1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 56 57 /* 58 * We don't actually have pdflush, but this one is exported though /proc... 59 */ 60 int nr_pdflush_threads; 61 62 /** 63 * writeback_in_progress - determine whether there is writeback in progress 64 * @bdi: the device's backing_dev_info structure. 65 * 66 * Determine whether there is writeback waiting to be handled against a 67 * backing device. 68 */ 69 int writeback_in_progress(struct backing_dev_info *bdi) 70 { 71 return !list_empty(&bdi->work_list); 72 } 73 74 static void bdi_queue_work(struct backing_dev_info *bdi, 75 struct wb_writeback_work *work) 76 { 77 trace_writeback_queue(bdi, work); 78 79 spin_lock_bh(&bdi->wb_lock); 80 list_add_tail(&work->list, &bdi->work_list); 81 if (bdi->wb.task) { 82 wake_up_process(bdi->wb.task); 83 } else { 84 /* 85 * The bdi thread isn't there, wake up the forker thread which 86 * will create and run it. 87 */ 88 trace_writeback_nothread(bdi, work); 89 wake_up_process(default_backing_dev_info.wb.task); 90 } 91 spin_unlock_bh(&bdi->wb_lock); 92 } 93 94 static void 95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 96 bool range_cyclic, bool for_background) 97 { 98 struct wb_writeback_work *work; 99 100 /* 101 * This is WB_SYNC_NONE writeback, so if allocation fails just 102 * wakeup the thread for old dirty data writeback 103 */ 104 work = kzalloc(sizeof(*work), GFP_ATOMIC); 105 if (!work) { 106 if (bdi->wb.task) { 107 trace_writeback_nowork(bdi); 108 wake_up_process(bdi->wb.task); 109 } 110 return; 111 } 112 113 work->sync_mode = WB_SYNC_NONE; 114 work->nr_pages = nr_pages; 115 work->range_cyclic = range_cyclic; 116 work->for_background = for_background; 117 118 bdi_queue_work(bdi, work); 119 } 120 121 /** 122 * bdi_start_writeback - start writeback 123 * @bdi: the backing device to write from 124 * @nr_pages: the number of pages to write 125 * 126 * Description: 127 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 128 * started when this function returns, we make no guarentees on 129 * completion. Caller need not hold sb s_umount semaphore. 130 * 131 */ 132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 133 { 134 __bdi_start_writeback(bdi, nr_pages, true, false); 135 } 136 137 /** 138 * bdi_start_background_writeback - start background writeback 139 * @bdi: the backing device to write from 140 * 141 * Description: 142 * This does WB_SYNC_NONE background writeback. The IO is only 143 * started when this function returns, we make no guarentees on 144 * completion. Caller need not hold sb s_umount semaphore. 145 */ 146 void bdi_start_background_writeback(struct backing_dev_info *bdi) 147 { 148 __bdi_start_writeback(bdi, LONG_MAX, true, true); 149 } 150 151 /* 152 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 153 * furthest end of its superblock's dirty-inode list. 154 * 155 * Before stamping the inode's ->dirtied_when, we check to see whether it is 156 * already the most-recently-dirtied inode on the b_dirty list. If that is 157 * the case then the inode must have been redirtied while it was being written 158 * out and we don't reset its dirtied_when. 159 */ 160 static void redirty_tail(struct inode *inode) 161 { 162 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 163 164 if (!list_empty(&wb->b_dirty)) { 165 struct inode *tail; 166 167 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 168 if (time_before(inode->dirtied_when, tail->dirtied_when)) 169 inode->dirtied_when = jiffies; 170 } 171 list_move(&inode->i_list, &wb->b_dirty); 172 } 173 174 /* 175 * requeue inode for re-scanning after bdi->b_io list is exhausted. 176 */ 177 static void requeue_io(struct inode *inode) 178 { 179 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 180 181 list_move(&inode->i_list, &wb->b_more_io); 182 } 183 184 static void inode_sync_complete(struct inode *inode) 185 { 186 /* 187 * Prevent speculative execution through spin_unlock(&inode_lock); 188 */ 189 smp_mb(); 190 wake_up_bit(&inode->i_state, __I_SYNC); 191 } 192 193 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 194 { 195 bool ret = time_after(inode->dirtied_when, t); 196 #ifndef CONFIG_64BIT 197 /* 198 * For inodes being constantly redirtied, dirtied_when can get stuck. 199 * It _appears_ to be in the future, but is actually in distant past. 200 * This test is necessary to prevent such wrapped-around relative times 201 * from permanently stopping the whole bdi writeback. 202 */ 203 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 204 #endif 205 return ret; 206 } 207 208 /* 209 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 210 */ 211 static void move_expired_inodes(struct list_head *delaying_queue, 212 struct list_head *dispatch_queue, 213 unsigned long *older_than_this) 214 { 215 LIST_HEAD(tmp); 216 struct list_head *pos, *node; 217 struct super_block *sb = NULL; 218 struct inode *inode; 219 int do_sb_sort = 0; 220 221 while (!list_empty(delaying_queue)) { 222 inode = list_entry(delaying_queue->prev, struct inode, i_list); 223 if (older_than_this && 224 inode_dirtied_after(inode, *older_than_this)) 225 break; 226 if (sb && sb != inode->i_sb) 227 do_sb_sort = 1; 228 sb = inode->i_sb; 229 list_move(&inode->i_list, &tmp); 230 } 231 232 /* just one sb in list, splice to dispatch_queue and we're done */ 233 if (!do_sb_sort) { 234 list_splice(&tmp, dispatch_queue); 235 return; 236 } 237 238 /* Move inodes from one superblock together */ 239 while (!list_empty(&tmp)) { 240 inode = list_entry(tmp.prev, struct inode, i_list); 241 sb = inode->i_sb; 242 list_for_each_prev_safe(pos, node, &tmp) { 243 inode = list_entry(pos, struct inode, i_list); 244 if (inode->i_sb == sb) 245 list_move(&inode->i_list, dispatch_queue); 246 } 247 } 248 } 249 250 /* 251 * Queue all expired dirty inodes for io, eldest first. 252 */ 253 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 254 { 255 list_splice_init(&wb->b_more_io, wb->b_io.prev); 256 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 257 } 258 259 static int write_inode(struct inode *inode, struct writeback_control *wbc) 260 { 261 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 262 return inode->i_sb->s_op->write_inode(inode, wbc); 263 return 0; 264 } 265 266 /* 267 * Wait for writeback on an inode to complete. 268 */ 269 static void inode_wait_for_writeback(struct inode *inode) 270 { 271 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 272 wait_queue_head_t *wqh; 273 274 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 275 while (inode->i_state & I_SYNC) { 276 spin_unlock(&inode_lock); 277 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 278 spin_lock(&inode_lock); 279 } 280 } 281 282 /* 283 * Write out an inode's dirty pages. Called under inode_lock. Either the 284 * caller has ref on the inode (either via __iget or via syscall against an fd) 285 * or the inode has I_WILL_FREE set (via generic_forget_inode) 286 * 287 * If `wait' is set, wait on the writeout. 288 * 289 * The whole writeout design is quite complex and fragile. We want to avoid 290 * starvation of particular inodes when others are being redirtied, prevent 291 * livelocks, etc. 292 * 293 * Called under inode_lock. 294 */ 295 static int 296 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 297 { 298 struct address_space *mapping = inode->i_mapping; 299 unsigned dirty; 300 int ret; 301 302 if (!atomic_read(&inode->i_count)) 303 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 304 else 305 WARN_ON(inode->i_state & I_WILL_FREE); 306 307 if (inode->i_state & I_SYNC) { 308 /* 309 * If this inode is locked for writeback and we are not doing 310 * writeback-for-data-integrity, move it to b_more_io so that 311 * writeback can proceed with the other inodes on s_io. 312 * 313 * We'll have another go at writing back this inode when we 314 * completed a full scan of b_io. 315 */ 316 if (wbc->sync_mode != WB_SYNC_ALL) { 317 requeue_io(inode); 318 return 0; 319 } 320 321 /* 322 * It's a data-integrity sync. We must wait. 323 */ 324 inode_wait_for_writeback(inode); 325 } 326 327 BUG_ON(inode->i_state & I_SYNC); 328 329 /* Set I_SYNC, reset I_DIRTY_PAGES */ 330 inode->i_state |= I_SYNC; 331 inode->i_state &= ~I_DIRTY_PAGES; 332 spin_unlock(&inode_lock); 333 334 ret = do_writepages(mapping, wbc); 335 336 /* 337 * Make sure to wait on the data before writing out the metadata. 338 * This is important for filesystems that modify metadata on data 339 * I/O completion. 340 */ 341 if (wbc->sync_mode == WB_SYNC_ALL) { 342 int err = filemap_fdatawait(mapping); 343 if (ret == 0) 344 ret = err; 345 } 346 347 /* 348 * Some filesystems may redirty the inode during the writeback 349 * due to delalloc, clear dirty metadata flags right before 350 * write_inode() 351 */ 352 spin_lock(&inode_lock); 353 dirty = inode->i_state & I_DIRTY; 354 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 355 spin_unlock(&inode_lock); 356 /* Don't write the inode if only I_DIRTY_PAGES was set */ 357 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 358 int err = write_inode(inode, wbc); 359 if (ret == 0) 360 ret = err; 361 } 362 363 spin_lock(&inode_lock); 364 inode->i_state &= ~I_SYNC; 365 if (!(inode->i_state & I_FREEING)) { 366 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 367 /* 368 * More pages get dirtied by a fast dirtier. 369 */ 370 goto select_queue; 371 } else if (inode->i_state & I_DIRTY) { 372 /* 373 * At least XFS will redirty the inode during the 374 * writeback (delalloc) and on io completion (isize). 375 */ 376 redirty_tail(inode); 377 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 378 /* 379 * We didn't write back all the pages. nfs_writepages() 380 * sometimes bales out without doing anything. Redirty 381 * the inode; Move it from b_io onto b_more_io/b_dirty. 382 */ 383 /* 384 * akpm: if the caller was the kupdate function we put 385 * this inode at the head of b_dirty so it gets first 386 * consideration. Otherwise, move it to the tail, for 387 * the reasons described there. I'm not really sure 388 * how much sense this makes. Presumably I had a good 389 * reasons for doing it this way, and I'd rather not 390 * muck with it at present. 391 */ 392 if (wbc->for_kupdate) { 393 /* 394 * For the kupdate function we move the inode 395 * to b_more_io so it will get more writeout as 396 * soon as the queue becomes uncongested. 397 */ 398 inode->i_state |= I_DIRTY_PAGES; 399 select_queue: 400 if (wbc->nr_to_write <= 0) { 401 /* 402 * slice used up: queue for next turn 403 */ 404 requeue_io(inode); 405 } else { 406 /* 407 * somehow blocked: retry later 408 */ 409 redirty_tail(inode); 410 } 411 } else { 412 /* 413 * Otherwise fully redirty the inode so that 414 * other inodes on this superblock will get some 415 * writeout. Otherwise heavy writing to one 416 * file would indefinitely suspend writeout of 417 * all the other files. 418 */ 419 inode->i_state |= I_DIRTY_PAGES; 420 redirty_tail(inode); 421 } 422 } else if (atomic_read(&inode->i_count)) { 423 /* 424 * The inode is clean, inuse 425 */ 426 list_move(&inode->i_list, &inode_in_use); 427 } else { 428 /* 429 * The inode is clean, unused 430 */ 431 list_move(&inode->i_list, &inode_unused); 432 } 433 } 434 inode_sync_complete(inode); 435 return ret; 436 } 437 438 /* 439 * For background writeback the caller does not have the sb pinned 440 * before calling writeback. So make sure that we do pin it, so it doesn't 441 * go away while we are writing inodes from it. 442 */ 443 static bool pin_sb_for_writeback(struct super_block *sb) 444 { 445 spin_lock(&sb_lock); 446 if (list_empty(&sb->s_instances)) { 447 spin_unlock(&sb_lock); 448 return false; 449 } 450 451 sb->s_count++; 452 spin_unlock(&sb_lock); 453 454 if (down_read_trylock(&sb->s_umount)) { 455 if (sb->s_root) 456 return true; 457 up_read(&sb->s_umount); 458 } 459 460 put_super(sb); 461 return false; 462 } 463 464 /* 465 * Write a portion of b_io inodes which belong to @sb. 466 * 467 * If @only_this_sb is true, then find and write all such 468 * inodes. Otherwise write only ones which go sequentially 469 * in reverse order. 470 * 471 * Return 1, if the caller writeback routine should be 472 * interrupted. Otherwise return 0. 473 */ 474 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 475 struct writeback_control *wbc, bool only_this_sb) 476 { 477 while (!list_empty(&wb->b_io)) { 478 long pages_skipped; 479 struct inode *inode = list_entry(wb->b_io.prev, 480 struct inode, i_list); 481 482 if (inode->i_sb != sb) { 483 if (only_this_sb) { 484 /* 485 * We only want to write back data for this 486 * superblock, move all inodes not belonging 487 * to it back onto the dirty list. 488 */ 489 redirty_tail(inode); 490 continue; 491 } 492 493 /* 494 * The inode belongs to a different superblock. 495 * Bounce back to the caller to unpin this and 496 * pin the next superblock. 497 */ 498 return 0; 499 } 500 501 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 502 requeue_io(inode); 503 continue; 504 } 505 /* 506 * Was this inode dirtied after sync_sb_inodes was called? 507 * This keeps sync from extra jobs and livelock. 508 */ 509 if (inode_dirtied_after(inode, wbc->wb_start)) 510 return 1; 511 512 BUG_ON(inode->i_state & I_FREEING); 513 __iget(inode); 514 pages_skipped = wbc->pages_skipped; 515 writeback_single_inode(inode, wbc); 516 if (wbc->pages_skipped != pages_skipped) { 517 /* 518 * writeback is not making progress due to locked 519 * buffers. Skip this inode for now. 520 */ 521 redirty_tail(inode); 522 } 523 spin_unlock(&inode_lock); 524 iput(inode); 525 cond_resched(); 526 spin_lock(&inode_lock); 527 if (wbc->nr_to_write <= 0) { 528 wbc->more_io = 1; 529 return 1; 530 } 531 if (!list_empty(&wb->b_more_io)) 532 wbc->more_io = 1; 533 } 534 /* b_io is empty */ 535 return 1; 536 } 537 538 void writeback_inodes_wb(struct bdi_writeback *wb, 539 struct writeback_control *wbc) 540 { 541 int ret = 0; 542 543 if (!wbc->wb_start) 544 wbc->wb_start = jiffies; /* livelock avoidance */ 545 spin_lock(&inode_lock); 546 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 547 queue_io(wb, wbc->older_than_this); 548 549 while (!list_empty(&wb->b_io)) { 550 struct inode *inode = list_entry(wb->b_io.prev, 551 struct inode, i_list); 552 struct super_block *sb = inode->i_sb; 553 554 if (!pin_sb_for_writeback(sb)) { 555 requeue_io(inode); 556 continue; 557 } 558 ret = writeback_sb_inodes(sb, wb, wbc, false); 559 drop_super(sb); 560 561 if (ret) 562 break; 563 } 564 spin_unlock(&inode_lock); 565 /* Leave any unwritten inodes on b_io */ 566 } 567 568 static void __writeback_inodes_sb(struct super_block *sb, 569 struct bdi_writeback *wb, struct writeback_control *wbc) 570 { 571 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 572 573 spin_lock(&inode_lock); 574 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 575 queue_io(wb, wbc->older_than_this); 576 writeback_sb_inodes(sb, wb, wbc, true); 577 spin_unlock(&inode_lock); 578 } 579 580 /* 581 * The maximum number of pages to writeout in a single bdi flush/kupdate 582 * operation. We do this so we don't hold I_SYNC against an inode for 583 * enormous amounts of time, which would block a userspace task which has 584 * been forced to throttle against that inode. Also, the code reevaluates 585 * the dirty each time it has written this many pages. 586 */ 587 #define MAX_WRITEBACK_PAGES 1024 588 589 static inline bool over_bground_thresh(void) 590 { 591 unsigned long background_thresh, dirty_thresh; 592 593 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 594 595 return (global_page_state(NR_FILE_DIRTY) + 596 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 597 } 598 599 /* 600 * Explicit flushing or periodic writeback of "old" data. 601 * 602 * Define "old": the first time one of an inode's pages is dirtied, we mark the 603 * dirtying-time in the inode's address_space. So this periodic writeback code 604 * just walks the superblock inode list, writing back any inodes which are 605 * older than a specific point in time. 606 * 607 * Try to run once per dirty_writeback_interval. But if a writeback event 608 * takes longer than a dirty_writeback_interval interval, then leave a 609 * one-second gap. 610 * 611 * older_than_this takes precedence over nr_to_write. So we'll only write back 612 * all dirty pages if they are all attached to "old" mappings. 613 */ 614 static long wb_writeback(struct bdi_writeback *wb, 615 struct wb_writeback_work *work) 616 { 617 struct writeback_control wbc = { 618 .sync_mode = work->sync_mode, 619 .older_than_this = NULL, 620 .for_kupdate = work->for_kupdate, 621 .for_background = work->for_background, 622 .range_cyclic = work->range_cyclic, 623 }; 624 unsigned long oldest_jif; 625 long wrote = 0; 626 struct inode *inode; 627 628 if (wbc.for_kupdate) { 629 wbc.older_than_this = &oldest_jif; 630 oldest_jif = jiffies - 631 msecs_to_jiffies(dirty_expire_interval * 10); 632 } 633 if (!wbc.range_cyclic) { 634 wbc.range_start = 0; 635 wbc.range_end = LLONG_MAX; 636 } 637 638 wbc.wb_start = jiffies; /* livelock avoidance */ 639 for (;;) { 640 /* 641 * Stop writeback when nr_pages has been consumed 642 */ 643 if (work->nr_pages <= 0) 644 break; 645 646 /* 647 * For background writeout, stop when we are below the 648 * background dirty threshold 649 */ 650 if (work->for_background && !over_bground_thresh()) 651 break; 652 653 wbc.more_io = 0; 654 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 655 wbc.pages_skipped = 0; 656 657 trace_wbc_writeback_start(&wbc, wb->bdi); 658 if (work->sb) 659 __writeback_inodes_sb(work->sb, wb, &wbc); 660 else 661 writeback_inodes_wb(wb, &wbc); 662 trace_wbc_writeback_written(&wbc, wb->bdi); 663 664 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 665 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 666 667 /* 668 * If we consumed everything, see if we have more 669 */ 670 if (wbc.nr_to_write <= 0) 671 continue; 672 /* 673 * Didn't write everything and we don't have more IO, bail 674 */ 675 if (!wbc.more_io) 676 break; 677 /* 678 * Did we write something? Try for more 679 */ 680 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 681 continue; 682 /* 683 * Nothing written. Wait for some inode to 684 * become available for writeback. Otherwise 685 * we'll just busyloop. 686 */ 687 spin_lock(&inode_lock); 688 if (!list_empty(&wb->b_more_io)) { 689 inode = list_entry(wb->b_more_io.prev, 690 struct inode, i_list); 691 trace_wbc_writeback_wait(&wbc, wb->bdi); 692 inode_wait_for_writeback(inode); 693 } 694 spin_unlock(&inode_lock); 695 } 696 697 return wrote; 698 } 699 700 /* 701 * Return the next wb_writeback_work struct that hasn't been processed yet. 702 */ 703 static struct wb_writeback_work * 704 get_next_work_item(struct backing_dev_info *bdi) 705 { 706 struct wb_writeback_work *work = NULL; 707 708 spin_lock_bh(&bdi->wb_lock); 709 if (!list_empty(&bdi->work_list)) { 710 work = list_entry(bdi->work_list.next, 711 struct wb_writeback_work, list); 712 list_del_init(&work->list); 713 } 714 spin_unlock_bh(&bdi->wb_lock); 715 return work; 716 } 717 718 static long wb_check_old_data_flush(struct bdi_writeback *wb) 719 { 720 unsigned long expired; 721 long nr_pages; 722 723 /* 724 * When set to zero, disable periodic writeback 725 */ 726 if (!dirty_writeback_interval) 727 return 0; 728 729 expired = wb->last_old_flush + 730 msecs_to_jiffies(dirty_writeback_interval * 10); 731 if (time_before(jiffies, expired)) 732 return 0; 733 734 wb->last_old_flush = jiffies; 735 nr_pages = global_page_state(NR_FILE_DIRTY) + 736 global_page_state(NR_UNSTABLE_NFS) + 737 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 738 739 if (nr_pages) { 740 struct wb_writeback_work work = { 741 .nr_pages = nr_pages, 742 .sync_mode = WB_SYNC_NONE, 743 .for_kupdate = 1, 744 .range_cyclic = 1, 745 }; 746 747 return wb_writeback(wb, &work); 748 } 749 750 return 0; 751 } 752 753 /* 754 * Retrieve work items and do the writeback they describe 755 */ 756 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 757 { 758 struct backing_dev_info *bdi = wb->bdi; 759 struct wb_writeback_work *work; 760 long wrote = 0; 761 762 while ((work = get_next_work_item(bdi)) != NULL) { 763 /* 764 * Override sync mode, in case we must wait for completion 765 * because this thread is exiting now. 766 */ 767 if (force_wait) 768 work->sync_mode = WB_SYNC_ALL; 769 770 trace_writeback_exec(bdi, work); 771 772 wrote += wb_writeback(wb, work); 773 774 /* 775 * Notify the caller of completion if this is a synchronous 776 * work item, otherwise just free it. 777 */ 778 if (work->done) 779 complete(work->done); 780 else 781 kfree(work); 782 } 783 784 /* 785 * Check for periodic writeback, kupdated() style 786 */ 787 wrote += wb_check_old_data_flush(wb); 788 789 return wrote; 790 } 791 792 /* 793 * Handle writeback of dirty data for the device backed by this bdi. Also 794 * wakes up periodically and does kupdated style flushing. 795 */ 796 int bdi_writeback_thread(void *data) 797 { 798 struct bdi_writeback *wb = data; 799 struct backing_dev_info *bdi = wb->bdi; 800 long pages_written; 801 802 current->flags |= PF_FLUSHER | PF_SWAPWRITE; 803 set_freezable(); 804 wb->last_active = jiffies; 805 806 /* 807 * Our parent may run at a different priority, just set us to normal 808 */ 809 set_user_nice(current, 0); 810 811 trace_writeback_thread_start(bdi); 812 813 while (!kthread_should_stop()) { 814 /* 815 * Remove own delayed wake-up timer, since we are already awake 816 * and we'll take care of the preriodic write-back. 817 */ 818 del_timer(&wb->wakeup_timer); 819 820 pages_written = wb_do_writeback(wb, 0); 821 822 trace_writeback_pages_written(pages_written); 823 824 if (pages_written) 825 wb->last_active = jiffies; 826 827 set_current_state(TASK_INTERRUPTIBLE); 828 if (!list_empty(&bdi->work_list)) { 829 __set_current_state(TASK_RUNNING); 830 continue; 831 } 832 833 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 834 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 835 else { 836 /* 837 * We have nothing to do, so can go sleep without any 838 * timeout and save power. When a work is queued or 839 * something is made dirty - we will be woken up. 840 */ 841 schedule(); 842 } 843 844 try_to_freeze(); 845 } 846 847 /* Flush any work that raced with us exiting */ 848 if (!list_empty(&bdi->work_list)) 849 wb_do_writeback(wb, 1); 850 851 trace_writeback_thread_stop(bdi); 852 return 0; 853 } 854 855 856 /* 857 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 858 * the whole world. 859 */ 860 void wakeup_flusher_threads(long nr_pages) 861 { 862 struct backing_dev_info *bdi; 863 864 if (!nr_pages) { 865 nr_pages = global_page_state(NR_FILE_DIRTY) + 866 global_page_state(NR_UNSTABLE_NFS); 867 } 868 869 rcu_read_lock(); 870 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 871 if (!bdi_has_dirty_io(bdi)) 872 continue; 873 __bdi_start_writeback(bdi, nr_pages, false, false); 874 } 875 rcu_read_unlock(); 876 } 877 878 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 879 { 880 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 881 struct dentry *dentry; 882 const char *name = "?"; 883 884 dentry = d_find_alias(inode); 885 if (dentry) { 886 spin_lock(&dentry->d_lock); 887 name = (const char *) dentry->d_name.name; 888 } 889 printk(KERN_DEBUG 890 "%s(%d): dirtied inode %lu (%s) on %s\n", 891 current->comm, task_pid_nr(current), inode->i_ino, 892 name, inode->i_sb->s_id); 893 if (dentry) { 894 spin_unlock(&dentry->d_lock); 895 dput(dentry); 896 } 897 } 898 } 899 900 /** 901 * __mark_inode_dirty - internal function 902 * @inode: inode to mark 903 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 904 * Mark an inode as dirty. Callers should use mark_inode_dirty or 905 * mark_inode_dirty_sync. 906 * 907 * Put the inode on the super block's dirty list. 908 * 909 * CAREFUL! We mark it dirty unconditionally, but move it onto the 910 * dirty list only if it is hashed or if it refers to a blockdev. 911 * If it was not hashed, it will never be added to the dirty list 912 * even if it is later hashed, as it will have been marked dirty already. 913 * 914 * In short, make sure you hash any inodes _before_ you start marking 915 * them dirty. 916 * 917 * This function *must* be atomic for the I_DIRTY_PAGES case - 918 * set_page_dirty() is called under spinlock in several places. 919 * 920 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 921 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 922 * the kernel-internal blockdev inode represents the dirtying time of the 923 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 924 * page->mapping->host, so the page-dirtying time is recorded in the internal 925 * blockdev inode. 926 */ 927 void __mark_inode_dirty(struct inode *inode, int flags) 928 { 929 struct super_block *sb = inode->i_sb; 930 struct backing_dev_info *bdi = NULL; 931 bool wakeup_bdi = false; 932 933 /* 934 * Don't do this for I_DIRTY_PAGES - that doesn't actually 935 * dirty the inode itself 936 */ 937 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 938 if (sb->s_op->dirty_inode) 939 sb->s_op->dirty_inode(inode); 940 } 941 942 /* 943 * make sure that changes are seen by all cpus before we test i_state 944 * -- mikulas 945 */ 946 smp_mb(); 947 948 /* avoid the locking if we can */ 949 if ((inode->i_state & flags) == flags) 950 return; 951 952 if (unlikely(block_dump)) 953 block_dump___mark_inode_dirty(inode); 954 955 spin_lock(&inode_lock); 956 if ((inode->i_state & flags) != flags) { 957 const int was_dirty = inode->i_state & I_DIRTY; 958 959 inode->i_state |= flags; 960 961 /* 962 * If the inode is being synced, just update its dirty state. 963 * The unlocker will place the inode on the appropriate 964 * superblock list, based upon its state. 965 */ 966 if (inode->i_state & I_SYNC) 967 goto out; 968 969 /* 970 * Only add valid (hashed) inodes to the superblock's 971 * dirty list. Add blockdev inodes as well. 972 */ 973 if (!S_ISBLK(inode->i_mode)) { 974 if (hlist_unhashed(&inode->i_hash)) 975 goto out; 976 } 977 if (inode->i_state & I_FREEING) 978 goto out; 979 980 /* 981 * If the inode was already on b_dirty/b_io/b_more_io, don't 982 * reposition it (that would break b_dirty time-ordering). 983 */ 984 if (!was_dirty) { 985 bdi = inode_to_bdi(inode); 986 987 if (bdi_cap_writeback_dirty(bdi)) { 988 WARN(!test_bit(BDI_registered, &bdi->state), 989 "bdi-%s not registered\n", bdi->name); 990 991 /* 992 * If this is the first dirty inode for this 993 * bdi, we have to wake-up the corresponding 994 * bdi thread to make sure background 995 * write-back happens later. 996 */ 997 if (!wb_has_dirty_io(&bdi->wb)) 998 wakeup_bdi = true; 999 } 1000 1001 inode->dirtied_when = jiffies; 1002 list_move(&inode->i_list, &bdi->wb.b_dirty); 1003 } 1004 } 1005 out: 1006 spin_unlock(&inode_lock); 1007 1008 if (wakeup_bdi) 1009 bdi_wakeup_thread_delayed(bdi); 1010 } 1011 EXPORT_SYMBOL(__mark_inode_dirty); 1012 1013 /* 1014 * Write out a superblock's list of dirty inodes. A wait will be performed 1015 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1016 * 1017 * If older_than_this is non-NULL, then only write out inodes which 1018 * had their first dirtying at a time earlier than *older_than_this. 1019 * 1020 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1021 * This function assumes that the blockdev superblock's inodes are backed by 1022 * a variety of queues, so all inodes are searched. For other superblocks, 1023 * assume that all inodes are backed by the same queue. 1024 * 1025 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1026 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1027 * on the writer throttling path, and we get decent balancing between many 1028 * throttled threads: we don't want them all piling up on inode_sync_wait. 1029 */ 1030 static void wait_sb_inodes(struct super_block *sb) 1031 { 1032 struct inode *inode, *old_inode = NULL; 1033 1034 /* 1035 * We need to be protected against the filesystem going from 1036 * r/o to r/w or vice versa. 1037 */ 1038 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1039 1040 spin_lock(&inode_lock); 1041 1042 /* 1043 * Data integrity sync. Must wait for all pages under writeback, 1044 * because there may have been pages dirtied before our sync 1045 * call, but which had writeout started before we write it out. 1046 * In which case, the inode may not be on the dirty list, but 1047 * we still have to wait for that writeout. 1048 */ 1049 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1050 struct address_space *mapping; 1051 1052 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) 1053 continue; 1054 mapping = inode->i_mapping; 1055 if (mapping->nrpages == 0) 1056 continue; 1057 __iget(inode); 1058 spin_unlock(&inode_lock); 1059 /* 1060 * We hold a reference to 'inode' so it couldn't have 1061 * been removed from s_inodes list while we dropped the 1062 * inode_lock. We cannot iput the inode now as we can 1063 * be holding the last reference and we cannot iput it 1064 * under inode_lock. So we keep the reference and iput 1065 * it later. 1066 */ 1067 iput(old_inode); 1068 old_inode = inode; 1069 1070 filemap_fdatawait(mapping); 1071 1072 cond_resched(); 1073 1074 spin_lock(&inode_lock); 1075 } 1076 spin_unlock(&inode_lock); 1077 iput(old_inode); 1078 } 1079 1080 /** 1081 * writeback_inodes_sb - writeback dirty inodes from given super_block 1082 * @sb: the superblock 1083 * 1084 * Start writeback on some inodes on this super_block. No guarantees are made 1085 * on how many (if any) will be written, and this function does not wait 1086 * for IO completion of submitted IO. The number of pages submitted is 1087 * returned. 1088 */ 1089 void writeback_inodes_sb(struct super_block *sb) 1090 { 1091 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1092 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1093 DECLARE_COMPLETION_ONSTACK(done); 1094 struct wb_writeback_work work = { 1095 .sb = sb, 1096 .sync_mode = WB_SYNC_NONE, 1097 .done = &done, 1098 }; 1099 1100 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1101 1102 work.nr_pages = nr_dirty + nr_unstable + 1103 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1104 1105 bdi_queue_work(sb->s_bdi, &work); 1106 wait_for_completion(&done); 1107 } 1108 EXPORT_SYMBOL(writeback_inodes_sb); 1109 1110 /** 1111 * writeback_inodes_sb_if_idle - start writeback if none underway 1112 * @sb: the superblock 1113 * 1114 * Invoke writeback_inodes_sb if no writeback is currently underway. 1115 * Returns 1 if writeback was started, 0 if not. 1116 */ 1117 int writeback_inodes_sb_if_idle(struct super_block *sb) 1118 { 1119 if (!writeback_in_progress(sb->s_bdi)) { 1120 down_read(&sb->s_umount); 1121 writeback_inodes_sb(sb); 1122 up_read(&sb->s_umount); 1123 return 1; 1124 } else 1125 return 0; 1126 } 1127 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1128 1129 /** 1130 * sync_inodes_sb - sync sb inode pages 1131 * @sb: the superblock 1132 * 1133 * This function writes and waits on any dirty inode belonging to this 1134 * super_block. The number of pages synced is returned. 1135 */ 1136 void sync_inodes_sb(struct super_block *sb) 1137 { 1138 DECLARE_COMPLETION_ONSTACK(done); 1139 struct wb_writeback_work work = { 1140 .sb = sb, 1141 .sync_mode = WB_SYNC_ALL, 1142 .nr_pages = LONG_MAX, 1143 .range_cyclic = 0, 1144 .done = &done, 1145 }; 1146 1147 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1148 1149 bdi_queue_work(sb->s_bdi, &work); 1150 wait_for_completion(&done); 1151 1152 wait_sb_inodes(sb); 1153 } 1154 EXPORT_SYMBOL(sync_inodes_sb); 1155 1156 /** 1157 * write_inode_now - write an inode to disk 1158 * @inode: inode to write to disk 1159 * @sync: whether the write should be synchronous or not 1160 * 1161 * This function commits an inode to disk immediately if it is dirty. This is 1162 * primarily needed by knfsd. 1163 * 1164 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1165 */ 1166 int write_inode_now(struct inode *inode, int sync) 1167 { 1168 int ret; 1169 struct writeback_control wbc = { 1170 .nr_to_write = LONG_MAX, 1171 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1172 .range_start = 0, 1173 .range_end = LLONG_MAX, 1174 }; 1175 1176 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1177 wbc.nr_to_write = 0; 1178 1179 might_sleep(); 1180 spin_lock(&inode_lock); 1181 ret = writeback_single_inode(inode, &wbc); 1182 spin_unlock(&inode_lock); 1183 if (sync) 1184 inode_sync_wait(inode); 1185 return ret; 1186 } 1187 EXPORT_SYMBOL(write_inode_now); 1188 1189 /** 1190 * sync_inode - write an inode and its pages to disk. 1191 * @inode: the inode to sync 1192 * @wbc: controls the writeback mode 1193 * 1194 * sync_inode() will write an inode and its pages to disk. It will also 1195 * correctly update the inode on its superblock's dirty inode lists and will 1196 * update inode->i_state. 1197 * 1198 * The caller must have a ref on the inode. 1199 */ 1200 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1201 { 1202 int ret; 1203 1204 spin_lock(&inode_lock); 1205 ret = writeback_single_inode(inode, wbc); 1206 spin_unlock(&inode_lock); 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(sync_inode); 1210