1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 static void bdi_queue_work(struct backing_dev_info *bdi, 88 struct wb_writeback_work *work) 89 { 90 trace_writeback_queue(bdi, work); 91 92 spin_lock_bh(&bdi->wb_lock); 93 list_add_tail(&work->list, &bdi->work_list); 94 if (bdi->wb.task) { 95 wake_up_process(bdi->wb.task); 96 } else { 97 /* 98 * The bdi thread isn't there, wake up the forker thread which 99 * will create and run it. 100 */ 101 trace_writeback_nothread(bdi, work); 102 wake_up_process(default_backing_dev_info.wb.task); 103 } 104 spin_unlock_bh(&bdi->wb_lock); 105 } 106 107 static void 108 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 109 bool range_cyclic, bool for_background) 110 { 111 struct wb_writeback_work *work; 112 113 /* 114 * This is WB_SYNC_NONE writeback, so if allocation fails just 115 * wakeup the thread for old dirty data writeback 116 */ 117 work = kzalloc(sizeof(*work), GFP_ATOMIC); 118 if (!work) { 119 if (bdi->wb.task) { 120 trace_writeback_nowork(bdi); 121 wake_up_process(bdi->wb.task); 122 } 123 return; 124 } 125 126 work->sync_mode = WB_SYNC_NONE; 127 work->nr_pages = nr_pages; 128 work->range_cyclic = range_cyclic; 129 work->for_background = for_background; 130 131 bdi_queue_work(bdi, work); 132 } 133 134 /** 135 * bdi_start_writeback - start writeback 136 * @bdi: the backing device to write from 137 * @nr_pages: the number of pages to write 138 * 139 * Description: 140 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 141 * started when this function returns, we make no guarentees on 142 * completion. Caller need not hold sb s_umount semaphore. 143 * 144 */ 145 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 146 { 147 __bdi_start_writeback(bdi, nr_pages, true, false); 148 } 149 150 /** 151 * bdi_start_background_writeback - start background writeback 152 * @bdi: the backing device to write from 153 * 154 * Description: 155 * This does WB_SYNC_NONE background writeback. The IO is only 156 * started when this function returns, we make no guarentees on 157 * completion. Caller need not hold sb s_umount semaphore. 158 */ 159 void bdi_start_background_writeback(struct backing_dev_info *bdi) 160 { 161 __bdi_start_writeback(bdi, LONG_MAX, true, true); 162 } 163 164 /* 165 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 166 * furthest end of its superblock's dirty-inode list. 167 * 168 * Before stamping the inode's ->dirtied_when, we check to see whether it is 169 * already the most-recently-dirtied inode on the b_dirty list. If that is 170 * the case then the inode must have been redirtied while it was being written 171 * out and we don't reset its dirtied_when. 172 */ 173 static void redirty_tail(struct inode *inode) 174 { 175 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 176 177 if (!list_empty(&wb->b_dirty)) { 178 struct inode *tail; 179 180 tail = wb_inode(wb->b_dirty.next); 181 if (time_before(inode->dirtied_when, tail->dirtied_when)) 182 inode->dirtied_when = jiffies; 183 } 184 list_move(&inode->i_wb_list, &wb->b_dirty); 185 } 186 187 /* 188 * requeue inode for re-scanning after bdi->b_io list is exhausted. 189 */ 190 static void requeue_io(struct inode *inode) 191 { 192 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 193 194 list_move(&inode->i_wb_list, &wb->b_more_io); 195 } 196 197 static void inode_sync_complete(struct inode *inode) 198 { 199 /* 200 * Prevent speculative execution through spin_unlock(&inode_lock); 201 */ 202 smp_mb(); 203 wake_up_bit(&inode->i_state, __I_SYNC); 204 } 205 206 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 207 { 208 bool ret = time_after(inode->dirtied_when, t); 209 #ifndef CONFIG_64BIT 210 /* 211 * For inodes being constantly redirtied, dirtied_when can get stuck. 212 * It _appears_ to be in the future, but is actually in distant past. 213 * This test is necessary to prevent such wrapped-around relative times 214 * from permanently stopping the whole bdi writeback. 215 */ 216 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 217 #endif 218 return ret; 219 } 220 221 /* 222 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 223 */ 224 static void move_expired_inodes(struct list_head *delaying_queue, 225 struct list_head *dispatch_queue, 226 unsigned long *older_than_this) 227 { 228 LIST_HEAD(tmp); 229 struct list_head *pos, *node; 230 struct super_block *sb = NULL; 231 struct inode *inode; 232 int do_sb_sort = 0; 233 234 while (!list_empty(delaying_queue)) { 235 inode = wb_inode(delaying_queue->prev); 236 if (older_than_this && 237 inode_dirtied_after(inode, *older_than_this)) 238 break; 239 if (sb && sb != inode->i_sb) 240 do_sb_sort = 1; 241 sb = inode->i_sb; 242 list_move(&inode->i_wb_list, &tmp); 243 } 244 245 /* just one sb in list, splice to dispatch_queue and we're done */ 246 if (!do_sb_sort) { 247 list_splice(&tmp, dispatch_queue); 248 return; 249 } 250 251 /* Move inodes from one superblock together */ 252 while (!list_empty(&tmp)) { 253 sb = wb_inode(tmp.prev)->i_sb; 254 list_for_each_prev_safe(pos, node, &tmp) { 255 inode = wb_inode(pos); 256 if (inode->i_sb == sb) 257 list_move(&inode->i_wb_list, dispatch_queue); 258 } 259 } 260 } 261 262 /* 263 * Queue all expired dirty inodes for io, eldest first. 264 * Before 265 * newly dirtied b_dirty b_io b_more_io 266 * =============> gf edc BA 267 * After 268 * newly dirtied b_dirty b_io b_more_io 269 * =============> g fBAedc 270 * | 271 * +--> dequeue for IO 272 */ 273 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 274 { 275 list_splice_init(&wb->b_more_io, &wb->b_io); 276 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 277 } 278 279 static int write_inode(struct inode *inode, struct writeback_control *wbc) 280 { 281 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 282 return inode->i_sb->s_op->write_inode(inode, wbc); 283 return 0; 284 } 285 286 /* 287 * Wait for writeback on an inode to complete. 288 */ 289 static void inode_wait_for_writeback(struct inode *inode) 290 { 291 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 292 wait_queue_head_t *wqh; 293 294 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 295 while (inode->i_state & I_SYNC) { 296 spin_unlock(&inode_lock); 297 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 298 spin_lock(&inode_lock); 299 } 300 } 301 302 /* 303 * Write out an inode's dirty pages. Called under inode_lock. Either the 304 * caller has ref on the inode (either via __iget or via syscall against an fd) 305 * or the inode has I_WILL_FREE set (via generic_forget_inode) 306 * 307 * If `wait' is set, wait on the writeout. 308 * 309 * The whole writeout design is quite complex and fragile. We want to avoid 310 * starvation of particular inodes when others are being redirtied, prevent 311 * livelocks, etc. 312 * 313 * Called under inode_lock. 314 */ 315 static int 316 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 317 { 318 struct address_space *mapping = inode->i_mapping; 319 unsigned dirty; 320 int ret; 321 322 if (!atomic_read(&inode->i_count)) 323 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 324 else 325 WARN_ON(inode->i_state & I_WILL_FREE); 326 327 if (inode->i_state & I_SYNC) { 328 /* 329 * If this inode is locked for writeback and we are not doing 330 * writeback-for-data-integrity, move it to b_more_io so that 331 * writeback can proceed with the other inodes on s_io. 332 * 333 * We'll have another go at writing back this inode when we 334 * completed a full scan of b_io. 335 */ 336 if (wbc->sync_mode != WB_SYNC_ALL) { 337 requeue_io(inode); 338 return 0; 339 } 340 341 /* 342 * It's a data-integrity sync. We must wait. 343 */ 344 inode_wait_for_writeback(inode); 345 } 346 347 BUG_ON(inode->i_state & I_SYNC); 348 349 /* Set I_SYNC, reset I_DIRTY_PAGES */ 350 inode->i_state |= I_SYNC; 351 inode->i_state &= ~I_DIRTY_PAGES; 352 spin_unlock(&inode_lock); 353 354 ret = do_writepages(mapping, wbc); 355 356 /* 357 * Make sure to wait on the data before writing out the metadata. 358 * This is important for filesystems that modify metadata on data 359 * I/O completion. 360 */ 361 if (wbc->sync_mode == WB_SYNC_ALL) { 362 int err = filemap_fdatawait(mapping); 363 if (ret == 0) 364 ret = err; 365 } 366 367 /* 368 * Some filesystems may redirty the inode during the writeback 369 * due to delalloc, clear dirty metadata flags right before 370 * write_inode() 371 */ 372 spin_lock(&inode_lock); 373 dirty = inode->i_state & I_DIRTY; 374 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 375 spin_unlock(&inode_lock); 376 /* Don't write the inode if only I_DIRTY_PAGES was set */ 377 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 378 int err = write_inode(inode, wbc); 379 if (ret == 0) 380 ret = err; 381 } 382 383 spin_lock(&inode_lock); 384 inode->i_state &= ~I_SYNC; 385 if (!(inode->i_state & I_FREEING)) { 386 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 387 /* 388 * We didn't write back all the pages. nfs_writepages() 389 * sometimes bales out without doing anything. 390 */ 391 inode->i_state |= I_DIRTY_PAGES; 392 if (wbc->nr_to_write <= 0) { 393 /* 394 * slice used up: queue for next turn 395 */ 396 requeue_io(inode); 397 } else { 398 /* 399 * Writeback blocked by something other than 400 * congestion. Delay the inode for some time to 401 * avoid spinning on the CPU (100% iowait) 402 * retrying writeback of the dirty page/inode 403 * that cannot be performed immediately. 404 */ 405 redirty_tail(inode); 406 } 407 } else if (inode->i_state & I_DIRTY) { 408 /* 409 * Filesystems can dirty the inode during writeback 410 * operations, such as delayed allocation during 411 * submission or metadata updates after data IO 412 * completion. 413 */ 414 redirty_tail(inode); 415 } else { 416 /* 417 * The inode is clean. At this point we either have 418 * a reference to the inode or it's on it's way out. 419 * No need to add it back to the LRU. 420 */ 421 list_del_init(&inode->i_wb_list); 422 } 423 } 424 inode_sync_complete(inode); 425 return ret; 426 } 427 428 /* 429 * For background writeback the caller does not have the sb pinned 430 * before calling writeback. So make sure that we do pin it, so it doesn't 431 * go away while we are writing inodes from it. 432 */ 433 static bool pin_sb_for_writeback(struct super_block *sb) 434 { 435 spin_lock(&sb_lock); 436 if (list_empty(&sb->s_instances)) { 437 spin_unlock(&sb_lock); 438 return false; 439 } 440 441 sb->s_count++; 442 spin_unlock(&sb_lock); 443 444 if (down_read_trylock(&sb->s_umount)) { 445 if (sb->s_root) 446 return true; 447 up_read(&sb->s_umount); 448 } 449 450 put_super(sb); 451 return false; 452 } 453 454 /* 455 * Write a portion of b_io inodes which belong to @sb. 456 * 457 * If @only_this_sb is true, then find and write all such 458 * inodes. Otherwise write only ones which go sequentially 459 * in reverse order. 460 * 461 * Return 1, if the caller writeback routine should be 462 * interrupted. Otherwise return 0. 463 */ 464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 465 struct writeback_control *wbc, bool only_this_sb) 466 { 467 while (!list_empty(&wb->b_io)) { 468 long pages_skipped; 469 struct inode *inode = wb_inode(wb->b_io.prev); 470 471 if (inode->i_sb != sb) { 472 if (only_this_sb) { 473 /* 474 * We only want to write back data for this 475 * superblock, move all inodes not belonging 476 * to it back onto the dirty list. 477 */ 478 redirty_tail(inode); 479 continue; 480 } 481 482 /* 483 * The inode belongs to a different superblock. 484 * Bounce back to the caller to unpin this and 485 * pin the next superblock. 486 */ 487 return 0; 488 } 489 490 /* 491 * Don't bother with new inodes or inodes beeing freed, first 492 * kind does not need peridic writeout yet, and for the latter 493 * kind writeout is handled by the freer. 494 */ 495 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 496 requeue_io(inode); 497 continue; 498 } 499 500 /* 501 * Was this inode dirtied after sync_sb_inodes was called? 502 * This keeps sync from extra jobs and livelock. 503 */ 504 if (inode_dirtied_after(inode, wbc->wb_start)) 505 return 1; 506 507 __iget(inode); 508 pages_skipped = wbc->pages_skipped; 509 writeback_single_inode(inode, wbc); 510 if (wbc->pages_skipped != pages_skipped) { 511 /* 512 * writeback is not making progress due to locked 513 * buffers. Skip this inode for now. 514 */ 515 redirty_tail(inode); 516 } 517 spin_unlock(&inode_lock); 518 iput(inode); 519 cond_resched(); 520 spin_lock(&inode_lock); 521 if (wbc->nr_to_write <= 0) { 522 wbc->more_io = 1; 523 return 1; 524 } 525 if (!list_empty(&wb->b_more_io)) 526 wbc->more_io = 1; 527 } 528 /* b_io is empty */ 529 return 1; 530 } 531 532 void writeback_inodes_wb(struct bdi_writeback *wb, 533 struct writeback_control *wbc) 534 { 535 int ret = 0; 536 537 if (!wbc->wb_start) 538 wbc->wb_start = jiffies; /* livelock avoidance */ 539 spin_lock(&inode_lock); 540 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 541 queue_io(wb, wbc->older_than_this); 542 543 while (!list_empty(&wb->b_io)) { 544 struct inode *inode = wb_inode(wb->b_io.prev); 545 struct super_block *sb = inode->i_sb; 546 547 if (!pin_sb_for_writeback(sb)) { 548 requeue_io(inode); 549 continue; 550 } 551 ret = writeback_sb_inodes(sb, wb, wbc, false); 552 drop_super(sb); 553 554 if (ret) 555 break; 556 } 557 spin_unlock(&inode_lock); 558 /* Leave any unwritten inodes on b_io */ 559 } 560 561 static void __writeback_inodes_sb(struct super_block *sb, 562 struct bdi_writeback *wb, struct writeback_control *wbc) 563 { 564 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 565 566 spin_lock(&inode_lock); 567 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 568 queue_io(wb, wbc->older_than_this); 569 writeback_sb_inodes(sb, wb, wbc, true); 570 spin_unlock(&inode_lock); 571 } 572 573 /* 574 * The maximum number of pages to writeout in a single bdi flush/kupdate 575 * operation. We do this so we don't hold I_SYNC against an inode for 576 * enormous amounts of time, which would block a userspace task which has 577 * been forced to throttle against that inode. Also, the code reevaluates 578 * the dirty each time it has written this many pages. 579 */ 580 #define MAX_WRITEBACK_PAGES 1024 581 582 static inline bool over_bground_thresh(void) 583 { 584 unsigned long background_thresh, dirty_thresh; 585 586 global_dirty_limits(&background_thresh, &dirty_thresh); 587 588 return (global_page_state(NR_FILE_DIRTY) + 589 global_page_state(NR_UNSTABLE_NFS) > background_thresh); 590 } 591 592 /* 593 * Explicit flushing or periodic writeback of "old" data. 594 * 595 * Define "old": the first time one of an inode's pages is dirtied, we mark the 596 * dirtying-time in the inode's address_space. So this periodic writeback code 597 * just walks the superblock inode list, writing back any inodes which are 598 * older than a specific point in time. 599 * 600 * Try to run once per dirty_writeback_interval. But if a writeback event 601 * takes longer than a dirty_writeback_interval interval, then leave a 602 * one-second gap. 603 * 604 * older_than_this takes precedence over nr_to_write. So we'll only write back 605 * all dirty pages if they are all attached to "old" mappings. 606 */ 607 static long wb_writeback(struct bdi_writeback *wb, 608 struct wb_writeback_work *work) 609 { 610 struct writeback_control wbc = { 611 .sync_mode = work->sync_mode, 612 .older_than_this = NULL, 613 .for_kupdate = work->for_kupdate, 614 .for_background = work->for_background, 615 .range_cyclic = work->range_cyclic, 616 }; 617 unsigned long oldest_jif; 618 long wrote = 0; 619 struct inode *inode; 620 621 if (wbc.for_kupdate) { 622 wbc.older_than_this = &oldest_jif; 623 oldest_jif = jiffies - 624 msecs_to_jiffies(dirty_expire_interval * 10); 625 } 626 if (!wbc.range_cyclic) { 627 wbc.range_start = 0; 628 wbc.range_end = LLONG_MAX; 629 } 630 631 wbc.wb_start = jiffies; /* livelock avoidance */ 632 for (;;) { 633 /* 634 * Stop writeback when nr_pages has been consumed 635 */ 636 if (work->nr_pages <= 0) 637 break; 638 639 /* 640 * For background writeout, stop when we are below the 641 * background dirty threshold 642 */ 643 if (work->for_background && !over_bground_thresh()) 644 break; 645 646 wbc.more_io = 0; 647 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 648 wbc.pages_skipped = 0; 649 650 trace_wbc_writeback_start(&wbc, wb->bdi); 651 if (work->sb) 652 __writeback_inodes_sb(work->sb, wb, &wbc); 653 else 654 writeback_inodes_wb(wb, &wbc); 655 trace_wbc_writeback_written(&wbc, wb->bdi); 656 657 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 658 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 659 660 /* 661 * If we consumed everything, see if we have more 662 */ 663 if (wbc.nr_to_write <= 0) 664 continue; 665 /* 666 * Didn't write everything and we don't have more IO, bail 667 */ 668 if (!wbc.more_io) 669 break; 670 /* 671 * Did we write something? Try for more 672 */ 673 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 674 continue; 675 /* 676 * Nothing written. Wait for some inode to 677 * become available for writeback. Otherwise 678 * we'll just busyloop. 679 */ 680 spin_lock(&inode_lock); 681 if (!list_empty(&wb->b_more_io)) { 682 inode = wb_inode(wb->b_more_io.prev); 683 trace_wbc_writeback_wait(&wbc, wb->bdi); 684 inode_wait_for_writeback(inode); 685 } 686 spin_unlock(&inode_lock); 687 } 688 689 return wrote; 690 } 691 692 /* 693 * Return the next wb_writeback_work struct that hasn't been processed yet. 694 */ 695 static struct wb_writeback_work * 696 get_next_work_item(struct backing_dev_info *bdi) 697 { 698 struct wb_writeback_work *work = NULL; 699 700 spin_lock_bh(&bdi->wb_lock); 701 if (!list_empty(&bdi->work_list)) { 702 work = list_entry(bdi->work_list.next, 703 struct wb_writeback_work, list); 704 list_del_init(&work->list); 705 } 706 spin_unlock_bh(&bdi->wb_lock); 707 return work; 708 } 709 710 static long wb_check_old_data_flush(struct bdi_writeback *wb) 711 { 712 unsigned long expired; 713 long nr_pages; 714 715 /* 716 * When set to zero, disable periodic writeback 717 */ 718 if (!dirty_writeback_interval) 719 return 0; 720 721 expired = wb->last_old_flush + 722 msecs_to_jiffies(dirty_writeback_interval * 10); 723 if (time_before(jiffies, expired)) 724 return 0; 725 726 wb->last_old_flush = jiffies; 727 /* 728 * Add in the number of potentially dirty inodes, because each inode 729 * write can dirty pagecache in the underlying blockdev. 730 */ 731 nr_pages = global_page_state(NR_FILE_DIRTY) + 732 global_page_state(NR_UNSTABLE_NFS) + 733 get_nr_dirty_inodes(); 734 735 if (nr_pages) { 736 struct wb_writeback_work work = { 737 .nr_pages = nr_pages, 738 .sync_mode = WB_SYNC_NONE, 739 .for_kupdate = 1, 740 .range_cyclic = 1, 741 }; 742 743 return wb_writeback(wb, &work); 744 } 745 746 return 0; 747 } 748 749 /* 750 * Retrieve work items and do the writeback they describe 751 */ 752 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 753 { 754 struct backing_dev_info *bdi = wb->bdi; 755 struct wb_writeback_work *work; 756 long wrote = 0; 757 758 set_bit(BDI_writeback_running, &wb->bdi->state); 759 while ((work = get_next_work_item(bdi)) != NULL) { 760 /* 761 * Override sync mode, in case we must wait for completion 762 * because this thread is exiting now. 763 */ 764 if (force_wait) 765 work->sync_mode = WB_SYNC_ALL; 766 767 trace_writeback_exec(bdi, work); 768 769 wrote += wb_writeback(wb, work); 770 771 /* 772 * Notify the caller of completion if this is a synchronous 773 * work item, otherwise just free it. 774 */ 775 if (work->done) 776 complete(work->done); 777 else 778 kfree(work); 779 } 780 781 /* 782 * Check for periodic writeback, kupdated() style 783 */ 784 wrote += wb_check_old_data_flush(wb); 785 clear_bit(BDI_writeback_running, &wb->bdi->state); 786 787 return wrote; 788 } 789 790 /* 791 * Handle writeback of dirty data for the device backed by this bdi. Also 792 * wakes up periodically and does kupdated style flushing. 793 */ 794 int bdi_writeback_thread(void *data) 795 { 796 struct bdi_writeback *wb = data; 797 struct backing_dev_info *bdi = wb->bdi; 798 long pages_written; 799 800 current->flags |= PF_SWAPWRITE; 801 set_freezable(); 802 wb->last_active = jiffies; 803 804 /* 805 * Our parent may run at a different priority, just set us to normal 806 */ 807 set_user_nice(current, 0); 808 809 trace_writeback_thread_start(bdi); 810 811 while (!kthread_should_stop()) { 812 /* 813 * Remove own delayed wake-up timer, since we are already awake 814 * and we'll take care of the preriodic write-back. 815 */ 816 del_timer(&wb->wakeup_timer); 817 818 pages_written = wb_do_writeback(wb, 0); 819 820 trace_writeback_pages_written(pages_written); 821 822 if (pages_written) 823 wb->last_active = jiffies; 824 825 set_current_state(TASK_INTERRUPTIBLE); 826 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 827 __set_current_state(TASK_RUNNING); 828 continue; 829 } 830 831 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 832 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 833 else { 834 /* 835 * We have nothing to do, so can go sleep without any 836 * timeout and save power. When a work is queued or 837 * something is made dirty - we will be woken up. 838 */ 839 schedule(); 840 } 841 842 try_to_freeze(); 843 } 844 845 /* Flush any work that raced with us exiting */ 846 if (!list_empty(&bdi->work_list)) 847 wb_do_writeback(wb, 1); 848 849 trace_writeback_thread_stop(bdi); 850 return 0; 851 } 852 853 854 /* 855 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 856 * the whole world. 857 */ 858 void wakeup_flusher_threads(long nr_pages) 859 { 860 struct backing_dev_info *bdi; 861 862 if (!nr_pages) { 863 nr_pages = global_page_state(NR_FILE_DIRTY) + 864 global_page_state(NR_UNSTABLE_NFS); 865 } 866 867 rcu_read_lock(); 868 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 869 if (!bdi_has_dirty_io(bdi)) 870 continue; 871 __bdi_start_writeback(bdi, nr_pages, false, false); 872 } 873 rcu_read_unlock(); 874 } 875 876 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 877 { 878 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 879 struct dentry *dentry; 880 const char *name = "?"; 881 882 dentry = d_find_alias(inode); 883 if (dentry) { 884 spin_lock(&dentry->d_lock); 885 name = (const char *) dentry->d_name.name; 886 } 887 printk(KERN_DEBUG 888 "%s(%d): dirtied inode %lu (%s) on %s\n", 889 current->comm, task_pid_nr(current), inode->i_ino, 890 name, inode->i_sb->s_id); 891 if (dentry) { 892 spin_unlock(&dentry->d_lock); 893 dput(dentry); 894 } 895 } 896 } 897 898 /** 899 * __mark_inode_dirty - internal function 900 * @inode: inode to mark 901 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 902 * Mark an inode as dirty. Callers should use mark_inode_dirty or 903 * mark_inode_dirty_sync. 904 * 905 * Put the inode on the super block's dirty list. 906 * 907 * CAREFUL! We mark it dirty unconditionally, but move it onto the 908 * dirty list only if it is hashed or if it refers to a blockdev. 909 * If it was not hashed, it will never be added to the dirty list 910 * even if it is later hashed, as it will have been marked dirty already. 911 * 912 * In short, make sure you hash any inodes _before_ you start marking 913 * them dirty. 914 * 915 * This function *must* be atomic for the I_DIRTY_PAGES case - 916 * set_page_dirty() is called under spinlock in several places. 917 * 918 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 919 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 920 * the kernel-internal blockdev inode represents the dirtying time of the 921 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 922 * page->mapping->host, so the page-dirtying time is recorded in the internal 923 * blockdev inode. 924 */ 925 void __mark_inode_dirty(struct inode *inode, int flags) 926 { 927 struct super_block *sb = inode->i_sb; 928 struct backing_dev_info *bdi = NULL; 929 bool wakeup_bdi = false; 930 931 /* 932 * Don't do this for I_DIRTY_PAGES - that doesn't actually 933 * dirty the inode itself 934 */ 935 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 936 if (sb->s_op->dirty_inode) 937 sb->s_op->dirty_inode(inode); 938 } 939 940 /* 941 * make sure that changes are seen by all cpus before we test i_state 942 * -- mikulas 943 */ 944 smp_mb(); 945 946 /* avoid the locking if we can */ 947 if ((inode->i_state & flags) == flags) 948 return; 949 950 if (unlikely(block_dump)) 951 block_dump___mark_inode_dirty(inode); 952 953 spin_lock(&inode_lock); 954 if ((inode->i_state & flags) != flags) { 955 const int was_dirty = inode->i_state & I_DIRTY; 956 957 inode->i_state |= flags; 958 959 /* 960 * If the inode is being synced, just update its dirty state. 961 * The unlocker will place the inode on the appropriate 962 * superblock list, based upon its state. 963 */ 964 if (inode->i_state & I_SYNC) 965 goto out; 966 967 /* 968 * Only add valid (hashed) inodes to the superblock's 969 * dirty list. Add blockdev inodes as well. 970 */ 971 if (!S_ISBLK(inode->i_mode)) { 972 if (inode_unhashed(inode)) 973 goto out; 974 } 975 if (inode->i_state & I_FREEING) 976 goto out; 977 978 /* 979 * If the inode was already on b_dirty/b_io/b_more_io, don't 980 * reposition it (that would break b_dirty time-ordering). 981 */ 982 if (!was_dirty) { 983 bdi = inode_to_bdi(inode); 984 985 if (bdi_cap_writeback_dirty(bdi)) { 986 WARN(!test_bit(BDI_registered, &bdi->state), 987 "bdi-%s not registered\n", bdi->name); 988 989 /* 990 * If this is the first dirty inode for this 991 * bdi, we have to wake-up the corresponding 992 * bdi thread to make sure background 993 * write-back happens later. 994 */ 995 if (!wb_has_dirty_io(&bdi->wb)) 996 wakeup_bdi = true; 997 } 998 999 inode->dirtied_when = jiffies; 1000 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1001 } 1002 } 1003 out: 1004 spin_unlock(&inode_lock); 1005 1006 if (wakeup_bdi) 1007 bdi_wakeup_thread_delayed(bdi); 1008 } 1009 EXPORT_SYMBOL(__mark_inode_dirty); 1010 1011 /* 1012 * Write out a superblock's list of dirty inodes. A wait will be performed 1013 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1014 * 1015 * If older_than_this is non-NULL, then only write out inodes which 1016 * had their first dirtying at a time earlier than *older_than_this. 1017 * 1018 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1019 * This function assumes that the blockdev superblock's inodes are backed by 1020 * a variety of queues, so all inodes are searched. For other superblocks, 1021 * assume that all inodes are backed by the same queue. 1022 * 1023 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1024 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1025 * on the writer throttling path, and we get decent balancing between many 1026 * throttled threads: we don't want them all piling up on inode_sync_wait. 1027 */ 1028 static void wait_sb_inodes(struct super_block *sb) 1029 { 1030 struct inode *inode, *old_inode = NULL; 1031 1032 /* 1033 * We need to be protected against the filesystem going from 1034 * r/o to r/w or vice versa. 1035 */ 1036 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1037 1038 spin_lock(&inode_lock); 1039 1040 /* 1041 * Data integrity sync. Must wait for all pages under writeback, 1042 * because there may have been pages dirtied before our sync 1043 * call, but which had writeout started before we write it out. 1044 * In which case, the inode may not be on the dirty list, but 1045 * we still have to wait for that writeout. 1046 */ 1047 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1048 struct address_space *mapping; 1049 1050 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) 1051 continue; 1052 mapping = inode->i_mapping; 1053 if (mapping->nrpages == 0) 1054 continue; 1055 __iget(inode); 1056 spin_unlock(&inode_lock); 1057 /* 1058 * We hold a reference to 'inode' so it couldn't have 1059 * been removed from s_inodes list while we dropped the 1060 * inode_lock. We cannot iput the inode now as we can 1061 * be holding the last reference and we cannot iput it 1062 * under inode_lock. So we keep the reference and iput 1063 * it later. 1064 */ 1065 iput(old_inode); 1066 old_inode = inode; 1067 1068 filemap_fdatawait(mapping); 1069 1070 cond_resched(); 1071 1072 spin_lock(&inode_lock); 1073 } 1074 spin_unlock(&inode_lock); 1075 iput(old_inode); 1076 } 1077 1078 /** 1079 * writeback_inodes_sb - writeback dirty inodes from given super_block 1080 * @sb: the superblock 1081 * 1082 * Start writeback on some inodes on this super_block. No guarantees are made 1083 * on how many (if any) will be written, and this function does not wait 1084 * for IO completion of submitted IO. The number of pages submitted is 1085 * returned. 1086 */ 1087 void writeback_inodes_sb(struct super_block *sb) 1088 { 1089 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1090 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1091 DECLARE_COMPLETION_ONSTACK(done); 1092 struct wb_writeback_work work = { 1093 .sb = sb, 1094 .sync_mode = WB_SYNC_NONE, 1095 .done = &done, 1096 }; 1097 1098 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1099 1100 work.nr_pages = nr_dirty + nr_unstable + get_nr_dirty_inodes(); 1101 1102 bdi_queue_work(sb->s_bdi, &work); 1103 wait_for_completion(&done); 1104 } 1105 EXPORT_SYMBOL(writeback_inodes_sb); 1106 1107 /** 1108 * writeback_inodes_sb_if_idle - start writeback if none underway 1109 * @sb: the superblock 1110 * 1111 * Invoke writeback_inodes_sb if no writeback is currently underway. 1112 * Returns 1 if writeback was started, 0 if not. 1113 */ 1114 int writeback_inodes_sb_if_idle(struct super_block *sb) 1115 { 1116 if (!writeback_in_progress(sb->s_bdi)) { 1117 down_read(&sb->s_umount); 1118 writeback_inodes_sb(sb); 1119 up_read(&sb->s_umount); 1120 return 1; 1121 } else 1122 return 0; 1123 } 1124 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1125 1126 /** 1127 * sync_inodes_sb - sync sb inode pages 1128 * @sb: the superblock 1129 * 1130 * This function writes and waits on any dirty inode belonging to this 1131 * super_block. The number of pages synced is returned. 1132 */ 1133 void sync_inodes_sb(struct super_block *sb) 1134 { 1135 DECLARE_COMPLETION_ONSTACK(done); 1136 struct wb_writeback_work work = { 1137 .sb = sb, 1138 .sync_mode = WB_SYNC_ALL, 1139 .nr_pages = LONG_MAX, 1140 .range_cyclic = 0, 1141 .done = &done, 1142 }; 1143 1144 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1145 1146 bdi_queue_work(sb->s_bdi, &work); 1147 wait_for_completion(&done); 1148 1149 wait_sb_inodes(sb); 1150 } 1151 EXPORT_SYMBOL(sync_inodes_sb); 1152 1153 /** 1154 * write_inode_now - write an inode to disk 1155 * @inode: inode to write to disk 1156 * @sync: whether the write should be synchronous or not 1157 * 1158 * This function commits an inode to disk immediately if it is dirty. This is 1159 * primarily needed by knfsd. 1160 * 1161 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1162 */ 1163 int write_inode_now(struct inode *inode, int sync) 1164 { 1165 int ret; 1166 struct writeback_control wbc = { 1167 .nr_to_write = LONG_MAX, 1168 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1169 .range_start = 0, 1170 .range_end = LLONG_MAX, 1171 }; 1172 1173 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1174 wbc.nr_to_write = 0; 1175 1176 might_sleep(); 1177 spin_lock(&inode_lock); 1178 ret = writeback_single_inode(inode, &wbc); 1179 spin_unlock(&inode_lock); 1180 if (sync) 1181 inode_sync_wait(inode); 1182 return ret; 1183 } 1184 EXPORT_SYMBOL(write_inode_now); 1185 1186 /** 1187 * sync_inode - write an inode and its pages to disk. 1188 * @inode: the inode to sync 1189 * @wbc: controls the writeback mode 1190 * 1191 * sync_inode() will write an inode and its pages to disk. It will also 1192 * correctly update the inode on its superblock's dirty inode lists and will 1193 * update inode->i_state. 1194 * 1195 * The caller must have a ref on the inode. 1196 */ 1197 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1198 { 1199 int ret; 1200 1201 spin_lock(&inode_lock); 1202 ret = writeback_single_inode(inode, wbc); 1203 spin_unlock(&inode_lock); 1204 return ret; 1205 } 1206 EXPORT_SYMBOL(sync_inode); 1207 1208 /** 1209 * sync_inode - write an inode to disk 1210 * @inode: the inode to sync 1211 * @wait: wait for I/O to complete. 1212 * 1213 * Write an inode to disk and adjust it's dirty state after completion. 1214 * 1215 * Note: only writes the actual inode, no associated data or other metadata. 1216 */ 1217 int sync_inode_metadata(struct inode *inode, int wait) 1218 { 1219 struct writeback_control wbc = { 1220 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1221 .nr_to_write = 0, /* metadata-only */ 1222 }; 1223 1224 return sync_inode(inode, &wbc); 1225 } 1226 EXPORT_SYMBOL(sync_inode_metadata); 1227