1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 56 57 /* 58 * We don't actually have pdflush, but this one is exported though /proc... 59 */ 60 int nr_pdflush_threads; 61 62 /** 63 * writeback_in_progress - determine whether there is writeback in progress 64 * @bdi: the device's backing_dev_info structure. 65 * 66 * Determine whether there is writeback waiting to be handled against a 67 * backing device. 68 */ 69 int writeback_in_progress(struct backing_dev_info *bdi) 70 { 71 return test_bit(BDI_writeback_running, &bdi->state); 72 } 73 74 static void bdi_queue_work(struct backing_dev_info *bdi, 75 struct wb_writeback_work *work) 76 { 77 trace_writeback_queue(bdi, work); 78 79 spin_lock_bh(&bdi->wb_lock); 80 list_add_tail(&work->list, &bdi->work_list); 81 if (bdi->wb.task) { 82 wake_up_process(bdi->wb.task); 83 } else { 84 /* 85 * The bdi thread isn't there, wake up the forker thread which 86 * will create and run it. 87 */ 88 trace_writeback_nothread(bdi, work); 89 wake_up_process(default_backing_dev_info.wb.task); 90 } 91 spin_unlock_bh(&bdi->wb_lock); 92 } 93 94 static void 95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 96 bool range_cyclic, bool for_background) 97 { 98 struct wb_writeback_work *work; 99 100 /* 101 * This is WB_SYNC_NONE writeback, so if allocation fails just 102 * wakeup the thread for old dirty data writeback 103 */ 104 work = kzalloc(sizeof(*work), GFP_ATOMIC); 105 if (!work) { 106 if (bdi->wb.task) { 107 trace_writeback_nowork(bdi); 108 wake_up_process(bdi->wb.task); 109 } 110 return; 111 } 112 113 work->sync_mode = WB_SYNC_NONE; 114 work->nr_pages = nr_pages; 115 work->range_cyclic = range_cyclic; 116 work->for_background = for_background; 117 118 bdi_queue_work(bdi, work); 119 } 120 121 /** 122 * bdi_start_writeback - start writeback 123 * @bdi: the backing device to write from 124 * @nr_pages: the number of pages to write 125 * 126 * Description: 127 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 128 * started when this function returns, we make no guarentees on 129 * completion. Caller need not hold sb s_umount semaphore. 130 * 131 */ 132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 133 { 134 __bdi_start_writeback(bdi, nr_pages, true, false); 135 } 136 137 /** 138 * bdi_start_background_writeback - start background writeback 139 * @bdi: the backing device to write from 140 * 141 * Description: 142 * This does WB_SYNC_NONE background writeback. The IO is only 143 * started when this function returns, we make no guarentees on 144 * completion. Caller need not hold sb s_umount semaphore. 145 */ 146 void bdi_start_background_writeback(struct backing_dev_info *bdi) 147 { 148 __bdi_start_writeback(bdi, LONG_MAX, true, true); 149 } 150 151 /* 152 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 153 * furthest end of its superblock's dirty-inode list. 154 * 155 * Before stamping the inode's ->dirtied_when, we check to see whether it is 156 * already the most-recently-dirtied inode on the b_dirty list. If that is 157 * the case then the inode must have been redirtied while it was being written 158 * out and we don't reset its dirtied_when. 159 */ 160 static void redirty_tail(struct inode *inode) 161 { 162 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 163 164 if (!list_empty(&wb->b_dirty)) { 165 struct inode *tail; 166 167 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 168 if (time_before(inode->dirtied_when, tail->dirtied_when)) 169 inode->dirtied_when = jiffies; 170 } 171 list_move(&inode->i_list, &wb->b_dirty); 172 } 173 174 /* 175 * requeue inode for re-scanning after bdi->b_io list is exhausted. 176 */ 177 static void requeue_io(struct inode *inode) 178 { 179 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 180 181 list_move(&inode->i_list, &wb->b_more_io); 182 } 183 184 static void inode_sync_complete(struct inode *inode) 185 { 186 /* 187 * Prevent speculative execution through spin_unlock(&inode_lock); 188 */ 189 smp_mb(); 190 wake_up_bit(&inode->i_state, __I_SYNC); 191 } 192 193 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 194 { 195 bool ret = time_after(inode->dirtied_when, t); 196 #ifndef CONFIG_64BIT 197 /* 198 * For inodes being constantly redirtied, dirtied_when can get stuck. 199 * It _appears_ to be in the future, but is actually in distant past. 200 * This test is necessary to prevent such wrapped-around relative times 201 * from permanently stopping the whole bdi writeback. 202 */ 203 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 204 #endif 205 return ret; 206 } 207 208 /* 209 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 210 */ 211 static void move_expired_inodes(struct list_head *delaying_queue, 212 struct list_head *dispatch_queue, 213 unsigned long *older_than_this) 214 { 215 LIST_HEAD(tmp); 216 struct list_head *pos, *node; 217 struct super_block *sb = NULL; 218 struct inode *inode; 219 int do_sb_sort = 0; 220 221 while (!list_empty(delaying_queue)) { 222 inode = list_entry(delaying_queue->prev, struct inode, i_list); 223 if (older_than_this && 224 inode_dirtied_after(inode, *older_than_this)) 225 break; 226 if (sb && sb != inode->i_sb) 227 do_sb_sort = 1; 228 sb = inode->i_sb; 229 list_move(&inode->i_list, &tmp); 230 } 231 232 /* just one sb in list, splice to dispatch_queue and we're done */ 233 if (!do_sb_sort) { 234 list_splice(&tmp, dispatch_queue); 235 return; 236 } 237 238 /* Move inodes from one superblock together */ 239 while (!list_empty(&tmp)) { 240 inode = list_entry(tmp.prev, struct inode, i_list); 241 sb = inode->i_sb; 242 list_for_each_prev_safe(pos, node, &tmp) { 243 inode = list_entry(pos, struct inode, i_list); 244 if (inode->i_sb == sb) 245 list_move(&inode->i_list, dispatch_queue); 246 } 247 } 248 } 249 250 /* 251 * Queue all expired dirty inodes for io, eldest first. 252 * Before 253 * newly dirtied b_dirty b_io b_more_io 254 * =============> gf edc BA 255 * After 256 * newly dirtied b_dirty b_io b_more_io 257 * =============> g fBAedc 258 * | 259 * +--> dequeue for IO 260 */ 261 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 262 { 263 list_splice_init(&wb->b_more_io, &wb->b_io); 264 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 265 } 266 267 static int write_inode(struct inode *inode, struct writeback_control *wbc) 268 { 269 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 270 return inode->i_sb->s_op->write_inode(inode, wbc); 271 return 0; 272 } 273 274 /* 275 * Wait for writeback on an inode to complete. 276 */ 277 static void inode_wait_for_writeback(struct inode *inode) 278 { 279 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 280 wait_queue_head_t *wqh; 281 282 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 283 while (inode->i_state & I_SYNC) { 284 spin_unlock(&inode_lock); 285 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 286 spin_lock(&inode_lock); 287 } 288 } 289 290 /* 291 * Write out an inode's dirty pages. Called under inode_lock. Either the 292 * caller has ref on the inode (either via __iget or via syscall against an fd) 293 * or the inode has I_WILL_FREE set (via generic_forget_inode) 294 * 295 * If `wait' is set, wait on the writeout. 296 * 297 * The whole writeout design is quite complex and fragile. We want to avoid 298 * starvation of particular inodes when others are being redirtied, prevent 299 * livelocks, etc. 300 * 301 * Called under inode_lock. 302 */ 303 static int 304 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 305 { 306 struct address_space *mapping = inode->i_mapping; 307 unsigned dirty; 308 int ret; 309 310 if (!atomic_read(&inode->i_count)) 311 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 312 else 313 WARN_ON(inode->i_state & I_WILL_FREE); 314 315 if (inode->i_state & I_SYNC) { 316 /* 317 * If this inode is locked for writeback and we are not doing 318 * writeback-for-data-integrity, move it to b_more_io so that 319 * writeback can proceed with the other inodes on s_io. 320 * 321 * We'll have another go at writing back this inode when we 322 * completed a full scan of b_io. 323 */ 324 if (wbc->sync_mode != WB_SYNC_ALL) { 325 requeue_io(inode); 326 return 0; 327 } 328 329 /* 330 * It's a data-integrity sync. We must wait. 331 */ 332 inode_wait_for_writeback(inode); 333 } 334 335 BUG_ON(inode->i_state & I_SYNC); 336 337 /* Set I_SYNC, reset I_DIRTY_PAGES */ 338 inode->i_state |= I_SYNC; 339 inode->i_state &= ~I_DIRTY_PAGES; 340 spin_unlock(&inode_lock); 341 342 ret = do_writepages(mapping, wbc); 343 344 /* 345 * Make sure to wait on the data before writing out the metadata. 346 * This is important for filesystems that modify metadata on data 347 * I/O completion. 348 */ 349 if (wbc->sync_mode == WB_SYNC_ALL) { 350 int err = filemap_fdatawait(mapping); 351 if (ret == 0) 352 ret = err; 353 } 354 355 /* 356 * Some filesystems may redirty the inode during the writeback 357 * due to delalloc, clear dirty metadata flags right before 358 * write_inode() 359 */ 360 spin_lock(&inode_lock); 361 dirty = inode->i_state & I_DIRTY; 362 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 363 spin_unlock(&inode_lock); 364 /* Don't write the inode if only I_DIRTY_PAGES was set */ 365 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 366 int err = write_inode(inode, wbc); 367 if (ret == 0) 368 ret = err; 369 } 370 371 spin_lock(&inode_lock); 372 inode->i_state &= ~I_SYNC; 373 if (!(inode->i_state & I_FREEING)) { 374 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 375 /* 376 * We didn't write back all the pages. nfs_writepages() 377 * sometimes bales out without doing anything. 378 */ 379 inode->i_state |= I_DIRTY_PAGES; 380 if (wbc->nr_to_write <= 0) { 381 /* 382 * slice used up: queue for next turn 383 */ 384 requeue_io(inode); 385 } else { 386 /* 387 * Writeback blocked by something other than 388 * congestion. Delay the inode for some time to 389 * avoid spinning on the CPU (100% iowait) 390 * retrying writeback of the dirty page/inode 391 * that cannot be performed immediately. 392 */ 393 redirty_tail(inode); 394 } 395 } else if (inode->i_state & I_DIRTY) { 396 /* 397 * Filesystems can dirty the inode during writeback 398 * operations, such as delayed allocation during 399 * submission or metadata updates after data IO 400 * completion. 401 */ 402 redirty_tail(inode); 403 } else if (atomic_read(&inode->i_count)) { 404 /* 405 * The inode is clean, inuse 406 */ 407 list_move(&inode->i_list, &inode_in_use); 408 } else { 409 /* 410 * The inode is clean, unused 411 */ 412 list_move(&inode->i_list, &inode_unused); 413 } 414 } 415 inode_sync_complete(inode); 416 return ret; 417 } 418 419 /* 420 * For background writeback the caller does not have the sb pinned 421 * before calling writeback. So make sure that we do pin it, so it doesn't 422 * go away while we are writing inodes from it. 423 */ 424 static bool pin_sb_for_writeback(struct super_block *sb) 425 { 426 spin_lock(&sb_lock); 427 if (list_empty(&sb->s_instances)) { 428 spin_unlock(&sb_lock); 429 return false; 430 } 431 432 sb->s_count++; 433 spin_unlock(&sb_lock); 434 435 if (down_read_trylock(&sb->s_umount)) { 436 if (sb->s_root) 437 return true; 438 up_read(&sb->s_umount); 439 } 440 441 put_super(sb); 442 return false; 443 } 444 445 /* 446 * Write a portion of b_io inodes which belong to @sb. 447 * 448 * If @only_this_sb is true, then find and write all such 449 * inodes. Otherwise write only ones which go sequentially 450 * in reverse order. 451 * 452 * Return 1, if the caller writeback routine should be 453 * interrupted. Otherwise return 0. 454 */ 455 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 456 struct writeback_control *wbc, bool only_this_sb) 457 { 458 while (!list_empty(&wb->b_io)) { 459 long pages_skipped; 460 struct inode *inode = list_entry(wb->b_io.prev, 461 struct inode, i_list); 462 463 if (inode->i_sb != sb) { 464 if (only_this_sb) { 465 /* 466 * We only want to write back data for this 467 * superblock, move all inodes not belonging 468 * to it back onto the dirty list. 469 */ 470 redirty_tail(inode); 471 continue; 472 } 473 474 /* 475 * The inode belongs to a different superblock. 476 * Bounce back to the caller to unpin this and 477 * pin the next superblock. 478 */ 479 return 0; 480 } 481 482 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 483 requeue_io(inode); 484 continue; 485 } 486 /* 487 * Was this inode dirtied after sync_sb_inodes was called? 488 * This keeps sync from extra jobs and livelock. 489 */ 490 if (inode_dirtied_after(inode, wbc->wb_start)) 491 return 1; 492 493 BUG_ON(inode->i_state & I_FREEING); 494 __iget(inode); 495 pages_skipped = wbc->pages_skipped; 496 writeback_single_inode(inode, wbc); 497 if (wbc->pages_skipped != pages_skipped) { 498 /* 499 * writeback is not making progress due to locked 500 * buffers. Skip this inode for now. 501 */ 502 redirty_tail(inode); 503 } 504 spin_unlock(&inode_lock); 505 iput(inode); 506 cond_resched(); 507 spin_lock(&inode_lock); 508 if (wbc->nr_to_write <= 0) { 509 wbc->more_io = 1; 510 return 1; 511 } 512 if (!list_empty(&wb->b_more_io)) 513 wbc->more_io = 1; 514 } 515 /* b_io is empty */ 516 return 1; 517 } 518 519 void writeback_inodes_wb(struct bdi_writeback *wb, 520 struct writeback_control *wbc) 521 { 522 int ret = 0; 523 524 if (!wbc->wb_start) 525 wbc->wb_start = jiffies; /* livelock avoidance */ 526 spin_lock(&inode_lock); 527 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 528 queue_io(wb, wbc->older_than_this); 529 530 while (!list_empty(&wb->b_io)) { 531 struct inode *inode = list_entry(wb->b_io.prev, 532 struct inode, i_list); 533 struct super_block *sb = inode->i_sb; 534 535 if (!pin_sb_for_writeback(sb)) { 536 requeue_io(inode); 537 continue; 538 } 539 ret = writeback_sb_inodes(sb, wb, wbc, false); 540 drop_super(sb); 541 542 if (ret) 543 break; 544 } 545 spin_unlock(&inode_lock); 546 /* Leave any unwritten inodes on b_io */ 547 } 548 549 static void __writeback_inodes_sb(struct super_block *sb, 550 struct bdi_writeback *wb, struct writeback_control *wbc) 551 { 552 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 553 554 spin_lock(&inode_lock); 555 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 556 queue_io(wb, wbc->older_than_this); 557 writeback_sb_inodes(sb, wb, wbc, true); 558 spin_unlock(&inode_lock); 559 } 560 561 /* 562 * The maximum number of pages to writeout in a single bdi flush/kupdate 563 * operation. We do this so we don't hold I_SYNC against an inode for 564 * enormous amounts of time, which would block a userspace task which has 565 * been forced to throttle against that inode. Also, the code reevaluates 566 * the dirty each time it has written this many pages. 567 */ 568 #define MAX_WRITEBACK_PAGES 1024 569 570 static inline bool over_bground_thresh(void) 571 { 572 unsigned long background_thresh, dirty_thresh; 573 574 global_dirty_limits(&background_thresh, &dirty_thresh); 575 576 return (global_page_state(NR_FILE_DIRTY) + 577 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 578 } 579 580 /* 581 * Explicit flushing or periodic writeback of "old" data. 582 * 583 * Define "old": the first time one of an inode's pages is dirtied, we mark the 584 * dirtying-time in the inode's address_space. So this periodic writeback code 585 * just walks the superblock inode list, writing back any inodes which are 586 * older than a specific point in time. 587 * 588 * Try to run once per dirty_writeback_interval. But if a writeback event 589 * takes longer than a dirty_writeback_interval interval, then leave a 590 * one-second gap. 591 * 592 * older_than_this takes precedence over nr_to_write. So we'll only write back 593 * all dirty pages if they are all attached to "old" mappings. 594 */ 595 static long wb_writeback(struct bdi_writeback *wb, 596 struct wb_writeback_work *work) 597 { 598 struct writeback_control wbc = { 599 .sync_mode = work->sync_mode, 600 .older_than_this = NULL, 601 .for_kupdate = work->for_kupdate, 602 .for_background = work->for_background, 603 .range_cyclic = work->range_cyclic, 604 }; 605 unsigned long oldest_jif; 606 long wrote = 0; 607 struct inode *inode; 608 609 if (wbc.for_kupdate) { 610 wbc.older_than_this = &oldest_jif; 611 oldest_jif = jiffies - 612 msecs_to_jiffies(dirty_expire_interval * 10); 613 } 614 if (!wbc.range_cyclic) { 615 wbc.range_start = 0; 616 wbc.range_end = LLONG_MAX; 617 } 618 619 wbc.wb_start = jiffies; /* livelock avoidance */ 620 for (;;) { 621 /* 622 * Stop writeback when nr_pages has been consumed 623 */ 624 if (work->nr_pages <= 0) 625 break; 626 627 /* 628 * For background writeout, stop when we are below the 629 * background dirty threshold 630 */ 631 if (work->for_background && !over_bground_thresh()) 632 break; 633 634 wbc.more_io = 0; 635 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 636 wbc.pages_skipped = 0; 637 638 trace_wbc_writeback_start(&wbc, wb->bdi); 639 if (work->sb) 640 __writeback_inodes_sb(work->sb, wb, &wbc); 641 else 642 writeback_inodes_wb(wb, &wbc); 643 trace_wbc_writeback_written(&wbc, wb->bdi); 644 645 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 646 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 647 648 /* 649 * If we consumed everything, see if we have more 650 */ 651 if (wbc.nr_to_write <= 0) 652 continue; 653 /* 654 * Didn't write everything and we don't have more IO, bail 655 */ 656 if (!wbc.more_io) 657 break; 658 /* 659 * Did we write something? Try for more 660 */ 661 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 662 continue; 663 /* 664 * Nothing written. Wait for some inode to 665 * become available for writeback. Otherwise 666 * we'll just busyloop. 667 */ 668 spin_lock(&inode_lock); 669 if (!list_empty(&wb->b_more_io)) { 670 inode = list_entry(wb->b_more_io.prev, 671 struct inode, i_list); 672 trace_wbc_writeback_wait(&wbc, wb->bdi); 673 inode_wait_for_writeback(inode); 674 } 675 spin_unlock(&inode_lock); 676 } 677 678 return wrote; 679 } 680 681 /* 682 * Return the next wb_writeback_work struct that hasn't been processed yet. 683 */ 684 static struct wb_writeback_work * 685 get_next_work_item(struct backing_dev_info *bdi) 686 { 687 struct wb_writeback_work *work = NULL; 688 689 spin_lock_bh(&bdi->wb_lock); 690 if (!list_empty(&bdi->work_list)) { 691 work = list_entry(bdi->work_list.next, 692 struct wb_writeback_work, list); 693 list_del_init(&work->list); 694 } 695 spin_unlock_bh(&bdi->wb_lock); 696 return work; 697 } 698 699 static long wb_check_old_data_flush(struct bdi_writeback *wb) 700 { 701 unsigned long expired; 702 long nr_pages; 703 704 /* 705 * When set to zero, disable periodic writeback 706 */ 707 if (!dirty_writeback_interval) 708 return 0; 709 710 expired = wb->last_old_flush + 711 msecs_to_jiffies(dirty_writeback_interval * 10); 712 if (time_before(jiffies, expired)) 713 return 0; 714 715 wb->last_old_flush = jiffies; 716 nr_pages = global_page_state(NR_FILE_DIRTY) + 717 global_page_state(NR_UNSTABLE_NFS) + 718 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 719 720 if (nr_pages) { 721 struct wb_writeback_work work = { 722 .nr_pages = nr_pages, 723 .sync_mode = WB_SYNC_NONE, 724 .for_kupdate = 1, 725 .range_cyclic = 1, 726 }; 727 728 return wb_writeback(wb, &work); 729 } 730 731 return 0; 732 } 733 734 /* 735 * Retrieve work items and do the writeback they describe 736 */ 737 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 738 { 739 struct backing_dev_info *bdi = wb->bdi; 740 struct wb_writeback_work *work; 741 long wrote = 0; 742 743 set_bit(BDI_writeback_running, &wb->bdi->state); 744 while ((work = get_next_work_item(bdi)) != NULL) { 745 /* 746 * Override sync mode, in case we must wait for completion 747 * because this thread is exiting now. 748 */ 749 if (force_wait) 750 work->sync_mode = WB_SYNC_ALL; 751 752 trace_writeback_exec(bdi, work); 753 754 wrote += wb_writeback(wb, work); 755 756 /* 757 * Notify the caller of completion if this is a synchronous 758 * work item, otherwise just free it. 759 */ 760 if (work->done) 761 complete(work->done); 762 else 763 kfree(work); 764 } 765 766 /* 767 * Check for periodic writeback, kupdated() style 768 */ 769 wrote += wb_check_old_data_flush(wb); 770 clear_bit(BDI_writeback_running, &wb->bdi->state); 771 772 return wrote; 773 } 774 775 /* 776 * Handle writeback of dirty data for the device backed by this bdi. Also 777 * wakes up periodically and does kupdated style flushing. 778 */ 779 int bdi_writeback_thread(void *data) 780 { 781 struct bdi_writeback *wb = data; 782 struct backing_dev_info *bdi = wb->bdi; 783 long pages_written; 784 785 current->flags |= PF_FLUSHER | PF_SWAPWRITE; 786 set_freezable(); 787 wb->last_active = jiffies; 788 789 /* 790 * Our parent may run at a different priority, just set us to normal 791 */ 792 set_user_nice(current, 0); 793 794 trace_writeback_thread_start(bdi); 795 796 while (!kthread_should_stop()) { 797 /* 798 * Remove own delayed wake-up timer, since we are already awake 799 * and we'll take care of the preriodic write-back. 800 */ 801 del_timer(&wb->wakeup_timer); 802 803 pages_written = wb_do_writeback(wb, 0); 804 805 trace_writeback_pages_written(pages_written); 806 807 if (pages_written) 808 wb->last_active = jiffies; 809 810 set_current_state(TASK_INTERRUPTIBLE); 811 if (!list_empty(&bdi->work_list)) { 812 __set_current_state(TASK_RUNNING); 813 continue; 814 } 815 816 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 817 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 818 else { 819 /* 820 * We have nothing to do, so can go sleep without any 821 * timeout and save power. When a work is queued or 822 * something is made dirty - we will be woken up. 823 */ 824 schedule(); 825 } 826 827 try_to_freeze(); 828 } 829 830 /* Flush any work that raced with us exiting */ 831 if (!list_empty(&bdi->work_list)) 832 wb_do_writeback(wb, 1); 833 834 trace_writeback_thread_stop(bdi); 835 return 0; 836 } 837 838 839 /* 840 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 841 * the whole world. 842 */ 843 void wakeup_flusher_threads(long nr_pages) 844 { 845 struct backing_dev_info *bdi; 846 847 if (!nr_pages) { 848 nr_pages = global_page_state(NR_FILE_DIRTY) + 849 global_page_state(NR_UNSTABLE_NFS); 850 } 851 852 rcu_read_lock(); 853 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 854 if (!bdi_has_dirty_io(bdi)) 855 continue; 856 __bdi_start_writeback(bdi, nr_pages, false, false); 857 } 858 rcu_read_unlock(); 859 } 860 861 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 862 { 863 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 864 struct dentry *dentry; 865 const char *name = "?"; 866 867 dentry = d_find_alias(inode); 868 if (dentry) { 869 spin_lock(&dentry->d_lock); 870 name = (const char *) dentry->d_name.name; 871 } 872 printk(KERN_DEBUG 873 "%s(%d): dirtied inode %lu (%s) on %s\n", 874 current->comm, task_pid_nr(current), inode->i_ino, 875 name, inode->i_sb->s_id); 876 if (dentry) { 877 spin_unlock(&dentry->d_lock); 878 dput(dentry); 879 } 880 } 881 } 882 883 /** 884 * __mark_inode_dirty - internal function 885 * @inode: inode to mark 886 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 887 * Mark an inode as dirty. Callers should use mark_inode_dirty or 888 * mark_inode_dirty_sync. 889 * 890 * Put the inode on the super block's dirty list. 891 * 892 * CAREFUL! We mark it dirty unconditionally, but move it onto the 893 * dirty list only if it is hashed or if it refers to a blockdev. 894 * If it was not hashed, it will never be added to the dirty list 895 * even if it is later hashed, as it will have been marked dirty already. 896 * 897 * In short, make sure you hash any inodes _before_ you start marking 898 * them dirty. 899 * 900 * This function *must* be atomic for the I_DIRTY_PAGES case - 901 * set_page_dirty() is called under spinlock in several places. 902 * 903 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 904 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 905 * the kernel-internal blockdev inode represents the dirtying time of the 906 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 907 * page->mapping->host, so the page-dirtying time is recorded in the internal 908 * blockdev inode. 909 */ 910 void __mark_inode_dirty(struct inode *inode, int flags) 911 { 912 struct super_block *sb = inode->i_sb; 913 struct backing_dev_info *bdi = NULL; 914 bool wakeup_bdi = false; 915 916 /* 917 * Don't do this for I_DIRTY_PAGES - that doesn't actually 918 * dirty the inode itself 919 */ 920 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 921 if (sb->s_op->dirty_inode) 922 sb->s_op->dirty_inode(inode); 923 } 924 925 /* 926 * make sure that changes are seen by all cpus before we test i_state 927 * -- mikulas 928 */ 929 smp_mb(); 930 931 /* avoid the locking if we can */ 932 if ((inode->i_state & flags) == flags) 933 return; 934 935 if (unlikely(block_dump)) 936 block_dump___mark_inode_dirty(inode); 937 938 spin_lock(&inode_lock); 939 if ((inode->i_state & flags) != flags) { 940 const int was_dirty = inode->i_state & I_DIRTY; 941 942 inode->i_state |= flags; 943 944 /* 945 * If the inode is being synced, just update its dirty state. 946 * The unlocker will place the inode on the appropriate 947 * superblock list, based upon its state. 948 */ 949 if (inode->i_state & I_SYNC) 950 goto out; 951 952 /* 953 * Only add valid (hashed) inodes to the superblock's 954 * dirty list. Add blockdev inodes as well. 955 */ 956 if (!S_ISBLK(inode->i_mode)) { 957 if (hlist_unhashed(&inode->i_hash)) 958 goto out; 959 } 960 if (inode->i_state & I_FREEING) 961 goto out; 962 963 /* 964 * If the inode was already on b_dirty/b_io/b_more_io, don't 965 * reposition it (that would break b_dirty time-ordering). 966 */ 967 if (!was_dirty) { 968 bdi = inode_to_bdi(inode); 969 970 if (bdi_cap_writeback_dirty(bdi)) { 971 WARN(!test_bit(BDI_registered, &bdi->state), 972 "bdi-%s not registered\n", bdi->name); 973 974 /* 975 * If this is the first dirty inode for this 976 * bdi, we have to wake-up the corresponding 977 * bdi thread to make sure background 978 * write-back happens later. 979 */ 980 if (!wb_has_dirty_io(&bdi->wb)) 981 wakeup_bdi = true; 982 } 983 984 inode->dirtied_when = jiffies; 985 list_move(&inode->i_list, &bdi->wb.b_dirty); 986 } 987 } 988 out: 989 spin_unlock(&inode_lock); 990 991 if (wakeup_bdi) 992 bdi_wakeup_thread_delayed(bdi); 993 } 994 EXPORT_SYMBOL(__mark_inode_dirty); 995 996 /* 997 * Write out a superblock's list of dirty inodes. A wait will be performed 998 * upon no inodes, all inodes or the final one, depending upon sync_mode. 999 * 1000 * If older_than_this is non-NULL, then only write out inodes which 1001 * had their first dirtying at a time earlier than *older_than_this. 1002 * 1003 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1004 * This function assumes that the blockdev superblock's inodes are backed by 1005 * a variety of queues, so all inodes are searched. For other superblocks, 1006 * assume that all inodes are backed by the same queue. 1007 * 1008 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1009 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1010 * on the writer throttling path, and we get decent balancing between many 1011 * throttled threads: we don't want them all piling up on inode_sync_wait. 1012 */ 1013 static void wait_sb_inodes(struct super_block *sb) 1014 { 1015 struct inode *inode, *old_inode = NULL; 1016 1017 /* 1018 * We need to be protected against the filesystem going from 1019 * r/o to r/w or vice versa. 1020 */ 1021 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1022 1023 spin_lock(&inode_lock); 1024 1025 /* 1026 * Data integrity sync. Must wait for all pages under writeback, 1027 * because there may have been pages dirtied before our sync 1028 * call, but which had writeout started before we write it out. 1029 * In which case, the inode may not be on the dirty list, but 1030 * we still have to wait for that writeout. 1031 */ 1032 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1033 struct address_space *mapping; 1034 1035 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) 1036 continue; 1037 mapping = inode->i_mapping; 1038 if (mapping->nrpages == 0) 1039 continue; 1040 __iget(inode); 1041 spin_unlock(&inode_lock); 1042 /* 1043 * We hold a reference to 'inode' so it couldn't have 1044 * been removed from s_inodes list while we dropped the 1045 * inode_lock. We cannot iput the inode now as we can 1046 * be holding the last reference and we cannot iput it 1047 * under inode_lock. So we keep the reference and iput 1048 * it later. 1049 */ 1050 iput(old_inode); 1051 old_inode = inode; 1052 1053 filemap_fdatawait(mapping); 1054 1055 cond_resched(); 1056 1057 spin_lock(&inode_lock); 1058 } 1059 spin_unlock(&inode_lock); 1060 iput(old_inode); 1061 } 1062 1063 /** 1064 * writeback_inodes_sb - writeback dirty inodes from given super_block 1065 * @sb: the superblock 1066 * 1067 * Start writeback on some inodes on this super_block. No guarantees are made 1068 * on how many (if any) will be written, and this function does not wait 1069 * for IO completion of submitted IO. The number of pages submitted is 1070 * returned. 1071 */ 1072 void writeback_inodes_sb(struct super_block *sb) 1073 { 1074 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1075 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1076 DECLARE_COMPLETION_ONSTACK(done); 1077 struct wb_writeback_work work = { 1078 .sb = sb, 1079 .sync_mode = WB_SYNC_NONE, 1080 .done = &done, 1081 }; 1082 1083 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1084 1085 work.nr_pages = nr_dirty + nr_unstable + 1086 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1087 1088 bdi_queue_work(sb->s_bdi, &work); 1089 wait_for_completion(&done); 1090 } 1091 EXPORT_SYMBOL(writeback_inodes_sb); 1092 1093 /** 1094 * writeback_inodes_sb_if_idle - start writeback if none underway 1095 * @sb: the superblock 1096 * 1097 * Invoke writeback_inodes_sb if no writeback is currently underway. 1098 * Returns 1 if writeback was started, 0 if not. 1099 */ 1100 int writeback_inodes_sb_if_idle(struct super_block *sb) 1101 { 1102 if (!writeback_in_progress(sb->s_bdi)) { 1103 down_read(&sb->s_umount); 1104 writeback_inodes_sb(sb); 1105 up_read(&sb->s_umount); 1106 return 1; 1107 } else 1108 return 0; 1109 } 1110 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1111 1112 /** 1113 * sync_inodes_sb - sync sb inode pages 1114 * @sb: the superblock 1115 * 1116 * This function writes and waits on any dirty inode belonging to this 1117 * super_block. The number of pages synced is returned. 1118 */ 1119 void sync_inodes_sb(struct super_block *sb) 1120 { 1121 DECLARE_COMPLETION_ONSTACK(done); 1122 struct wb_writeback_work work = { 1123 .sb = sb, 1124 .sync_mode = WB_SYNC_ALL, 1125 .nr_pages = LONG_MAX, 1126 .range_cyclic = 0, 1127 .done = &done, 1128 }; 1129 1130 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1131 1132 bdi_queue_work(sb->s_bdi, &work); 1133 wait_for_completion(&done); 1134 1135 wait_sb_inodes(sb); 1136 } 1137 EXPORT_SYMBOL(sync_inodes_sb); 1138 1139 /** 1140 * write_inode_now - write an inode to disk 1141 * @inode: inode to write to disk 1142 * @sync: whether the write should be synchronous or not 1143 * 1144 * This function commits an inode to disk immediately if it is dirty. This is 1145 * primarily needed by knfsd. 1146 * 1147 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1148 */ 1149 int write_inode_now(struct inode *inode, int sync) 1150 { 1151 int ret; 1152 struct writeback_control wbc = { 1153 .nr_to_write = LONG_MAX, 1154 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1155 .range_start = 0, 1156 .range_end = LLONG_MAX, 1157 }; 1158 1159 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1160 wbc.nr_to_write = 0; 1161 1162 might_sleep(); 1163 spin_lock(&inode_lock); 1164 ret = writeback_single_inode(inode, &wbc); 1165 spin_unlock(&inode_lock); 1166 if (sync) 1167 inode_sync_wait(inode); 1168 return ret; 1169 } 1170 EXPORT_SYMBOL(write_inode_now); 1171 1172 /** 1173 * sync_inode - write an inode and its pages to disk. 1174 * @inode: the inode to sync 1175 * @wbc: controls the writeback mode 1176 * 1177 * sync_inode() will write an inode and its pages to disk. It will also 1178 * correctly update the inode on its superblock's dirty inode lists and will 1179 * update inode->i_state. 1180 * 1181 * The caller must have a ref on the inode. 1182 */ 1183 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1184 { 1185 int ret; 1186 1187 spin_lock(&inode_lock); 1188 ret = writeback_single_inode(inode, wbc); 1189 spin_unlock(&inode_lock); 1190 return ret; 1191 } 1192 EXPORT_SYMBOL(sync_inode); 1193