_writeback_dirty(bdi)) {
971 				WARN(!test_bit(BDI_registered, &bdi->state),
972 				     "bdi-%s not registered\n", bdi->name);
973 
974 				/*
975 				 * If this is the first dirty inode for this
976 				 * bdi, we have to wake-up the corresponding
977 				 * bdi thread to make sure background
978 				 * write-back happens later.
979 				 */
980 				if (!wb_has_dirty_io(&bdi->wb))
981 					wakeup_bdi = true;
982 			}
983 
984 			inode->dirtied_when = jiffies;
985 			list_move(&inode->i_list, &bdi->wb.b_dirty);
986 		}
987 	}
988 out:
989 	spin_unlock(&inode_lock);
990 
991 	if (wakeup_bdi)
992 		bdi_wakeup_thread_delayed(bdi);
993 }
994 EXPORT_SYMBOL(__mark_inode_dirty);
995 
996 /*
997  * Write out a superblock's list of dirty inodes.  A wait will be performed
998  * upon no inodes, all inodes or the final one, depending upon sync_mode.
999  *
1000  * If older_than_this is non-NULL, then only write out inodes which
1001  * had their first dirtying at a time earlier than *older_than_this.
1002  *
1003  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1004  * This function assumes that the blockdev superblock's inodes are backed by
1005  * a variety of queues, so all inodes are searched.  For other superblocks,
1006  * assume that all inodes are backed by the same queue.
1007  *
1008  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1009  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1010  * on the writer throttling path, and we get decent balancing between many
1011  * throttled threads: we don't want them all piling up on inode_sync_wait.
1012  */
1013 static void wait_sb_inodes(struct super_block *sb)
1014 {
1015 	struct inode *inode, *old_inode = NULL;
1016 
1017 	/*
1018 	 * We need to be protected against the filesystem going from
1019 	 * r/o to r/w or vice versa.
1020 	 */
1021 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1022 
1023 	spin_lock(&inode_lock);
1024 
1025 	/*
1026 	 * Data integrity sync. Must wait for all pages under writeback,
1027 	 * because there may have been pages dirtied before our sync
1028 	 * call, but which had writeout started before we write it out.
1029 	 * In which case, the inode may not be on the dirty list, but
1030 	 * we still have to wait for that writeout.
1031 	 */
1032 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1033 		struct address_space *mapping;
1034 
1035 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1036 			continue;
1037 		mapping = inode->i_mapping;
1038 		if (mapping->nrpages == 0)
1039 			continue;
1040 		__iget(inode);
1041 		spin_unlock(&inode_lock);
1042 		/*
1043 		 * We hold a reference to 'inode' so it couldn't have
1044 		 * been removed from s_inodes list while we dropped the
1045 		 * inode_lock.  We cannot iput the inode now as we can
1046 		 * be holding the last reference and we cannot iput it
1047 		 * under inode_lock. So we keep the reference and iput
1048 		 * it later.
1049 		 */
1050 		iput(old_inode);
1051 		old_inode = inode;
1052 
1053 		filemap_fdatawait(mapping);
1054 
1055 		cond_resched();
1056 
1057 		spin_lock(&inode_lock);
1058 	}
1059 	spin_unlock(&inode_lock);
1060 	iput(old_inode);
1061 }
1062 
1063 /**
1064  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1065  * @sb: the superblock
1066  *
1067  * Start writeback on some inodes on this super_block. No guarantees are made
1068  * on how many (if any) will be written, and this function does not wait
1069  * for IO completion of submitted IO. The number of pages submitted is
1070  * returned.
1071  */
1072 void writeback_inodes_sb(struct super_block *sb)
1073 {
1074 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1075 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1076 	DECLARE_COMPLETION_ONSTACK(done);
1077 	struct wb_writeback_work work = {
1078 		.sb		= sb,
1079 		.sync_mode	= WB_SYNC_NONE,
1080 		.done		= &done,
1081 	};
1082 
1083 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1084 
1085 	work.nr_pages = nr_dirty + nr_unstable +
1086 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1087 
1088 	bdi_queue_work(sb->s_bdi, &work);
1089 	wait_for_completion(&done);
1090 }
1091 EXPORT_SYMBOL(writeback_inodes_sb);
1092 
1093 /**
1094  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1095  * @sb: the superblock
1096  *
1097  * Invoke writeback_inodes_sb if no writeback is currently underway.
1098  * Returns 1 if writeback was started, 0 if not.
1099  */
1100 int writeback_inodes_sb_if_idle(struct super_block *sb)
1101 {
1102 	if (!writeback_in_progress(sb->s_bdi)) {
1103 		down_read(&sb->s_umount);
1104 		writeback_inodes_sb(sb);
1105 		up_read(&sb->s_umount);
1106 		return 1;
1107 	} else
1108 		return 0;
1109 }
1110 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1111 
1112 /**
1113  * sync_inodes_sb	-	sync sb inode pages
1114  * @sb: the superblock
1115  *
1116  * This function writes and waits on any dirty inode belonging to this
1117  * super_block. The number of pages synced is returned.
1118  */
1119 void sync_inodes_sb(struct super_block *sb)
1120 {
1121 	DECLARE_COMPLETION_ONSTACK(done);
1122 	struct wb_writeback_work work = {
1123 		.sb		= sb,
1124 		.sync_mode	= WB_SYNC_ALL,
1125 		.nr_pages	= LONG_MAX,
1126 		.range_cyclic	= 0,
1127 		.done		= &done,
1128 	};
1129 
1130 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1131 
1132 	bdi_queue_work(sb->s_bdi, &work);
1133 	wait_for_completion(&done);
1134 
1135 	wait_sb_inodes(sb);
1136 }
1137 EXPORT_SYMBOL(sync_inodes_sb);
1138 
1139 /**
1140  * write_inode_now	-	write an inode to disk
1141  * @inode: inode to write to disk
1142  * @sync: whether the write should be synchronous or not
1143  *
1144  * This function commits an inode to disk immediately if it is dirty. This is
1145  * primarily needed by knfsd.
1146  *
1147  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1148  */
1149 int write_inode_now(struct inode *inode, int sync)
1150 {
1151 	int ret;
1152 	struct writeback_control wbc = {
1153 		.nr_to_write = LONG_MAX,
1154 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1155 		.range_start = 0,
1156 		.range_end = LLONG_MAX,
1157 	};
1158 
1159 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1160 		wbc.nr_to_write = 0;
1161 
1162 	might_sleep();
1163 	spin_lock(&inode_lock);
1164 	ret = writeback_single_inode(inode, &wbc);
1165 	spin_unlock(&inode_lock);
1166 	if (sync)
1167 		inode_sync_wait(inode);
1168 	return ret;
1169 }
1170 EXPORT_SYMBOL(write_inode_now);
1171 
1172 /**
1173  * sync_inode - write an inode and its pages to disk.
1174  * @inode: the inode to sync
1175  * @wbc: controls the writeback mode
1176  *
1177  * sync_inode() will write an inode and its pages to disk.  It will also
1178  * correctly update the inode on its superblock's dirty inode lists and will
1179  * update inode->i_state.
1180  *
1181  * The caller must have a ref on the inode.
1182  */
1183 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1184 {
1185 	int ret;
1186 
1187 	spin_lock(&inode_lock);
1188 	ret = writeback_single_inode(inode, wbc);
1189 	spin_unlock(&inode_lock);
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL(sync_inode);
1193