1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 static void wb_wakeup(struct bdi_writeback *wb) 135 { 136 spin_lock_bh(&wb->work_lock); 137 if (test_bit(WB_registered, &wb->state)) 138 mod_delayed_work(bdi_wq, &wb->dwork, 0); 139 spin_unlock_bh(&wb->work_lock); 140 } 141 142 static void finish_writeback_work(struct bdi_writeback *wb, 143 struct wb_writeback_work *work) 144 { 145 struct wb_completion *done = work->done; 146 147 if (work->auto_free) 148 kfree(work); 149 if (done) { 150 wait_queue_head_t *waitq = done->waitq; 151 152 /* @done can't be accessed after the following dec */ 153 if (atomic_dec_and_test(&done->cnt)) 154 wake_up_all(waitq); 155 } 156 } 157 158 static void wb_queue_work(struct bdi_writeback *wb, 159 struct wb_writeback_work *work) 160 { 161 trace_writeback_queue(wb, work); 162 163 if (work->done) 164 atomic_inc(&work->done->cnt); 165 166 spin_lock_bh(&wb->work_lock); 167 168 if (test_bit(WB_registered, &wb->state)) { 169 list_add_tail(&work->list, &wb->work_list); 170 mod_delayed_work(bdi_wq, &wb->dwork, 0); 171 } else 172 finish_writeback_work(wb, work); 173 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 /** 178 * wb_wait_for_completion - wait for completion of bdi_writeback_works 179 * @done: target wb_completion 180 * 181 * Wait for one or more work items issued to @bdi with their ->done field 182 * set to @done, which should have been initialized with 183 * DEFINE_WB_COMPLETION(). This function returns after all such work items 184 * are completed. Work items which are waited upon aren't freed 185 * automatically on completion. 186 */ 187 void wb_wait_for_completion(struct wb_completion *done) 188 { 189 atomic_dec(&done->cnt); /* put down the initial count */ 190 wait_event(*done->waitq, !atomic_read(&done->cnt)); 191 } 192 193 #ifdef CONFIG_CGROUP_WRITEBACK 194 195 /* 196 * Parameters for foreign inode detection, see wbc_detach_inode() to see 197 * how they're used. 198 * 199 * These paramters are inherently heuristical as the detection target 200 * itself is fuzzy. All we want to do is detaching an inode from the 201 * current owner if it's being written to by some other cgroups too much. 202 * 203 * The current cgroup writeback is built on the assumption that multiple 204 * cgroups writing to the same inode concurrently is very rare and a mode 205 * of operation which isn't well supported. As such, the goal is not 206 * taking too long when a different cgroup takes over an inode while 207 * avoiding too aggressive flip-flops from occasional foreign writes. 208 * 209 * We record, very roughly, 2s worth of IO time history and if more than 210 * half of that is foreign, trigger the switch. The recording is quantized 211 * to 16 slots. To avoid tiny writes from swinging the decision too much, 212 * writes smaller than 1/8 of avg size are ignored. 213 */ 214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 218 219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 221 /* each slot's duration is 2s / 16 */ 222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 223 /* if foreign slots >= 8, switch */ 224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 225 /* one round can affect upto 5 slots */ 226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 227 228 /* 229 * Maximum inodes per isw. A specific value has been chosen to make 230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 231 */ 232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 233 / sizeof(struct inode *)) 234 235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 236 static struct workqueue_struct *isw_wq; 237 238 void __inode_attach_wb(struct inode *inode, struct page *page) 239 { 240 struct backing_dev_info *bdi = inode_to_bdi(inode); 241 struct bdi_writeback *wb = NULL; 242 243 if (inode_cgwb_enabled(inode)) { 244 struct cgroup_subsys_state *memcg_css; 245 246 if (page) { 247 memcg_css = mem_cgroup_css_from_page(page); 248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 249 } else { 250 /* must pin memcg_css, see wb_get_create() */ 251 memcg_css = task_get_css(current, memory_cgrp_id); 252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 253 css_put(memcg_css); 254 } 255 } 256 257 if (!wb) 258 wb = &bdi->wb; 259 260 /* 261 * There may be multiple instances of this function racing to 262 * update the same inode. Use cmpxchg() to tell the winner. 263 */ 264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 265 wb_put(wb); 266 } 267 EXPORT_SYMBOL_GPL(__inode_attach_wb); 268 269 /** 270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 271 * @inode: inode of interest with i_lock held 272 * @wb: target bdi_writeback 273 * 274 * Remove the inode from wb's io lists and if necessarily put onto b_attached 275 * list. Only inodes attached to cgwb's are kept on this list. 276 */ 277 static void inode_cgwb_move_to_attached(struct inode *inode, 278 struct bdi_writeback *wb) 279 { 280 assert_spin_locked(&wb->list_lock); 281 assert_spin_locked(&inode->i_lock); 282 283 inode->i_state &= ~I_SYNC_QUEUED; 284 if (wb != &wb->bdi->wb) 285 list_move(&inode->i_io_list, &wb->b_attached); 286 else 287 list_del_init(&inode->i_io_list); 288 wb_io_lists_depopulated(wb); 289 } 290 291 /** 292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 293 * @inode: inode of interest with i_lock held 294 * 295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 296 * held on entry and is released on return. The returned wb is guaranteed 297 * to stay @inode's associated wb until its list_lock is released. 298 */ 299 static struct bdi_writeback * 300 locked_inode_to_wb_and_lock_list(struct inode *inode) 301 __releases(&inode->i_lock) 302 __acquires(&wb->list_lock) 303 { 304 while (true) { 305 struct bdi_writeback *wb = inode_to_wb(inode); 306 307 /* 308 * inode_to_wb() association is protected by both 309 * @inode->i_lock and @wb->list_lock but list_lock nests 310 * outside i_lock. Drop i_lock and verify that the 311 * association hasn't changed after acquiring list_lock. 312 */ 313 wb_get(wb); 314 spin_unlock(&inode->i_lock); 315 spin_lock(&wb->list_lock); 316 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 318 if (likely(wb == inode->i_wb)) { 319 wb_put(wb); /* @inode already has ref */ 320 return wb; 321 } 322 323 spin_unlock(&wb->list_lock); 324 wb_put(wb); 325 cpu_relax(); 326 spin_lock(&inode->i_lock); 327 } 328 } 329 330 /** 331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 332 * @inode: inode of interest 333 * 334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 335 * on entry. 336 */ 337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 338 __acquires(&wb->list_lock) 339 { 340 spin_lock(&inode->i_lock); 341 return locked_inode_to_wb_and_lock_list(inode); 342 } 343 344 struct inode_switch_wbs_context { 345 struct rcu_work work; 346 347 /* 348 * Multiple inodes can be switched at once. The switching procedure 349 * consists of two parts, separated by a RCU grace period. To make 350 * sure that the second part is executed for each inode gone through 351 * the first part, all inode pointers are placed into a NULL-terminated 352 * array embedded into struct inode_switch_wbs_context. Otherwise 353 * an inode could be left in a non-consistent state. 354 */ 355 struct bdi_writeback *new_wb; 356 struct inode *inodes[]; 357 }; 358 359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 360 { 361 down_write(&bdi->wb_switch_rwsem); 362 } 363 364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 365 { 366 up_write(&bdi->wb_switch_rwsem); 367 } 368 369 static bool inode_do_switch_wbs(struct inode *inode, 370 struct bdi_writeback *old_wb, 371 struct bdi_writeback *new_wb) 372 { 373 struct address_space *mapping = inode->i_mapping; 374 XA_STATE(xas, &mapping->i_pages, 0); 375 struct page *page; 376 bool switched = false; 377 378 spin_lock(&inode->i_lock); 379 xa_lock_irq(&mapping->i_pages); 380 381 /* 382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 383 * path owns the inode and we shouldn't modify ->i_io_list. 384 */ 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 386 goto skip_switch; 387 388 trace_inode_switch_wbs(inode, old_wb, new_wb); 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 393 * pages actually under writeback. 394 */ 395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (PageDirty(page)) { 397 dec_wb_stat(old_wb, WB_RECLAIMABLE); 398 inc_wb_stat(new_wb, WB_RECLAIMABLE); 399 } 400 } 401 402 xas_set(&xas, 0); 403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 404 WARN_ON_ONCE(!PageWriteback(page)); 405 dec_wb_stat(old_wb, WB_WRITEBACK); 406 inc_wb_stat(new_wb, WB_WRITEBACK); 407 } 408 409 wb_get(new_wb); 410 411 /* 412 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 413 * the specific list @inode was on is ignored and the @inode is put on 414 * ->b_dirty which is always correct including from ->b_dirty_time. 415 * The transfer preserves @inode->dirtied_when ordering. If the @inode 416 * was clean, it means it was on the b_attached list, so move it onto 417 * the b_attached list of @new_wb. 418 */ 419 if (!list_empty(&inode->i_io_list)) { 420 inode->i_wb = new_wb; 421 422 if (inode->i_state & I_DIRTY_ALL) { 423 struct inode *pos; 424 425 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 426 if (time_after_eq(inode->dirtied_when, 427 pos->dirtied_when)) 428 break; 429 inode_io_list_move_locked(inode, new_wb, 430 pos->i_io_list.prev); 431 } else { 432 inode_cgwb_move_to_attached(inode, new_wb); 433 } 434 } else { 435 inode->i_wb = new_wb; 436 } 437 438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 439 inode->i_wb_frn_winner = 0; 440 inode->i_wb_frn_avg_time = 0; 441 inode->i_wb_frn_history = 0; 442 switched = true; 443 skip_switch: 444 /* 445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 446 * ensures that the new wb is visible if they see !I_WB_SWITCH. 447 */ 448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 449 450 xa_unlock_irq(&mapping->i_pages); 451 spin_unlock(&inode->i_lock); 452 453 return switched; 454 } 455 456 static void inode_switch_wbs_work_fn(struct work_struct *work) 457 { 458 struct inode_switch_wbs_context *isw = 459 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 460 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 461 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 462 struct bdi_writeback *new_wb = isw->new_wb; 463 unsigned long nr_switched = 0; 464 struct inode **inodep; 465 466 /* 467 * If @inode switches cgwb membership while sync_inodes_sb() is 468 * being issued, sync_inodes_sb() might miss it. Synchronize. 469 */ 470 down_read(&bdi->wb_switch_rwsem); 471 472 /* 473 * By the time control reaches here, RCU grace period has passed 474 * since I_WB_SWITCH assertion and all wb stat update transactions 475 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 476 * synchronizing against the i_pages lock. 477 * 478 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 479 * gives us exclusion against all wb related operations on @inode 480 * including IO list manipulations and stat updates. 481 */ 482 if (old_wb < new_wb) { 483 spin_lock(&old_wb->list_lock); 484 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 485 } else { 486 spin_lock(&new_wb->list_lock); 487 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 488 } 489 490 for (inodep = isw->inodes; *inodep; inodep++) { 491 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 492 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 493 nr_switched++; 494 } 495 496 spin_unlock(&new_wb->list_lock); 497 spin_unlock(&old_wb->list_lock); 498 499 up_read(&bdi->wb_switch_rwsem); 500 501 if (nr_switched) { 502 wb_wakeup(new_wb); 503 wb_put_many(old_wb, nr_switched); 504 } 505 506 for (inodep = isw->inodes; *inodep; inodep++) 507 iput(*inodep); 508 wb_put(new_wb); 509 kfree(isw); 510 atomic_dec(&isw_nr_in_flight); 511 } 512 513 static bool inode_prepare_wbs_switch(struct inode *inode, 514 struct bdi_writeback *new_wb) 515 { 516 /* 517 * Paired with smp_mb() in cgroup_writeback_umount(). 518 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 519 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 520 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 521 */ 522 smp_mb(); 523 524 if (IS_DAX(inode)) 525 return false; 526 527 /* while holding I_WB_SWITCH, no one else can update the association */ 528 spin_lock(&inode->i_lock); 529 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 530 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 531 inode_to_wb(inode) == new_wb) { 532 spin_unlock(&inode->i_lock); 533 return false; 534 } 535 inode->i_state |= I_WB_SWITCH; 536 __iget(inode); 537 spin_unlock(&inode->i_lock); 538 539 return true; 540 } 541 542 /** 543 * inode_switch_wbs - change the wb association of an inode 544 * @inode: target inode 545 * @new_wb_id: ID of the new wb 546 * 547 * Switch @inode's wb association to the wb identified by @new_wb_id. The 548 * switching is performed asynchronously and may fail silently. 549 */ 550 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 551 { 552 struct backing_dev_info *bdi = inode_to_bdi(inode); 553 struct cgroup_subsys_state *memcg_css; 554 struct inode_switch_wbs_context *isw; 555 556 /* noop if seems to be already in progress */ 557 if (inode->i_state & I_WB_SWITCH) 558 return; 559 560 /* avoid queueing a new switch if too many are already in flight */ 561 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 562 return; 563 564 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC); 565 if (!isw) 566 return; 567 568 atomic_inc(&isw_nr_in_flight); 569 570 /* find and pin the new wb */ 571 rcu_read_lock(); 572 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 573 if (memcg_css && !css_tryget(memcg_css)) 574 memcg_css = NULL; 575 rcu_read_unlock(); 576 if (!memcg_css) 577 goto out_free; 578 579 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 580 css_put(memcg_css); 581 if (!isw->new_wb) 582 goto out_free; 583 584 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 585 goto out_free; 586 587 isw->inodes[0] = inode; 588 589 /* 590 * In addition to synchronizing among switchers, I_WB_SWITCH tells 591 * the RCU protected stat update paths to grab the i_page 592 * lock so that stat transfer can synchronize against them. 593 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 594 */ 595 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 596 queue_rcu_work(isw_wq, &isw->work); 597 return; 598 599 out_free: 600 atomic_dec(&isw_nr_in_flight); 601 if (isw->new_wb) 602 wb_put(isw->new_wb); 603 kfree(isw); 604 } 605 606 /** 607 * cleanup_offline_cgwb - detach associated inodes 608 * @wb: target wb 609 * 610 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 611 * to eventually release the dying @wb. Returns %true if not all inodes were 612 * switched and the function has to be restarted. 613 */ 614 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 615 { 616 struct cgroup_subsys_state *memcg_css; 617 struct inode_switch_wbs_context *isw; 618 struct inode *inode; 619 int nr; 620 bool restart = false; 621 622 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW * 623 sizeof(struct inode *), GFP_KERNEL); 624 if (!isw) 625 return restart; 626 627 atomic_inc(&isw_nr_in_flight); 628 629 for (memcg_css = wb->memcg_css->parent; memcg_css; 630 memcg_css = memcg_css->parent) { 631 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 632 if (isw->new_wb) 633 break; 634 } 635 if (unlikely(!isw->new_wb)) 636 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 637 638 nr = 0; 639 spin_lock(&wb->list_lock); 640 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 641 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 642 continue; 643 644 isw->inodes[nr++] = inode; 645 646 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 647 restart = true; 648 break; 649 } 650 } 651 spin_unlock(&wb->list_lock); 652 653 /* no attached inodes? bail out */ 654 if (nr == 0) { 655 atomic_dec(&isw_nr_in_flight); 656 wb_put(isw->new_wb); 657 kfree(isw); 658 return restart; 659 } 660 661 /* 662 * In addition to synchronizing among switchers, I_WB_SWITCH tells 663 * the RCU protected stat update paths to grab the i_page 664 * lock so that stat transfer can synchronize against them. 665 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 666 */ 667 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 668 queue_rcu_work(isw_wq, &isw->work); 669 670 return restart; 671 } 672 673 /** 674 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 675 * @wbc: writeback_control of interest 676 * @inode: target inode 677 * 678 * @inode is locked and about to be written back under the control of @wbc. 679 * Record @inode's writeback context into @wbc and unlock the i_lock. On 680 * writeback completion, wbc_detach_inode() should be called. This is used 681 * to track the cgroup writeback context. 682 */ 683 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 684 struct inode *inode) 685 { 686 if (!inode_cgwb_enabled(inode)) { 687 spin_unlock(&inode->i_lock); 688 return; 689 } 690 691 wbc->wb = inode_to_wb(inode); 692 wbc->inode = inode; 693 694 wbc->wb_id = wbc->wb->memcg_css->id; 695 wbc->wb_lcand_id = inode->i_wb_frn_winner; 696 wbc->wb_tcand_id = 0; 697 wbc->wb_bytes = 0; 698 wbc->wb_lcand_bytes = 0; 699 wbc->wb_tcand_bytes = 0; 700 701 wb_get(wbc->wb); 702 spin_unlock(&inode->i_lock); 703 704 /* 705 * A dying wb indicates that either the blkcg associated with the 706 * memcg changed or the associated memcg is dying. In the first 707 * case, a replacement wb should already be available and we should 708 * refresh the wb immediately. In the second case, trying to 709 * refresh will keep failing. 710 */ 711 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 712 inode_switch_wbs(inode, wbc->wb_id); 713 } 714 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 715 716 /** 717 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 718 * @wbc: writeback_control of the just finished writeback 719 * 720 * To be called after a writeback attempt of an inode finishes and undoes 721 * wbc_attach_and_unlock_inode(). Can be called under any context. 722 * 723 * As concurrent write sharing of an inode is expected to be very rare and 724 * memcg only tracks page ownership on first-use basis severely confining 725 * the usefulness of such sharing, cgroup writeback tracks ownership 726 * per-inode. While the support for concurrent write sharing of an inode 727 * is deemed unnecessary, an inode being written to by different cgroups at 728 * different points in time is a lot more common, and, more importantly, 729 * charging only by first-use can too readily lead to grossly incorrect 730 * behaviors (single foreign page can lead to gigabytes of writeback to be 731 * incorrectly attributed). 732 * 733 * To resolve this issue, cgroup writeback detects the majority dirtier of 734 * an inode and transfers the ownership to it. To avoid unnnecessary 735 * oscillation, the detection mechanism keeps track of history and gives 736 * out the switch verdict only if the foreign usage pattern is stable over 737 * a certain amount of time and/or writeback attempts. 738 * 739 * On each writeback attempt, @wbc tries to detect the majority writer 740 * using Boyer-Moore majority vote algorithm. In addition to the byte 741 * count from the majority voting, it also counts the bytes written for the 742 * current wb and the last round's winner wb (max of last round's current 743 * wb, the winner from two rounds ago, and the last round's majority 744 * candidate). Keeping track of the historical winner helps the algorithm 745 * to semi-reliably detect the most active writer even when it's not the 746 * absolute majority. 747 * 748 * Once the winner of the round is determined, whether the winner is 749 * foreign or not and how much IO time the round consumed is recorded in 750 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 751 * over a certain threshold, the switch verdict is given. 752 */ 753 void wbc_detach_inode(struct writeback_control *wbc) 754 { 755 struct bdi_writeback *wb = wbc->wb; 756 struct inode *inode = wbc->inode; 757 unsigned long avg_time, max_bytes, max_time; 758 u16 history; 759 int max_id; 760 761 if (!wb) 762 return; 763 764 history = inode->i_wb_frn_history; 765 avg_time = inode->i_wb_frn_avg_time; 766 767 /* pick the winner of this round */ 768 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 769 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 770 max_id = wbc->wb_id; 771 max_bytes = wbc->wb_bytes; 772 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 773 max_id = wbc->wb_lcand_id; 774 max_bytes = wbc->wb_lcand_bytes; 775 } else { 776 max_id = wbc->wb_tcand_id; 777 max_bytes = wbc->wb_tcand_bytes; 778 } 779 780 /* 781 * Calculate the amount of IO time the winner consumed and fold it 782 * into the running average kept per inode. If the consumed IO 783 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 784 * deciding whether to switch or not. This is to prevent one-off 785 * small dirtiers from skewing the verdict. 786 */ 787 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 788 wb->avg_write_bandwidth); 789 if (avg_time) 790 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 791 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 792 else 793 avg_time = max_time; /* immediate catch up on first run */ 794 795 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 796 int slots; 797 798 /* 799 * The switch verdict is reached if foreign wb's consume 800 * more than a certain proportion of IO time in a 801 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 802 * history mask where each bit represents one sixteenth of 803 * the period. Determine the number of slots to shift into 804 * history from @max_time. 805 */ 806 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 807 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 808 history <<= slots; 809 if (wbc->wb_id != max_id) 810 history |= (1U << slots) - 1; 811 812 if (history) 813 trace_inode_foreign_history(inode, wbc, history); 814 815 /* 816 * Switch if the current wb isn't the consistent winner. 817 * If there are multiple closely competing dirtiers, the 818 * inode may switch across them repeatedly over time, which 819 * is okay. The main goal is avoiding keeping an inode on 820 * the wrong wb for an extended period of time. 821 */ 822 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 823 inode_switch_wbs(inode, max_id); 824 } 825 826 /* 827 * Multiple instances of this function may race to update the 828 * following fields but we don't mind occassional inaccuracies. 829 */ 830 inode->i_wb_frn_winner = max_id; 831 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 832 inode->i_wb_frn_history = history; 833 834 wb_put(wbc->wb); 835 wbc->wb = NULL; 836 } 837 EXPORT_SYMBOL_GPL(wbc_detach_inode); 838 839 /** 840 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 841 * @wbc: writeback_control of the writeback in progress 842 * @page: page being written out 843 * @bytes: number of bytes being written out 844 * 845 * @bytes from @page are about to written out during the writeback 846 * controlled by @wbc. Keep the book for foreign inode detection. See 847 * wbc_detach_inode(). 848 */ 849 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 850 size_t bytes) 851 { 852 struct cgroup_subsys_state *css; 853 int id; 854 855 /* 856 * pageout() path doesn't attach @wbc to the inode being written 857 * out. This is intentional as we don't want the function to block 858 * behind a slow cgroup. Ultimately, we want pageout() to kick off 859 * regular writeback instead of writing things out itself. 860 */ 861 if (!wbc->wb || wbc->no_cgroup_owner) 862 return; 863 864 css = mem_cgroup_css_from_page(page); 865 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 866 if (!(css->flags & CSS_ONLINE)) 867 return; 868 869 id = css->id; 870 871 if (id == wbc->wb_id) { 872 wbc->wb_bytes += bytes; 873 return; 874 } 875 876 if (id == wbc->wb_lcand_id) 877 wbc->wb_lcand_bytes += bytes; 878 879 /* Boyer-Moore majority vote algorithm */ 880 if (!wbc->wb_tcand_bytes) 881 wbc->wb_tcand_id = id; 882 if (id == wbc->wb_tcand_id) 883 wbc->wb_tcand_bytes += bytes; 884 else 885 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 886 } 887 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 888 889 /** 890 * inode_congested - test whether an inode is congested 891 * @inode: inode to test for congestion (may be NULL) 892 * @cong_bits: mask of WB_[a]sync_congested bits to test 893 * 894 * Tests whether @inode is congested. @cong_bits is the mask of congestion 895 * bits to test and the return value is the mask of set bits. 896 * 897 * If cgroup writeback is enabled for @inode, the congestion state is 898 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 899 * associated with @inode is congested; otherwise, the root wb's congestion 900 * state is used. 901 * 902 * @inode is allowed to be NULL as this function is often called on 903 * mapping->host which is NULL for the swapper space. 904 */ 905 int inode_congested(struct inode *inode, int cong_bits) 906 { 907 /* 908 * Once set, ->i_wb never becomes NULL while the inode is alive. 909 * Start transaction iff ->i_wb is visible. 910 */ 911 if (inode && inode_to_wb_is_valid(inode)) { 912 struct bdi_writeback *wb; 913 struct wb_lock_cookie lock_cookie = {}; 914 bool congested; 915 916 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 917 congested = wb_congested(wb, cong_bits); 918 unlocked_inode_to_wb_end(inode, &lock_cookie); 919 return congested; 920 } 921 922 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 923 } 924 EXPORT_SYMBOL_GPL(inode_congested); 925 926 /** 927 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 928 * @wb: target bdi_writeback to split @nr_pages to 929 * @nr_pages: number of pages to write for the whole bdi 930 * 931 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 932 * relation to the total write bandwidth of all wb's w/ dirty inodes on 933 * @wb->bdi. 934 */ 935 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 936 { 937 unsigned long this_bw = wb->avg_write_bandwidth; 938 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 939 940 if (nr_pages == LONG_MAX) 941 return LONG_MAX; 942 943 /* 944 * This may be called on clean wb's and proportional distribution 945 * may not make sense, just use the original @nr_pages in those 946 * cases. In general, we wanna err on the side of writing more. 947 */ 948 if (!tot_bw || this_bw >= tot_bw) 949 return nr_pages; 950 else 951 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 952 } 953 954 /** 955 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 956 * @bdi: target backing_dev_info 957 * @base_work: wb_writeback_work to issue 958 * @skip_if_busy: skip wb's which already have writeback in progress 959 * 960 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 961 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 962 * distributed to the busy wbs according to each wb's proportion in the 963 * total active write bandwidth of @bdi. 964 */ 965 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 966 struct wb_writeback_work *base_work, 967 bool skip_if_busy) 968 { 969 struct bdi_writeback *last_wb = NULL; 970 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 971 struct bdi_writeback, bdi_node); 972 973 might_sleep(); 974 restart: 975 rcu_read_lock(); 976 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 977 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 978 struct wb_writeback_work fallback_work; 979 struct wb_writeback_work *work; 980 long nr_pages; 981 982 if (last_wb) { 983 wb_put(last_wb); 984 last_wb = NULL; 985 } 986 987 /* SYNC_ALL writes out I_DIRTY_TIME too */ 988 if (!wb_has_dirty_io(wb) && 989 (base_work->sync_mode == WB_SYNC_NONE || 990 list_empty(&wb->b_dirty_time))) 991 continue; 992 if (skip_if_busy && writeback_in_progress(wb)) 993 continue; 994 995 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 996 997 work = kmalloc(sizeof(*work), GFP_ATOMIC); 998 if (work) { 999 *work = *base_work; 1000 work->nr_pages = nr_pages; 1001 work->auto_free = 1; 1002 wb_queue_work(wb, work); 1003 continue; 1004 } 1005 1006 /* alloc failed, execute synchronously using on-stack fallback */ 1007 work = &fallback_work; 1008 *work = *base_work; 1009 work->nr_pages = nr_pages; 1010 work->auto_free = 0; 1011 work->done = &fallback_work_done; 1012 1013 wb_queue_work(wb, work); 1014 1015 /* 1016 * Pin @wb so that it stays on @bdi->wb_list. This allows 1017 * continuing iteration from @wb after dropping and 1018 * regrabbing rcu read lock. 1019 */ 1020 wb_get(wb); 1021 last_wb = wb; 1022 1023 rcu_read_unlock(); 1024 wb_wait_for_completion(&fallback_work_done); 1025 goto restart; 1026 } 1027 rcu_read_unlock(); 1028 1029 if (last_wb) 1030 wb_put(last_wb); 1031 } 1032 1033 /** 1034 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1035 * @bdi_id: target bdi id 1036 * @memcg_id: target memcg css id 1037 * @nr: number of pages to write, 0 for best-effort dirty flushing 1038 * @reason: reason why some writeback work initiated 1039 * @done: target wb_completion 1040 * 1041 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1042 * with the specified parameters. 1043 */ 1044 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 1045 enum wb_reason reason, struct wb_completion *done) 1046 { 1047 struct backing_dev_info *bdi; 1048 struct cgroup_subsys_state *memcg_css; 1049 struct bdi_writeback *wb; 1050 struct wb_writeback_work *work; 1051 int ret; 1052 1053 /* lookup bdi and memcg */ 1054 bdi = bdi_get_by_id(bdi_id); 1055 if (!bdi) 1056 return -ENOENT; 1057 1058 rcu_read_lock(); 1059 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1060 if (memcg_css && !css_tryget(memcg_css)) 1061 memcg_css = NULL; 1062 rcu_read_unlock(); 1063 if (!memcg_css) { 1064 ret = -ENOENT; 1065 goto out_bdi_put; 1066 } 1067 1068 /* 1069 * And find the associated wb. If the wb isn't there already 1070 * there's nothing to flush, don't create one. 1071 */ 1072 wb = wb_get_lookup(bdi, memcg_css); 1073 if (!wb) { 1074 ret = -ENOENT; 1075 goto out_css_put; 1076 } 1077 1078 /* 1079 * If @nr is zero, the caller is attempting to write out most of 1080 * the currently dirty pages. Let's take the current dirty page 1081 * count and inflate it by 25% which should be large enough to 1082 * flush out most dirty pages while avoiding getting livelocked by 1083 * concurrent dirtiers. 1084 */ 1085 if (!nr) { 1086 unsigned long filepages, headroom, dirty, writeback; 1087 1088 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 1089 &writeback); 1090 nr = dirty * 10 / 8; 1091 } 1092 1093 /* issue the writeback work */ 1094 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1095 if (work) { 1096 work->nr_pages = nr; 1097 work->sync_mode = WB_SYNC_NONE; 1098 work->range_cyclic = 1; 1099 work->reason = reason; 1100 work->done = done; 1101 work->auto_free = 1; 1102 wb_queue_work(wb, work); 1103 ret = 0; 1104 } else { 1105 ret = -ENOMEM; 1106 } 1107 1108 wb_put(wb); 1109 out_css_put: 1110 css_put(memcg_css); 1111 out_bdi_put: 1112 bdi_put(bdi); 1113 return ret; 1114 } 1115 1116 /** 1117 * cgroup_writeback_umount - flush inode wb switches for umount 1118 * 1119 * This function is called when a super_block is about to be destroyed and 1120 * flushes in-flight inode wb switches. An inode wb switch goes through 1121 * RCU and then workqueue, so the two need to be flushed in order to ensure 1122 * that all previously scheduled switches are finished. As wb switches are 1123 * rare occurrences and synchronize_rcu() can take a while, perform 1124 * flushing iff wb switches are in flight. 1125 */ 1126 void cgroup_writeback_umount(void) 1127 { 1128 /* 1129 * SB_ACTIVE should be reliably cleared before checking 1130 * isw_nr_in_flight, see generic_shutdown_super(). 1131 */ 1132 smp_mb(); 1133 1134 if (atomic_read(&isw_nr_in_flight)) { 1135 /* 1136 * Use rcu_barrier() to wait for all pending callbacks to 1137 * ensure that all in-flight wb switches are in the workqueue. 1138 */ 1139 rcu_barrier(); 1140 flush_workqueue(isw_wq); 1141 } 1142 } 1143 1144 static int __init cgroup_writeback_init(void) 1145 { 1146 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1147 if (!isw_wq) 1148 return -ENOMEM; 1149 return 0; 1150 } 1151 fs_initcall(cgroup_writeback_init); 1152 1153 #else /* CONFIG_CGROUP_WRITEBACK */ 1154 1155 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1156 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1157 1158 static void inode_cgwb_move_to_attached(struct inode *inode, 1159 struct bdi_writeback *wb) 1160 { 1161 assert_spin_locked(&wb->list_lock); 1162 assert_spin_locked(&inode->i_lock); 1163 1164 inode->i_state &= ~I_SYNC_QUEUED; 1165 list_del_init(&inode->i_io_list); 1166 wb_io_lists_depopulated(wb); 1167 } 1168 1169 static struct bdi_writeback * 1170 locked_inode_to_wb_and_lock_list(struct inode *inode) 1171 __releases(&inode->i_lock) 1172 __acquires(&wb->list_lock) 1173 { 1174 struct bdi_writeback *wb = inode_to_wb(inode); 1175 1176 spin_unlock(&inode->i_lock); 1177 spin_lock(&wb->list_lock); 1178 return wb; 1179 } 1180 1181 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1182 __acquires(&wb->list_lock) 1183 { 1184 struct bdi_writeback *wb = inode_to_wb(inode); 1185 1186 spin_lock(&wb->list_lock); 1187 return wb; 1188 } 1189 1190 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1191 { 1192 return nr_pages; 1193 } 1194 1195 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1196 struct wb_writeback_work *base_work, 1197 bool skip_if_busy) 1198 { 1199 might_sleep(); 1200 1201 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1202 base_work->auto_free = 0; 1203 wb_queue_work(&bdi->wb, base_work); 1204 } 1205 } 1206 1207 #endif /* CONFIG_CGROUP_WRITEBACK */ 1208 1209 /* 1210 * Add in the number of potentially dirty inodes, because each inode 1211 * write can dirty pagecache in the underlying blockdev. 1212 */ 1213 static unsigned long get_nr_dirty_pages(void) 1214 { 1215 return global_node_page_state(NR_FILE_DIRTY) + 1216 get_nr_dirty_inodes(); 1217 } 1218 1219 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1220 { 1221 if (!wb_has_dirty_io(wb)) 1222 return; 1223 1224 /* 1225 * All callers of this function want to start writeback of all 1226 * dirty pages. Places like vmscan can call this at a very 1227 * high frequency, causing pointless allocations of tons of 1228 * work items and keeping the flusher threads busy retrieving 1229 * that work. Ensure that we only allow one of them pending and 1230 * inflight at the time. 1231 */ 1232 if (test_bit(WB_start_all, &wb->state) || 1233 test_and_set_bit(WB_start_all, &wb->state)) 1234 return; 1235 1236 wb->start_all_reason = reason; 1237 wb_wakeup(wb); 1238 } 1239 1240 /** 1241 * wb_start_background_writeback - start background writeback 1242 * @wb: bdi_writback to write from 1243 * 1244 * Description: 1245 * This makes sure WB_SYNC_NONE background writeback happens. When 1246 * this function returns, it is only guaranteed that for given wb 1247 * some IO is happening if we are over background dirty threshold. 1248 * Caller need not hold sb s_umount semaphore. 1249 */ 1250 void wb_start_background_writeback(struct bdi_writeback *wb) 1251 { 1252 /* 1253 * We just wake up the flusher thread. It will perform background 1254 * writeback as soon as there is no other work to do. 1255 */ 1256 trace_writeback_wake_background(wb); 1257 wb_wakeup(wb); 1258 } 1259 1260 /* 1261 * Remove the inode from the writeback list it is on. 1262 */ 1263 void inode_io_list_del(struct inode *inode) 1264 { 1265 struct bdi_writeback *wb; 1266 1267 wb = inode_to_wb_and_lock_list(inode); 1268 spin_lock(&inode->i_lock); 1269 1270 inode->i_state &= ~I_SYNC_QUEUED; 1271 list_del_init(&inode->i_io_list); 1272 wb_io_lists_depopulated(wb); 1273 1274 spin_unlock(&inode->i_lock); 1275 spin_unlock(&wb->list_lock); 1276 } 1277 EXPORT_SYMBOL(inode_io_list_del); 1278 1279 /* 1280 * mark an inode as under writeback on the sb 1281 */ 1282 void sb_mark_inode_writeback(struct inode *inode) 1283 { 1284 struct super_block *sb = inode->i_sb; 1285 unsigned long flags; 1286 1287 if (list_empty(&inode->i_wb_list)) { 1288 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1289 if (list_empty(&inode->i_wb_list)) { 1290 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1291 trace_sb_mark_inode_writeback(inode); 1292 } 1293 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1294 } 1295 } 1296 1297 /* 1298 * clear an inode as under writeback on the sb 1299 */ 1300 void sb_clear_inode_writeback(struct inode *inode) 1301 { 1302 struct super_block *sb = inode->i_sb; 1303 unsigned long flags; 1304 1305 if (!list_empty(&inode->i_wb_list)) { 1306 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1307 if (!list_empty(&inode->i_wb_list)) { 1308 list_del_init(&inode->i_wb_list); 1309 trace_sb_clear_inode_writeback(inode); 1310 } 1311 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1312 } 1313 } 1314 1315 /* 1316 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1317 * furthest end of its superblock's dirty-inode list. 1318 * 1319 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1320 * already the most-recently-dirtied inode on the b_dirty list. If that is 1321 * the case then the inode must have been redirtied while it was being written 1322 * out and we don't reset its dirtied_when. 1323 */ 1324 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1325 { 1326 assert_spin_locked(&inode->i_lock); 1327 1328 if (!list_empty(&wb->b_dirty)) { 1329 struct inode *tail; 1330 1331 tail = wb_inode(wb->b_dirty.next); 1332 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1333 inode->dirtied_when = jiffies; 1334 } 1335 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1336 inode->i_state &= ~I_SYNC_QUEUED; 1337 } 1338 1339 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1340 { 1341 spin_lock(&inode->i_lock); 1342 redirty_tail_locked(inode, wb); 1343 spin_unlock(&inode->i_lock); 1344 } 1345 1346 /* 1347 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1348 */ 1349 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1350 { 1351 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1352 } 1353 1354 static void inode_sync_complete(struct inode *inode) 1355 { 1356 inode->i_state &= ~I_SYNC; 1357 /* If inode is clean an unused, put it into LRU now... */ 1358 inode_add_lru(inode); 1359 /* Waiters must see I_SYNC cleared before being woken up */ 1360 smp_mb(); 1361 wake_up_bit(&inode->i_state, __I_SYNC); 1362 } 1363 1364 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1365 { 1366 bool ret = time_after(inode->dirtied_when, t); 1367 #ifndef CONFIG_64BIT 1368 /* 1369 * For inodes being constantly redirtied, dirtied_when can get stuck. 1370 * It _appears_ to be in the future, but is actually in distant past. 1371 * This test is necessary to prevent such wrapped-around relative times 1372 * from permanently stopping the whole bdi writeback. 1373 */ 1374 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1375 #endif 1376 return ret; 1377 } 1378 1379 #define EXPIRE_DIRTY_ATIME 0x0001 1380 1381 /* 1382 * Move expired (dirtied before dirtied_before) dirty inodes from 1383 * @delaying_queue to @dispatch_queue. 1384 */ 1385 static int move_expired_inodes(struct list_head *delaying_queue, 1386 struct list_head *dispatch_queue, 1387 unsigned long dirtied_before) 1388 { 1389 LIST_HEAD(tmp); 1390 struct list_head *pos, *node; 1391 struct super_block *sb = NULL; 1392 struct inode *inode; 1393 int do_sb_sort = 0; 1394 int moved = 0; 1395 1396 while (!list_empty(delaying_queue)) { 1397 inode = wb_inode(delaying_queue->prev); 1398 if (inode_dirtied_after(inode, dirtied_before)) 1399 break; 1400 list_move(&inode->i_io_list, &tmp); 1401 moved++; 1402 spin_lock(&inode->i_lock); 1403 inode->i_state |= I_SYNC_QUEUED; 1404 spin_unlock(&inode->i_lock); 1405 if (sb_is_blkdev_sb(inode->i_sb)) 1406 continue; 1407 if (sb && sb != inode->i_sb) 1408 do_sb_sort = 1; 1409 sb = inode->i_sb; 1410 } 1411 1412 /* just one sb in list, splice to dispatch_queue and we're done */ 1413 if (!do_sb_sort) { 1414 list_splice(&tmp, dispatch_queue); 1415 goto out; 1416 } 1417 1418 /* Move inodes from one superblock together */ 1419 while (!list_empty(&tmp)) { 1420 sb = wb_inode(tmp.prev)->i_sb; 1421 list_for_each_prev_safe(pos, node, &tmp) { 1422 inode = wb_inode(pos); 1423 if (inode->i_sb == sb) 1424 list_move(&inode->i_io_list, dispatch_queue); 1425 } 1426 } 1427 out: 1428 return moved; 1429 } 1430 1431 /* 1432 * Queue all expired dirty inodes for io, eldest first. 1433 * Before 1434 * newly dirtied b_dirty b_io b_more_io 1435 * =============> gf edc BA 1436 * After 1437 * newly dirtied b_dirty b_io b_more_io 1438 * =============> g fBAedc 1439 * | 1440 * +--> dequeue for IO 1441 */ 1442 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1443 unsigned long dirtied_before) 1444 { 1445 int moved; 1446 unsigned long time_expire_jif = dirtied_before; 1447 1448 assert_spin_locked(&wb->list_lock); 1449 list_splice_init(&wb->b_more_io, &wb->b_io); 1450 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1451 if (!work->for_sync) 1452 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1453 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1454 time_expire_jif); 1455 if (moved) 1456 wb_io_lists_populated(wb); 1457 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1458 } 1459 1460 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1461 { 1462 int ret; 1463 1464 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1465 trace_writeback_write_inode_start(inode, wbc); 1466 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1467 trace_writeback_write_inode(inode, wbc); 1468 return ret; 1469 } 1470 return 0; 1471 } 1472 1473 /* 1474 * Wait for writeback on an inode to complete. Called with i_lock held. 1475 * Caller must make sure inode cannot go away when we drop i_lock. 1476 */ 1477 static void __inode_wait_for_writeback(struct inode *inode) 1478 __releases(inode->i_lock) 1479 __acquires(inode->i_lock) 1480 { 1481 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1482 wait_queue_head_t *wqh; 1483 1484 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1485 while (inode->i_state & I_SYNC) { 1486 spin_unlock(&inode->i_lock); 1487 __wait_on_bit(wqh, &wq, bit_wait, 1488 TASK_UNINTERRUPTIBLE); 1489 spin_lock(&inode->i_lock); 1490 } 1491 } 1492 1493 /* 1494 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1495 */ 1496 void inode_wait_for_writeback(struct inode *inode) 1497 { 1498 spin_lock(&inode->i_lock); 1499 __inode_wait_for_writeback(inode); 1500 spin_unlock(&inode->i_lock); 1501 } 1502 1503 /* 1504 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1505 * held and drops it. It is aimed for callers not holding any inode reference 1506 * so once i_lock is dropped, inode can go away. 1507 */ 1508 static void inode_sleep_on_writeback(struct inode *inode) 1509 __releases(inode->i_lock) 1510 { 1511 DEFINE_WAIT(wait); 1512 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1513 int sleep; 1514 1515 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1516 sleep = inode->i_state & I_SYNC; 1517 spin_unlock(&inode->i_lock); 1518 if (sleep) 1519 schedule(); 1520 finish_wait(wqh, &wait); 1521 } 1522 1523 /* 1524 * Find proper writeback list for the inode depending on its current state and 1525 * possibly also change of its state while we were doing writeback. Here we 1526 * handle things such as livelock prevention or fairness of writeback among 1527 * inodes. This function can be called only by flusher thread - noone else 1528 * processes all inodes in writeback lists and requeueing inodes behind flusher 1529 * thread's back can have unexpected consequences. 1530 */ 1531 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1532 struct writeback_control *wbc) 1533 { 1534 if (inode->i_state & I_FREEING) 1535 return; 1536 1537 /* 1538 * Sync livelock prevention. Each inode is tagged and synced in one 1539 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1540 * the dirty time to prevent enqueue and sync it again. 1541 */ 1542 if ((inode->i_state & I_DIRTY) && 1543 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1544 inode->dirtied_when = jiffies; 1545 1546 if (wbc->pages_skipped) { 1547 /* 1548 * writeback is not making progress due to locked 1549 * buffers. Skip this inode for now. 1550 */ 1551 redirty_tail_locked(inode, wb); 1552 return; 1553 } 1554 1555 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1556 /* 1557 * We didn't write back all the pages. nfs_writepages() 1558 * sometimes bales out without doing anything. 1559 */ 1560 if (wbc->nr_to_write <= 0) { 1561 /* Slice used up. Queue for next turn. */ 1562 requeue_io(inode, wb); 1563 } else { 1564 /* 1565 * Writeback blocked by something other than 1566 * congestion. Delay the inode for some time to 1567 * avoid spinning on the CPU (100% iowait) 1568 * retrying writeback of the dirty page/inode 1569 * that cannot be performed immediately. 1570 */ 1571 redirty_tail_locked(inode, wb); 1572 } 1573 } else if (inode->i_state & I_DIRTY) { 1574 /* 1575 * Filesystems can dirty the inode during writeback operations, 1576 * such as delayed allocation during submission or metadata 1577 * updates after data IO completion. 1578 */ 1579 redirty_tail_locked(inode, wb); 1580 } else if (inode->i_state & I_DIRTY_TIME) { 1581 inode->dirtied_when = jiffies; 1582 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1583 inode->i_state &= ~I_SYNC_QUEUED; 1584 } else { 1585 /* The inode is clean. Remove from writeback lists. */ 1586 inode_cgwb_move_to_attached(inode, wb); 1587 } 1588 } 1589 1590 /* 1591 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1592 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1593 * 1594 * This doesn't remove the inode from the writeback list it is on, except 1595 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1596 * expiration. The caller is otherwise responsible for writeback list handling. 1597 * 1598 * The caller is also responsible for setting the I_SYNC flag beforehand and 1599 * calling inode_sync_complete() to clear it afterwards. 1600 */ 1601 static int 1602 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1603 { 1604 struct address_space *mapping = inode->i_mapping; 1605 long nr_to_write = wbc->nr_to_write; 1606 unsigned dirty; 1607 int ret; 1608 1609 WARN_ON(!(inode->i_state & I_SYNC)); 1610 1611 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1612 1613 ret = do_writepages(mapping, wbc); 1614 1615 /* 1616 * Make sure to wait on the data before writing out the metadata. 1617 * This is important for filesystems that modify metadata on data 1618 * I/O completion. We don't do it for sync(2) writeback because it has a 1619 * separate, external IO completion path and ->sync_fs for guaranteeing 1620 * inode metadata is written back correctly. 1621 */ 1622 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1623 int err = filemap_fdatawait(mapping); 1624 if (ret == 0) 1625 ret = err; 1626 } 1627 1628 /* 1629 * If the inode has dirty timestamps and we need to write them, call 1630 * mark_inode_dirty_sync() to notify the filesystem about it and to 1631 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1632 */ 1633 if ((inode->i_state & I_DIRTY_TIME) && 1634 (wbc->sync_mode == WB_SYNC_ALL || 1635 time_after(jiffies, inode->dirtied_time_when + 1636 dirtytime_expire_interval * HZ))) { 1637 trace_writeback_lazytime(inode); 1638 mark_inode_dirty_sync(inode); 1639 } 1640 1641 /* 1642 * Get and clear the dirty flags from i_state. This needs to be done 1643 * after calling writepages because some filesystems may redirty the 1644 * inode during writepages due to delalloc. It also needs to be done 1645 * after handling timestamp expiration, as that may dirty the inode too. 1646 */ 1647 spin_lock(&inode->i_lock); 1648 dirty = inode->i_state & I_DIRTY; 1649 inode->i_state &= ~dirty; 1650 1651 /* 1652 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1653 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1654 * either they see the I_DIRTY bits cleared or we see the dirtied 1655 * inode. 1656 * 1657 * I_DIRTY_PAGES is always cleared together above even if @mapping 1658 * still has dirty pages. The flag is reinstated after smp_mb() if 1659 * necessary. This guarantees that either __mark_inode_dirty() 1660 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1661 */ 1662 smp_mb(); 1663 1664 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1665 inode->i_state |= I_DIRTY_PAGES; 1666 1667 spin_unlock(&inode->i_lock); 1668 1669 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1670 if (dirty & ~I_DIRTY_PAGES) { 1671 int err = write_inode(inode, wbc); 1672 if (ret == 0) 1673 ret = err; 1674 } 1675 trace_writeback_single_inode(inode, wbc, nr_to_write); 1676 return ret; 1677 } 1678 1679 /* 1680 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1681 * the regular batched writeback done by the flusher threads in 1682 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1683 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1684 * 1685 * To prevent the inode from going away, either the caller must have a reference 1686 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1687 */ 1688 static int writeback_single_inode(struct inode *inode, 1689 struct writeback_control *wbc) 1690 { 1691 struct bdi_writeback *wb; 1692 int ret = 0; 1693 1694 spin_lock(&inode->i_lock); 1695 if (!atomic_read(&inode->i_count)) 1696 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1697 else 1698 WARN_ON(inode->i_state & I_WILL_FREE); 1699 1700 if (inode->i_state & I_SYNC) { 1701 /* 1702 * Writeback is already running on the inode. For WB_SYNC_NONE, 1703 * that's enough and we can just return. For WB_SYNC_ALL, we 1704 * must wait for the existing writeback to complete, then do 1705 * writeback again if there's anything left. 1706 */ 1707 if (wbc->sync_mode != WB_SYNC_ALL) 1708 goto out; 1709 __inode_wait_for_writeback(inode); 1710 } 1711 WARN_ON(inode->i_state & I_SYNC); 1712 /* 1713 * If the inode is already fully clean, then there's nothing to do. 1714 * 1715 * For data-integrity syncs we also need to check whether any pages are 1716 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1717 * there are any such pages, we'll need to wait for them. 1718 */ 1719 if (!(inode->i_state & I_DIRTY_ALL) && 1720 (wbc->sync_mode != WB_SYNC_ALL || 1721 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1722 goto out; 1723 inode->i_state |= I_SYNC; 1724 wbc_attach_and_unlock_inode(wbc, inode); 1725 1726 ret = __writeback_single_inode(inode, wbc); 1727 1728 wbc_detach_inode(wbc); 1729 1730 wb = inode_to_wb_and_lock_list(inode); 1731 spin_lock(&inode->i_lock); 1732 /* 1733 * If the inode is now fully clean, then it can be safely removed from 1734 * its writeback list (if any). Otherwise the flusher threads are 1735 * responsible for the writeback lists. 1736 */ 1737 if (!(inode->i_state & I_DIRTY_ALL)) 1738 inode_cgwb_move_to_attached(inode, wb); 1739 spin_unlock(&wb->list_lock); 1740 inode_sync_complete(inode); 1741 out: 1742 spin_unlock(&inode->i_lock); 1743 return ret; 1744 } 1745 1746 static long writeback_chunk_size(struct bdi_writeback *wb, 1747 struct wb_writeback_work *work) 1748 { 1749 long pages; 1750 1751 /* 1752 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1753 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1754 * here avoids calling into writeback_inodes_wb() more than once. 1755 * 1756 * The intended call sequence for WB_SYNC_ALL writeback is: 1757 * 1758 * wb_writeback() 1759 * writeback_sb_inodes() <== called only once 1760 * write_cache_pages() <== called once for each inode 1761 * (quickly) tag currently dirty pages 1762 * (maybe slowly) sync all tagged pages 1763 */ 1764 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1765 pages = LONG_MAX; 1766 else { 1767 pages = min(wb->avg_write_bandwidth / 2, 1768 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1769 pages = min(pages, work->nr_pages); 1770 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1771 MIN_WRITEBACK_PAGES); 1772 } 1773 1774 return pages; 1775 } 1776 1777 /* 1778 * Write a portion of b_io inodes which belong to @sb. 1779 * 1780 * Return the number of pages and/or inodes written. 1781 * 1782 * NOTE! This is called with wb->list_lock held, and will 1783 * unlock and relock that for each inode it ends up doing 1784 * IO for. 1785 */ 1786 static long writeback_sb_inodes(struct super_block *sb, 1787 struct bdi_writeback *wb, 1788 struct wb_writeback_work *work) 1789 { 1790 struct writeback_control wbc = { 1791 .sync_mode = work->sync_mode, 1792 .tagged_writepages = work->tagged_writepages, 1793 .for_kupdate = work->for_kupdate, 1794 .for_background = work->for_background, 1795 .for_sync = work->for_sync, 1796 .range_cyclic = work->range_cyclic, 1797 .range_start = 0, 1798 .range_end = LLONG_MAX, 1799 }; 1800 unsigned long start_time = jiffies; 1801 long write_chunk; 1802 long wrote = 0; /* count both pages and inodes */ 1803 1804 while (!list_empty(&wb->b_io)) { 1805 struct inode *inode = wb_inode(wb->b_io.prev); 1806 struct bdi_writeback *tmp_wb; 1807 1808 if (inode->i_sb != sb) { 1809 if (work->sb) { 1810 /* 1811 * We only want to write back data for this 1812 * superblock, move all inodes not belonging 1813 * to it back onto the dirty list. 1814 */ 1815 redirty_tail(inode, wb); 1816 continue; 1817 } 1818 1819 /* 1820 * The inode belongs to a different superblock. 1821 * Bounce back to the caller to unpin this and 1822 * pin the next superblock. 1823 */ 1824 break; 1825 } 1826 1827 /* 1828 * Don't bother with new inodes or inodes being freed, first 1829 * kind does not need periodic writeout yet, and for the latter 1830 * kind writeout is handled by the freer. 1831 */ 1832 spin_lock(&inode->i_lock); 1833 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1834 redirty_tail_locked(inode, wb); 1835 spin_unlock(&inode->i_lock); 1836 continue; 1837 } 1838 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1839 /* 1840 * If this inode is locked for writeback and we are not 1841 * doing writeback-for-data-integrity, move it to 1842 * b_more_io so that writeback can proceed with the 1843 * other inodes on s_io. 1844 * 1845 * We'll have another go at writing back this inode 1846 * when we completed a full scan of b_io. 1847 */ 1848 spin_unlock(&inode->i_lock); 1849 requeue_io(inode, wb); 1850 trace_writeback_sb_inodes_requeue(inode); 1851 continue; 1852 } 1853 spin_unlock(&wb->list_lock); 1854 1855 /* 1856 * We already requeued the inode if it had I_SYNC set and we 1857 * are doing WB_SYNC_NONE writeback. So this catches only the 1858 * WB_SYNC_ALL case. 1859 */ 1860 if (inode->i_state & I_SYNC) { 1861 /* Wait for I_SYNC. This function drops i_lock... */ 1862 inode_sleep_on_writeback(inode); 1863 /* Inode may be gone, start again */ 1864 spin_lock(&wb->list_lock); 1865 continue; 1866 } 1867 inode->i_state |= I_SYNC; 1868 wbc_attach_and_unlock_inode(&wbc, inode); 1869 1870 write_chunk = writeback_chunk_size(wb, work); 1871 wbc.nr_to_write = write_chunk; 1872 wbc.pages_skipped = 0; 1873 1874 /* 1875 * We use I_SYNC to pin the inode in memory. While it is set 1876 * evict_inode() will wait so the inode cannot be freed. 1877 */ 1878 __writeback_single_inode(inode, &wbc); 1879 1880 wbc_detach_inode(&wbc); 1881 work->nr_pages -= write_chunk - wbc.nr_to_write; 1882 wrote += write_chunk - wbc.nr_to_write; 1883 1884 if (need_resched()) { 1885 /* 1886 * We're trying to balance between building up a nice 1887 * long list of IOs to improve our merge rate, and 1888 * getting those IOs out quickly for anyone throttling 1889 * in balance_dirty_pages(). cond_resched() doesn't 1890 * unplug, so get our IOs out the door before we 1891 * give up the CPU. 1892 */ 1893 blk_flush_plug(current); 1894 cond_resched(); 1895 } 1896 1897 /* 1898 * Requeue @inode if still dirty. Be careful as @inode may 1899 * have been switched to another wb in the meantime. 1900 */ 1901 tmp_wb = inode_to_wb_and_lock_list(inode); 1902 spin_lock(&inode->i_lock); 1903 if (!(inode->i_state & I_DIRTY_ALL)) 1904 wrote++; 1905 requeue_inode(inode, tmp_wb, &wbc); 1906 inode_sync_complete(inode); 1907 spin_unlock(&inode->i_lock); 1908 1909 if (unlikely(tmp_wb != wb)) { 1910 spin_unlock(&tmp_wb->list_lock); 1911 spin_lock(&wb->list_lock); 1912 } 1913 1914 /* 1915 * bail out to wb_writeback() often enough to check 1916 * background threshold and other termination conditions. 1917 */ 1918 if (wrote) { 1919 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1920 break; 1921 if (work->nr_pages <= 0) 1922 break; 1923 } 1924 } 1925 return wrote; 1926 } 1927 1928 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1929 struct wb_writeback_work *work) 1930 { 1931 unsigned long start_time = jiffies; 1932 long wrote = 0; 1933 1934 while (!list_empty(&wb->b_io)) { 1935 struct inode *inode = wb_inode(wb->b_io.prev); 1936 struct super_block *sb = inode->i_sb; 1937 1938 if (!trylock_super(sb)) { 1939 /* 1940 * trylock_super() may fail consistently due to 1941 * s_umount being grabbed by someone else. Don't use 1942 * requeue_io() to avoid busy retrying the inode/sb. 1943 */ 1944 redirty_tail(inode, wb); 1945 continue; 1946 } 1947 wrote += writeback_sb_inodes(sb, wb, work); 1948 up_read(&sb->s_umount); 1949 1950 /* refer to the same tests at the end of writeback_sb_inodes */ 1951 if (wrote) { 1952 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1953 break; 1954 if (work->nr_pages <= 0) 1955 break; 1956 } 1957 } 1958 /* Leave any unwritten inodes on b_io */ 1959 return wrote; 1960 } 1961 1962 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1963 enum wb_reason reason) 1964 { 1965 struct wb_writeback_work work = { 1966 .nr_pages = nr_pages, 1967 .sync_mode = WB_SYNC_NONE, 1968 .range_cyclic = 1, 1969 .reason = reason, 1970 }; 1971 struct blk_plug plug; 1972 1973 blk_start_plug(&plug); 1974 spin_lock(&wb->list_lock); 1975 if (list_empty(&wb->b_io)) 1976 queue_io(wb, &work, jiffies); 1977 __writeback_inodes_wb(wb, &work); 1978 spin_unlock(&wb->list_lock); 1979 blk_finish_plug(&plug); 1980 1981 return nr_pages - work.nr_pages; 1982 } 1983 1984 /* 1985 * Explicit flushing or periodic writeback of "old" data. 1986 * 1987 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1988 * dirtying-time in the inode's address_space. So this periodic writeback code 1989 * just walks the superblock inode list, writing back any inodes which are 1990 * older than a specific point in time. 1991 * 1992 * Try to run once per dirty_writeback_interval. But if a writeback event 1993 * takes longer than a dirty_writeback_interval interval, then leave a 1994 * one-second gap. 1995 * 1996 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1997 * all dirty pages if they are all attached to "old" mappings. 1998 */ 1999 static long wb_writeback(struct bdi_writeback *wb, 2000 struct wb_writeback_work *work) 2001 { 2002 unsigned long wb_start = jiffies; 2003 long nr_pages = work->nr_pages; 2004 unsigned long dirtied_before = jiffies; 2005 struct inode *inode; 2006 long progress; 2007 struct blk_plug plug; 2008 2009 blk_start_plug(&plug); 2010 spin_lock(&wb->list_lock); 2011 for (;;) { 2012 /* 2013 * Stop writeback when nr_pages has been consumed 2014 */ 2015 if (work->nr_pages <= 0) 2016 break; 2017 2018 /* 2019 * Background writeout and kupdate-style writeback may 2020 * run forever. Stop them if there is other work to do 2021 * so that e.g. sync can proceed. They'll be restarted 2022 * after the other works are all done. 2023 */ 2024 if ((work->for_background || work->for_kupdate) && 2025 !list_empty(&wb->work_list)) 2026 break; 2027 2028 /* 2029 * For background writeout, stop when we are below the 2030 * background dirty threshold 2031 */ 2032 if (work->for_background && !wb_over_bg_thresh(wb)) 2033 break; 2034 2035 /* 2036 * Kupdate and background works are special and we want to 2037 * include all inodes that need writing. Livelock avoidance is 2038 * handled by these works yielding to any other work so we are 2039 * safe. 2040 */ 2041 if (work->for_kupdate) { 2042 dirtied_before = jiffies - 2043 msecs_to_jiffies(dirty_expire_interval * 10); 2044 } else if (work->for_background) 2045 dirtied_before = jiffies; 2046 2047 trace_writeback_start(wb, work); 2048 if (list_empty(&wb->b_io)) 2049 queue_io(wb, work, dirtied_before); 2050 if (work->sb) 2051 progress = writeback_sb_inodes(work->sb, wb, work); 2052 else 2053 progress = __writeback_inodes_wb(wb, work); 2054 trace_writeback_written(wb, work); 2055 2056 wb_update_bandwidth(wb, wb_start); 2057 2058 /* 2059 * Did we write something? Try for more 2060 * 2061 * Dirty inodes are moved to b_io for writeback in batches. 2062 * The completion of the current batch does not necessarily 2063 * mean the overall work is done. So we keep looping as long 2064 * as made some progress on cleaning pages or inodes. 2065 */ 2066 if (progress) 2067 continue; 2068 /* 2069 * No more inodes for IO, bail 2070 */ 2071 if (list_empty(&wb->b_more_io)) 2072 break; 2073 /* 2074 * Nothing written. Wait for some inode to 2075 * become available for writeback. Otherwise 2076 * we'll just busyloop. 2077 */ 2078 trace_writeback_wait(wb, work); 2079 inode = wb_inode(wb->b_more_io.prev); 2080 spin_lock(&inode->i_lock); 2081 spin_unlock(&wb->list_lock); 2082 /* This function drops i_lock... */ 2083 inode_sleep_on_writeback(inode); 2084 spin_lock(&wb->list_lock); 2085 } 2086 spin_unlock(&wb->list_lock); 2087 blk_finish_plug(&plug); 2088 2089 return nr_pages - work->nr_pages; 2090 } 2091 2092 /* 2093 * Return the next wb_writeback_work struct that hasn't been processed yet. 2094 */ 2095 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2096 { 2097 struct wb_writeback_work *work = NULL; 2098 2099 spin_lock_bh(&wb->work_lock); 2100 if (!list_empty(&wb->work_list)) { 2101 work = list_entry(wb->work_list.next, 2102 struct wb_writeback_work, list); 2103 list_del_init(&work->list); 2104 } 2105 spin_unlock_bh(&wb->work_lock); 2106 return work; 2107 } 2108 2109 static long wb_check_background_flush(struct bdi_writeback *wb) 2110 { 2111 if (wb_over_bg_thresh(wb)) { 2112 2113 struct wb_writeback_work work = { 2114 .nr_pages = LONG_MAX, 2115 .sync_mode = WB_SYNC_NONE, 2116 .for_background = 1, 2117 .range_cyclic = 1, 2118 .reason = WB_REASON_BACKGROUND, 2119 }; 2120 2121 return wb_writeback(wb, &work); 2122 } 2123 2124 return 0; 2125 } 2126 2127 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2128 { 2129 unsigned long expired; 2130 long nr_pages; 2131 2132 /* 2133 * When set to zero, disable periodic writeback 2134 */ 2135 if (!dirty_writeback_interval) 2136 return 0; 2137 2138 expired = wb->last_old_flush + 2139 msecs_to_jiffies(dirty_writeback_interval * 10); 2140 if (time_before(jiffies, expired)) 2141 return 0; 2142 2143 wb->last_old_flush = jiffies; 2144 nr_pages = get_nr_dirty_pages(); 2145 2146 if (nr_pages) { 2147 struct wb_writeback_work work = { 2148 .nr_pages = nr_pages, 2149 .sync_mode = WB_SYNC_NONE, 2150 .for_kupdate = 1, 2151 .range_cyclic = 1, 2152 .reason = WB_REASON_PERIODIC, 2153 }; 2154 2155 return wb_writeback(wb, &work); 2156 } 2157 2158 return 0; 2159 } 2160 2161 static long wb_check_start_all(struct bdi_writeback *wb) 2162 { 2163 long nr_pages; 2164 2165 if (!test_bit(WB_start_all, &wb->state)) 2166 return 0; 2167 2168 nr_pages = get_nr_dirty_pages(); 2169 if (nr_pages) { 2170 struct wb_writeback_work work = { 2171 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2172 .sync_mode = WB_SYNC_NONE, 2173 .range_cyclic = 1, 2174 .reason = wb->start_all_reason, 2175 }; 2176 2177 nr_pages = wb_writeback(wb, &work); 2178 } 2179 2180 clear_bit(WB_start_all, &wb->state); 2181 return nr_pages; 2182 } 2183 2184 2185 /* 2186 * Retrieve work items and do the writeback they describe 2187 */ 2188 static long wb_do_writeback(struct bdi_writeback *wb) 2189 { 2190 struct wb_writeback_work *work; 2191 long wrote = 0; 2192 2193 set_bit(WB_writeback_running, &wb->state); 2194 while ((work = get_next_work_item(wb)) != NULL) { 2195 trace_writeback_exec(wb, work); 2196 wrote += wb_writeback(wb, work); 2197 finish_writeback_work(wb, work); 2198 } 2199 2200 /* 2201 * Check for a flush-everything request 2202 */ 2203 wrote += wb_check_start_all(wb); 2204 2205 /* 2206 * Check for periodic writeback, kupdated() style 2207 */ 2208 wrote += wb_check_old_data_flush(wb); 2209 wrote += wb_check_background_flush(wb); 2210 clear_bit(WB_writeback_running, &wb->state); 2211 2212 return wrote; 2213 } 2214 2215 /* 2216 * Handle writeback of dirty data for the device backed by this bdi. Also 2217 * reschedules periodically and does kupdated style flushing. 2218 */ 2219 void wb_workfn(struct work_struct *work) 2220 { 2221 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2222 struct bdi_writeback, dwork); 2223 long pages_written; 2224 2225 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2226 current->flags |= PF_SWAPWRITE; 2227 2228 if (likely(!current_is_workqueue_rescuer() || 2229 !test_bit(WB_registered, &wb->state))) { 2230 /* 2231 * The normal path. Keep writing back @wb until its 2232 * work_list is empty. Note that this path is also taken 2233 * if @wb is shutting down even when we're running off the 2234 * rescuer as work_list needs to be drained. 2235 */ 2236 do { 2237 pages_written = wb_do_writeback(wb); 2238 trace_writeback_pages_written(pages_written); 2239 } while (!list_empty(&wb->work_list)); 2240 } else { 2241 /* 2242 * bdi_wq can't get enough workers and we're running off 2243 * the emergency worker. Don't hog it. Hopefully, 1024 is 2244 * enough for efficient IO. 2245 */ 2246 pages_written = writeback_inodes_wb(wb, 1024, 2247 WB_REASON_FORKER_THREAD); 2248 trace_writeback_pages_written(pages_written); 2249 } 2250 2251 if (!list_empty(&wb->work_list)) 2252 wb_wakeup(wb); 2253 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2254 wb_wakeup_delayed(wb); 2255 2256 current->flags &= ~PF_SWAPWRITE; 2257 } 2258 2259 /* 2260 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2261 * write back the whole world. 2262 */ 2263 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2264 enum wb_reason reason) 2265 { 2266 struct bdi_writeback *wb; 2267 2268 if (!bdi_has_dirty_io(bdi)) 2269 return; 2270 2271 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2272 wb_start_writeback(wb, reason); 2273 } 2274 2275 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2276 enum wb_reason reason) 2277 { 2278 rcu_read_lock(); 2279 __wakeup_flusher_threads_bdi(bdi, reason); 2280 rcu_read_unlock(); 2281 } 2282 2283 /* 2284 * Wakeup the flusher threads to start writeback of all currently dirty pages 2285 */ 2286 void wakeup_flusher_threads(enum wb_reason reason) 2287 { 2288 struct backing_dev_info *bdi; 2289 2290 /* 2291 * If we are expecting writeback progress we must submit plugged IO. 2292 */ 2293 if (blk_needs_flush_plug(current)) 2294 blk_schedule_flush_plug(current); 2295 2296 rcu_read_lock(); 2297 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2298 __wakeup_flusher_threads_bdi(bdi, reason); 2299 rcu_read_unlock(); 2300 } 2301 2302 /* 2303 * Wake up bdi's periodically to make sure dirtytime inodes gets 2304 * written back periodically. We deliberately do *not* check the 2305 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2306 * kernel to be constantly waking up once there are any dirtytime 2307 * inodes on the system. So instead we define a separate delayed work 2308 * function which gets called much more rarely. (By default, only 2309 * once every 12 hours.) 2310 * 2311 * If there is any other write activity going on in the file system, 2312 * this function won't be necessary. But if the only thing that has 2313 * happened on the file system is a dirtytime inode caused by an atime 2314 * update, we need this infrastructure below to make sure that inode 2315 * eventually gets pushed out to disk. 2316 */ 2317 static void wakeup_dirtytime_writeback(struct work_struct *w); 2318 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2319 2320 static void wakeup_dirtytime_writeback(struct work_struct *w) 2321 { 2322 struct backing_dev_info *bdi; 2323 2324 rcu_read_lock(); 2325 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2326 struct bdi_writeback *wb; 2327 2328 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2329 if (!list_empty(&wb->b_dirty_time)) 2330 wb_wakeup(wb); 2331 } 2332 rcu_read_unlock(); 2333 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2334 } 2335 2336 static int __init start_dirtytime_writeback(void) 2337 { 2338 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2339 return 0; 2340 } 2341 __initcall(start_dirtytime_writeback); 2342 2343 int dirtytime_interval_handler(struct ctl_table *table, int write, 2344 void *buffer, size_t *lenp, loff_t *ppos) 2345 { 2346 int ret; 2347 2348 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2349 if (ret == 0 && write) 2350 mod_delayed_work(system_wq, &dirtytime_work, 0); 2351 return ret; 2352 } 2353 2354 /** 2355 * __mark_inode_dirty - internal function to mark an inode dirty 2356 * 2357 * @inode: inode to mark 2358 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2359 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2360 * with I_DIRTY_PAGES. 2361 * 2362 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2363 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2364 * 2365 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2366 * instead of calling this directly. 2367 * 2368 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2369 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2370 * even if they are later hashed, as they will have been marked dirty already. 2371 * 2372 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2373 * 2374 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2375 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2376 * the kernel-internal blockdev inode represents the dirtying time of the 2377 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2378 * page->mapping->host, so the page-dirtying time is recorded in the internal 2379 * blockdev inode. 2380 */ 2381 void __mark_inode_dirty(struct inode *inode, int flags) 2382 { 2383 struct super_block *sb = inode->i_sb; 2384 int dirtytime = 0; 2385 2386 trace_writeback_mark_inode_dirty(inode, flags); 2387 2388 if (flags & I_DIRTY_INODE) { 2389 /* 2390 * Notify the filesystem about the inode being dirtied, so that 2391 * (if needed) it can update on-disk fields and journal the 2392 * inode. This is only needed when the inode itself is being 2393 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2394 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2395 */ 2396 trace_writeback_dirty_inode_start(inode, flags); 2397 if (sb->s_op->dirty_inode) 2398 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE); 2399 trace_writeback_dirty_inode(inode, flags); 2400 2401 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2402 flags &= ~I_DIRTY_TIME; 2403 } else { 2404 /* 2405 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2406 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2407 * in one call to __mark_inode_dirty().) 2408 */ 2409 dirtytime = flags & I_DIRTY_TIME; 2410 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2411 } 2412 2413 /* 2414 * Paired with smp_mb() in __writeback_single_inode() for the 2415 * following lockless i_state test. See there for details. 2416 */ 2417 smp_mb(); 2418 2419 if (((inode->i_state & flags) == flags) || 2420 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2421 return; 2422 2423 spin_lock(&inode->i_lock); 2424 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2425 goto out_unlock_inode; 2426 if ((inode->i_state & flags) != flags) { 2427 const int was_dirty = inode->i_state & I_DIRTY; 2428 2429 inode_attach_wb(inode, NULL); 2430 2431 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2432 if (flags & I_DIRTY_INODE) 2433 inode->i_state &= ~I_DIRTY_TIME; 2434 inode->i_state |= flags; 2435 2436 /* 2437 * If the inode is queued for writeback by flush worker, just 2438 * update its dirty state. Once the flush worker is done with 2439 * the inode it will place it on the appropriate superblock 2440 * list, based upon its state. 2441 */ 2442 if (inode->i_state & I_SYNC_QUEUED) 2443 goto out_unlock_inode; 2444 2445 /* 2446 * Only add valid (hashed) inodes to the superblock's 2447 * dirty list. Add blockdev inodes as well. 2448 */ 2449 if (!S_ISBLK(inode->i_mode)) { 2450 if (inode_unhashed(inode)) 2451 goto out_unlock_inode; 2452 } 2453 if (inode->i_state & I_FREEING) 2454 goto out_unlock_inode; 2455 2456 /* 2457 * If the inode was already on b_dirty/b_io/b_more_io, don't 2458 * reposition it (that would break b_dirty time-ordering). 2459 */ 2460 if (!was_dirty) { 2461 struct bdi_writeback *wb; 2462 struct list_head *dirty_list; 2463 bool wakeup_bdi = false; 2464 2465 wb = locked_inode_to_wb_and_lock_list(inode); 2466 2467 inode->dirtied_when = jiffies; 2468 if (dirtytime) 2469 inode->dirtied_time_when = jiffies; 2470 2471 if (inode->i_state & I_DIRTY) 2472 dirty_list = &wb->b_dirty; 2473 else 2474 dirty_list = &wb->b_dirty_time; 2475 2476 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2477 dirty_list); 2478 2479 spin_unlock(&wb->list_lock); 2480 trace_writeback_dirty_inode_enqueue(inode); 2481 2482 /* 2483 * If this is the first dirty inode for this bdi, 2484 * we have to wake-up the corresponding bdi thread 2485 * to make sure background write-back happens 2486 * later. 2487 */ 2488 if (wakeup_bdi && 2489 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2490 wb_wakeup_delayed(wb); 2491 return; 2492 } 2493 } 2494 out_unlock_inode: 2495 spin_unlock(&inode->i_lock); 2496 } 2497 EXPORT_SYMBOL(__mark_inode_dirty); 2498 2499 /* 2500 * The @s_sync_lock is used to serialise concurrent sync operations 2501 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2502 * Concurrent callers will block on the s_sync_lock rather than doing contending 2503 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2504 * has been issued up to the time this function is enter is guaranteed to be 2505 * completed by the time we have gained the lock and waited for all IO that is 2506 * in progress regardless of the order callers are granted the lock. 2507 */ 2508 static void wait_sb_inodes(struct super_block *sb) 2509 { 2510 LIST_HEAD(sync_list); 2511 2512 /* 2513 * We need to be protected against the filesystem going from 2514 * r/o to r/w or vice versa. 2515 */ 2516 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2517 2518 mutex_lock(&sb->s_sync_lock); 2519 2520 /* 2521 * Splice the writeback list onto a temporary list to avoid waiting on 2522 * inodes that have started writeback after this point. 2523 * 2524 * Use rcu_read_lock() to keep the inodes around until we have a 2525 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2526 * the local list because inodes can be dropped from either by writeback 2527 * completion. 2528 */ 2529 rcu_read_lock(); 2530 spin_lock_irq(&sb->s_inode_wblist_lock); 2531 list_splice_init(&sb->s_inodes_wb, &sync_list); 2532 2533 /* 2534 * Data integrity sync. Must wait for all pages under writeback, because 2535 * there may have been pages dirtied before our sync call, but which had 2536 * writeout started before we write it out. In which case, the inode 2537 * may not be on the dirty list, but we still have to wait for that 2538 * writeout. 2539 */ 2540 while (!list_empty(&sync_list)) { 2541 struct inode *inode = list_first_entry(&sync_list, struct inode, 2542 i_wb_list); 2543 struct address_space *mapping = inode->i_mapping; 2544 2545 /* 2546 * Move each inode back to the wb list before we drop the lock 2547 * to preserve consistency between i_wb_list and the mapping 2548 * writeback tag. Writeback completion is responsible to remove 2549 * the inode from either list once the writeback tag is cleared. 2550 */ 2551 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2552 2553 /* 2554 * The mapping can appear untagged while still on-list since we 2555 * do not have the mapping lock. Skip it here, wb completion 2556 * will remove it. 2557 */ 2558 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2559 continue; 2560 2561 spin_unlock_irq(&sb->s_inode_wblist_lock); 2562 2563 spin_lock(&inode->i_lock); 2564 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2565 spin_unlock(&inode->i_lock); 2566 2567 spin_lock_irq(&sb->s_inode_wblist_lock); 2568 continue; 2569 } 2570 __iget(inode); 2571 spin_unlock(&inode->i_lock); 2572 rcu_read_unlock(); 2573 2574 /* 2575 * We keep the error status of individual mapping so that 2576 * applications can catch the writeback error using fsync(2). 2577 * See filemap_fdatawait_keep_errors() for details. 2578 */ 2579 filemap_fdatawait_keep_errors(mapping); 2580 2581 cond_resched(); 2582 2583 iput(inode); 2584 2585 rcu_read_lock(); 2586 spin_lock_irq(&sb->s_inode_wblist_lock); 2587 } 2588 spin_unlock_irq(&sb->s_inode_wblist_lock); 2589 rcu_read_unlock(); 2590 mutex_unlock(&sb->s_sync_lock); 2591 } 2592 2593 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2594 enum wb_reason reason, bool skip_if_busy) 2595 { 2596 struct backing_dev_info *bdi = sb->s_bdi; 2597 DEFINE_WB_COMPLETION(done, bdi); 2598 struct wb_writeback_work work = { 2599 .sb = sb, 2600 .sync_mode = WB_SYNC_NONE, 2601 .tagged_writepages = 1, 2602 .done = &done, 2603 .nr_pages = nr, 2604 .reason = reason, 2605 }; 2606 2607 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2608 return; 2609 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2610 2611 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2612 wb_wait_for_completion(&done); 2613 } 2614 2615 /** 2616 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2617 * @sb: the superblock 2618 * @nr: the number of pages to write 2619 * @reason: reason why some writeback work initiated 2620 * 2621 * Start writeback on some inodes on this super_block. No guarantees are made 2622 * on how many (if any) will be written, and this function does not wait 2623 * for IO completion of submitted IO. 2624 */ 2625 void writeback_inodes_sb_nr(struct super_block *sb, 2626 unsigned long nr, 2627 enum wb_reason reason) 2628 { 2629 __writeback_inodes_sb_nr(sb, nr, reason, false); 2630 } 2631 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2632 2633 /** 2634 * writeback_inodes_sb - writeback dirty inodes from given super_block 2635 * @sb: the superblock 2636 * @reason: reason why some writeback work was initiated 2637 * 2638 * Start writeback on some inodes on this super_block. No guarantees are made 2639 * on how many (if any) will be written, and this function does not wait 2640 * for IO completion of submitted IO. 2641 */ 2642 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2643 { 2644 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2645 } 2646 EXPORT_SYMBOL(writeback_inodes_sb); 2647 2648 /** 2649 * try_to_writeback_inodes_sb - try to start writeback if none underway 2650 * @sb: the superblock 2651 * @reason: reason why some writeback work was initiated 2652 * 2653 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2654 */ 2655 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2656 { 2657 if (!down_read_trylock(&sb->s_umount)) 2658 return; 2659 2660 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2661 up_read(&sb->s_umount); 2662 } 2663 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2664 2665 /** 2666 * sync_inodes_sb - sync sb inode pages 2667 * @sb: the superblock 2668 * 2669 * This function writes and waits on any dirty inode belonging to this 2670 * super_block. 2671 */ 2672 void sync_inodes_sb(struct super_block *sb) 2673 { 2674 struct backing_dev_info *bdi = sb->s_bdi; 2675 DEFINE_WB_COMPLETION(done, bdi); 2676 struct wb_writeback_work work = { 2677 .sb = sb, 2678 .sync_mode = WB_SYNC_ALL, 2679 .nr_pages = LONG_MAX, 2680 .range_cyclic = 0, 2681 .done = &done, 2682 .reason = WB_REASON_SYNC, 2683 .for_sync = 1, 2684 }; 2685 2686 /* 2687 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2688 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2689 * bdi_has_dirty() need to be written out too. 2690 */ 2691 if (bdi == &noop_backing_dev_info) 2692 return; 2693 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2694 2695 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2696 bdi_down_write_wb_switch_rwsem(bdi); 2697 bdi_split_work_to_wbs(bdi, &work, false); 2698 wb_wait_for_completion(&done); 2699 bdi_up_write_wb_switch_rwsem(bdi); 2700 2701 wait_sb_inodes(sb); 2702 } 2703 EXPORT_SYMBOL(sync_inodes_sb); 2704 2705 /** 2706 * write_inode_now - write an inode to disk 2707 * @inode: inode to write to disk 2708 * @sync: whether the write should be synchronous or not 2709 * 2710 * This function commits an inode to disk immediately if it is dirty. This is 2711 * primarily needed by knfsd. 2712 * 2713 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2714 */ 2715 int write_inode_now(struct inode *inode, int sync) 2716 { 2717 struct writeback_control wbc = { 2718 .nr_to_write = LONG_MAX, 2719 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2720 .range_start = 0, 2721 .range_end = LLONG_MAX, 2722 }; 2723 2724 if (!mapping_can_writeback(inode->i_mapping)) 2725 wbc.nr_to_write = 0; 2726 2727 might_sleep(); 2728 return writeback_single_inode(inode, &wbc); 2729 } 2730 EXPORT_SYMBOL(write_inode_now); 2731 2732 /** 2733 * sync_inode - write an inode and its pages to disk. 2734 * @inode: the inode to sync 2735 * @wbc: controls the writeback mode 2736 * 2737 * sync_inode() will write an inode and its pages to disk. It will also 2738 * correctly update the inode on its superblock's dirty inode lists and will 2739 * update inode->i_state. 2740 * 2741 * The caller must have a ref on the inode. 2742 */ 2743 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2744 { 2745 return writeback_single_inode(inode, wbc); 2746 } 2747 EXPORT_SYMBOL(sync_inode); 2748 2749 /** 2750 * sync_inode_metadata - write an inode to disk 2751 * @inode: the inode to sync 2752 * @wait: wait for I/O to complete. 2753 * 2754 * Write an inode to disk and adjust its dirty state after completion. 2755 * 2756 * Note: only writes the actual inode, no associated data or other metadata. 2757 */ 2758 int sync_inode_metadata(struct inode *inode, int wait) 2759 { 2760 struct writeback_control wbc = { 2761 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2762 .nr_to_write = 0, /* metadata-only */ 2763 }; 2764 2765 return sync_inode(inode, &wbc); 2766 } 2767 EXPORT_SYMBOL(sync_inode_metadata); 2768