xref: /linux/fs/fs-writeback.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 static void bdi_queue_work(struct backing_dev_info *bdi,
88 		struct wb_writeback_work *work)
89 {
90 	trace_writeback_queue(bdi, work);
91 
92 	spin_lock_bh(&bdi->wb_lock);
93 	list_add_tail(&work->list, &bdi->work_list);
94 	if (bdi->wb.task) {
95 		wake_up_process(bdi->wb.task);
96 	} else {
97 		/*
98 		 * The bdi thread isn't there, wake up the forker thread which
99 		 * will create and run it.
100 		 */
101 		trace_writeback_nothread(bdi, work);
102 		wake_up_process(default_backing_dev_info.wb.task);
103 	}
104 	spin_unlock_bh(&bdi->wb_lock);
105 }
106 
107 static void
108 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
109 		bool range_cyclic, bool for_background)
110 {
111 	struct wb_writeback_work *work;
112 
113 	/*
114 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
115 	 * wakeup the thread for old dirty data writeback
116 	 */
117 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
118 	if (!work) {
119 		if (bdi->wb.task) {
120 			trace_writeback_nowork(bdi);
121 			wake_up_process(bdi->wb.task);
122 		}
123 		return;
124 	}
125 
126 	work->sync_mode	= WB_SYNC_NONE;
127 	work->nr_pages	= nr_pages;
128 	work->range_cyclic = range_cyclic;
129 	work->for_background = for_background;
130 
131 	bdi_queue_work(bdi, work);
132 }
133 
134 /**
135  * bdi_start_writeback - start writeback
136  * @bdi: the backing device to write from
137  * @nr_pages: the number of pages to write
138  *
139  * Description:
140  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
141  *   started when this function returns, we make no guarentees on
142  *   completion. Caller need not hold sb s_umount semaphore.
143  *
144  */
145 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
146 {
147 	__bdi_start_writeback(bdi, nr_pages, true, false);
148 }
149 
150 /**
151  * bdi_start_background_writeback - start background writeback
152  * @bdi: the backing device to write from
153  *
154  * Description:
155  *   This does WB_SYNC_NONE background writeback. The IO is only
156  *   started when this function returns, we make no guarentees on
157  *   completion. Caller need not hold sb s_umount semaphore.
158  */
159 void bdi_start_background_writeback(struct backing_dev_info *bdi)
160 {
161 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
162 }
163 
164 /*
165  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
166  * furthest end of its superblock's dirty-inode list.
167  *
168  * Before stamping the inode's ->dirtied_when, we check to see whether it is
169  * already the most-recently-dirtied inode on the b_dirty list.  If that is
170  * the case then the inode must have been redirtied while it was being written
171  * out and we don't reset its dirtied_when.
172  */
173 static void redirty_tail(struct inode *inode)
174 {
175 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
176 
177 	if (!list_empty(&wb->b_dirty)) {
178 		struct inode *tail;
179 
180 		tail = wb_inode(wb->b_dirty.next);
181 		if (time_before(inode->dirtied_when, tail->dirtied_when))
182 			inode->dirtied_when = jiffies;
183 	}
184 	list_move(&inode->i_wb_list, &wb->b_dirty);
185 }
186 
187 /*
188  * requeue inode for re-scanning after bdi->b_io list is exhausted.
189  */
190 static void requeue_io(struct inode *inode)
191 {
192 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
193 
194 	list_move(&inode->i_wb_list, &wb->b_more_io);
195 }
196 
197 static void inode_sync_complete(struct inode *inode)
198 {
199 	/*
200 	 * Prevent speculative execution through spin_unlock(&inode_lock);
201 	 */
202 	smp_mb();
203 	wake_up_bit(&inode->i_state, __I_SYNC);
204 }
205 
206 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
207 {
208 	bool ret = time_after(inode->dirtied_when, t);
209 #ifndef CONFIG_64BIT
210 	/*
211 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
212 	 * It _appears_ to be in the future, but is actually in distant past.
213 	 * This test is necessary to prevent such wrapped-around relative times
214 	 * from permanently stopping the whole bdi writeback.
215 	 */
216 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
217 #endif
218 	return ret;
219 }
220 
221 /*
222  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
223  */
224 static void move_expired_inodes(struct list_head *delaying_queue,
225 			       struct list_head *dispatch_queue,
226 				unsigned long *older_than_this)
227 {
228 	LIST_HEAD(tmp);
229 	struct list_head *pos, *node;
230 	struct super_block *sb = NULL;
231 	struct inode *inode;
232 	int do_sb_sort = 0;
233 
234 	while (!list_empty(delaying_queue)) {
235 		inode = wb_inode(delaying_queue->prev);
236 		if (older_than_this &&
237 		    inode_dirtied_after(inode, *older_than_this))
238 			break;
239 		if (sb && sb != inode->i_sb)
240 			do_sb_sort = 1;
241 		sb = inode->i_sb;
242 		list_move(&inode->i_wb_list, &tmp);
243 	}
244 
245 	/* just one sb in list, splice to dispatch_queue and we're done */
246 	if (!do_sb_sort) {
247 		list_splice(&tmp, dispatch_queue);
248 		return;
249 	}
250 
251 	/* Move inodes from one superblock together */
252 	while (!list_empty(&tmp)) {
253 		sb = wb_inode(tmp.prev)->i_sb;
254 		list_for_each_prev_safe(pos, node, &tmp) {
255 			inode = wb_inode(pos);
256 			if (inode->i_sb == sb)
257 				list_move(&inode->i_wb_list, dispatch_queue);
258 		}
259 	}
260 }
261 
262 /*
263  * Queue all expired dirty inodes for io, eldest first.
264  * Before
265  *         newly dirtied     b_dirty    b_io    b_more_io
266  *         =============>    gf         edc     BA
267  * After
268  *         newly dirtied     b_dirty    b_io    b_more_io
269  *         =============>    g          fBAedc
270  *                                           |
271  *                                           +--> dequeue for IO
272  */
273 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
274 {
275 	list_splice_init(&wb->b_more_io, &wb->b_io);
276 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
277 }
278 
279 static int write_inode(struct inode *inode, struct writeback_control *wbc)
280 {
281 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
282 		return inode->i_sb->s_op->write_inode(inode, wbc);
283 	return 0;
284 }
285 
286 /*
287  * Wait for writeback on an inode to complete.
288  */
289 static void inode_wait_for_writeback(struct inode *inode)
290 {
291 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
292 	wait_queue_head_t *wqh;
293 
294 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
295 	 while (inode->i_state & I_SYNC) {
296 		spin_unlock(&inode_lock);
297 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
298 		spin_lock(&inode_lock);
299 	}
300 }
301 
302 /*
303  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
304  * caller has ref on the inode (either via __iget or via syscall against an fd)
305  * or the inode has I_WILL_FREE set (via generic_forget_inode)
306  *
307  * If `wait' is set, wait on the writeout.
308  *
309  * The whole writeout design is quite complex and fragile.  We want to avoid
310  * starvation of particular inodes when others are being redirtied, prevent
311  * livelocks, etc.
312  *
313  * Called under inode_lock.
314  */
315 static int
316 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318 	struct address_space *mapping = inode->i_mapping;
319 	unsigned dirty;
320 	int ret;
321 
322 	if (!atomic_read(&inode->i_count))
323 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
324 	else
325 		WARN_ON(inode->i_state & I_WILL_FREE);
326 
327 	if (inode->i_state & I_SYNC) {
328 		/*
329 		 * If this inode is locked for writeback and we are not doing
330 		 * writeback-for-data-integrity, move it to b_more_io so that
331 		 * writeback can proceed with the other inodes on s_io.
332 		 *
333 		 * We'll have another go at writing back this inode when we
334 		 * completed a full scan of b_io.
335 		 */
336 		if (wbc->sync_mode != WB_SYNC_ALL) {
337 			requeue_io(inode);
338 			return 0;
339 		}
340 
341 		/*
342 		 * It's a data-integrity sync.  We must wait.
343 		 */
344 		inode_wait_for_writeback(inode);
345 	}
346 
347 	BUG_ON(inode->i_state & I_SYNC);
348 
349 	/* Set I_SYNC, reset I_DIRTY_PAGES */
350 	inode->i_state |= I_SYNC;
351 	inode->i_state &= ~I_DIRTY_PAGES;
352 	spin_unlock(&inode_lock);
353 
354 	ret = do_writepages(mapping, wbc);
355 
356 	/*
357 	 * Make sure to wait on the data before writing out the metadata.
358 	 * This is important for filesystems that modify metadata on data
359 	 * I/O completion.
360 	 */
361 	if (wbc->sync_mode == WB_SYNC_ALL) {
362 		int err = filemap_fdatawait(mapping);
363 		if (ret == 0)
364 			ret = err;
365 	}
366 
367 	/*
368 	 * Some filesystems may redirty the inode during the writeback
369 	 * due to delalloc, clear dirty metadata flags right before
370 	 * write_inode()
371 	 */
372 	spin_lock(&inode_lock);
373 	dirty = inode->i_state & I_DIRTY;
374 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
375 	spin_unlock(&inode_lock);
376 	/* Don't write the inode if only I_DIRTY_PAGES was set */
377 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
378 		int err = write_inode(inode, wbc);
379 		if (ret == 0)
380 			ret = err;
381 	}
382 
383 	spin_lock(&inode_lock);
384 	inode->i_state &= ~I_SYNC;
385 	if (!(inode->i_state & I_FREEING)) {
386 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
387 			/*
388 			 * We didn't write back all the pages.  nfs_writepages()
389 			 * sometimes bales out without doing anything.
390 			 */
391 			inode->i_state |= I_DIRTY_PAGES;
392 			if (wbc->nr_to_write <= 0) {
393 				/*
394 				 * slice used up: queue for next turn
395 				 */
396 				requeue_io(inode);
397 			} else {
398 				/*
399 				 * Writeback blocked by something other than
400 				 * congestion. Delay the inode for some time to
401 				 * avoid spinning on the CPU (100% iowait)
402 				 * retrying writeback of the dirty page/inode
403 				 * that cannot be performed immediately.
404 				 */
405 				redirty_tail(inode);
406 			}
407 		} else if (inode->i_state & I_DIRTY) {
408 			/*
409 			 * Filesystems can dirty the inode during writeback
410 			 * operations, such as delayed allocation during
411 			 * submission or metadata updates after data IO
412 			 * completion.
413 			 */
414 			redirty_tail(inode);
415 		} else {
416 			/*
417 			 * The inode is clean.  At this point we either have
418 			 * a reference to the inode or it's on it's way out.
419 			 * No need to add it back to the LRU.
420 			 */
421 			list_del_init(&inode->i_wb_list);
422 		}
423 	}
424 	inode_sync_complete(inode);
425 	return ret;
426 }
427 
428 /*
429  * For background writeback the caller does not have the sb pinned
430  * before calling writeback. So make sure that we do pin it, so it doesn't
431  * go away while we are writing inodes from it.
432  */
433 static bool pin_sb_for_writeback(struct super_block *sb)
434 {
435 	spin_lock(&sb_lock);
436 	if (list_empty(&sb->s_instances)) {
437 		spin_unlock(&sb_lock);
438 		return false;
439 	}
440 
441 	sb->s_count++;
442 	spin_unlock(&sb_lock);
443 
444 	if (down_read_trylock(&sb->s_umount)) {
445 		if (sb->s_root)
446 			return true;
447 		up_read(&sb->s_umount);
448 	}
449 
450 	put_super(sb);
451 	return false;
452 }
453 
454 /*
455  * Write a portion of b_io inodes which belong to @sb.
456  *
457  * If @only_this_sb is true, then find and write all such
458  * inodes. Otherwise write only ones which go sequentially
459  * in reverse order.
460  *
461  * Return 1, if the caller writeback routine should be
462  * interrupted. Otherwise return 0.
463  */
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 		struct writeback_control *wbc, bool only_this_sb)
466 {
467 	while (!list_empty(&wb->b_io)) {
468 		long pages_skipped;
469 		struct inode *inode = wb_inode(wb->b_io.prev);
470 
471 		if (inode->i_sb != sb) {
472 			if (only_this_sb) {
473 				/*
474 				 * We only want to write back data for this
475 				 * superblock, move all inodes not belonging
476 				 * to it back onto the dirty list.
477 				 */
478 				redirty_tail(inode);
479 				continue;
480 			}
481 
482 			/*
483 			 * The inode belongs to a different superblock.
484 			 * Bounce back to the caller to unpin this and
485 			 * pin the next superblock.
486 			 */
487 			return 0;
488 		}
489 
490 		/*
491 		 * Don't bother with new inodes or inodes beeing freed, first
492 		 * kind does not need peridic writeout yet, and for the latter
493 		 * kind writeout is handled by the freer.
494 		 */
495 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
496 			requeue_io(inode);
497 			continue;
498 		}
499 
500 		/*
501 		 * Was this inode dirtied after sync_sb_inodes was called?
502 		 * This keeps sync from extra jobs and livelock.
503 		 */
504 		if (inode_dirtied_after(inode, wbc->wb_start))
505 			return 1;
506 
507 		__iget(inode);
508 		pages_skipped = wbc->pages_skipped;
509 		writeback_single_inode(inode, wbc);
510 		if (wbc->pages_skipped != pages_skipped) {
511 			/*
512 			 * writeback is not making progress due to locked
513 			 * buffers.  Skip this inode for now.
514 			 */
515 			redirty_tail(inode);
516 		}
517 		spin_unlock(&inode_lock);
518 		iput(inode);
519 		cond_resched();
520 		spin_lock(&inode_lock);
521 		if (wbc->nr_to_write <= 0) {
522 			wbc->more_io = 1;
523 			return 1;
524 		}
525 		if (!list_empty(&wb->b_more_io))
526 			wbc->more_io = 1;
527 	}
528 	/* b_io is empty */
529 	return 1;
530 }
531 
532 void writeback_inodes_wb(struct bdi_writeback *wb,
533 		struct writeback_control *wbc)
534 {
535 	int ret = 0;
536 
537 	if (!wbc->wb_start)
538 		wbc->wb_start = jiffies; /* livelock avoidance */
539 	spin_lock(&inode_lock);
540 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
541 		queue_io(wb, wbc->older_than_this);
542 
543 	while (!list_empty(&wb->b_io)) {
544 		struct inode *inode = wb_inode(wb->b_io.prev);
545 		struct super_block *sb = inode->i_sb;
546 
547 		if (!pin_sb_for_writeback(sb)) {
548 			requeue_io(inode);
549 			continue;
550 		}
551 		ret = writeback_sb_inodes(sb, wb, wbc, false);
552 		drop_super(sb);
553 
554 		if (ret)
555 			break;
556 	}
557 	spin_unlock(&inode_lock);
558 	/* Leave any unwritten inodes on b_io */
559 }
560 
561 static void __writeback_inodes_sb(struct super_block *sb,
562 		struct bdi_writeback *wb, struct writeback_control *wbc)
563 {
564 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
565 
566 	spin_lock(&inode_lock);
567 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
568 		queue_io(wb, wbc->older_than_this);
569 	writeback_sb_inodes(sb, wb, wbc, true);
570 	spin_unlock(&inode_lock);
571 }
572 
573 /*
574  * The maximum number of pages to writeout in a single bdi flush/kupdate
575  * operation.  We do this so we don't hold I_SYNC against an inode for
576  * enormous amounts of time, which would block a userspace task which has
577  * been forced to throttle against that inode.  Also, the code reevaluates
578  * the dirty each time it has written this many pages.
579  */
580 #define MAX_WRITEBACK_PAGES     1024
581 
582 static inline bool over_bground_thresh(void)
583 {
584 	unsigned long background_thresh, dirty_thresh;
585 
586 	global_dirty_limits(&background_thresh, &dirty_thresh);
587 
588 	return (global_page_state(NR_FILE_DIRTY) +
589 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
590 }
591 
592 /*
593  * Explicit flushing or periodic writeback of "old" data.
594  *
595  * Define "old": the first time one of an inode's pages is dirtied, we mark the
596  * dirtying-time in the inode's address_space.  So this periodic writeback code
597  * just walks the superblock inode list, writing back any inodes which are
598  * older than a specific point in time.
599  *
600  * Try to run once per dirty_writeback_interval.  But if a writeback event
601  * takes longer than a dirty_writeback_interval interval, then leave a
602  * one-second gap.
603  *
604  * older_than_this takes precedence over nr_to_write.  So we'll only write back
605  * all dirty pages if they are all attached to "old" mappings.
606  */
607 static long wb_writeback(struct bdi_writeback *wb,
608 			 struct wb_writeback_work *work)
609 {
610 	struct writeback_control wbc = {
611 		.sync_mode		= work->sync_mode,
612 		.older_than_this	= NULL,
613 		.for_kupdate		= work->for_kupdate,
614 		.for_background		= work->for_background,
615 		.range_cyclic		= work->range_cyclic,
616 	};
617 	unsigned long oldest_jif;
618 	long wrote = 0;
619 	struct inode *inode;
620 
621 	if (wbc.for_kupdate) {
622 		wbc.older_than_this = &oldest_jif;
623 		oldest_jif = jiffies -
624 				msecs_to_jiffies(dirty_expire_interval * 10);
625 	}
626 	if (!wbc.range_cyclic) {
627 		wbc.range_start = 0;
628 		wbc.range_end = LLONG_MAX;
629 	}
630 
631 	wbc.wb_start = jiffies; /* livelock avoidance */
632 	for (;;) {
633 		/*
634 		 * Stop writeback when nr_pages has been consumed
635 		 */
636 		if (work->nr_pages <= 0)
637 			break;
638 
639 		/*
640 		 * For background writeout, stop when we are below the
641 		 * background dirty threshold
642 		 */
643 		if (work->for_background && !over_bground_thresh())
644 			break;
645 
646 		wbc.more_io = 0;
647 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
648 		wbc.pages_skipped = 0;
649 
650 		trace_wbc_writeback_start(&wbc, wb->bdi);
651 		if (work->sb)
652 			__writeback_inodes_sb(work->sb, wb, &wbc);
653 		else
654 			writeback_inodes_wb(wb, &wbc);
655 		trace_wbc_writeback_written(&wbc, wb->bdi);
656 
657 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
658 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
659 
660 		/*
661 		 * If we consumed everything, see if we have more
662 		 */
663 		if (wbc.nr_to_write <= 0)
664 			continue;
665 		/*
666 		 * Didn't write everything and we don't have more IO, bail
667 		 */
668 		if (!wbc.more_io)
669 			break;
670 		/*
671 		 * Did we write something? Try for more
672 		 */
673 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
674 			continue;
675 		/*
676 		 * Nothing written. Wait for some inode to
677 		 * become available for writeback. Otherwise
678 		 * we'll just busyloop.
679 		 */
680 		spin_lock(&inode_lock);
681 		if (!list_empty(&wb->b_more_io))  {
682 			inode = wb_inode(wb->b_more_io.prev);
683 			trace_wbc_writeback_wait(&wbc, wb->bdi);
684 			inode_wait_for_writeback(inode);
685 		}
686 		spin_unlock(&inode_lock);
687 	}
688 
689 	return wrote;
690 }
691 
692 /*
693  * Return the next wb_writeback_work struct that hasn't been processed yet.
694  */
695 static struct wb_writeback_work *
696 get_next_work_item(struct backing_dev_info *bdi)
697 {
698 	struct wb_writeback_work *work = NULL;
699 
700 	spin_lock_bh(&bdi->wb_lock);
701 	if (!list_empty(&bdi->work_list)) {
702 		work = list_entry(bdi->work_list.next,
703 				  struct wb_writeback_work, list);
704 		list_del_init(&work->list);
705 	}
706 	spin_unlock_bh(&bdi->wb_lock);
707 	return work;
708 }
709 
710 static long wb_check_old_data_flush(struct bdi_writeback *wb)
711 {
712 	unsigned long expired;
713 	long nr_pages;
714 
715 	/*
716 	 * When set to zero, disable periodic writeback
717 	 */
718 	if (!dirty_writeback_interval)
719 		return 0;
720 
721 	expired = wb->last_old_flush +
722 			msecs_to_jiffies(dirty_writeback_interval * 10);
723 	if (time_before(jiffies, expired))
724 		return 0;
725 
726 	wb->last_old_flush = jiffies;
727 	/*
728 	 * Add in the number of potentially dirty inodes, because each inode
729 	 * write can dirty pagecache in the underlying blockdev.
730 	 */
731 	nr_pages = global_page_state(NR_FILE_DIRTY) +
732 			global_page_state(NR_UNSTABLE_NFS) +
733 			get_nr_dirty_inodes();
734 
735 	if (nr_pages) {
736 		struct wb_writeback_work work = {
737 			.nr_pages	= nr_pages,
738 			.sync_mode	= WB_SYNC_NONE,
739 			.for_kupdate	= 1,
740 			.range_cyclic	= 1,
741 		};
742 
743 		return wb_writeback(wb, &work);
744 	}
745 
746 	return 0;
747 }
748 
749 /*
750  * Retrieve work items and do the writeback they describe
751  */
752 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
753 {
754 	struct backing_dev_info *bdi = wb->bdi;
755 	struct wb_writeback_work *work;
756 	long wrote = 0;
757 
758 	set_bit(BDI_writeback_running, &wb->bdi->state);
759 	while ((work = get_next_work_item(bdi)) != NULL) {
760 		/*
761 		 * Override sync mode, in case we must wait for completion
762 		 * because this thread is exiting now.
763 		 */
764 		if (force_wait)
765 			work->sync_mode = WB_SYNC_ALL;
766 
767 		trace_writeback_exec(bdi, work);
768 
769 		wrote += wb_writeback(wb, work);
770 
771 		/*
772 		 * Notify the caller of completion if this is a synchronous
773 		 * work item, otherwise just free it.
774 		 */
775 		if (work->done)
776 			complete(work->done);
777 		else
778 			kfree(work);
779 	}
780 
781 	/*
782 	 * Check for periodic writeback, kupdated() style
783 	 */
784 	wrote += wb_check_old_data_flush(wb);
785 	clear_bit(BDI_writeback_running, &wb->bdi->state);
786 
787 	return wrote;
788 }
789 
790 /*
791  * Handle writeback of dirty data for the device backed by this bdi. Also
792  * wakes up periodically and does kupdated style flushing.
793  */
794 int bdi_writeback_thread(void *data)
795 {
796 	struct bdi_writeback *wb = data;
797 	struct backing_dev_info *bdi = wb->bdi;
798 	long pages_written;
799 
800 	current->flags |= PF_SWAPWRITE;
801 	set_freezable();
802 	wb->last_active = jiffies;
803 
804 	/*
805 	 * Our parent may run at a different priority, just set us to normal
806 	 */
807 	set_user_nice(current, 0);
808 
809 	trace_writeback_thread_start(bdi);
810 
811 	while (!kthread_should_stop()) {
812 		/*
813 		 * Remove own delayed wake-up timer, since we are already awake
814 		 * and we'll take care of the preriodic write-back.
815 		 */
816 		del_timer(&wb->wakeup_timer);
817 
818 		pages_written = wb_do_writeback(wb, 0);
819 
820 		trace_writeback_pages_written(pages_written);
821 
822 		if (pages_written)
823 			wb->last_active = jiffies;
824 
825 		set_current_state(TASK_INTERRUPTIBLE);
826 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
827 			__set_current_state(TASK_RUNNING);
828 			continue;
829 		}
830 
831 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
832 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
833 		else {
834 			/*
835 			 * We have nothing to do, so can go sleep without any
836 			 * timeout and save power. When a work is queued or
837 			 * something is made dirty - we will be woken up.
838 			 */
839 			schedule();
840 		}
841 
842 		try_to_freeze();
843 	}
844 
845 	/* Flush any work that raced with us exiting */
846 	if (!list_empty(&bdi->work_list))
847 		wb_do_writeback(wb, 1);
848 
849 	trace_writeback_thread_stop(bdi);
850 	return 0;
851 }
852 
853 
854 /*
855  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
856  * the whole world.
857  */
858 void wakeup_flusher_threads(long nr_pages)
859 {
860 	struct backing_dev_info *bdi;
861 
862 	if (!nr_pages) {
863 		nr_pages = global_page_state(NR_FILE_DIRTY) +
864 				global_page_state(NR_UNSTABLE_NFS);
865 	}
866 
867 	rcu_read_lock();
868 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
869 		if (!bdi_has_dirty_io(bdi))
870 			continue;
871 		__bdi_start_writeback(bdi, nr_pages, false, false);
872 	}
873 	rcu_read_unlock();
874 }
875 
876 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
877 {
878 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
879 		struct dentry *dentry;
880 		const char *name = "?";
881 
882 		dentry = d_find_alias(inode);
883 		if (dentry) {
884 			spin_lock(&dentry->d_lock);
885 			name = (const char *) dentry->d_name.name;
886 		}
887 		printk(KERN_DEBUG
888 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
889 		       current->comm, task_pid_nr(current), inode->i_ino,
890 		       name, inode->i_sb->s_id);
891 		if (dentry) {
892 			spin_unlock(&dentry->d_lock);
893 			dput(dentry);
894 		}
895 	}
896 }
897 
898 /**
899  *	__mark_inode_dirty -	internal function
900  *	@inode: inode to mark
901  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
902  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
903  *  	mark_inode_dirty_sync.
904  *
905  * Put the inode on the super block's dirty list.
906  *
907  * CAREFUL! We mark it dirty unconditionally, but move it onto the
908  * dirty list only if it is hashed or if it refers to a blockdev.
909  * If it was not hashed, it will never be added to the dirty list
910  * even if it is later hashed, as it will have been marked dirty already.
911  *
912  * In short, make sure you hash any inodes _before_ you start marking
913  * them dirty.
914  *
915  * This function *must* be atomic for the I_DIRTY_PAGES case -
916  * set_page_dirty() is called under spinlock in several places.
917  *
918  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
919  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
920  * the kernel-internal blockdev inode represents the dirtying time of the
921  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
922  * page->mapping->host, so the page-dirtying time is recorded in the internal
923  * blockdev inode.
924  */
925 void __mark_inode_dirty(struct inode *inode, int flags)
926 {
927 	struct super_block *sb = inode->i_sb;
928 	struct backing_dev_info *bdi = NULL;
929 	bool wakeup_bdi = false;
930 
931 	/*
932 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
933 	 * dirty the inode itself
934 	 */
935 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
936 		if (sb->s_op->dirty_inode)
937 			sb->s_op->dirty_inode(inode);
938 	}
939 
940 	/*
941 	 * make sure that changes are seen by all cpus before we test i_state
942 	 * -- mikulas
943 	 */
944 	smp_mb();
945 
946 	/* avoid the locking if we can */
947 	if ((inode->i_state & flags) == flags)
948 		return;
949 
950 	if (unlikely(block_dump))
951 		block_dump___mark_inode_dirty(inode);
952 
953 	spin_lock(&inode_lock);
954 	if ((inode->i_state & flags) != flags) {
955 		const int was_dirty = inode->i_state & I_DIRTY;
956 
957 		inode->i_state |= flags;
958 
959 		/*
960 		 * If the inode is being synced, just update its dirty state.
961 		 * The unlocker will place the inode on the appropriate
962 		 * superblock list, based upon its state.
963 		 */
964 		if (inode->i_state & I_SYNC)
965 			goto out;
966 
967 		/*
968 		 * Only add valid (hashed) inodes to the superblock's
969 		 * dirty list.  Add blockdev inodes as well.
970 		 */
971 		if (!S_ISBLK(inode->i_mode)) {
972 			if (inode_unhashed(inode))
973 				goto out;
974 		}
975 		if (inode->i_state & I_FREEING)
976 			goto out;
977 
978 		/*
979 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
980 		 * reposition it (that would break b_dirty time-ordering).
981 		 */
982 		if (!was_dirty) {
983 			bdi = inode_to_bdi(inode);
984 
985 			if (bdi_cap_writeback_dirty(bdi)) {
986 				WARN(!test_bit(BDI_registered, &bdi->state),
987 				     "bdi-%s not registered\n", bdi->name);
988 
989 				/*
990 				 * If this is the first dirty inode for this
991 				 * bdi, we have to wake-up the corresponding
992 				 * bdi thread to make sure background
993 				 * write-back happens later.
994 				 */
995 				if (!wb_has_dirty_io(&bdi->wb))
996 					wakeup_bdi = true;
997 			}
998 
999 			inode->dirtied_when = jiffies;
1000 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1001 		}
1002 	}
1003 out:
1004 	spin_unlock(&inode_lock);
1005 
1006 	if (wakeup_bdi)
1007 		bdi_wakeup_thread_delayed(bdi);
1008 }
1009 EXPORT_SYMBOL(__mark_inode_dirty);
1010 
1011 /*
1012  * Write out a superblock's list of dirty inodes.  A wait will be performed
1013  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1014  *
1015  * If older_than_this is non-NULL, then only write out inodes which
1016  * had their first dirtying at a time earlier than *older_than_this.
1017  *
1018  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1019  * This function assumes that the blockdev superblock's inodes are backed by
1020  * a variety of queues, so all inodes are searched.  For other superblocks,
1021  * assume that all inodes are backed by the same queue.
1022  *
1023  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1024  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1025  * on the writer throttling path, and we get decent balancing between many
1026  * throttled threads: we don't want them all piling up on inode_sync_wait.
1027  */
1028 static void wait_sb_inodes(struct super_block *sb)
1029 {
1030 	struct inode *inode, *old_inode = NULL;
1031 
1032 	/*
1033 	 * We need to be protected against the filesystem going from
1034 	 * r/o to r/w or vice versa.
1035 	 */
1036 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1037 
1038 	spin_lock(&inode_lock);
1039 
1040 	/*
1041 	 * Data integrity sync. Must wait for all pages under writeback,
1042 	 * because there may have been pages dirtied before our sync
1043 	 * call, but which had writeout started before we write it out.
1044 	 * In which case, the inode may not be on the dirty list, but
1045 	 * we still have to wait for that writeout.
1046 	 */
1047 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1048 		struct address_space *mapping;
1049 
1050 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1051 			continue;
1052 		mapping = inode->i_mapping;
1053 		if (mapping->nrpages == 0)
1054 			continue;
1055 		__iget(inode);
1056 		spin_unlock(&inode_lock);
1057 		/*
1058 		 * We hold a reference to 'inode' so it couldn't have
1059 		 * been removed from s_inodes list while we dropped the
1060 		 * inode_lock.  We cannot iput the inode now as we can
1061 		 * be holding the last reference and we cannot iput it
1062 		 * under inode_lock. So we keep the reference and iput
1063 		 * it later.
1064 		 */
1065 		iput(old_inode);
1066 		old_inode = inode;
1067 
1068 		filemap_fdatawait(mapping);
1069 
1070 		cond_resched();
1071 
1072 		spin_lock(&inode_lock);
1073 	}
1074 	spin_unlock(&inode_lock);
1075 	iput(old_inode);
1076 }
1077 
1078 /**
1079  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1080  * @sb: the superblock
1081  *
1082  * Start writeback on some inodes on this super_block. No guarantees are made
1083  * on how many (if any) will be written, and this function does not wait
1084  * for IO completion of submitted IO. The number of pages submitted is
1085  * returned.
1086  */
1087 void writeback_inodes_sb(struct super_block *sb)
1088 {
1089 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1090 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1091 	DECLARE_COMPLETION_ONSTACK(done);
1092 	struct wb_writeback_work work = {
1093 		.sb		= sb,
1094 		.sync_mode	= WB_SYNC_NONE,
1095 		.done		= &done,
1096 	};
1097 
1098 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1099 
1100 	work.nr_pages = nr_dirty + nr_unstable + get_nr_dirty_inodes();
1101 
1102 	bdi_queue_work(sb->s_bdi, &work);
1103 	wait_for_completion(&done);
1104 }
1105 EXPORT_SYMBOL(writeback_inodes_sb);
1106 
1107 /**
1108  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1109  * @sb: the superblock
1110  *
1111  * Invoke writeback_inodes_sb if no writeback is currently underway.
1112  * Returns 1 if writeback was started, 0 if not.
1113  */
1114 int writeback_inodes_sb_if_idle(struct super_block *sb)
1115 {
1116 	if (!writeback_in_progress(sb->s_bdi)) {
1117 		down_read(&sb->s_umount);
1118 		writeback_inodes_sb(sb);
1119 		up_read(&sb->s_umount);
1120 		return 1;
1121 	} else
1122 		return 0;
1123 }
1124 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1125 
1126 /**
1127  * sync_inodes_sb	-	sync sb inode pages
1128  * @sb: the superblock
1129  *
1130  * This function writes and waits on any dirty inode belonging to this
1131  * super_block. The number of pages synced is returned.
1132  */
1133 void sync_inodes_sb(struct super_block *sb)
1134 {
1135 	DECLARE_COMPLETION_ONSTACK(done);
1136 	struct wb_writeback_work work = {
1137 		.sb		= sb,
1138 		.sync_mode	= WB_SYNC_ALL,
1139 		.nr_pages	= LONG_MAX,
1140 		.range_cyclic	= 0,
1141 		.done		= &done,
1142 	};
1143 
1144 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1145 
1146 	bdi_queue_work(sb->s_bdi, &work);
1147 	wait_for_completion(&done);
1148 
1149 	wait_sb_inodes(sb);
1150 }
1151 EXPORT_SYMBOL(sync_inodes_sb);
1152 
1153 /**
1154  * write_inode_now	-	write an inode to disk
1155  * @inode: inode to write to disk
1156  * @sync: whether the write should be synchronous or not
1157  *
1158  * This function commits an inode to disk immediately if it is dirty. This is
1159  * primarily needed by knfsd.
1160  *
1161  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1162  */
1163 int write_inode_now(struct inode *inode, int sync)
1164 {
1165 	int ret;
1166 	struct writeback_control wbc = {
1167 		.nr_to_write = LONG_MAX,
1168 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1169 		.range_start = 0,
1170 		.range_end = LLONG_MAX,
1171 	};
1172 
1173 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1174 		wbc.nr_to_write = 0;
1175 
1176 	might_sleep();
1177 	spin_lock(&inode_lock);
1178 	ret = writeback_single_inode(inode, &wbc);
1179 	spin_unlock(&inode_lock);
1180 	if (sync)
1181 		inode_sync_wait(inode);
1182 	return ret;
1183 }
1184 EXPORT_SYMBOL(write_inode_now);
1185 
1186 /**
1187  * sync_inode - write an inode and its pages to disk.
1188  * @inode: the inode to sync
1189  * @wbc: controls the writeback mode
1190  *
1191  * sync_inode() will write an inode and its pages to disk.  It will also
1192  * correctly update the inode on its superblock's dirty inode lists and will
1193  * update inode->i_state.
1194  *
1195  * The caller must have a ref on the inode.
1196  */
1197 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1198 {
1199 	int ret;
1200 
1201 	spin_lock(&inode_lock);
1202 	ret = writeback_single_inode(inode, wbc);
1203 	spin_unlock(&inode_lock);
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL(sync_inode);
1207 
1208 /**
1209  * sync_inode - write an inode to disk
1210  * @inode: the inode to sync
1211  * @wait: wait for I/O to complete.
1212  *
1213  * Write an inode to disk and adjust it's dirty state after completion.
1214  *
1215  * Note: only writes the actual inode, no associated data or other metadata.
1216  */
1217 int sync_inode_metadata(struct inode *inode, int wait)
1218 {
1219 	struct writeback_control wbc = {
1220 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1221 		.nr_to_write = 0, /* metadata-only */
1222 	};
1223 
1224 	return sync_inode(inode, &wbc);
1225 }
1226 EXPORT_SYMBOL(sync_inode_metadata);
1227