1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 struct wb_completion { 40 atomic_t cnt; 41 }; 42 43 /* 44 * Passed into wb_writeback(), essentially a subset of writeback_control 45 */ 46 struct wb_writeback_work { 47 long nr_pages; 48 struct super_block *sb; 49 unsigned long *older_than_this; 50 enum writeback_sync_modes sync_mode; 51 unsigned int tagged_writepages:1; 52 unsigned int for_kupdate:1; 53 unsigned int range_cyclic:1; 54 unsigned int for_background:1; 55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 56 unsigned int auto_free:1; /* free on completion */ 57 enum wb_reason reason; /* why was writeback initiated? */ 58 59 struct list_head list; /* pending work list */ 60 struct wb_completion *done; /* set if the caller waits */ 61 }; 62 63 /* 64 * If one wants to wait for one or more wb_writeback_works, each work's 65 * ->done should be set to a wb_completion defined using the following 66 * macro. Once all work items are issued with wb_queue_work(), the caller 67 * can wait for the completion of all using wb_wait_for_completion(). Work 68 * items which are waited upon aren't freed automatically on completion. 69 */ 70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 71 struct wb_completion cmpl = { \ 72 .cnt = ATOMIC_INIT(1), \ 73 } 74 75 76 /* 77 * If an inode is constantly having its pages dirtied, but then the 78 * updates stop dirtytime_expire_interval seconds in the past, it's 79 * possible for the worst case time between when an inode has its 80 * timestamps updated and when they finally get written out to be two 81 * dirtytime_expire_intervals. We set the default to 12 hours (in 82 * seconds), which means most of the time inodes will have their 83 * timestamps written to disk after 12 hours, but in the worst case a 84 * few inodes might not their timestamps updated for 24 hours. 85 */ 86 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 87 88 static inline struct inode *wb_inode(struct list_head *head) 89 { 90 return list_entry(head, struct inode, i_io_list); 91 } 92 93 /* 94 * Include the creation of the trace points after defining the 95 * wb_writeback_work structure and inline functions so that the definition 96 * remains local to this file. 97 */ 98 #define CREATE_TRACE_POINTS 99 #include <trace/events/writeback.h> 100 101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 102 103 static bool wb_io_lists_populated(struct bdi_writeback *wb) 104 { 105 if (wb_has_dirty_io(wb)) { 106 return false; 107 } else { 108 set_bit(WB_has_dirty_io, &wb->state); 109 WARN_ON_ONCE(!wb->avg_write_bandwidth); 110 atomic_long_add(wb->avg_write_bandwidth, 111 &wb->bdi->tot_write_bandwidth); 112 return true; 113 } 114 } 115 116 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 117 { 118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 120 clear_bit(WB_has_dirty_io, &wb->state); 121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 122 &wb->bdi->tot_write_bandwidth) < 0); 123 } 124 } 125 126 /** 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 128 * @inode: inode to be moved 129 * @wb: target bdi_writeback 130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 131 * 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 133 * Returns %true if @inode is the first occupant of the !dirty_time IO 134 * lists; otherwise, %false. 135 */ 136 static bool inode_io_list_move_locked(struct inode *inode, 137 struct bdi_writeback *wb, 138 struct list_head *head) 139 { 140 assert_spin_locked(&wb->list_lock); 141 142 list_move(&inode->i_io_list, head); 143 144 /* dirty_time doesn't count as dirty_io until expiration */ 145 if (head != &wb->b_dirty_time) 146 return wb_io_lists_populated(wb); 147 148 wb_io_lists_depopulated(wb); 149 return false; 150 } 151 152 /** 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 154 * @inode: inode to be removed 155 * @wb: bdi_writeback @inode is being removed from 156 * 157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 158 * clear %WB_has_dirty_io if all are empty afterwards. 159 */ 160 static void inode_io_list_del_locked(struct inode *inode, 161 struct bdi_writeback *wb) 162 { 163 assert_spin_locked(&wb->list_lock); 164 165 list_del_init(&inode->i_io_list); 166 wb_io_lists_depopulated(wb); 167 } 168 169 static void wb_wakeup(struct bdi_writeback *wb) 170 { 171 spin_lock_bh(&wb->work_lock); 172 if (test_bit(WB_registered, &wb->state)) 173 mod_delayed_work(bdi_wq, &wb->dwork, 0); 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 static void finish_writeback_work(struct bdi_writeback *wb, 178 struct wb_writeback_work *work) 179 { 180 struct wb_completion *done = work->done; 181 182 if (work->auto_free) 183 kfree(work); 184 if (done && atomic_dec_and_test(&done->cnt)) 185 wake_up_all(&wb->bdi->wb_waitq); 186 } 187 188 static void wb_queue_work(struct bdi_writeback *wb, 189 struct wb_writeback_work *work) 190 { 191 trace_writeback_queue(wb, work); 192 193 if (work->done) 194 atomic_inc(&work->done->cnt); 195 196 spin_lock_bh(&wb->work_lock); 197 198 if (test_bit(WB_registered, &wb->state)) { 199 list_add_tail(&work->list, &wb->work_list); 200 mod_delayed_work(bdi_wq, &wb->dwork, 0); 201 } else 202 finish_writeback_work(wb, work); 203 204 spin_unlock_bh(&wb->work_lock); 205 } 206 207 /** 208 * wb_wait_for_completion - wait for completion of bdi_writeback_works 209 * @bdi: bdi work items were issued to 210 * @done: target wb_completion 211 * 212 * Wait for one or more work items issued to @bdi with their ->done field 213 * set to @done, which should have been defined with 214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 215 * work items are completed. Work items which are waited upon aren't freed 216 * automatically on completion. 217 */ 218 static void wb_wait_for_completion(struct backing_dev_info *bdi, 219 struct wb_completion *done) 220 { 221 atomic_dec(&done->cnt); /* put down the initial count */ 222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 223 } 224 225 #ifdef CONFIG_CGROUP_WRITEBACK 226 227 /* parameters for foreign inode detection, see wb_detach_inode() */ 228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 232 233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 235 /* each slot's duration is 2s / 16 */ 236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 237 /* if foreign slots >= 8, switch */ 238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 239 /* one round can affect upto 5 slots */ 240 241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 242 static struct workqueue_struct *isw_wq; 243 244 void __inode_attach_wb(struct inode *inode, struct page *page) 245 { 246 struct backing_dev_info *bdi = inode_to_bdi(inode); 247 struct bdi_writeback *wb = NULL; 248 249 if (inode_cgwb_enabled(inode)) { 250 struct cgroup_subsys_state *memcg_css; 251 252 if (page) { 253 memcg_css = mem_cgroup_css_from_page(page); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 } else { 256 /* must pin memcg_css, see wb_get_create() */ 257 memcg_css = task_get_css(current, memory_cgrp_id); 258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 259 css_put(memcg_css); 260 } 261 } 262 263 if (!wb) 264 wb = &bdi->wb; 265 266 /* 267 * There may be multiple instances of this function racing to 268 * update the same inode. Use cmpxchg() to tell the winner. 269 */ 270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 271 wb_put(wb); 272 } 273 274 /** 275 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 276 * @inode: inode of interest with i_lock held 277 * 278 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 279 * held on entry and is released on return. The returned wb is guaranteed 280 * to stay @inode's associated wb until its list_lock is released. 281 */ 282 static struct bdi_writeback * 283 locked_inode_to_wb_and_lock_list(struct inode *inode) 284 __releases(&inode->i_lock) 285 __acquires(&wb->list_lock) 286 { 287 while (true) { 288 struct bdi_writeback *wb = inode_to_wb(inode); 289 290 /* 291 * inode_to_wb() association is protected by both 292 * @inode->i_lock and @wb->list_lock but list_lock nests 293 * outside i_lock. Drop i_lock and verify that the 294 * association hasn't changed after acquiring list_lock. 295 */ 296 wb_get(wb); 297 spin_unlock(&inode->i_lock); 298 spin_lock(&wb->list_lock); 299 300 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 301 if (likely(wb == inode->i_wb)) { 302 wb_put(wb); /* @inode already has ref */ 303 return wb; 304 } 305 306 spin_unlock(&wb->list_lock); 307 wb_put(wb); 308 cpu_relax(); 309 spin_lock(&inode->i_lock); 310 } 311 } 312 313 /** 314 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 315 * @inode: inode of interest 316 * 317 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 318 * on entry. 319 */ 320 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 321 __acquires(&wb->list_lock) 322 { 323 spin_lock(&inode->i_lock); 324 return locked_inode_to_wb_and_lock_list(inode); 325 } 326 327 struct inode_switch_wbs_context { 328 struct inode *inode; 329 struct bdi_writeback *new_wb; 330 331 struct rcu_head rcu_head; 332 struct work_struct work; 333 }; 334 335 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 336 { 337 down_write(&bdi->wb_switch_rwsem); 338 } 339 340 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 341 { 342 up_write(&bdi->wb_switch_rwsem); 343 } 344 345 static void inode_switch_wbs_work_fn(struct work_struct *work) 346 { 347 struct inode_switch_wbs_context *isw = 348 container_of(work, struct inode_switch_wbs_context, work); 349 struct inode *inode = isw->inode; 350 struct backing_dev_info *bdi = inode_to_bdi(inode); 351 struct address_space *mapping = inode->i_mapping; 352 struct bdi_writeback *old_wb = inode->i_wb; 353 struct bdi_writeback *new_wb = isw->new_wb; 354 XA_STATE(xas, &mapping->i_pages, 0); 355 struct page *page; 356 bool switched = false; 357 358 /* 359 * If @inode switches cgwb membership while sync_inodes_sb() is 360 * being issued, sync_inodes_sb() might miss it. Synchronize. 361 */ 362 down_read(&bdi->wb_switch_rwsem); 363 364 /* 365 * By the time control reaches here, RCU grace period has passed 366 * since I_WB_SWITCH assertion and all wb stat update transactions 367 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 368 * synchronizing against the i_pages lock. 369 * 370 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 371 * gives us exclusion against all wb related operations on @inode 372 * including IO list manipulations and stat updates. 373 */ 374 if (old_wb < new_wb) { 375 spin_lock(&old_wb->list_lock); 376 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 377 } else { 378 spin_lock(&new_wb->list_lock); 379 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 380 } 381 spin_lock(&inode->i_lock); 382 xa_lock_irq(&mapping->i_pages); 383 384 /* 385 * Once I_FREEING is visible under i_lock, the eviction path owns 386 * the inode and we shouldn't modify ->i_io_list. 387 */ 388 if (unlikely(inode->i_state & I_FREEING)) 389 goto skip_switch; 390 391 /* 392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 394 * pages actually under writeback. 395 */ 396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 397 if (PageDirty(page)) { 398 dec_wb_stat(old_wb, WB_RECLAIMABLE); 399 inc_wb_stat(new_wb, WB_RECLAIMABLE); 400 } 401 } 402 403 xas_set(&xas, 0); 404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 405 WARN_ON_ONCE(!PageWriteback(page)); 406 dec_wb_stat(old_wb, WB_WRITEBACK); 407 inc_wb_stat(new_wb, WB_WRITEBACK); 408 } 409 410 wb_get(new_wb); 411 412 /* 413 * Transfer to @new_wb's IO list if necessary. The specific list 414 * @inode was on is ignored and the inode is put on ->b_dirty which 415 * is always correct including from ->b_dirty_time. The transfer 416 * preserves @inode->dirtied_when ordering. 417 */ 418 if (!list_empty(&inode->i_io_list)) { 419 struct inode *pos; 420 421 inode_io_list_del_locked(inode, old_wb); 422 inode->i_wb = new_wb; 423 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 424 if (time_after_eq(inode->dirtied_when, 425 pos->dirtied_when)) 426 break; 427 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 428 } else { 429 inode->i_wb = new_wb; 430 } 431 432 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 433 inode->i_wb_frn_winner = 0; 434 inode->i_wb_frn_avg_time = 0; 435 inode->i_wb_frn_history = 0; 436 switched = true; 437 skip_switch: 438 /* 439 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 440 * ensures that the new wb is visible if they see !I_WB_SWITCH. 441 */ 442 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 443 444 xa_unlock_irq(&mapping->i_pages); 445 spin_unlock(&inode->i_lock); 446 spin_unlock(&new_wb->list_lock); 447 spin_unlock(&old_wb->list_lock); 448 449 up_read(&bdi->wb_switch_rwsem); 450 451 if (switched) { 452 wb_wakeup(new_wb); 453 wb_put(old_wb); 454 } 455 wb_put(new_wb); 456 457 iput(inode); 458 kfree(isw); 459 460 atomic_dec(&isw_nr_in_flight); 461 } 462 463 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 464 { 465 struct inode_switch_wbs_context *isw = container_of(rcu_head, 466 struct inode_switch_wbs_context, rcu_head); 467 468 /* needs to grab bh-unsafe locks, bounce to work item */ 469 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 470 queue_work(isw_wq, &isw->work); 471 } 472 473 /** 474 * inode_switch_wbs - change the wb association of an inode 475 * @inode: target inode 476 * @new_wb_id: ID of the new wb 477 * 478 * Switch @inode's wb association to the wb identified by @new_wb_id. The 479 * switching is performed asynchronously and may fail silently. 480 */ 481 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 482 { 483 struct backing_dev_info *bdi = inode_to_bdi(inode); 484 struct cgroup_subsys_state *memcg_css; 485 struct inode_switch_wbs_context *isw; 486 487 /* noop if seems to be already in progress */ 488 if (inode->i_state & I_WB_SWITCH) 489 return; 490 491 /* 492 * Avoid starting new switches while sync_inodes_sb() is in 493 * progress. Otherwise, if the down_write protected issue path 494 * blocks heavily, we might end up starting a large number of 495 * switches which will block on the rwsem. 496 */ 497 if (!down_read_trylock(&bdi->wb_switch_rwsem)) 498 return; 499 500 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 501 if (!isw) 502 goto out_unlock; 503 504 /* find and pin the new wb */ 505 rcu_read_lock(); 506 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 507 if (memcg_css) 508 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 509 rcu_read_unlock(); 510 if (!isw->new_wb) 511 goto out_free; 512 513 /* while holding I_WB_SWITCH, no one else can update the association */ 514 spin_lock(&inode->i_lock); 515 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 516 inode->i_state & (I_WB_SWITCH | I_FREEING) || 517 inode_to_wb(inode) == isw->new_wb) { 518 spin_unlock(&inode->i_lock); 519 goto out_free; 520 } 521 inode->i_state |= I_WB_SWITCH; 522 __iget(inode); 523 spin_unlock(&inode->i_lock); 524 525 isw->inode = inode; 526 527 /* 528 * In addition to synchronizing among switchers, I_WB_SWITCH tells 529 * the RCU protected stat update paths to grab the i_page 530 * lock so that stat transfer can synchronize against them. 531 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 532 */ 533 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 534 535 atomic_inc(&isw_nr_in_flight); 536 537 goto out_unlock; 538 539 out_free: 540 if (isw->new_wb) 541 wb_put(isw->new_wb); 542 kfree(isw); 543 out_unlock: 544 up_read(&bdi->wb_switch_rwsem); 545 } 546 547 /** 548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 549 * @wbc: writeback_control of interest 550 * @inode: target inode 551 * 552 * @inode is locked and about to be written back under the control of @wbc. 553 * Record @inode's writeback context into @wbc and unlock the i_lock. On 554 * writeback completion, wbc_detach_inode() should be called. This is used 555 * to track the cgroup writeback context. 556 */ 557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 558 struct inode *inode) 559 { 560 if (!inode_cgwb_enabled(inode)) { 561 spin_unlock(&inode->i_lock); 562 return; 563 } 564 565 wbc->wb = inode_to_wb(inode); 566 wbc->inode = inode; 567 568 wbc->wb_id = wbc->wb->memcg_css->id; 569 wbc->wb_lcand_id = inode->i_wb_frn_winner; 570 wbc->wb_tcand_id = 0; 571 wbc->wb_bytes = 0; 572 wbc->wb_lcand_bytes = 0; 573 wbc->wb_tcand_bytes = 0; 574 575 wb_get(wbc->wb); 576 spin_unlock(&inode->i_lock); 577 578 /* 579 * A dying wb indicates that the memcg-blkcg mapping has changed 580 * and a new wb is already serving the memcg. Switch immediately. 581 */ 582 if (unlikely(wb_dying(wbc->wb))) 583 inode_switch_wbs(inode, wbc->wb_id); 584 } 585 586 /** 587 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 588 * @wbc: writeback_control of the just finished writeback 589 * 590 * To be called after a writeback attempt of an inode finishes and undoes 591 * wbc_attach_and_unlock_inode(). Can be called under any context. 592 * 593 * As concurrent write sharing of an inode is expected to be very rare and 594 * memcg only tracks page ownership on first-use basis severely confining 595 * the usefulness of such sharing, cgroup writeback tracks ownership 596 * per-inode. While the support for concurrent write sharing of an inode 597 * is deemed unnecessary, an inode being written to by different cgroups at 598 * different points in time is a lot more common, and, more importantly, 599 * charging only by first-use can too readily lead to grossly incorrect 600 * behaviors (single foreign page can lead to gigabytes of writeback to be 601 * incorrectly attributed). 602 * 603 * To resolve this issue, cgroup writeback detects the majority dirtier of 604 * an inode and transfers the ownership to it. To avoid unnnecessary 605 * oscillation, the detection mechanism keeps track of history and gives 606 * out the switch verdict only if the foreign usage pattern is stable over 607 * a certain amount of time and/or writeback attempts. 608 * 609 * On each writeback attempt, @wbc tries to detect the majority writer 610 * using Boyer-Moore majority vote algorithm. In addition to the byte 611 * count from the majority voting, it also counts the bytes written for the 612 * current wb and the last round's winner wb (max of last round's current 613 * wb, the winner from two rounds ago, and the last round's majority 614 * candidate). Keeping track of the historical winner helps the algorithm 615 * to semi-reliably detect the most active writer even when it's not the 616 * absolute majority. 617 * 618 * Once the winner of the round is determined, whether the winner is 619 * foreign or not and how much IO time the round consumed is recorded in 620 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 621 * over a certain threshold, the switch verdict is given. 622 */ 623 void wbc_detach_inode(struct writeback_control *wbc) 624 { 625 struct bdi_writeback *wb = wbc->wb; 626 struct inode *inode = wbc->inode; 627 unsigned long avg_time, max_bytes, max_time; 628 u16 history; 629 int max_id; 630 631 if (!wb) 632 return; 633 634 history = inode->i_wb_frn_history; 635 avg_time = inode->i_wb_frn_avg_time; 636 637 /* pick the winner of this round */ 638 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 639 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 640 max_id = wbc->wb_id; 641 max_bytes = wbc->wb_bytes; 642 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 643 max_id = wbc->wb_lcand_id; 644 max_bytes = wbc->wb_lcand_bytes; 645 } else { 646 max_id = wbc->wb_tcand_id; 647 max_bytes = wbc->wb_tcand_bytes; 648 } 649 650 /* 651 * Calculate the amount of IO time the winner consumed and fold it 652 * into the running average kept per inode. If the consumed IO 653 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 654 * deciding whether to switch or not. This is to prevent one-off 655 * small dirtiers from skewing the verdict. 656 */ 657 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 658 wb->avg_write_bandwidth); 659 if (avg_time) 660 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 661 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 662 else 663 avg_time = max_time; /* immediate catch up on first run */ 664 665 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 666 int slots; 667 668 /* 669 * The switch verdict is reached if foreign wb's consume 670 * more than a certain proportion of IO time in a 671 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 672 * history mask where each bit represents one sixteenth of 673 * the period. Determine the number of slots to shift into 674 * history from @max_time. 675 */ 676 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 677 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 678 history <<= slots; 679 if (wbc->wb_id != max_id) 680 history |= (1U << slots) - 1; 681 682 /* 683 * Switch if the current wb isn't the consistent winner. 684 * If there are multiple closely competing dirtiers, the 685 * inode may switch across them repeatedly over time, which 686 * is okay. The main goal is avoiding keeping an inode on 687 * the wrong wb for an extended period of time. 688 */ 689 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 690 inode_switch_wbs(inode, max_id); 691 } 692 693 /* 694 * Multiple instances of this function may race to update the 695 * following fields but we don't mind occassional inaccuracies. 696 */ 697 inode->i_wb_frn_winner = max_id; 698 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 699 inode->i_wb_frn_history = history; 700 701 wb_put(wbc->wb); 702 wbc->wb = NULL; 703 } 704 705 /** 706 * wbc_account_io - account IO issued during writeback 707 * @wbc: writeback_control of the writeback in progress 708 * @page: page being written out 709 * @bytes: number of bytes being written out 710 * 711 * @bytes from @page are about to written out during the writeback 712 * controlled by @wbc. Keep the book for foreign inode detection. See 713 * wbc_detach_inode(). 714 */ 715 void wbc_account_io(struct writeback_control *wbc, struct page *page, 716 size_t bytes) 717 { 718 int id; 719 720 /* 721 * pageout() path doesn't attach @wbc to the inode being written 722 * out. This is intentional as we don't want the function to block 723 * behind a slow cgroup. Ultimately, we want pageout() to kick off 724 * regular writeback instead of writing things out itself. 725 */ 726 if (!wbc->wb) 727 return; 728 729 id = mem_cgroup_css_from_page(page)->id; 730 731 if (id == wbc->wb_id) { 732 wbc->wb_bytes += bytes; 733 return; 734 } 735 736 if (id == wbc->wb_lcand_id) 737 wbc->wb_lcand_bytes += bytes; 738 739 /* Boyer-Moore majority vote algorithm */ 740 if (!wbc->wb_tcand_bytes) 741 wbc->wb_tcand_id = id; 742 if (id == wbc->wb_tcand_id) 743 wbc->wb_tcand_bytes += bytes; 744 else 745 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 746 } 747 EXPORT_SYMBOL_GPL(wbc_account_io); 748 749 /** 750 * inode_congested - test whether an inode is congested 751 * @inode: inode to test for congestion (may be NULL) 752 * @cong_bits: mask of WB_[a]sync_congested bits to test 753 * 754 * Tests whether @inode is congested. @cong_bits is the mask of congestion 755 * bits to test and the return value is the mask of set bits. 756 * 757 * If cgroup writeback is enabled for @inode, the congestion state is 758 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 759 * associated with @inode is congested; otherwise, the root wb's congestion 760 * state is used. 761 * 762 * @inode is allowed to be NULL as this function is often called on 763 * mapping->host which is NULL for the swapper space. 764 */ 765 int inode_congested(struct inode *inode, int cong_bits) 766 { 767 /* 768 * Once set, ->i_wb never becomes NULL while the inode is alive. 769 * Start transaction iff ->i_wb is visible. 770 */ 771 if (inode && inode_to_wb_is_valid(inode)) { 772 struct bdi_writeback *wb; 773 struct wb_lock_cookie lock_cookie = {}; 774 bool congested; 775 776 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 777 congested = wb_congested(wb, cong_bits); 778 unlocked_inode_to_wb_end(inode, &lock_cookie); 779 return congested; 780 } 781 782 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 783 } 784 EXPORT_SYMBOL_GPL(inode_congested); 785 786 /** 787 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 788 * @wb: target bdi_writeback to split @nr_pages to 789 * @nr_pages: number of pages to write for the whole bdi 790 * 791 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 792 * relation to the total write bandwidth of all wb's w/ dirty inodes on 793 * @wb->bdi. 794 */ 795 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 796 { 797 unsigned long this_bw = wb->avg_write_bandwidth; 798 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 799 800 if (nr_pages == LONG_MAX) 801 return LONG_MAX; 802 803 /* 804 * This may be called on clean wb's and proportional distribution 805 * may not make sense, just use the original @nr_pages in those 806 * cases. In general, we wanna err on the side of writing more. 807 */ 808 if (!tot_bw || this_bw >= tot_bw) 809 return nr_pages; 810 else 811 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 812 } 813 814 /** 815 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 816 * @bdi: target backing_dev_info 817 * @base_work: wb_writeback_work to issue 818 * @skip_if_busy: skip wb's which already have writeback in progress 819 * 820 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 821 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 822 * distributed to the busy wbs according to each wb's proportion in the 823 * total active write bandwidth of @bdi. 824 */ 825 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 826 struct wb_writeback_work *base_work, 827 bool skip_if_busy) 828 { 829 struct bdi_writeback *last_wb = NULL; 830 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 831 struct bdi_writeback, bdi_node); 832 833 might_sleep(); 834 restart: 835 rcu_read_lock(); 836 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 837 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 838 struct wb_writeback_work fallback_work; 839 struct wb_writeback_work *work; 840 long nr_pages; 841 842 if (last_wb) { 843 wb_put(last_wb); 844 last_wb = NULL; 845 } 846 847 /* SYNC_ALL writes out I_DIRTY_TIME too */ 848 if (!wb_has_dirty_io(wb) && 849 (base_work->sync_mode == WB_SYNC_NONE || 850 list_empty(&wb->b_dirty_time))) 851 continue; 852 if (skip_if_busy && writeback_in_progress(wb)) 853 continue; 854 855 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 856 857 work = kmalloc(sizeof(*work), GFP_ATOMIC); 858 if (work) { 859 *work = *base_work; 860 work->nr_pages = nr_pages; 861 work->auto_free = 1; 862 wb_queue_work(wb, work); 863 continue; 864 } 865 866 /* alloc failed, execute synchronously using on-stack fallback */ 867 work = &fallback_work; 868 *work = *base_work; 869 work->nr_pages = nr_pages; 870 work->auto_free = 0; 871 work->done = &fallback_work_done; 872 873 wb_queue_work(wb, work); 874 875 /* 876 * Pin @wb so that it stays on @bdi->wb_list. This allows 877 * continuing iteration from @wb after dropping and 878 * regrabbing rcu read lock. 879 */ 880 wb_get(wb); 881 last_wb = wb; 882 883 rcu_read_unlock(); 884 wb_wait_for_completion(bdi, &fallback_work_done); 885 goto restart; 886 } 887 rcu_read_unlock(); 888 889 if (last_wb) 890 wb_put(last_wb); 891 } 892 893 /** 894 * cgroup_writeback_umount - flush inode wb switches for umount 895 * 896 * This function is called when a super_block is about to be destroyed and 897 * flushes in-flight inode wb switches. An inode wb switch goes through 898 * RCU and then workqueue, so the two need to be flushed in order to ensure 899 * that all previously scheduled switches are finished. As wb switches are 900 * rare occurrences and synchronize_rcu() can take a while, perform 901 * flushing iff wb switches are in flight. 902 */ 903 void cgroup_writeback_umount(void) 904 { 905 if (atomic_read(&isw_nr_in_flight)) { 906 /* 907 * Use rcu_barrier() to wait for all pending callbacks to 908 * ensure that all in-flight wb switches are in the workqueue. 909 */ 910 rcu_barrier(); 911 flush_workqueue(isw_wq); 912 } 913 } 914 915 static int __init cgroup_writeback_init(void) 916 { 917 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 918 if (!isw_wq) 919 return -ENOMEM; 920 return 0; 921 } 922 fs_initcall(cgroup_writeback_init); 923 924 #else /* CONFIG_CGROUP_WRITEBACK */ 925 926 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 927 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 928 929 static struct bdi_writeback * 930 locked_inode_to_wb_and_lock_list(struct inode *inode) 931 __releases(&inode->i_lock) 932 __acquires(&wb->list_lock) 933 { 934 struct bdi_writeback *wb = inode_to_wb(inode); 935 936 spin_unlock(&inode->i_lock); 937 spin_lock(&wb->list_lock); 938 return wb; 939 } 940 941 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 942 __acquires(&wb->list_lock) 943 { 944 struct bdi_writeback *wb = inode_to_wb(inode); 945 946 spin_lock(&wb->list_lock); 947 return wb; 948 } 949 950 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 951 { 952 return nr_pages; 953 } 954 955 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 956 struct wb_writeback_work *base_work, 957 bool skip_if_busy) 958 { 959 might_sleep(); 960 961 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 962 base_work->auto_free = 0; 963 wb_queue_work(&bdi->wb, base_work); 964 } 965 } 966 967 #endif /* CONFIG_CGROUP_WRITEBACK */ 968 969 /* 970 * Add in the number of potentially dirty inodes, because each inode 971 * write can dirty pagecache in the underlying blockdev. 972 */ 973 static unsigned long get_nr_dirty_pages(void) 974 { 975 return global_node_page_state(NR_FILE_DIRTY) + 976 global_node_page_state(NR_UNSTABLE_NFS) + 977 get_nr_dirty_inodes(); 978 } 979 980 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 981 { 982 if (!wb_has_dirty_io(wb)) 983 return; 984 985 /* 986 * All callers of this function want to start writeback of all 987 * dirty pages. Places like vmscan can call this at a very 988 * high frequency, causing pointless allocations of tons of 989 * work items and keeping the flusher threads busy retrieving 990 * that work. Ensure that we only allow one of them pending and 991 * inflight at the time. 992 */ 993 if (test_bit(WB_start_all, &wb->state) || 994 test_and_set_bit(WB_start_all, &wb->state)) 995 return; 996 997 wb->start_all_reason = reason; 998 wb_wakeup(wb); 999 } 1000 1001 /** 1002 * wb_start_background_writeback - start background writeback 1003 * @wb: bdi_writback to write from 1004 * 1005 * Description: 1006 * This makes sure WB_SYNC_NONE background writeback happens. When 1007 * this function returns, it is only guaranteed that for given wb 1008 * some IO is happening if we are over background dirty threshold. 1009 * Caller need not hold sb s_umount semaphore. 1010 */ 1011 void wb_start_background_writeback(struct bdi_writeback *wb) 1012 { 1013 /* 1014 * We just wake up the flusher thread. It will perform background 1015 * writeback as soon as there is no other work to do. 1016 */ 1017 trace_writeback_wake_background(wb); 1018 wb_wakeup(wb); 1019 } 1020 1021 /* 1022 * Remove the inode from the writeback list it is on. 1023 */ 1024 void inode_io_list_del(struct inode *inode) 1025 { 1026 struct bdi_writeback *wb; 1027 1028 wb = inode_to_wb_and_lock_list(inode); 1029 inode_io_list_del_locked(inode, wb); 1030 spin_unlock(&wb->list_lock); 1031 } 1032 1033 /* 1034 * mark an inode as under writeback on the sb 1035 */ 1036 void sb_mark_inode_writeback(struct inode *inode) 1037 { 1038 struct super_block *sb = inode->i_sb; 1039 unsigned long flags; 1040 1041 if (list_empty(&inode->i_wb_list)) { 1042 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1043 if (list_empty(&inode->i_wb_list)) { 1044 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1045 trace_sb_mark_inode_writeback(inode); 1046 } 1047 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1048 } 1049 } 1050 1051 /* 1052 * clear an inode as under writeback on the sb 1053 */ 1054 void sb_clear_inode_writeback(struct inode *inode) 1055 { 1056 struct super_block *sb = inode->i_sb; 1057 unsigned long flags; 1058 1059 if (!list_empty(&inode->i_wb_list)) { 1060 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1061 if (!list_empty(&inode->i_wb_list)) { 1062 list_del_init(&inode->i_wb_list); 1063 trace_sb_clear_inode_writeback(inode); 1064 } 1065 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1066 } 1067 } 1068 1069 /* 1070 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1071 * furthest end of its superblock's dirty-inode list. 1072 * 1073 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1074 * already the most-recently-dirtied inode on the b_dirty list. If that is 1075 * the case then the inode must have been redirtied while it was being written 1076 * out and we don't reset its dirtied_when. 1077 */ 1078 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1079 { 1080 if (!list_empty(&wb->b_dirty)) { 1081 struct inode *tail; 1082 1083 tail = wb_inode(wb->b_dirty.next); 1084 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1085 inode->dirtied_when = jiffies; 1086 } 1087 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1088 } 1089 1090 /* 1091 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1092 */ 1093 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1094 { 1095 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1096 } 1097 1098 static void inode_sync_complete(struct inode *inode) 1099 { 1100 inode->i_state &= ~I_SYNC; 1101 /* If inode is clean an unused, put it into LRU now... */ 1102 inode_add_lru(inode); 1103 /* Waiters must see I_SYNC cleared before being woken up */ 1104 smp_mb(); 1105 wake_up_bit(&inode->i_state, __I_SYNC); 1106 } 1107 1108 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1109 { 1110 bool ret = time_after(inode->dirtied_when, t); 1111 #ifndef CONFIG_64BIT 1112 /* 1113 * For inodes being constantly redirtied, dirtied_when can get stuck. 1114 * It _appears_ to be in the future, but is actually in distant past. 1115 * This test is necessary to prevent such wrapped-around relative times 1116 * from permanently stopping the whole bdi writeback. 1117 */ 1118 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1119 #endif 1120 return ret; 1121 } 1122 1123 #define EXPIRE_DIRTY_ATIME 0x0001 1124 1125 /* 1126 * Move expired (dirtied before work->older_than_this) dirty inodes from 1127 * @delaying_queue to @dispatch_queue. 1128 */ 1129 static int move_expired_inodes(struct list_head *delaying_queue, 1130 struct list_head *dispatch_queue, 1131 int flags, 1132 struct wb_writeback_work *work) 1133 { 1134 unsigned long *older_than_this = NULL; 1135 unsigned long expire_time; 1136 LIST_HEAD(tmp); 1137 struct list_head *pos, *node; 1138 struct super_block *sb = NULL; 1139 struct inode *inode; 1140 int do_sb_sort = 0; 1141 int moved = 0; 1142 1143 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1144 older_than_this = work->older_than_this; 1145 else if (!work->for_sync) { 1146 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1147 older_than_this = &expire_time; 1148 } 1149 while (!list_empty(delaying_queue)) { 1150 inode = wb_inode(delaying_queue->prev); 1151 if (older_than_this && 1152 inode_dirtied_after(inode, *older_than_this)) 1153 break; 1154 list_move(&inode->i_io_list, &tmp); 1155 moved++; 1156 if (flags & EXPIRE_DIRTY_ATIME) 1157 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1158 if (sb_is_blkdev_sb(inode->i_sb)) 1159 continue; 1160 if (sb && sb != inode->i_sb) 1161 do_sb_sort = 1; 1162 sb = inode->i_sb; 1163 } 1164 1165 /* just one sb in list, splice to dispatch_queue and we're done */ 1166 if (!do_sb_sort) { 1167 list_splice(&tmp, dispatch_queue); 1168 goto out; 1169 } 1170 1171 /* Move inodes from one superblock together */ 1172 while (!list_empty(&tmp)) { 1173 sb = wb_inode(tmp.prev)->i_sb; 1174 list_for_each_prev_safe(pos, node, &tmp) { 1175 inode = wb_inode(pos); 1176 if (inode->i_sb == sb) 1177 list_move(&inode->i_io_list, dispatch_queue); 1178 } 1179 } 1180 out: 1181 return moved; 1182 } 1183 1184 /* 1185 * Queue all expired dirty inodes for io, eldest first. 1186 * Before 1187 * newly dirtied b_dirty b_io b_more_io 1188 * =============> gf edc BA 1189 * After 1190 * newly dirtied b_dirty b_io b_more_io 1191 * =============> g fBAedc 1192 * | 1193 * +--> dequeue for IO 1194 */ 1195 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1196 { 1197 int moved; 1198 1199 assert_spin_locked(&wb->list_lock); 1200 list_splice_init(&wb->b_more_io, &wb->b_io); 1201 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1202 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1203 EXPIRE_DIRTY_ATIME, work); 1204 if (moved) 1205 wb_io_lists_populated(wb); 1206 trace_writeback_queue_io(wb, work, moved); 1207 } 1208 1209 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1210 { 1211 int ret; 1212 1213 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1214 trace_writeback_write_inode_start(inode, wbc); 1215 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1216 trace_writeback_write_inode(inode, wbc); 1217 return ret; 1218 } 1219 return 0; 1220 } 1221 1222 /* 1223 * Wait for writeback on an inode to complete. Called with i_lock held. 1224 * Caller must make sure inode cannot go away when we drop i_lock. 1225 */ 1226 static void __inode_wait_for_writeback(struct inode *inode) 1227 __releases(inode->i_lock) 1228 __acquires(inode->i_lock) 1229 { 1230 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1231 wait_queue_head_t *wqh; 1232 1233 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1234 while (inode->i_state & I_SYNC) { 1235 spin_unlock(&inode->i_lock); 1236 __wait_on_bit(wqh, &wq, bit_wait, 1237 TASK_UNINTERRUPTIBLE); 1238 spin_lock(&inode->i_lock); 1239 } 1240 } 1241 1242 /* 1243 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1244 */ 1245 void inode_wait_for_writeback(struct inode *inode) 1246 { 1247 spin_lock(&inode->i_lock); 1248 __inode_wait_for_writeback(inode); 1249 spin_unlock(&inode->i_lock); 1250 } 1251 1252 /* 1253 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1254 * held and drops it. It is aimed for callers not holding any inode reference 1255 * so once i_lock is dropped, inode can go away. 1256 */ 1257 static void inode_sleep_on_writeback(struct inode *inode) 1258 __releases(inode->i_lock) 1259 { 1260 DEFINE_WAIT(wait); 1261 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1262 int sleep; 1263 1264 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1265 sleep = inode->i_state & I_SYNC; 1266 spin_unlock(&inode->i_lock); 1267 if (sleep) 1268 schedule(); 1269 finish_wait(wqh, &wait); 1270 } 1271 1272 /* 1273 * Find proper writeback list for the inode depending on its current state and 1274 * possibly also change of its state while we were doing writeback. Here we 1275 * handle things such as livelock prevention or fairness of writeback among 1276 * inodes. This function can be called only by flusher thread - noone else 1277 * processes all inodes in writeback lists and requeueing inodes behind flusher 1278 * thread's back can have unexpected consequences. 1279 */ 1280 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1281 struct writeback_control *wbc) 1282 { 1283 if (inode->i_state & I_FREEING) 1284 return; 1285 1286 /* 1287 * Sync livelock prevention. Each inode is tagged and synced in one 1288 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1289 * the dirty time to prevent enqueue and sync it again. 1290 */ 1291 if ((inode->i_state & I_DIRTY) && 1292 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1293 inode->dirtied_when = jiffies; 1294 1295 if (wbc->pages_skipped) { 1296 /* 1297 * writeback is not making progress due to locked 1298 * buffers. Skip this inode for now. 1299 */ 1300 redirty_tail(inode, wb); 1301 return; 1302 } 1303 1304 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1305 /* 1306 * We didn't write back all the pages. nfs_writepages() 1307 * sometimes bales out without doing anything. 1308 */ 1309 if (wbc->nr_to_write <= 0) { 1310 /* Slice used up. Queue for next turn. */ 1311 requeue_io(inode, wb); 1312 } else { 1313 /* 1314 * Writeback blocked by something other than 1315 * congestion. Delay the inode for some time to 1316 * avoid spinning on the CPU (100% iowait) 1317 * retrying writeback of the dirty page/inode 1318 * that cannot be performed immediately. 1319 */ 1320 redirty_tail(inode, wb); 1321 } 1322 } else if (inode->i_state & I_DIRTY) { 1323 /* 1324 * Filesystems can dirty the inode during writeback operations, 1325 * such as delayed allocation during submission or metadata 1326 * updates after data IO completion. 1327 */ 1328 redirty_tail(inode, wb); 1329 } else if (inode->i_state & I_DIRTY_TIME) { 1330 inode->dirtied_when = jiffies; 1331 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1332 } else { 1333 /* The inode is clean. Remove from writeback lists. */ 1334 inode_io_list_del_locked(inode, wb); 1335 } 1336 } 1337 1338 /* 1339 * Write out an inode and its dirty pages. Do not update the writeback list 1340 * linkage. That is left to the caller. The caller is also responsible for 1341 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1342 */ 1343 static int 1344 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1345 { 1346 struct address_space *mapping = inode->i_mapping; 1347 long nr_to_write = wbc->nr_to_write; 1348 unsigned dirty; 1349 int ret; 1350 1351 WARN_ON(!(inode->i_state & I_SYNC)); 1352 1353 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1354 1355 ret = do_writepages(mapping, wbc); 1356 1357 /* 1358 * Make sure to wait on the data before writing out the metadata. 1359 * This is important for filesystems that modify metadata on data 1360 * I/O completion. We don't do it for sync(2) writeback because it has a 1361 * separate, external IO completion path and ->sync_fs for guaranteeing 1362 * inode metadata is written back correctly. 1363 */ 1364 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1365 int err = filemap_fdatawait(mapping); 1366 if (ret == 0) 1367 ret = err; 1368 } 1369 1370 /* 1371 * Some filesystems may redirty the inode during the writeback 1372 * due to delalloc, clear dirty metadata flags right before 1373 * write_inode() 1374 */ 1375 spin_lock(&inode->i_lock); 1376 1377 dirty = inode->i_state & I_DIRTY; 1378 if (inode->i_state & I_DIRTY_TIME) { 1379 if ((dirty & I_DIRTY_INODE) || 1380 wbc->sync_mode == WB_SYNC_ALL || 1381 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1382 unlikely(time_after(jiffies, 1383 (inode->dirtied_time_when + 1384 dirtytime_expire_interval * HZ)))) { 1385 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1386 trace_writeback_lazytime(inode); 1387 } 1388 } else 1389 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1390 inode->i_state &= ~dirty; 1391 1392 /* 1393 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1394 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1395 * either they see the I_DIRTY bits cleared or we see the dirtied 1396 * inode. 1397 * 1398 * I_DIRTY_PAGES is always cleared together above even if @mapping 1399 * still has dirty pages. The flag is reinstated after smp_mb() if 1400 * necessary. This guarantees that either __mark_inode_dirty() 1401 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1402 */ 1403 smp_mb(); 1404 1405 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1406 inode->i_state |= I_DIRTY_PAGES; 1407 1408 spin_unlock(&inode->i_lock); 1409 1410 if (dirty & I_DIRTY_TIME) 1411 mark_inode_dirty_sync(inode); 1412 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1413 if (dirty & ~I_DIRTY_PAGES) { 1414 int err = write_inode(inode, wbc); 1415 if (ret == 0) 1416 ret = err; 1417 } 1418 trace_writeback_single_inode(inode, wbc, nr_to_write); 1419 return ret; 1420 } 1421 1422 /* 1423 * Write out an inode's dirty pages. Either the caller has an active reference 1424 * on the inode or the inode has I_WILL_FREE set. 1425 * 1426 * This function is designed to be called for writing back one inode which 1427 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1428 * and does more profound writeback list handling in writeback_sb_inodes(). 1429 */ 1430 static int writeback_single_inode(struct inode *inode, 1431 struct writeback_control *wbc) 1432 { 1433 struct bdi_writeback *wb; 1434 int ret = 0; 1435 1436 spin_lock(&inode->i_lock); 1437 if (!atomic_read(&inode->i_count)) 1438 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1439 else 1440 WARN_ON(inode->i_state & I_WILL_FREE); 1441 1442 if (inode->i_state & I_SYNC) { 1443 if (wbc->sync_mode != WB_SYNC_ALL) 1444 goto out; 1445 /* 1446 * It's a data-integrity sync. We must wait. Since callers hold 1447 * inode reference or inode has I_WILL_FREE set, it cannot go 1448 * away under us. 1449 */ 1450 __inode_wait_for_writeback(inode); 1451 } 1452 WARN_ON(inode->i_state & I_SYNC); 1453 /* 1454 * Skip inode if it is clean and we have no outstanding writeback in 1455 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1456 * function since flusher thread may be doing for example sync in 1457 * parallel and if we move the inode, it could get skipped. So here we 1458 * make sure inode is on some writeback list and leave it there unless 1459 * we have completely cleaned the inode. 1460 */ 1461 if (!(inode->i_state & I_DIRTY_ALL) && 1462 (wbc->sync_mode != WB_SYNC_ALL || 1463 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1464 goto out; 1465 inode->i_state |= I_SYNC; 1466 wbc_attach_and_unlock_inode(wbc, inode); 1467 1468 ret = __writeback_single_inode(inode, wbc); 1469 1470 wbc_detach_inode(wbc); 1471 1472 wb = inode_to_wb_and_lock_list(inode); 1473 spin_lock(&inode->i_lock); 1474 /* 1475 * If inode is clean, remove it from writeback lists. Otherwise don't 1476 * touch it. See comment above for explanation. 1477 */ 1478 if (!(inode->i_state & I_DIRTY_ALL)) 1479 inode_io_list_del_locked(inode, wb); 1480 spin_unlock(&wb->list_lock); 1481 inode_sync_complete(inode); 1482 out: 1483 spin_unlock(&inode->i_lock); 1484 return ret; 1485 } 1486 1487 static long writeback_chunk_size(struct bdi_writeback *wb, 1488 struct wb_writeback_work *work) 1489 { 1490 long pages; 1491 1492 /* 1493 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1494 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1495 * here avoids calling into writeback_inodes_wb() more than once. 1496 * 1497 * The intended call sequence for WB_SYNC_ALL writeback is: 1498 * 1499 * wb_writeback() 1500 * writeback_sb_inodes() <== called only once 1501 * write_cache_pages() <== called once for each inode 1502 * (quickly) tag currently dirty pages 1503 * (maybe slowly) sync all tagged pages 1504 */ 1505 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1506 pages = LONG_MAX; 1507 else { 1508 pages = min(wb->avg_write_bandwidth / 2, 1509 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1510 pages = min(pages, work->nr_pages); 1511 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1512 MIN_WRITEBACK_PAGES); 1513 } 1514 1515 return pages; 1516 } 1517 1518 /* 1519 * Write a portion of b_io inodes which belong to @sb. 1520 * 1521 * Return the number of pages and/or inodes written. 1522 * 1523 * NOTE! This is called with wb->list_lock held, and will 1524 * unlock and relock that for each inode it ends up doing 1525 * IO for. 1526 */ 1527 static long writeback_sb_inodes(struct super_block *sb, 1528 struct bdi_writeback *wb, 1529 struct wb_writeback_work *work) 1530 { 1531 struct writeback_control wbc = { 1532 .sync_mode = work->sync_mode, 1533 .tagged_writepages = work->tagged_writepages, 1534 .for_kupdate = work->for_kupdate, 1535 .for_background = work->for_background, 1536 .for_sync = work->for_sync, 1537 .range_cyclic = work->range_cyclic, 1538 .range_start = 0, 1539 .range_end = LLONG_MAX, 1540 }; 1541 unsigned long start_time = jiffies; 1542 long write_chunk; 1543 long wrote = 0; /* count both pages and inodes */ 1544 1545 while (!list_empty(&wb->b_io)) { 1546 struct inode *inode = wb_inode(wb->b_io.prev); 1547 struct bdi_writeback *tmp_wb; 1548 1549 if (inode->i_sb != sb) { 1550 if (work->sb) { 1551 /* 1552 * We only want to write back data for this 1553 * superblock, move all inodes not belonging 1554 * to it back onto the dirty list. 1555 */ 1556 redirty_tail(inode, wb); 1557 continue; 1558 } 1559 1560 /* 1561 * The inode belongs to a different superblock. 1562 * Bounce back to the caller to unpin this and 1563 * pin the next superblock. 1564 */ 1565 break; 1566 } 1567 1568 /* 1569 * Don't bother with new inodes or inodes being freed, first 1570 * kind does not need periodic writeout yet, and for the latter 1571 * kind writeout is handled by the freer. 1572 */ 1573 spin_lock(&inode->i_lock); 1574 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1575 spin_unlock(&inode->i_lock); 1576 redirty_tail(inode, wb); 1577 continue; 1578 } 1579 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1580 /* 1581 * If this inode is locked for writeback and we are not 1582 * doing writeback-for-data-integrity, move it to 1583 * b_more_io so that writeback can proceed with the 1584 * other inodes on s_io. 1585 * 1586 * We'll have another go at writing back this inode 1587 * when we completed a full scan of b_io. 1588 */ 1589 spin_unlock(&inode->i_lock); 1590 requeue_io(inode, wb); 1591 trace_writeback_sb_inodes_requeue(inode); 1592 continue; 1593 } 1594 spin_unlock(&wb->list_lock); 1595 1596 /* 1597 * We already requeued the inode if it had I_SYNC set and we 1598 * are doing WB_SYNC_NONE writeback. So this catches only the 1599 * WB_SYNC_ALL case. 1600 */ 1601 if (inode->i_state & I_SYNC) { 1602 /* Wait for I_SYNC. This function drops i_lock... */ 1603 inode_sleep_on_writeback(inode); 1604 /* Inode may be gone, start again */ 1605 spin_lock(&wb->list_lock); 1606 continue; 1607 } 1608 inode->i_state |= I_SYNC; 1609 wbc_attach_and_unlock_inode(&wbc, inode); 1610 1611 write_chunk = writeback_chunk_size(wb, work); 1612 wbc.nr_to_write = write_chunk; 1613 wbc.pages_skipped = 0; 1614 1615 /* 1616 * We use I_SYNC to pin the inode in memory. While it is set 1617 * evict_inode() will wait so the inode cannot be freed. 1618 */ 1619 __writeback_single_inode(inode, &wbc); 1620 1621 wbc_detach_inode(&wbc); 1622 work->nr_pages -= write_chunk - wbc.nr_to_write; 1623 wrote += write_chunk - wbc.nr_to_write; 1624 1625 if (need_resched()) { 1626 /* 1627 * We're trying to balance between building up a nice 1628 * long list of IOs to improve our merge rate, and 1629 * getting those IOs out quickly for anyone throttling 1630 * in balance_dirty_pages(). cond_resched() doesn't 1631 * unplug, so get our IOs out the door before we 1632 * give up the CPU. 1633 */ 1634 blk_flush_plug(current); 1635 cond_resched(); 1636 } 1637 1638 /* 1639 * Requeue @inode if still dirty. Be careful as @inode may 1640 * have been switched to another wb in the meantime. 1641 */ 1642 tmp_wb = inode_to_wb_and_lock_list(inode); 1643 spin_lock(&inode->i_lock); 1644 if (!(inode->i_state & I_DIRTY_ALL)) 1645 wrote++; 1646 requeue_inode(inode, tmp_wb, &wbc); 1647 inode_sync_complete(inode); 1648 spin_unlock(&inode->i_lock); 1649 1650 if (unlikely(tmp_wb != wb)) { 1651 spin_unlock(&tmp_wb->list_lock); 1652 spin_lock(&wb->list_lock); 1653 } 1654 1655 /* 1656 * bail out to wb_writeback() often enough to check 1657 * background threshold and other termination conditions. 1658 */ 1659 if (wrote) { 1660 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1661 break; 1662 if (work->nr_pages <= 0) 1663 break; 1664 } 1665 } 1666 return wrote; 1667 } 1668 1669 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1670 struct wb_writeback_work *work) 1671 { 1672 unsigned long start_time = jiffies; 1673 long wrote = 0; 1674 1675 while (!list_empty(&wb->b_io)) { 1676 struct inode *inode = wb_inode(wb->b_io.prev); 1677 struct super_block *sb = inode->i_sb; 1678 1679 if (!trylock_super(sb)) { 1680 /* 1681 * trylock_super() may fail consistently due to 1682 * s_umount being grabbed by someone else. Don't use 1683 * requeue_io() to avoid busy retrying the inode/sb. 1684 */ 1685 redirty_tail(inode, wb); 1686 continue; 1687 } 1688 wrote += writeback_sb_inodes(sb, wb, work); 1689 up_read(&sb->s_umount); 1690 1691 /* refer to the same tests at the end of writeback_sb_inodes */ 1692 if (wrote) { 1693 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1694 break; 1695 if (work->nr_pages <= 0) 1696 break; 1697 } 1698 } 1699 /* Leave any unwritten inodes on b_io */ 1700 return wrote; 1701 } 1702 1703 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1704 enum wb_reason reason) 1705 { 1706 struct wb_writeback_work work = { 1707 .nr_pages = nr_pages, 1708 .sync_mode = WB_SYNC_NONE, 1709 .range_cyclic = 1, 1710 .reason = reason, 1711 }; 1712 struct blk_plug plug; 1713 1714 blk_start_plug(&plug); 1715 spin_lock(&wb->list_lock); 1716 if (list_empty(&wb->b_io)) 1717 queue_io(wb, &work); 1718 __writeback_inodes_wb(wb, &work); 1719 spin_unlock(&wb->list_lock); 1720 blk_finish_plug(&plug); 1721 1722 return nr_pages - work.nr_pages; 1723 } 1724 1725 /* 1726 * Explicit flushing or periodic writeback of "old" data. 1727 * 1728 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1729 * dirtying-time in the inode's address_space. So this periodic writeback code 1730 * just walks the superblock inode list, writing back any inodes which are 1731 * older than a specific point in time. 1732 * 1733 * Try to run once per dirty_writeback_interval. But if a writeback event 1734 * takes longer than a dirty_writeback_interval interval, then leave a 1735 * one-second gap. 1736 * 1737 * older_than_this takes precedence over nr_to_write. So we'll only write back 1738 * all dirty pages if they are all attached to "old" mappings. 1739 */ 1740 static long wb_writeback(struct bdi_writeback *wb, 1741 struct wb_writeback_work *work) 1742 { 1743 unsigned long wb_start = jiffies; 1744 long nr_pages = work->nr_pages; 1745 unsigned long oldest_jif; 1746 struct inode *inode; 1747 long progress; 1748 struct blk_plug plug; 1749 1750 oldest_jif = jiffies; 1751 work->older_than_this = &oldest_jif; 1752 1753 blk_start_plug(&plug); 1754 spin_lock(&wb->list_lock); 1755 for (;;) { 1756 /* 1757 * Stop writeback when nr_pages has been consumed 1758 */ 1759 if (work->nr_pages <= 0) 1760 break; 1761 1762 /* 1763 * Background writeout and kupdate-style writeback may 1764 * run forever. Stop them if there is other work to do 1765 * so that e.g. sync can proceed. They'll be restarted 1766 * after the other works are all done. 1767 */ 1768 if ((work->for_background || work->for_kupdate) && 1769 !list_empty(&wb->work_list)) 1770 break; 1771 1772 /* 1773 * For background writeout, stop when we are below the 1774 * background dirty threshold 1775 */ 1776 if (work->for_background && !wb_over_bg_thresh(wb)) 1777 break; 1778 1779 /* 1780 * Kupdate and background works are special and we want to 1781 * include all inodes that need writing. Livelock avoidance is 1782 * handled by these works yielding to any other work so we are 1783 * safe. 1784 */ 1785 if (work->for_kupdate) { 1786 oldest_jif = jiffies - 1787 msecs_to_jiffies(dirty_expire_interval * 10); 1788 } else if (work->for_background) 1789 oldest_jif = jiffies; 1790 1791 trace_writeback_start(wb, work); 1792 if (list_empty(&wb->b_io)) 1793 queue_io(wb, work); 1794 if (work->sb) 1795 progress = writeback_sb_inodes(work->sb, wb, work); 1796 else 1797 progress = __writeback_inodes_wb(wb, work); 1798 trace_writeback_written(wb, work); 1799 1800 wb_update_bandwidth(wb, wb_start); 1801 1802 /* 1803 * Did we write something? Try for more 1804 * 1805 * Dirty inodes are moved to b_io for writeback in batches. 1806 * The completion of the current batch does not necessarily 1807 * mean the overall work is done. So we keep looping as long 1808 * as made some progress on cleaning pages or inodes. 1809 */ 1810 if (progress) 1811 continue; 1812 /* 1813 * No more inodes for IO, bail 1814 */ 1815 if (list_empty(&wb->b_more_io)) 1816 break; 1817 /* 1818 * Nothing written. Wait for some inode to 1819 * become available for writeback. Otherwise 1820 * we'll just busyloop. 1821 */ 1822 trace_writeback_wait(wb, work); 1823 inode = wb_inode(wb->b_more_io.prev); 1824 spin_lock(&inode->i_lock); 1825 spin_unlock(&wb->list_lock); 1826 /* This function drops i_lock... */ 1827 inode_sleep_on_writeback(inode); 1828 spin_lock(&wb->list_lock); 1829 } 1830 spin_unlock(&wb->list_lock); 1831 blk_finish_plug(&plug); 1832 1833 return nr_pages - work->nr_pages; 1834 } 1835 1836 /* 1837 * Return the next wb_writeback_work struct that hasn't been processed yet. 1838 */ 1839 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1840 { 1841 struct wb_writeback_work *work = NULL; 1842 1843 spin_lock_bh(&wb->work_lock); 1844 if (!list_empty(&wb->work_list)) { 1845 work = list_entry(wb->work_list.next, 1846 struct wb_writeback_work, list); 1847 list_del_init(&work->list); 1848 } 1849 spin_unlock_bh(&wb->work_lock); 1850 return work; 1851 } 1852 1853 static long wb_check_background_flush(struct bdi_writeback *wb) 1854 { 1855 if (wb_over_bg_thresh(wb)) { 1856 1857 struct wb_writeback_work work = { 1858 .nr_pages = LONG_MAX, 1859 .sync_mode = WB_SYNC_NONE, 1860 .for_background = 1, 1861 .range_cyclic = 1, 1862 .reason = WB_REASON_BACKGROUND, 1863 }; 1864 1865 return wb_writeback(wb, &work); 1866 } 1867 1868 return 0; 1869 } 1870 1871 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1872 { 1873 unsigned long expired; 1874 long nr_pages; 1875 1876 /* 1877 * When set to zero, disable periodic writeback 1878 */ 1879 if (!dirty_writeback_interval) 1880 return 0; 1881 1882 expired = wb->last_old_flush + 1883 msecs_to_jiffies(dirty_writeback_interval * 10); 1884 if (time_before(jiffies, expired)) 1885 return 0; 1886 1887 wb->last_old_flush = jiffies; 1888 nr_pages = get_nr_dirty_pages(); 1889 1890 if (nr_pages) { 1891 struct wb_writeback_work work = { 1892 .nr_pages = nr_pages, 1893 .sync_mode = WB_SYNC_NONE, 1894 .for_kupdate = 1, 1895 .range_cyclic = 1, 1896 .reason = WB_REASON_PERIODIC, 1897 }; 1898 1899 return wb_writeback(wb, &work); 1900 } 1901 1902 return 0; 1903 } 1904 1905 static long wb_check_start_all(struct bdi_writeback *wb) 1906 { 1907 long nr_pages; 1908 1909 if (!test_bit(WB_start_all, &wb->state)) 1910 return 0; 1911 1912 nr_pages = get_nr_dirty_pages(); 1913 if (nr_pages) { 1914 struct wb_writeback_work work = { 1915 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1916 .sync_mode = WB_SYNC_NONE, 1917 .range_cyclic = 1, 1918 .reason = wb->start_all_reason, 1919 }; 1920 1921 nr_pages = wb_writeback(wb, &work); 1922 } 1923 1924 clear_bit(WB_start_all, &wb->state); 1925 return nr_pages; 1926 } 1927 1928 1929 /* 1930 * Retrieve work items and do the writeback they describe 1931 */ 1932 static long wb_do_writeback(struct bdi_writeback *wb) 1933 { 1934 struct wb_writeback_work *work; 1935 long wrote = 0; 1936 1937 set_bit(WB_writeback_running, &wb->state); 1938 while ((work = get_next_work_item(wb)) != NULL) { 1939 trace_writeback_exec(wb, work); 1940 wrote += wb_writeback(wb, work); 1941 finish_writeback_work(wb, work); 1942 } 1943 1944 /* 1945 * Check for a flush-everything request 1946 */ 1947 wrote += wb_check_start_all(wb); 1948 1949 /* 1950 * Check for periodic writeback, kupdated() style 1951 */ 1952 wrote += wb_check_old_data_flush(wb); 1953 wrote += wb_check_background_flush(wb); 1954 clear_bit(WB_writeback_running, &wb->state); 1955 1956 return wrote; 1957 } 1958 1959 /* 1960 * Handle writeback of dirty data for the device backed by this bdi. Also 1961 * reschedules periodically and does kupdated style flushing. 1962 */ 1963 void wb_workfn(struct work_struct *work) 1964 { 1965 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1966 struct bdi_writeback, dwork); 1967 long pages_written; 1968 1969 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1970 current->flags |= PF_SWAPWRITE; 1971 1972 if (likely(!current_is_workqueue_rescuer() || 1973 !test_bit(WB_registered, &wb->state))) { 1974 /* 1975 * The normal path. Keep writing back @wb until its 1976 * work_list is empty. Note that this path is also taken 1977 * if @wb is shutting down even when we're running off the 1978 * rescuer as work_list needs to be drained. 1979 */ 1980 do { 1981 pages_written = wb_do_writeback(wb); 1982 trace_writeback_pages_written(pages_written); 1983 } while (!list_empty(&wb->work_list)); 1984 } else { 1985 /* 1986 * bdi_wq can't get enough workers and we're running off 1987 * the emergency worker. Don't hog it. Hopefully, 1024 is 1988 * enough for efficient IO. 1989 */ 1990 pages_written = writeback_inodes_wb(wb, 1024, 1991 WB_REASON_FORKER_THREAD); 1992 trace_writeback_pages_written(pages_written); 1993 } 1994 1995 if (!list_empty(&wb->work_list)) 1996 wb_wakeup(wb); 1997 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1998 wb_wakeup_delayed(wb); 1999 2000 current->flags &= ~PF_SWAPWRITE; 2001 } 2002 2003 /* 2004 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2005 * write back the whole world. 2006 */ 2007 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2008 enum wb_reason reason) 2009 { 2010 struct bdi_writeback *wb; 2011 2012 if (!bdi_has_dirty_io(bdi)) 2013 return; 2014 2015 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2016 wb_start_writeback(wb, reason); 2017 } 2018 2019 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2020 enum wb_reason reason) 2021 { 2022 rcu_read_lock(); 2023 __wakeup_flusher_threads_bdi(bdi, reason); 2024 rcu_read_unlock(); 2025 } 2026 2027 /* 2028 * Wakeup the flusher threads to start writeback of all currently dirty pages 2029 */ 2030 void wakeup_flusher_threads(enum wb_reason reason) 2031 { 2032 struct backing_dev_info *bdi; 2033 2034 /* 2035 * If we are expecting writeback progress we must submit plugged IO. 2036 */ 2037 if (blk_needs_flush_plug(current)) 2038 blk_schedule_flush_plug(current); 2039 2040 rcu_read_lock(); 2041 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2042 __wakeup_flusher_threads_bdi(bdi, reason); 2043 rcu_read_unlock(); 2044 } 2045 2046 /* 2047 * Wake up bdi's periodically to make sure dirtytime inodes gets 2048 * written back periodically. We deliberately do *not* check the 2049 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2050 * kernel to be constantly waking up once there are any dirtytime 2051 * inodes on the system. So instead we define a separate delayed work 2052 * function which gets called much more rarely. (By default, only 2053 * once every 12 hours.) 2054 * 2055 * If there is any other write activity going on in the file system, 2056 * this function won't be necessary. But if the only thing that has 2057 * happened on the file system is a dirtytime inode caused by an atime 2058 * update, we need this infrastructure below to make sure that inode 2059 * eventually gets pushed out to disk. 2060 */ 2061 static void wakeup_dirtytime_writeback(struct work_struct *w); 2062 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2063 2064 static void wakeup_dirtytime_writeback(struct work_struct *w) 2065 { 2066 struct backing_dev_info *bdi; 2067 2068 rcu_read_lock(); 2069 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2070 struct bdi_writeback *wb; 2071 2072 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2073 if (!list_empty(&wb->b_dirty_time)) 2074 wb_wakeup(wb); 2075 } 2076 rcu_read_unlock(); 2077 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2078 } 2079 2080 static int __init start_dirtytime_writeback(void) 2081 { 2082 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2083 return 0; 2084 } 2085 __initcall(start_dirtytime_writeback); 2086 2087 int dirtytime_interval_handler(struct ctl_table *table, int write, 2088 void __user *buffer, size_t *lenp, loff_t *ppos) 2089 { 2090 int ret; 2091 2092 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2093 if (ret == 0 && write) 2094 mod_delayed_work(system_wq, &dirtytime_work, 0); 2095 return ret; 2096 } 2097 2098 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2099 { 2100 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2101 struct dentry *dentry; 2102 const char *name = "?"; 2103 2104 dentry = d_find_alias(inode); 2105 if (dentry) { 2106 spin_lock(&dentry->d_lock); 2107 name = (const char *) dentry->d_name.name; 2108 } 2109 printk(KERN_DEBUG 2110 "%s(%d): dirtied inode %lu (%s) on %s\n", 2111 current->comm, task_pid_nr(current), inode->i_ino, 2112 name, inode->i_sb->s_id); 2113 if (dentry) { 2114 spin_unlock(&dentry->d_lock); 2115 dput(dentry); 2116 } 2117 } 2118 } 2119 2120 /** 2121 * __mark_inode_dirty - internal function 2122 * 2123 * @inode: inode to mark 2124 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2125 * 2126 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2127 * mark_inode_dirty_sync. 2128 * 2129 * Put the inode on the super block's dirty list. 2130 * 2131 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2132 * dirty list only if it is hashed or if it refers to a blockdev. 2133 * If it was not hashed, it will never be added to the dirty list 2134 * even if it is later hashed, as it will have been marked dirty already. 2135 * 2136 * In short, make sure you hash any inodes _before_ you start marking 2137 * them dirty. 2138 * 2139 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2140 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2141 * the kernel-internal blockdev inode represents the dirtying time of the 2142 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2143 * page->mapping->host, so the page-dirtying time is recorded in the internal 2144 * blockdev inode. 2145 */ 2146 void __mark_inode_dirty(struct inode *inode, int flags) 2147 { 2148 struct super_block *sb = inode->i_sb; 2149 int dirtytime; 2150 2151 trace_writeback_mark_inode_dirty(inode, flags); 2152 2153 /* 2154 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2155 * dirty the inode itself 2156 */ 2157 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2158 trace_writeback_dirty_inode_start(inode, flags); 2159 2160 if (sb->s_op->dirty_inode) 2161 sb->s_op->dirty_inode(inode, flags); 2162 2163 trace_writeback_dirty_inode(inode, flags); 2164 } 2165 if (flags & I_DIRTY_INODE) 2166 flags &= ~I_DIRTY_TIME; 2167 dirtytime = flags & I_DIRTY_TIME; 2168 2169 /* 2170 * Paired with smp_mb() in __writeback_single_inode() for the 2171 * following lockless i_state test. See there for details. 2172 */ 2173 smp_mb(); 2174 2175 if (((inode->i_state & flags) == flags) || 2176 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2177 return; 2178 2179 if (unlikely(block_dump)) 2180 block_dump___mark_inode_dirty(inode); 2181 2182 spin_lock(&inode->i_lock); 2183 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2184 goto out_unlock_inode; 2185 if ((inode->i_state & flags) != flags) { 2186 const int was_dirty = inode->i_state & I_DIRTY; 2187 2188 inode_attach_wb(inode, NULL); 2189 2190 if (flags & I_DIRTY_INODE) 2191 inode->i_state &= ~I_DIRTY_TIME; 2192 inode->i_state |= flags; 2193 2194 /* 2195 * If the inode is being synced, just update its dirty state. 2196 * The unlocker will place the inode on the appropriate 2197 * superblock list, based upon its state. 2198 */ 2199 if (inode->i_state & I_SYNC) 2200 goto out_unlock_inode; 2201 2202 /* 2203 * Only add valid (hashed) inodes to the superblock's 2204 * dirty list. Add blockdev inodes as well. 2205 */ 2206 if (!S_ISBLK(inode->i_mode)) { 2207 if (inode_unhashed(inode)) 2208 goto out_unlock_inode; 2209 } 2210 if (inode->i_state & I_FREEING) 2211 goto out_unlock_inode; 2212 2213 /* 2214 * If the inode was already on b_dirty/b_io/b_more_io, don't 2215 * reposition it (that would break b_dirty time-ordering). 2216 */ 2217 if (!was_dirty) { 2218 struct bdi_writeback *wb; 2219 struct list_head *dirty_list; 2220 bool wakeup_bdi = false; 2221 2222 wb = locked_inode_to_wb_and_lock_list(inode); 2223 2224 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2225 !test_bit(WB_registered, &wb->state), 2226 "bdi-%s not registered\n", wb->bdi->name); 2227 2228 inode->dirtied_when = jiffies; 2229 if (dirtytime) 2230 inode->dirtied_time_when = jiffies; 2231 2232 if (inode->i_state & I_DIRTY) 2233 dirty_list = &wb->b_dirty; 2234 else 2235 dirty_list = &wb->b_dirty_time; 2236 2237 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2238 dirty_list); 2239 2240 spin_unlock(&wb->list_lock); 2241 trace_writeback_dirty_inode_enqueue(inode); 2242 2243 /* 2244 * If this is the first dirty inode for this bdi, 2245 * we have to wake-up the corresponding bdi thread 2246 * to make sure background write-back happens 2247 * later. 2248 */ 2249 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2250 wb_wakeup_delayed(wb); 2251 return; 2252 } 2253 } 2254 out_unlock_inode: 2255 spin_unlock(&inode->i_lock); 2256 } 2257 EXPORT_SYMBOL(__mark_inode_dirty); 2258 2259 /* 2260 * The @s_sync_lock is used to serialise concurrent sync operations 2261 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2262 * Concurrent callers will block on the s_sync_lock rather than doing contending 2263 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2264 * has been issued up to the time this function is enter is guaranteed to be 2265 * completed by the time we have gained the lock and waited for all IO that is 2266 * in progress regardless of the order callers are granted the lock. 2267 */ 2268 static void wait_sb_inodes(struct super_block *sb) 2269 { 2270 LIST_HEAD(sync_list); 2271 2272 /* 2273 * We need to be protected against the filesystem going from 2274 * r/o to r/w or vice versa. 2275 */ 2276 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2277 2278 mutex_lock(&sb->s_sync_lock); 2279 2280 /* 2281 * Splice the writeback list onto a temporary list to avoid waiting on 2282 * inodes that have started writeback after this point. 2283 * 2284 * Use rcu_read_lock() to keep the inodes around until we have a 2285 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2286 * the local list because inodes can be dropped from either by writeback 2287 * completion. 2288 */ 2289 rcu_read_lock(); 2290 spin_lock_irq(&sb->s_inode_wblist_lock); 2291 list_splice_init(&sb->s_inodes_wb, &sync_list); 2292 2293 /* 2294 * Data integrity sync. Must wait for all pages under writeback, because 2295 * there may have been pages dirtied before our sync call, but which had 2296 * writeout started before we write it out. In which case, the inode 2297 * may not be on the dirty list, but we still have to wait for that 2298 * writeout. 2299 */ 2300 while (!list_empty(&sync_list)) { 2301 struct inode *inode = list_first_entry(&sync_list, struct inode, 2302 i_wb_list); 2303 struct address_space *mapping = inode->i_mapping; 2304 2305 /* 2306 * Move each inode back to the wb list before we drop the lock 2307 * to preserve consistency between i_wb_list and the mapping 2308 * writeback tag. Writeback completion is responsible to remove 2309 * the inode from either list once the writeback tag is cleared. 2310 */ 2311 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2312 2313 /* 2314 * The mapping can appear untagged while still on-list since we 2315 * do not have the mapping lock. Skip it here, wb completion 2316 * will remove it. 2317 */ 2318 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2319 continue; 2320 2321 spin_unlock_irq(&sb->s_inode_wblist_lock); 2322 2323 spin_lock(&inode->i_lock); 2324 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2325 spin_unlock(&inode->i_lock); 2326 2327 spin_lock_irq(&sb->s_inode_wblist_lock); 2328 continue; 2329 } 2330 __iget(inode); 2331 spin_unlock(&inode->i_lock); 2332 rcu_read_unlock(); 2333 2334 /* 2335 * We keep the error status of individual mapping so that 2336 * applications can catch the writeback error using fsync(2). 2337 * See filemap_fdatawait_keep_errors() for details. 2338 */ 2339 filemap_fdatawait_keep_errors(mapping); 2340 2341 cond_resched(); 2342 2343 iput(inode); 2344 2345 rcu_read_lock(); 2346 spin_lock_irq(&sb->s_inode_wblist_lock); 2347 } 2348 spin_unlock_irq(&sb->s_inode_wblist_lock); 2349 rcu_read_unlock(); 2350 mutex_unlock(&sb->s_sync_lock); 2351 } 2352 2353 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2354 enum wb_reason reason, bool skip_if_busy) 2355 { 2356 DEFINE_WB_COMPLETION_ONSTACK(done); 2357 struct wb_writeback_work work = { 2358 .sb = sb, 2359 .sync_mode = WB_SYNC_NONE, 2360 .tagged_writepages = 1, 2361 .done = &done, 2362 .nr_pages = nr, 2363 .reason = reason, 2364 }; 2365 struct backing_dev_info *bdi = sb->s_bdi; 2366 2367 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2368 return; 2369 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2370 2371 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2372 wb_wait_for_completion(bdi, &done); 2373 } 2374 2375 /** 2376 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2377 * @sb: the superblock 2378 * @nr: the number of pages to write 2379 * @reason: reason why some writeback work initiated 2380 * 2381 * Start writeback on some inodes on this super_block. No guarantees are made 2382 * on how many (if any) will be written, and this function does not wait 2383 * for IO completion of submitted IO. 2384 */ 2385 void writeback_inodes_sb_nr(struct super_block *sb, 2386 unsigned long nr, 2387 enum wb_reason reason) 2388 { 2389 __writeback_inodes_sb_nr(sb, nr, reason, false); 2390 } 2391 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2392 2393 /** 2394 * writeback_inodes_sb - writeback dirty inodes from given super_block 2395 * @sb: the superblock 2396 * @reason: reason why some writeback work was initiated 2397 * 2398 * Start writeback on some inodes on this super_block. No guarantees are made 2399 * on how many (if any) will be written, and this function does not wait 2400 * for IO completion of submitted IO. 2401 */ 2402 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2403 { 2404 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2405 } 2406 EXPORT_SYMBOL(writeback_inodes_sb); 2407 2408 /** 2409 * try_to_writeback_inodes_sb - try to start writeback if none underway 2410 * @sb: the superblock 2411 * @reason: reason why some writeback work was initiated 2412 * 2413 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2414 */ 2415 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2416 { 2417 if (!down_read_trylock(&sb->s_umount)) 2418 return; 2419 2420 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2421 up_read(&sb->s_umount); 2422 } 2423 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2424 2425 /** 2426 * sync_inodes_sb - sync sb inode pages 2427 * @sb: the superblock 2428 * 2429 * This function writes and waits on any dirty inode belonging to this 2430 * super_block. 2431 */ 2432 void sync_inodes_sb(struct super_block *sb) 2433 { 2434 DEFINE_WB_COMPLETION_ONSTACK(done); 2435 struct wb_writeback_work work = { 2436 .sb = sb, 2437 .sync_mode = WB_SYNC_ALL, 2438 .nr_pages = LONG_MAX, 2439 .range_cyclic = 0, 2440 .done = &done, 2441 .reason = WB_REASON_SYNC, 2442 .for_sync = 1, 2443 }; 2444 struct backing_dev_info *bdi = sb->s_bdi; 2445 2446 /* 2447 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2448 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2449 * bdi_has_dirty() need to be written out too. 2450 */ 2451 if (bdi == &noop_backing_dev_info) 2452 return; 2453 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2454 2455 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2456 bdi_down_write_wb_switch_rwsem(bdi); 2457 bdi_split_work_to_wbs(bdi, &work, false); 2458 wb_wait_for_completion(bdi, &done); 2459 bdi_up_write_wb_switch_rwsem(bdi); 2460 2461 wait_sb_inodes(sb); 2462 } 2463 EXPORT_SYMBOL(sync_inodes_sb); 2464 2465 /** 2466 * write_inode_now - write an inode to disk 2467 * @inode: inode to write to disk 2468 * @sync: whether the write should be synchronous or not 2469 * 2470 * This function commits an inode to disk immediately if it is dirty. This is 2471 * primarily needed by knfsd. 2472 * 2473 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2474 */ 2475 int write_inode_now(struct inode *inode, int sync) 2476 { 2477 struct writeback_control wbc = { 2478 .nr_to_write = LONG_MAX, 2479 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2480 .range_start = 0, 2481 .range_end = LLONG_MAX, 2482 }; 2483 2484 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2485 wbc.nr_to_write = 0; 2486 2487 might_sleep(); 2488 return writeback_single_inode(inode, &wbc); 2489 } 2490 EXPORT_SYMBOL(write_inode_now); 2491 2492 /** 2493 * sync_inode - write an inode and its pages to disk. 2494 * @inode: the inode to sync 2495 * @wbc: controls the writeback mode 2496 * 2497 * sync_inode() will write an inode and its pages to disk. It will also 2498 * correctly update the inode on its superblock's dirty inode lists and will 2499 * update inode->i_state. 2500 * 2501 * The caller must have a ref on the inode. 2502 */ 2503 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2504 { 2505 return writeback_single_inode(inode, wbc); 2506 } 2507 EXPORT_SYMBOL(sync_inode); 2508 2509 /** 2510 * sync_inode_metadata - write an inode to disk 2511 * @inode: the inode to sync 2512 * @wait: wait for I/O to complete. 2513 * 2514 * Write an inode to disk and adjust its dirty state after completion. 2515 * 2516 * Note: only writes the actual inode, no associated data or other metadata. 2517 */ 2518 int sync_inode_metadata(struct inode *inode, int wait) 2519 { 2520 struct writeback_control wbc = { 2521 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2522 .nr_to_write = 0, /* metadata-only */ 2523 }; 2524 2525 return sync_inode(inode, &wbc); 2526 } 2527 EXPORT_SYMBOL(sync_inode_metadata); 2528