xref: /linux/fs/fs-writeback.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
56 
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61 
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 	return !list_empty(&bdi->work_list);
72 }
73 
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75 		struct wb_writeback_work *work)
76 {
77 	trace_writeback_queue(bdi, work);
78 
79 	spin_lock_bh(&bdi->wb_lock);
80 	list_add_tail(&work->list, &bdi->work_list);
81 	if (bdi->wb.task) {
82 		wake_up_process(bdi->wb.task);
83 	} else {
84 		/*
85 		 * The bdi thread isn't there, wake up the forker thread which
86 		 * will create and run it.
87 		 */
88 		trace_writeback_nothread(bdi, work);
89 		wake_up_process(default_backing_dev_info.wb.task);
90 	}
91 	spin_unlock_bh(&bdi->wb_lock);
92 }
93 
94 static void
95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
96 		bool range_cyclic, bool for_background)
97 {
98 	struct wb_writeback_work *work;
99 
100 	/*
101 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
102 	 * wakeup the thread for old dirty data writeback
103 	 */
104 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
105 	if (!work) {
106 		if (bdi->wb.task) {
107 			trace_writeback_nowork(bdi);
108 			wake_up_process(bdi->wb.task);
109 		}
110 		return;
111 	}
112 
113 	work->sync_mode	= WB_SYNC_NONE;
114 	work->nr_pages	= nr_pages;
115 	work->range_cyclic = range_cyclic;
116 	work->for_background = for_background;
117 
118 	bdi_queue_work(bdi, work);
119 }
120 
121 /**
122  * bdi_start_writeback - start writeback
123  * @bdi: the backing device to write from
124  * @nr_pages: the number of pages to write
125  *
126  * Description:
127  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
128  *   started when this function returns, we make no guarentees on
129  *   completion. Caller need not hold sb s_umount semaphore.
130  *
131  */
132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
133 {
134 	__bdi_start_writeback(bdi, nr_pages, true, false);
135 }
136 
137 /**
138  * bdi_start_background_writeback - start background writeback
139  * @bdi: the backing device to write from
140  *
141  * Description:
142  *   This does WB_SYNC_NONE background writeback. The IO is only
143  *   started when this function returns, we make no guarentees on
144  *   completion. Caller need not hold sb s_umount semaphore.
145  */
146 void bdi_start_background_writeback(struct backing_dev_info *bdi)
147 {
148 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
149 }
150 
151 /*
152  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
153  * furthest end of its superblock's dirty-inode list.
154  *
155  * Before stamping the inode's ->dirtied_when, we check to see whether it is
156  * already the most-recently-dirtied inode on the b_dirty list.  If that is
157  * the case then the inode must have been redirtied while it was being written
158  * out and we don't reset its dirtied_when.
159  */
160 static void redirty_tail(struct inode *inode)
161 {
162 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
163 
164 	if (!list_empty(&wb->b_dirty)) {
165 		struct inode *tail;
166 
167 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
168 		if (time_before(inode->dirtied_when, tail->dirtied_when))
169 			inode->dirtied_when = jiffies;
170 	}
171 	list_move(&inode->i_list, &wb->b_dirty);
172 }
173 
174 /*
175  * requeue inode for re-scanning after bdi->b_io list is exhausted.
176  */
177 static void requeue_io(struct inode *inode)
178 {
179 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
180 
181 	list_move(&inode->i_list, &wb->b_more_io);
182 }
183 
184 static void inode_sync_complete(struct inode *inode)
185 {
186 	/*
187 	 * Prevent speculative execution through spin_unlock(&inode_lock);
188 	 */
189 	smp_mb();
190 	wake_up_bit(&inode->i_state, __I_SYNC);
191 }
192 
193 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
194 {
195 	bool ret = time_after(inode->dirtied_when, t);
196 #ifndef CONFIG_64BIT
197 	/*
198 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
199 	 * It _appears_ to be in the future, but is actually in distant past.
200 	 * This test is necessary to prevent such wrapped-around relative times
201 	 * from permanently stopping the whole bdi writeback.
202 	 */
203 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
204 #endif
205 	return ret;
206 }
207 
208 /*
209  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
210  */
211 static void move_expired_inodes(struct list_head *delaying_queue,
212 			       struct list_head *dispatch_queue,
213 				unsigned long *older_than_this)
214 {
215 	LIST_HEAD(tmp);
216 	struct list_head *pos, *node;
217 	struct super_block *sb = NULL;
218 	struct inode *inode;
219 	int do_sb_sort = 0;
220 
221 	while (!list_empty(delaying_queue)) {
222 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
223 		if (older_than_this &&
224 		    inode_dirtied_after(inode, *older_than_this))
225 			break;
226 		if (sb && sb != inode->i_sb)
227 			do_sb_sort = 1;
228 		sb = inode->i_sb;
229 		list_move(&inode->i_list, &tmp);
230 	}
231 
232 	/* just one sb in list, splice to dispatch_queue and we're done */
233 	if (!do_sb_sort) {
234 		list_splice(&tmp, dispatch_queue);
235 		return;
236 	}
237 
238 	/* Move inodes from one superblock together */
239 	while (!list_empty(&tmp)) {
240 		inode = list_entry(tmp.prev, struct inode, i_list);
241 		sb = inode->i_sb;
242 		list_for_each_prev_safe(pos, node, &tmp) {
243 			inode = list_entry(pos, struct inode, i_list);
244 			if (inode->i_sb == sb)
245 				list_move(&inode->i_list, dispatch_queue);
246 		}
247 	}
248 }
249 
250 /*
251  * Queue all expired dirty inodes for io, eldest first.
252  */
253 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
254 {
255 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
256 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
257 }
258 
259 static int write_inode(struct inode *inode, struct writeback_control *wbc)
260 {
261 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
262 		return inode->i_sb->s_op->write_inode(inode, wbc);
263 	return 0;
264 }
265 
266 /*
267  * Wait for writeback on an inode to complete.
268  */
269 static void inode_wait_for_writeback(struct inode *inode)
270 {
271 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
272 	wait_queue_head_t *wqh;
273 
274 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
275 	 while (inode->i_state & I_SYNC) {
276 		spin_unlock(&inode_lock);
277 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
278 		spin_lock(&inode_lock);
279 	}
280 }
281 
282 /*
283  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
284  * caller has ref on the inode (either via __iget or via syscall against an fd)
285  * or the inode has I_WILL_FREE set (via generic_forget_inode)
286  *
287  * If `wait' is set, wait on the writeout.
288  *
289  * The whole writeout design is quite complex and fragile.  We want to avoid
290  * starvation of particular inodes when others are being redirtied, prevent
291  * livelocks, etc.
292  *
293  * Called under inode_lock.
294  */
295 static int
296 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 	struct address_space *mapping = inode->i_mapping;
299 	unsigned dirty;
300 	int ret;
301 
302 	if (!atomic_read(&inode->i_count))
303 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
304 	else
305 		WARN_ON(inode->i_state & I_WILL_FREE);
306 
307 	if (inode->i_state & I_SYNC) {
308 		/*
309 		 * If this inode is locked for writeback and we are not doing
310 		 * writeback-for-data-integrity, move it to b_more_io so that
311 		 * writeback can proceed with the other inodes on s_io.
312 		 *
313 		 * We'll have another go at writing back this inode when we
314 		 * completed a full scan of b_io.
315 		 */
316 		if (wbc->sync_mode != WB_SYNC_ALL) {
317 			requeue_io(inode);
318 			return 0;
319 		}
320 
321 		/*
322 		 * It's a data-integrity sync.  We must wait.
323 		 */
324 		inode_wait_for_writeback(inode);
325 	}
326 
327 	BUG_ON(inode->i_state & I_SYNC);
328 
329 	/* Set I_SYNC, reset I_DIRTY_PAGES */
330 	inode->i_state |= I_SYNC;
331 	inode->i_state &= ~I_DIRTY_PAGES;
332 	spin_unlock(&inode_lock);
333 
334 	ret = do_writepages(mapping, wbc);
335 
336 	/*
337 	 * Make sure to wait on the data before writing out the metadata.
338 	 * This is important for filesystems that modify metadata on data
339 	 * I/O completion.
340 	 */
341 	if (wbc->sync_mode == WB_SYNC_ALL) {
342 		int err = filemap_fdatawait(mapping);
343 		if (ret == 0)
344 			ret = err;
345 	}
346 
347 	/*
348 	 * Some filesystems may redirty the inode during the writeback
349 	 * due to delalloc, clear dirty metadata flags right before
350 	 * write_inode()
351 	 */
352 	spin_lock(&inode_lock);
353 	dirty = inode->i_state & I_DIRTY;
354 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
355 	spin_unlock(&inode_lock);
356 	/* Don't write the inode if only I_DIRTY_PAGES was set */
357 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
358 		int err = write_inode(inode, wbc);
359 		if (ret == 0)
360 			ret = err;
361 	}
362 
363 	spin_lock(&inode_lock);
364 	inode->i_state &= ~I_SYNC;
365 	if (!(inode->i_state & I_FREEING)) {
366 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
367 			/*
368 			 * More pages get dirtied by a fast dirtier.
369 			 */
370 			goto select_queue;
371 		} else if (inode->i_state & I_DIRTY) {
372 			/*
373 			 * At least XFS will redirty the inode during the
374 			 * writeback (delalloc) and on io completion (isize).
375 			 */
376 			redirty_tail(inode);
377 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
378 			/*
379 			 * We didn't write back all the pages.  nfs_writepages()
380 			 * sometimes bales out without doing anything. Redirty
381 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
382 			 */
383 			/*
384 			 * akpm: if the caller was the kupdate function we put
385 			 * this inode at the head of b_dirty so it gets first
386 			 * consideration.  Otherwise, move it to the tail, for
387 			 * the reasons described there.  I'm not really sure
388 			 * how much sense this makes.  Presumably I had a good
389 			 * reasons for doing it this way, and I'd rather not
390 			 * muck with it at present.
391 			 */
392 			if (wbc->for_kupdate) {
393 				/*
394 				 * For the kupdate function we move the inode
395 				 * to b_more_io so it will get more writeout as
396 				 * soon as the queue becomes uncongested.
397 				 */
398 				inode->i_state |= I_DIRTY_PAGES;
399 select_queue:
400 				if (wbc->nr_to_write <= 0) {
401 					/*
402 					 * slice used up: queue for next turn
403 					 */
404 					requeue_io(inode);
405 				} else {
406 					/*
407 					 * somehow blocked: retry later
408 					 */
409 					redirty_tail(inode);
410 				}
411 			} else {
412 				/*
413 				 * Otherwise fully redirty the inode so that
414 				 * other inodes on this superblock will get some
415 				 * writeout.  Otherwise heavy writing to one
416 				 * file would indefinitely suspend writeout of
417 				 * all the other files.
418 				 */
419 				inode->i_state |= I_DIRTY_PAGES;
420 				redirty_tail(inode);
421 			}
422 		} else if (atomic_read(&inode->i_count)) {
423 			/*
424 			 * The inode is clean, inuse
425 			 */
426 			list_move(&inode->i_list, &inode_in_use);
427 		} else {
428 			/*
429 			 * The inode is clean, unused
430 			 */
431 			list_move(&inode->i_list, &inode_unused);
432 		}
433 	}
434 	inode_sync_complete(inode);
435 	return ret;
436 }
437 
438 /*
439  * For background writeback the caller does not have the sb pinned
440  * before calling writeback. So make sure that we do pin it, so it doesn't
441  * go away while we are writing inodes from it.
442  */
443 static bool pin_sb_for_writeback(struct super_block *sb)
444 {
445 	spin_lock(&sb_lock);
446 	if (list_empty(&sb->s_instances)) {
447 		spin_unlock(&sb_lock);
448 		return false;
449 	}
450 
451 	sb->s_count++;
452 	spin_unlock(&sb_lock);
453 
454 	if (down_read_trylock(&sb->s_umount)) {
455 		if (sb->s_root)
456 			return true;
457 		up_read(&sb->s_umount);
458 	}
459 
460 	put_super(sb);
461 	return false;
462 }
463 
464 /*
465  * Write a portion of b_io inodes which belong to @sb.
466  *
467  * If @only_this_sb is true, then find and write all such
468  * inodes. Otherwise write only ones which go sequentially
469  * in reverse order.
470  *
471  * Return 1, if the caller writeback routine should be
472  * interrupted. Otherwise return 0.
473  */
474 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
475 		struct writeback_control *wbc, bool only_this_sb)
476 {
477 	while (!list_empty(&wb->b_io)) {
478 		long pages_skipped;
479 		struct inode *inode = list_entry(wb->b_io.prev,
480 						 struct inode, i_list);
481 
482 		if (inode->i_sb != sb) {
483 			if (only_this_sb) {
484 				/*
485 				 * We only want to write back data for this
486 				 * superblock, move all inodes not belonging
487 				 * to it back onto the dirty list.
488 				 */
489 				redirty_tail(inode);
490 				continue;
491 			}
492 
493 			/*
494 			 * The inode belongs to a different superblock.
495 			 * Bounce back to the caller to unpin this and
496 			 * pin the next superblock.
497 			 */
498 			return 0;
499 		}
500 
501 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
502 			requeue_io(inode);
503 			continue;
504 		}
505 		/*
506 		 * Was this inode dirtied after sync_sb_inodes was called?
507 		 * This keeps sync from extra jobs and livelock.
508 		 */
509 		if (inode_dirtied_after(inode, wbc->wb_start))
510 			return 1;
511 
512 		BUG_ON(inode->i_state & I_FREEING);
513 		__iget(inode);
514 		pages_skipped = wbc->pages_skipped;
515 		writeback_single_inode(inode, wbc);
516 		if (wbc->pages_skipped != pages_skipped) {
517 			/*
518 			 * writeback is not making progress due to locked
519 			 * buffers.  Skip this inode for now.
520 			 */
521 			redirty_tail(inode);
522 		}
523 		spin_unlock(&inode_lock);
524 		iput(inode);
525 		cond_resched();
526 		spin_lock(&inode_lock);
527 		if (wbc->nr_to_write <= 0) {
528 			wbc->more_io = 1;
529 			return 1;
530 		}
531 		if (!list_empty(&wb->b_more_io))
532 			wbc->more_io = 1;
533 	}
534 	/* b_io is empty */
535 	return 1;
536 }
537 
538 void writeback_inodes_wb(struct bdi_writeback *wb,
539 		struct writeback_control *wbc)
540 {
541 	int ret = 0;
542 
543 	if (!wbc->wb_start)
544 		wbc->wb_start = jiffies; /* livelock avoidance */
545 	spin_lock(&inode_lock);
546 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
547 		queue_io(wb, wbc->older_than_this);
548 
549 	while (!list_empty(&wb->b_io)) {
550 		struct inode *inode = list_entry(wb->b_io.prev,
551 						 struct inode, i_list);
552 		struct super_block *sb = inode->i_sb;
553 
554 		if (!pin_sb_for_writeback(sb)) {
555 			requeue_io(inode);
556 			continue;
557 		}
558 		ret = writeback_sb_inodes(sb, wb, wbc, false);
559 		drop_super(sb);
560 
561 		if (ret)
562 			break;
563 	}
564 	spin_unlock(&inode_lock);
565 	/* Leave any unwritten inodes on b_io */
566 }
567 
568 static void __writeback_inodes_sb(struct super_block *sb,
569 		struct bdi_writeback *wb, struct writeback_control *wbc)
570 {
571 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
572 
573 	spin_lock(&inode_lock);
574 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
575 		queue_io(wb, wbc->older_than_this);
576 	writeback_sb_inodes(sb, wb, wbc, true);
577 	spin_unlock(&inode_lock);
578 }
579 
580 /*
581  * The maximum number of pages to writeout in a single bdi flush/kupdate
582  * operation.  We do this so we don't hold I_SYNC against an inode for
583  * enormous amounts of time, which would block a userspace task which has
584  * been forced to throttle against that inode.  Also, the code reevaluates
585  * the dirty each time it has written this many pages.
586  */
587 #define MAX_WRITEBACK_PAGES     1024
588 
589 static inline bool over_bground_thresh(void)
590 {
591 	unsigned long background_thresh, dirty_thresh;
592 
593 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
594 
595 	return (global_page_state(NR_FILE_DIRTY) +
596 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
597 }
598 
599 /*
600  * Explicit flushing or periodic writeback of "old" data.
601  *
602  * Define "old": the first time one of an inode's pages is dirtied, we mark the
603  * dirtying-time in the inode's address_space.  So this periodic writeback code
604  * just walks the superblock inode list, writing back any inodes which are
605  * older than a specific point in time.
606  *
607  * Try to run once per dirty_writeback_interval.  But if a writeback event
608  * takes longer than a dirty_writeback_interval interval, then leave a
609  * one-second gap.
610  *
611  * older_than_this takes precedence over nr_to_write.  So we'll only write back
612  * all dirty pages if they are all attached to "old" mappings.
613  */
614 static long wb_writeback(struct bdi_writeback *wb,
615 			 struct wb_writeback_work *work)
616 {
617 	struct writeback_control wbc = {
618 		.sync_mode		= work->sync_mode,
619 		.older_than_this	= NULL,
620 		.for_kupdate		= work->for_kupdate,
621 		.for_background		= work->for_background,
622 		.range_cyclic		= work->range_cyclic,
623 	};
624 	unsigned long oldest_jif;
625 	long wrote = 0;
626 	struct inode *inode;
627 
628 	if (wbc.for_kupdate) {
629 		wbc.older_than_this = &oldest_jif;
630 		oldest_jif = jiffies -
631 				msecs_to_jiffies(dirty_expire_interval * 10);
632 	}
633 	if (!wbc.range_cyclic) {
634 		wbc.range_start = 0;
635 		wbc.range_end = LLONG_MAX;
636 	}
637 
638 	wbc.wb_start = jiffies; /* livelock avoidance */
639 	for (;;) {
640 		/*
641 		 * Stop writeback when nr_pages has been consumed
642 		 */
643 		if (work->nr_pages <= 0)
644 			break;
645 
646 		/*
647 		 * For background writeout, stop when we are below the
648 		 * background dirty threshold
649 		 */
650 		if (work->for_background && !over_bground_thresh())
651 			break;
652 
653 		wbc.more_io = 0;
654 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
655 		wbc.pages_skipped = 0;
656 
657 		trace_wbc_writeback_start(&wbc, wb->bdi);
658 		if (work->sb)
659 			__writeback_inodes_sb(work->sb, wb, &wbc);
660 		else
661 			writeback_inodes_wb(wb, &wbc);
662 		trace_wbc_writeback_written(&wbc, wb->bdi);
663 
664 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
665 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
666 
667 		/*
668 		 * If we consumed everything, see if we have more
669 		 */
670 		if (wbc.nr_to_write <= 0)
671 			continue;
672 		/*
673 		 * Didn't write everything and we don't have more IO, bail
674 		 */
675 		if (!wbc.more_io)
676 			break;
677 		/*
678 		 * Did we write something? Try for more
679 		 */
680 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
681 			continue;
682 		/*
683 		 * Nothing written. Wait for some inode to
684 		 * become available for writeback. Otherwise
685 		 * we'll just busyloop.
686 		 */
687 		spin_lock(&inode_lock);
688 		if (!list_empty(&wb->b_more_io))  {
689 			inode = list_entry(wb->b_more_io.prev,
690 						struct inode, i_list);
691 			trace_wbc_writeback_wait(&wbc, wb->bdi);
692 			inode_wait_for_writeback(inode);
693 		}
694 		spin_unlock(&inode_lock);
695 	}
696 
697 	return wrote;
698 }
699 
700 /*
701  * Return the next wb_writeback_work struct that hasn't been processed yet.
702  */
703 static struct wb_writeback_work *
704 get_next_work_item(struct backing_dev_info *bdi)
705 {
706 	struct wb_writeback_work *work = NULL;
707 
708 	spin_lock_bh(&bdi->wb_lock);
709 	if (!list_empty(&bdi->work_list)) {
710 		work = list_entry(bdi->work_list.next,
711 				  struct wb_writeback_work, list);
712 		list_del_init(&work->list);
713 	}
714 	spin_unlock_bh(&bdi->wb_lock);
715 	return work;
716 }
717 
718 static long wb_check_old_data_flush(struct bdi_writeback *wb)
719 {
720 	unsigned long expired;
721 	long nr_pages;
722 
723 	/*
724 	 * When set to zero, disable periodic writeback
725 	 */
726 	if (!dirty_writeback_interval)
727 		return 0;
728 
729 	expired = wb->last_old_flush +
730 			msecs_to_jiffies(dirty_writeback_interval * 10);
731 	if (time_before(jiffies, expired))
732 		return 0;
733 
734 	wb->last_old_flush = jiffies;
735 	nr_pages = global_page_state(NR_FILE_DIRTY) +
736 			global_page_state(NR_UNSTABLE_NFS) +
737 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
738 
739 	if (nr_pages) {
740 		struct wb_writeback_work work = {
741 			.nr_pages	= nr_pages,
742 			.sync_mode	= WB_SYNC_NONE,
743 			.for_kupdate	= 1,
744 			.range_cyclic	= 1,
745 		};
746 
747 		return wb_writeback(wb, &work);
748 	}
749 
750 	return 0;
751 }
752 
753 /*
754  * Retrieve work items and do the writeback they describe
755  */
756 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
757 {
758 	struct backing_dev_info *bdi = wb->bdi;
759 	struct wb_writeback_work *work;
760 	long wrote = 0;
761 
762 	while ((work = get_next_work_item(bdi)) != NULL) {
763 		/*
764 		 * Override sync mode, in case we must wait for completion
765 		 * because this thread is exiting now.
766 		 */
767 		if (force_wait)
768 			work->sync_mode = WB_SYNC_ALL;
769 
770 		trace_writeback_exec(bdi, work);
771 
772 		wrote += wb_writeback(wb, work);
773 
774 		/*
775 		 * Notify the caller of completion if this is a synchronous
776 		 * work item, otherwise just free it.
777 		 */
778 		if (work->done)
779 			complete(work->done);
780 		else
781 			kfree(work);
782 	}
783 
784 	/*
785 	 * Check for periodic writeback, kupdated() style
786 	 */
787 	wrote += wb_check_old_data_flush(wb);
788 
789 	return wrote;
790 }
791 
792 /*
793  * Handle writeback of dirty data for the device backed by this bdi. Also
794  * wakes up periodically and does kupdated style flushing.
795  */
796 int bdi_writeback_thread(void *data)
797 {
798 	struct bdi_writeback *wb = data;
799 	struct backing_dev_info *bdi = wb->bdi;
800 	long pages_written;
801 
802 	current->flags |= PF_FLUSHER | PF_SWAPWRITE;
803 	set_freezable();
804 	wb->last_active = jiffies;
805 
806 	/*
807 	 * Our parent may run at a different priority, just set us to normal
808 	 */
809 	set_user_nice(current, 0);
810 
811 	trace_writeback_thread_start(bdi);
812 
813 	while (!kthread_should_stop()) {
814 		/*
815 		 * Remove own delayed wake-up timer, since we are already awake
816 		 * and we'll take care of the preriodic write-back.
817 		 */
818 		del_timer(&wb->wakeup_timer);
819 
820 		pages_written = wb_do_writeback(wb, 0);
821 
822 		trace_writeback_pages_written(pages_written);
823 
824 		if (pages_written)
825 			wb->last_active = jiffies;
826 
827 		set_current_state(TASK_INTERRUPTIBLE);
828 		if (!list_empty(&bdi->work_list)) {
829 			__set_current_state(TASK_RUNNING);
830 			continue;
831 		}
832 
833 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
834 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
835 		else {
836 			/*
837 			 * We have nothing to do, so can go sleep without any
838 			 * timeout and save power. When a work is queued or
839 			 * something is made dirty - we will be woken up.
840 			 */
841 			schedule();
842 		}
843 
844 		try_to_freeze();
845 	}
846 
847 	/* Flush any work that raced with us exiting */
848 	if (!list_empty(&bdi->work_list))
849 		wb_do_writeback(wb, 1);
850 
851 	trace_writeback_thread_stop(bdi);
852 	return 0;
853 }
854 
855 
856 /*
857  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
858  * the whole world.
859  */
860 void wakeup_flusher_threads(long nr_pages)
861 {
862 	struct backing_dev_info *bdi;
863 
864 	if (!nr_pages) {
865 		nr_pages = global_page_state(NR_FILE_DIRTY) +
866 				global_page_state(NR_UNSTABLE_NFS);
867 	}
868 
869 	rcu_read_lock();
870 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
871 		if (!bdi_has_dirty_io(bdi))
872 			continue;
873 		__bdi_start_writeback(bdi, nr_pages, false, false);
874 	}
875 	rcu_read_unlock();
876 }
877 
878 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
879 {
880 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
881 		struct dentry *dentry;
882 		const char *name = "?";
883 
884 		dentry = d_find_alias(inode);
885 		if (dentry) {
886 			spin_lock(&dentry->d_lock);
887 			name = (const char *) dentry->d_name.name;
888 		}
889 		printk(KERN_DEBUG
890 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
891 		       current->comm, task_pid_nr(current), inode->i_ino,
892 		       name, inode->i_sb->s_id);
893 		if (dentry) {
894 			spin_unlock(&dentry->d_lock);
895 			dput(dentry);
896 		}
897 	}
898 }
899 
900 /**
901  *	__mark_inode_dirty -	internal function
902  *	@inode: inode to mark
903  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
904  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
905  *  	mark_inode_dirty_sync.
906  *
907  * Put the inode on the super block's dirty list.
908  *
909  * CAREFUL! We mark it dirty unconditionally, but move it onto the
910  * dirty list only if it is hashed or if it refers to a blockdev.
911  * If it was not hashed, it will never be added to the dirty list
912  * even if it is later hashed, as it will have been marked dirty already.
913  *
914  * In short, make sure you hash any inodes _before_ you start marking
915  * them dirty.
916  *
917  * This function *must* be atomic for the I_DIRTY_PAGES case -
918  * set_page_dirty() is called under spinlock in several places.
919  *
920  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
921  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
922  * the kernel-internal blockdev inode represents the dirtying time of the
923  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
924  * page->mapping->host, so the page-dirtying time is recorded in the internal
925  * blockdev inode.
926  */
927 void __mark_inode_dirty(struct inode *inode, int flags)
928 {
929 	struct super_block *sb = inode->i_sb;
930 	struct backing_dev_info *bdi = NULL;
931 	bool wakeup_bdi = false;
932 
933 	/*
934 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
935 	 * dirty the inode itself
936 	 */
937 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
938 		if (sb->s_op->dirty_inode)
939 			sb->s_op->dirty_inode(inode);
940 	}
941 
942 	/*
943 	 * make sure that changes are seen by all cpus before we test i_state
944 	 * -- mikulas
945 	 */
946 	smp_mb();
947 
948 	/* avoid the locking if we can */
949 	if ((inode->i_state & flags) == flags)
950 		return;
951 
952 	if (unlikely(block_dump))
953 		block_dump___mark_inode_dirty(inode);
954 
955 	spin_lock(&inode_lock);
956 	if ((inode->i_state & flags) != flags) {
957 		const int was_dirty = inode->i_state & I_DIRTY;
958 
959 		inode->i_state |= flags;
960 
961 		/*
962 		 * If the inode is being synced, just update its dirty state.
963 		 * The unlocker will place the inode on the appropriate
964 		 * superblock list, based upon its state.
965 		 */
966 		if (inode->i_state & I_SYNC)
967 			goto out;
968 
969 		/*
970 		 * Only add valid (hashed) inodes to the superblock's
971 		 * dirty list.  Add blockdev inodes as well.
972 		 */
973 		if (!S_ISBLK(inode->i_mode)) {
974 			if (hlist_unhashed(&inode->i_hash))
975 				goto out;
976 		}
977 		if (inode->i_state & I_FREEING)
978 			goto out;
979 
980 		/*
981 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
982 		 * reposition it (that would break b_dirty time-ordering).
983 		 */
984 		if (!was_dirty) {
985 			bdi = inode_to_bdi(inode);
986 
987 			if (bdi_cap_writeback_dirty(bdi)) {
988 				WARN(!test_bit(BDI_registered, &bdi->state),
989 				     "bdi-%s not registered\n", bdi->name);
990 
991 				/*
992 				 * If this is the first dirty inode for this
993 				 * bdi, we have to wake-up the corresponding
994 				 * bdi thread to make sure background
995 				 * write-back happens later.
996 				 */
997 				if (!wb_has_dirty_io(&bdi->wb))
998 					wakeup_bdi = true;
999 			}
1000 
1001 			inode->dirtied_when = jiffies;
1002 			list_move(&inode->i_list, &bdi->wb.b_dirty);
1003 		}
1004 	}
1005 out:
1006 	spin_unlock(&inode_lock);
1007 
1008 	if (wakeup_bdi)
1009 		bdi_wakeup_thread_delayed(bdi);
1010 }
1011 EXPORT_SYMBOL(__mark_inode_dirty);
1012 
1013 /*
1014  * Write out a superblock's list of dirty inodes.  A wait will be performed
1015  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1016  *
1017  * If older_than_this is non-NULL, then only write out inodes which
1018  * had their first dirtying at a time earlier than *older_than_this.
1019  *
1020  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1021  * This function assumes that the blockdev superblock's inodes are backed by
1022  * a variety of queues, so all inodes are searched.  For other superblocks,
1023  * assume that all inodes are backed by the same queue.
1024  *
1025  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1026  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1027  * on the writer throttling path, and we get decent balancing between many
1028  * throttled threads: we don't want them all piling up on inode_sync_wait.
1029  */
1030 static void wait_sb_inodes(struct super_block *sb)
1031 {
1032 	struct inode *inode, *old_inode = NULL;
1033 
1034 	/*
1035 	 * We need to be protected against the filesystem going from
1036 	 * r/o to r/w or vice versa.
1037 	 */
1038 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1039 
1040 	spin_lock(&inode_lock);
1041 
1042 	/*
1043 	 * Data integrity sync. Must wait for all pages under writeback,
1044 	 * because there may have been pages dirtied before our sync
1045 	 * call, but which had writeout started before we write it out.
1046 	 * In which case, the inode may not be on the dirty list, but
1047 	 * we still have to wait for that writeout.
1048 	 */
1049 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1050 		struct address_space *mapping;
1051 
1052 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1053 			continue;
1054 		mapping = inode->i_mapping;
1055 		if (mapping->nrpages == 0)
1056 			continue;
1057 		__iget(inode);
1058 		spin_unlock(&inode_lock);
1059 		/*
1060 		 * We hold a reference to 'inode' so it couldn't have
1061 		 * been removed from s_inodes list while we dropped the
1062 		 * inode_lock.  We cannot iput the inode now as we can
1063 		 * be holding the last reference and we cannot iput it
1064 		 * under inode_lock. So we keep the reference and iput
1065 		 * it later.
1066 		 */
1067 		iput(old_inode);
1068 		old_inode = inode;
1069 
1070 		filemap_fdatawait(mapping);
1071 
1072 		cond_resched();
1073 
1074 		spin_lock(&inode_lock);
1075 	}
1076 	spin_unlock(&inode_lock);
1077 	iput(old_inode);
1078 }
1079 
1080 /**
1081  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1082  * @sb: the superblock
1083  *
1084  * Start writeback on some inodes on this super_block. No guarantees are made
1085  * on how many (if any) will be written, and this function does not wait
1086  * for IO completion of submitted IO. The number of pages submitted is
1087  * returned.
1088  */
1089 void writeback_inodes_sb(struct super_block *sb)
1090 {
1091 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1092 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1093 	DECLARE_COMPLETION_ONSTACK(done);
1094 	struct wb_writeback_work work = {
1095 		.sb		= sb,
1096 		.sync_mode	= WB_SYNC_NONE,
1097 		.done		= &done,
1098 	};
1099 
1100 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1101 
1102 	work.nr_pages = nr_dirty + nr_unstable +
1103 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1104 
1105 	bdi_queue_work(sb->s_bdi, &work);
1106 	wait_for_completion(&done);
1107 }
1108 EXPORT_SYMBOL(writeback_inodes_sb);
1109 
1110 /**
1111  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1112  * @sb: the superblock
1113  *
1114  * Invoke writeback_inodes_sb if no writeback is currently underway.
1115  * Returns 1 if writeback was started, 0 if not.
1116  */
1117 int writeback_inodes_sb_if_idle(struct super_block *sb)
1118 {
1119 	if (!writeback_in_progress(sb->s_bdi)) {
1120 		down_read(&sb->s_umount);
1121 		writeback_inodes_sb(sb);
1122 		up_read(&sb->s_umount);
1123 		return 1;
1124 	} else
1125 		return 0;
1126 }
1127 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1128 
1129 /**
1130  * sync_inodes_sb	-	sync sb inode pages
1131  * @sb: the superblock
1132  *
1133  * This function writes and waits on any dirty inode belonging to this
1134  * super_block. The number of pages synced is returned.
1135  */
1136 void sync_inodes_sb(struct super_block *sb)
1137 {
1138 	DECLARE_COMPLETION_ONSTACK(done);
1139 	struct wb_writeback_work work = {
1140 		.sb		= sb,
1141 		.sync_mode	= WB_SYNC_ALL,
1142 		.nr_pages	= LONG_MAX,
1143 		.range_cyclic	= 0,
1144 		.done		= &done,
1145 	};
1146 
1147 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1148 
1149 	bdi_queue_work(sb->s_bdi, &work);
1150 	wait_for_completion(&done);
1151 
1152 	wait_sb_inodes(sb);
1153 }
1154 EXPORT_SYMBOL(sync_inodes_sb);
1155 
1156 /**
1157  * write_inode_now	-	write an inode to disk
1158  * @inode: inode to write to disk
1159  * @sync: whether the write should be synchronous or not
1160  *
1161  * This function commits an inode to disk immediately if it is dirty. This is
1162  * primarily needed by knfsd.
1163  *
1164  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1165  */
1166 int write_inode_now(struct inode *inode, int sync)
1167 {
1168 	int ret;
1169 	struct writeback_control wbc = {
1170 		.nr_to_write = LONG_MAX,
1171 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1172 		.range_start = 0,
1173 		.range_end = LLONG_MAX,
1174 	};
1175 
1176 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1177 		wbc.nr_to_write = 0;
1178 
1179 	might_sleep();
1180 	spin_lock(&inode_lock);
1181 	ret = writeback_single_inode(inode, &wbc);
1182 	spin_unlock(&inode_lock);
1183 	if (sync)
1184 		inode_sync_wait(inode);
1185 	return ret;
1186 }
1187 EXPORT_SYMBOL(write_inode_now);
1188 
1189 /**
1190  * sync_inode - write an inode and its pages to disk.
1191  * @inode: the inode to sync
1192  * @wbc: controls the writeback mode
1193  *
1194  * sync_inode() will write an inode and its pages to disk.  It will also
1195  * correctly update the inode on its superblock's dirty inode lists and will
1196  * update inode->i_state.
1197  *
1198  * The caller must have a ref on the inode.
1199  */
1200 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1201 {
1202 	int ret;
1203 
1204 	spin_lock(&inode_lock);
1205 	ret = writeback_single_inode(inode, wbc);
1206 	spin_unlock(&inode_lock);
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(sync_inode);
1210